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A large class of Appell polynomial sequences {pn(x)}∞n=0 are special values at 
the negative integers of an entire function F (s, x), given by the Mellin transform 
of the generating function for the sequence. For the Bernoulli and Apostol-
Bernoulli polynomials, these are basically the Hurwitz zeta function and the Lerch 
transcendent. Each of these have well-known Fourier series which are proved in the 
literature using various techniques. Here we find the latter Fourier series by directly 
calculating the coefficients in a straightforward manner. We then show that, within 
the context of Appell sequences, these are the only cases for which the polynomials 
have uniformly convergent Fourier series. In the more general context of Sheffer 
sequences, we find that there are other polynomials with uniformly convergent 
Fourier series. Finally, applying the same ideas to the Fourier transform, considered 
as the continuous analog of the Fourier series, the Hermite polynomials play a role 
analogous to that of the Bernoulli polynomials.

© 2019 Published by Elsevier Inc.

1. Introduction

An Appell sequence {Pn(x)}∞n=0 is defined formally by an exponential generating function of the form

G(x, t) = A(t) ext =
∞∑

n=0
Pn(x) t

n

n! , (1)

where x, t are indeterminates and A(t) is a formal power series. One often adds the condition A(0) �= 0, 
although in principle this is not necessary. As in [12], we define an Appell-Mellin sequence as an Appell 
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sequence where A(t) is a function defined on the union of a complex neighborhood of the origin and the 
negative axis (−∞, 0), satisfying:

(a) A(t) is non-constant and analytic around 0,
(b) A(−t) is continuous on [0, +∞) and has polynomial growth at +∞.

In this case, assuming that A(t) has a zero of order k at t = 0 (thus k = 0 if A(0) �= 0), we proved in [12]
that for each fixed x > 0, the Mellin transform

F (s, x) = 1
Γ(s)

∞∫
0

G(x,−t) ts−1 dt = 1
Γ(s)

∞∫
0

A(−t)e−xtts−1 dt (2)

converges in the right half-plane Re(s) > −k to a holomorphic function, which may be analytically continued 
to an entire function of s satisfying

F (−n, x) = Pn(x), n = 0, 1, 2, . . . ; (3)

a pair of recent papers dealing with continuous parameter extensions of sequences are [2,3].
From here on, in the rest of the paper, we will use the common notational convention σ = Re s for s ∈ C.
The classical cases, of significant importance in number theory, for example, are the Bernoulli and Apostol-

Bernoulli polynomials. For the Bernoulli polynomials Bn(x), we have A(t) = t/(et − 1) and F (s, x) is 
essentially the Hurwitz zeta function, namely,

F (s, x) = sζ(s + 1, x). (4)

The Hurwitz zeta function ζ(s, x) is usually defined as the meromorphic continuation to C, of the se-
ries

∑∞
k=0(k + x)−s, which converges for σ > 1. It has a simple pole at s = 1 and no other singularities. As 

can be observed, the pole is canceled in the above expression for F (s, x).
The Apostol-Bernoulli polynomials Bn(x; λ) correspond to the choice A(t) = t/(λet−1), with λ ∈ C\{1}. 

If we denote the Mellin transform by F (s, x; λ), then for |λ| ≤ 1 we have

F (s, x;λ) = sΦ(λ, s + 1, x), (5)

where the latter function is the classical Lerch transcendent (see [1]) defined as the analytic continuation of 
the series

Φ(λ, s, x) =
∞∑

n=0

λn

(n + x)s .

For |λ| < 1, the series converges for all s ∈ C and for |λ| = 1, it converges if σ > 0. For |λ| > 1 it is 
divergent, but one can use (5) to continue the Lerch transcendent to a meromorphic function on C, again 
having a simple pole at s = 1 and no other singularities:

Φ(λ, s, x) := 1
s− 1F (s− 1, x;λ). (6)

The Hurwitz zeta function and the Lerch transcendent have the following Fourier series in x:

ζ(s, x) = Γ(1 − s)
∑ e2πikx

(2πik)1−s
, x ∈ (0, 1], σ < 0,
k∈Z\{0}
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and

Φ(λ, s, x)λx = Γ(1 − s)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−s
, x ∈ (0, 1], σ < 0.

Multiple proofs of these formulas are found in the literature (see for instance the classical references [4, 
§1.10 and §1.11] or [8, §1.6]) as well as extensive studies of their many other properties. In [11] we give a 
direct simple argument, based on the Mellin transform, for finding the Fourier coefficients in the case of 
the Hurwitz zeta function. Here we show how that reasoning applies also to the Lerch function. When we 
substitute s = −n we obtain the Fourier series of the Bernoulli and Apostol-Bernoulli polynomials. This is 
discussed in Section 2.

For degree greater than or equal to 2, these Fourier series converge uniformly on [0, 1]. Of course this is 
not possible for a linear polynomial since its value at 0 cannot coincide with its value at 1. In Section 3 we 
show that these two are the only Appell polynomials with such uniformly convergent Fourier series.

On the other hand, in Section 4 we shall see that dropping the Appell condition and considering Sheffer 
sequences, one does find other examples of polynomials with uniformly convergent Fourier series.

Finally, in Section 5, we consider the Fourier transform as the continuous analog of the Fourier series and 
use similar techniques to show that the Hermite polynomials play a role analogous to that of the Bernoulli 
polynomials in the latter case.

2. Fourier series for Hurwitz and Lerch zeta functions

The following Fourier expansion of the Hurwitz zeta function ζ(s, x) is well-known. We will briefly discuss 
the proof given in [11], but without entering into too much detail, with a view towards using similar ideas 
in the case of the Lerch function.

Theorem 1. For x ∈ (0, 1] and σ < 0,

ζ(s, x) = Γ(1 − s)
∑

k∈Z\{0}

e2πikx

(2πik)1−s
. (7)

Sketch of the proof. By (2) and (4), we have

Γ(s)ζ(s, x) = Γ(s)
s− 1F (s− 1, x) =

∞∫
0

G(x,−t) ts−2 dt,

where G(x, −t) = tet(1−x)/(et − 1). The integral converges for σ > 1, but it can be extended to σ > −1 by 
adding and subtracting the first two terms of the power series of G(x, −t) (as a function of t). Moreover, by 
simple manipulations of straightforward integrals, we get that, on the strip −1 < σ < 0,

Γ(s)ζ(s, x) =
∞∫
0

(
G(x,−t) − 1 + t

(
x− 1

2

))
ts−2 dt (8)

(the details will be seen in the proof of Theorem 2). Now fix s = σ ∈ (−1, 0). We find the Fourier coefficients 
of the 1-periodic extension f(x) of Γ(σ)ζ(σ, x) for x ∈ (0, 1]. The calculation is based on the following 
integral:
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1∫
0

(
te(1−x)t

et − 1 − 1 + t
(
x− 1

2

))
e−2πikx dx = − t2

(t + 2πik)2πik

for k �= 0, and 0 if k = 0. By Fubini’s theorem,

1∫
0

Γ(σ)ζ(σ, x)e−2πikx dx = −
∞∫
0

tσ

(t + 2πik)2πik dt = π

sin(πσ) (2πik)σ−1,

where one may observe that the last integral is a beta function. Since the series

∑
k∈Z\{0}

e2πikx

(2πik)1−σ

is uniformly convergent in x if σ < 0, Dirichlet’s theorem on the convergence of Fourier series and the 
reflection formula Γ(s)Γ(1 − s) = π/ sin(πs) imply that (7) holds for σ ∈ (−1, 0). The general case follows 
by analytic continuation. �

As an immediate corollary, by (3) and (5) we obtain the Fourier series of the Bernoulli polynomials (or 
rather, their 1-periodic extensions, but we shall regard this as implicit),

Bn(x) = −n!
∑

k∈Z\{0}

e2πikx

(2πik)n , x ∈ [0, 1], n ≥ 2; (9)

for n = 1 this holds only for x ∈ (0, 1], as can be verified directly.
For the Lerch transcendent, Theorem 1 has the following analog, whose proof, that we now give in more 

detail, is similar:

Theorem 2. Let λ ∈ C \ {0, 1}. For x ∈ (0, 1] and σ < 0,

Φ(λ, s, x)λx = Γ(1 − s)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−s
. (10)

Proof. By (6), we have

Φ(λ, s, x) = 1
s− 1F (s− 1, x;λ) = 1

Γ(s)

∞∫
0

G(x,−t) ts−2 dt

where

G(x,−t) = −t

λe−t − 1e
−xt = tet(1−x)

et − λ
.

The integral is holomorphic for σ > 0. To make it holomorphic for σ > −1, we subtract the first term of 
the Taylor series at t = 0,

G(x,−t) = 1 (−t) + O(t2),

λ− 1
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and apply the standard classical technique of separating the integral into two parts: over (0, α) and over 
(α, ∞), where 0 < α < Rλ, Rλ being the radius of convergence of the Taylor series of G(x, −t) at t = 0. We 
have

Γ(s)Φ(λ, s, x) =
∞∫
α

G(x,−t) ts−2 dt

+
α∫

0

(
G(x,−t) + t

λ− 1

)
ts−2 dt− αs

(λ− 1)s ,

(11)

where the last summand arises from 
∫ α

0 ts−1 dt = αs/s. Observe that the right-hand term in (11) is analytic 
for σ > −1, except at s = 0, where there is a simple pole. Thus, for x ∈ (0, 1], Φ(λ, s, x) can be analytically 
continued to σ > −1 (the pole at s = 0 is canceled by the zero of 1/Γ(s)). Moreover, taking into account 
that αs/s = − 

∫∞
α

ts−1 dt when σ < 0, on the strip −1 < σ < 0 we have

Φ(λ, s, x) = 1
Γ(s)

∞∫
0

(
G(x,−t) + t

λ− 1

)
ts−2 dt

= 1
Γ(s)

∞∫
0

( tet(1−x)

et − λ
+ t

λ− 1

)
ts−2 dt.

Now fix s = σ ∈ (−1, 0). To obtain the Fourier coefficients 
∫ 1
0 Φ(λ, σ, x)λxe−2πikx dx, we note the following 

immediate integral:

1∫
0

( tet(1−x)

et − λ
+ t

λ− 1

)
λxe−2πikx dx = − t2

(t + 2πik − log λ)(2πik − log λ) .

Then by Fubini’s theorem, whose use is easily justified,

Γ(σ)
1∫

0

Φ(λ, σ, x)λxe−2πikx dx = −
∞∫
0

tσ

(t + 2πik − log λ)(2πik − log λ) dt.

Now, the last integral is a beta function, and we arrive at

Γ(σ)
1∫

0

Φ(λ, σ, x)λxe−2πikx dx = π

sin(πσ) (2πik − log λ)σ−1, σ ∈ (−1, 0).

By Dirichlet’s theorem,

Φ(λ, σ, x)λx = Γ(1 − σ)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−σ
, σ ∈ (−1, 0).

The sum on the right is analytic on σ < 0 by uniform convergence, and the general case follows by analytic 
continuation. �
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As an immediate corollary, since F (−n, x; λ) = Bn(x; λ), by (5) we have

Bn(x;λ)λx = −n!
∞∑

k=−∞

e2πikx

(2πik − log λ)n , x ∈ [0, 1], n ≥ 2. (12)

Remark. Note that the difference between the theorems is due to the fact that the generating function of 
the Apostol-Bernoulli polynomials has a zero at t = 0 while that of the Bernoulli polynomials does not. 
That is why in (11) we only need to remove one term from the Taylor series, while in (8) we need two. It 
is often convenient to assume A(0) �= 0 in order to normalize results. We will do this from now on, after a 
brief digression showing that this can be done without loss of generality.

Indeed, allowing A(t) to have a zero at t = 0 of any multiplicity k > 0 causes the polynomials 
P0(x), . . . , Pk−1(x) to be null, and makes the polynomials Pn(x) with n ≥ k have degree n − k. Removing 
the zero by taking A∗(t) = A(t)/tk (so A∗(0) �= 0) yields

A∗(t) ext =
∞∑

n=0
P ∗
n(x) t

n

n! ,

which generates an Appell sequence such that P ∗
n(x) has degree n for every n ≥ 0, and these “shifted” 

polynomials are related to the original family in (1) via

Pn(x) =

⎧⎨⎩
0, if 0 ≤ n < k,

n!
(n− k)! P

∗
n−k(x), if n ≥ k,

which is a near trivial variation. It is convenient to have polynomial sequences in which the n-th polyno-
mial has degree n, and it also avoids unnecessarily complicating the statements of results (for example, in 
Theorem 4). For these reasons let us assume from now on that A(0) �= 0.

The assumption that A(0) �= 0 requires us to slightly alter the Apostol-Bernoulli polynomials Bn(x; λ)
given in [1], for which A(t) = t/(λet − 1), which has a simple zero at the origin. Except when λ = 1, 
this implies that Bn(x; λ) has degree n − 1 (and B0(x; λ) is null). To avoid this, we assume that λ �= 1
(λ = 1 corresponds to the Bernoulli polynomials) and instead of A(t) we will use A∗(t) = 1/(λet − 1), 
which generates polynomials with the “correct” degree. Thus, we define the “shifted” Apostol-Bernoulli 
polynomials {B∗

n(x; λ)}∞n=0 by means of

1
λet − 1 ext =

∞∑
n=0

B∗
n(x;λ) t

n

n! , λ ∈ C \ {1}.

Thus, B∗
n(x; λ) is a polynomial of degree n and is trivially related to the “classical” Apostol-Bernoulli 

sequence by

B∗
n(x;λ) = 1

n + 1Bn+1(x;λ), n = 0, 1, 2, . . . .

It is easy to check how (5) and (6) change when using shifted Apostol-Bernoulli polynomials. For λ �= 1, 
they are related to the Lerch transcendent function by

B∗
n(x;λ) = −Φ(λ,−n, x), n = 0, 1, 2, . . . . (13)
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With this change of notation, we have

B∗
n(x;λ)λx = −n!

∞∑
k=−∞

e2πikx

(2πik − log λ)n+1 , x ∈ [0, 1], n ≥ 1. (14)

3. Appell polynomials and uniformly convergent Fourier series

It is easy to see that the Fourier coefficients of the 1-periodic function which coincides with an n the 
degree polynomial Pn on (0, 1] are of the form

P̂n(k) = c1,k
k

+ c2,k
k2 + · · · + cn,k

kn
(15)

(an explicit form for these coefficients is given in [9, Lemma 10], for example). The Bernoulli polynomials are 
special from this point of view since their Fourier coefficients involve only the last term, namely only cn,k is 
nonzero. This implies that their Fourier series are uniformly convergent for n ≥ 2. In addition, the Fourier 
coefficients are completely multiplicative arithmetic functions, a fact which can be used to find interesting 
Möbius inversion formulas (see [10]).

The Apostol-Bernoulli polynomials B(x; λ), after introducing the factor λx, have similar properties. It is 
natural to ask if there are other Appell sequences having “interesting” Fourier series in the above senses. In 
fact, the mere requirement of uniform convergence, which in terms of (15) means that c1,k = 0, leaves the 
Bernoulli polynomials as the only example. Similarly, requiring uniform convergence after the introduction 
of a factor ϕ(x) discards all but the Apostol-Bernoulli polynomials.

Theorem 3. Suppose that for a given general Appell sequence {Pn(x)}∞n=0 defined as in (1), with A(0) �= 0, 
the Fourier series of Pn(x) converges uniformly on (0, 1] for all n ≥ 2. Then the sequence is a nonzero 
constant multiple of the sequence of Bernoulli polynomials.

Proof. Uniform convergence implies that the 1-periodic extension of Pn(x) is continuous, which means we 
must have Pn(0) = Pn(1) for n ≥ 2. Then by (1), the function

A(t)ext − P0 − P1(x)t

has the same value at x = 0 and x = 1, from which we deduce that

A(t)(et − 1) = (P1(1) − P1(0))t,

and hence the generating function is a nonzero constant multiple of the generating function of the Bernoulli 
polynomials. �
Remark. A similar argument shows that if the Fourier series of Pn(x) converges uniformly on the entire 
interval (0, 1] for any n ≥ n0, then for these n, Pn(x)/n! is a fixed (i.e., with coefficients not depending 
on n) linear combination of Bj(x)/j! for j = n, n − 1, . . ., n − n0.

Thus, uniform convergence of the Fourier series characterizes the Bernoulli polynomials among all Appell 
sequences. There is, however, another possibility: that there exists some function ϕ(x) on [0, 1] such that 
gn(x) = ϕ(x)Pn(x) satisfies gn(0) = gn(1) for n ≥ n0, and hence gn(x) may have a uniformly convergent 
Fourier series. As we saw this happens for the shifted Apostol-Bernoulli polynomials B∗

n(x; λ) with ϕ(x) = λx. 
Let’s see that these are essentially the only possible cases within the Appell context.
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Theorem 4. Suppose that for a given general Appell sequence {Pn(x)}∞n=0 defined as in (1) with A(0) �= 0, 
there is a function ϕ(x) on [0, 1] such that ϕ(0) �= 0 and the Fourier series of ϕ(x)Pn(x) converges uniformly 
on (0, 1] for all n ≥ 2. Then {Pn(x)}∞n=0 is, up to a constant, the sequence of Bernoulli polynomials, 
the sequence of shifted Apostol-Bernoulli polynomials, or a combination of Apostol-Bernoulli and shifted 
Apostol-Bernoulli polynomials.

Proof. The uniform convergence of the series implies that ϕ(0)Pn(0) = ϕ(1)Pn(1) for n ≥ 2. Separating the 
constant and linear terms, the hypothesis implies that the function

ϕ(x)A(t)ext − ϕ(x)A(0) − ϕ(x)(A′(0) + A(0)x)t

takes the same values at x = 0 and x = 1. A little algebra shows that, if we let λ = ϕ(1)/ϕ(0), then

A(t)
(
λet − 1

)
= A(0)(λ− 1) + (A′(0)(λ− 1) + A(0)λ)t

and hence, setting C1 = A(0)(λ − 1) and C2 = A′(0)(λ − 1) + A(0)λ, we arrive at

A(t) = C1

λet − 1 + C2t

λet − 1 ,

from which we deduce the theorem. The case λ = 1 corresponds to the special case of Bernoulli polynomials 
and λ �= 1 to the remaining cases. �
Remark. In general, if we require equality ϕ(0)Pn(0) = ϕ(1)Pn(1) for n ≥ n0, or uniform convergence of the 
Fourier series for n ≥ n0, the same method shows that Pn(x)/n! is a fixed (i.e., with coefficients independent 
of n) linear combination of B∗

j (x; λ)/j! for j = n, n − 1, . . . , n − n0.

This result exhausts the possibilities for “nice” Fourier series of Appell polynomials, at least in the sense 
of being uniformly convergent on the entire interval [0, 1]. Thus an analytical property translates into a 
uniqueness statement involving these two arithmetically interesting polynomial families.

4. The case of Sheffer sequences

Appell polynomials are a particular case of Sheffer polynomials, defined by means of a generating function 
of the form

G(x, t) = A(t) exB(t) =
∞∑

n=0
Pn(x) t

n

n! , (16)

where A(t) and B(t) are analytic in a neighborhood of 0 and B(0) = 0, which guarantees that the coefficients 
Pn(x) are polynomials in x. We will also assume that A(0) �= 0 and B′(0) �= 0, because these conditions 
imply that Pn(x) is a polynomial of degree n for every n ≥ 0.

In the case of Appell polynomials, we have seen that the unique family of polynomials whose Fourier series 
for n ≥ 2 converge uniformly on [0, 1] is that of the Bernoulli polynomials, Apostol-Bernoulli polynomials 
or some combination of these. This is no longer true within the wider context of Sheffer sequences.

In this section we are going to see that there exist other families of Sheffer polynomials with uniformly 
convergent Fourier series. An example is (19).

Let {Pn(x)}∞n=0 be a Sheffer family defined by (16). As in the proof of Theorem 3, the uniform convergence 
implies that the 1-periodic extension of Pn(x) is continuous, which means we must have Pn(0) = Pn(1) for 
n ≥ 2. Then, the function A(t) exB(t) −P0(x) −P1(x)t must have the same value at x = 0 and x = 1. From 
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this, it follows that A(t)(eB(t) − 1) = (P1(1) − P1(0))t. As P1(t) is a polynomial of degree 1, the difference 
a = P1(1) − P1(0) is nonzero. Without lost of generality we may assume that a = 1, so that

A(t)(eB(t) − 1) = t. (17)

We need a procedure to find the Fourier series of Sheffer polynomials satisfying (17). The method is 
essentially different from what we have used above for the Bernoulli polynomials to obtain (9), which was 
based on the Fourier series of the transcendental function ζ(s, x) and its specialization at the negative 
integers. With this in mind, let us begin with the following lemma.

Lemma 5. Let {Pn(x)}∞n=0 be a Sheffer sequence defined by (16) and satisfying (17). For k ∈ Z and t in a 
neighborhood of 0, we have

∞∑
n=0

⎛⎝ 1∫
0

Pn(x)e−2πikx dx

⎞⎠ tn

n! = t

B(t) − 2πik . (18)

Proof. Multiplying both sides of (16) by e−2πikx and integrating over [0, 1] we obtain, on the one hand,

1∫
0

A(t) ex(B(t)−2πik) dx = A(t) eB(t) − 1
B(t) − 2πik = t

B(t) − 2πik ,

and on the other hand,

1∫
0

( ∞∑
n=0

Pn(x)e−2πikx tn

n!

)
dx.

Thus (18) follows if we can justify the exchange of the integral and the sum in a neighborhood of 0. To this 
end, let R be the minimum of the radius of convergence of A(t) and B(t), and K an upper found for the 
values of these functions on |t| = R/2. By Cauchy’s formula,

Pn(x)
n! = 1

2πi

∫
|t|=R/2

A(t) exB(t)

tn+1 dt,

for x ∈ [0, 1]. Then ∣∣∣∣Pn(x)
n!

∣∣∣∣ ≤ 1
2π

2πR
2

(
2
R

)n+1

max
|t|=R/2

|A(t) exB(t)| ≤
(

2
R

)n

KeK .

Now, for |t| < R/3, we have

1∫
0

∞∑
n=0

∣∣∣∣Pn(x)e−2πikx |t|n
n!

∣∣∣∣ dx ≤ KeK
∞∑

n=0

(
2
R

)n (
R

3

)n

< ∞,

and thus Fubini’s theorem justifies the exchange of integral and sum. �
The lemma implies that one way of computing the Fourier coefficients of Pn(x) is to expand t

B(t)−2πik
in (18) as a power series in t and then compare coefficients. To illustrate the method, let us see how it works 
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for the Bernoulli polynomials. In this case B(t) = t and

t

t− 2πik = −
∞∑

n=1

tn

(2πik)n , k �= 0

(of course, we have the constant function 1 when k = 0). Using (18) and comparing the coefficients of tn, 
we obtain the Fourier coefficients 

∫ 1
0 Pn(x)e−2πikx dx and again arrive at (9).

Consider now the choice of B(t) = t/(1 − t) in (16). Assuming (17), our polynomials are defined by

t

et/(1−t) − 1
ext/(1−t) =

∞∑
n=0

Pn(x) t
n

n! . (19)

For k �= 0, we have

t

B(t) − 2πik = (t− 1)t
2πik

1
1 − t 1+2πik

2πik
= (t2 − t)

∞∑
n=0

(1 + 2πik)n

(2πik)n+1 tn

=
∞∑

n=0

(1 + 2πik)n

(2πik)n+1 tn+2 −
∞∑

n=0

(1 + 2πik)n

(2πik)n+1 tn+1

= − 1
2πik t−

∞∑
n=2

(1 + 2πik)n−2

(2πik)n tn,

and t/(B(t) − 2πik) = 1 − t for k = 0. Thus, we have proved the following.

Lemma 6. The Fourier coefficients of the 1-periodic extension of the Sheffer polynomials {Pn(x)}∞n=0 defined 
in (19) are as follows: for k �= 0,

P̂n(k) =
1∫

0

Pn(x)e−2πikx dx =

⎧⎪⎪⎨⎪⎪⎩
0, if n = 0,
− 1

2πik , if n = 1,

−n! (1+2πik)n−2

(2πik)n , if n ≥ 2;

and, for k = 0, P̂0(0) = 1, P̂1(0) = −1, P̂n(0) = 0 (n ≥ 2).

Consequently, discarding the case n = 1, which cannot have a uniformly convergent Fourier series, we 
arrive at:

Theorem 7. For n ≥ 2, the Sheffer polynomials defined in (19) satisfy

Pn(x) = −n!
∑

k∈Z\{0}

(1 + 2πik)n−2

(2πik)n e2πikx

uniformly on x ∈ [0, 1].

Remark. It is easy to check by expanding the numerator of the expression given in Theorem 7, that the 
polynomials Pn(x) are related to the Bernoulli polynomials via

Pn(x)
n! =

n∑ (
n− 2
m− 2

)
Bm(x)
m! .
m=2
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As expected, B1(x) is excluded since it does not have a uniformly convergent Fourier series. The corre-
sponding constant terms Pn(0) for n ≥ 1 form sequence A052852 of the Online Encyclopedia of Integer 
Sequences [13].

In this case, it is easy to construct a function F (s, x) which is entire in s and whose values at the negative 
integers is the nth polynomial Pn(x), at least up to a constant factor depending only on n.

Corollary 8. The function

F (s, x) = −
∑

k∈Z\{0}

(
1

2πik + 1
)−s

e2πikx

(1 + 2πik)2 , x ∈ [0, 1], s ∈ C

is entire in s and satisfies

F (−n, x) = Pn(x)/n!, n ≥ 2,

where {Pn(x)}∞n=0 are the Sheffer polynomials defined in (19).

Proof. It is easily checked that the series converges absolutely and uniformly on compact sets of the complex 
plane and thus defines an entire function. It is clear that the values at negative integers satisfy the above 
relation. �

We can consider an “Apostol-type” generalization of (19), defined by

t

λet/(1−t) − 1
ext/(1−t) =

∞∑
n=0

Pn(x;λ) t
n

n! ,

or, for λ �= 1, the “shifted” polynomials

1
λet/(1−t) − 1

ext/(1−t) =
∞∑

n=0
P∗
n(x;λ) t

n

n! , (20)

so that P∗
n(x; λ) has degree n. Proceeding as we did in (19) and assuming λ �= 0 to avoid trivial cases, we 

obtain

1
B(t) − 2πik + log λ = − 1

2πik − log λ −
∞∑

n=2

(1 + 2πik − log λ)n−2

(2πik − log λ)n tn−1,

which is valid for all k ∈ Z. The Fourier expansion of λxP∗
n(x; λ) for λ ∈ C \{0, 1} can be written as follows.

Theorem 9. For n ≥ 1, the Sheffer polynomials defined in (20) satisfy

P∗
n(x;λ)λx = −n!

∑
k∈Z

(1 + 2πik − log λ)n−1

(2πik − log λ)n+1 e2πikx

uniformly on x ∈ [0, 1].

Remark. Apart from Sheffer sequences, there is another possible generalization of Appell sequences, the 
Boas-Buck-type polynomial sequences; these are defined by generating functions of the form
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G(x, t) = A(t)E(xB(t)) =
∞∑

n=0
Pn(x) t

n

ρn

for nonzero numbers {ρn}∞n=0 and suitable functions A, B and E (see [7] for details). While the study of 
the Fourier series related to these polynomial sequences is outside the scope of the present paper, it may 
provide an interesting future avenue of continuing research.

5. Hermite polynomials and Fourier transform

In this last section, using similar techniques involving the Mellin transform, we show that if instead of 
Fourier series, we consider the Fourier transform, then the Hermite polynomials appear as analogs of the 
Bernoulli polynomials with regard to the themes of the previous sections.

The sequence of Hermite polynomials is generated by

e−t2e2xt =
∞∑

n=0
Hn(x) t

n

n! .

Strictly speaking, this is not an Appell sequence, but only because of the factor of 2 in the exponential. For 
many purposes, one uses the Hermite functions Hn(x) = e−x2

Hn(x), which are generated by

e−(x−t)2 =
∞∑

n=0
Hn(x) t

n

n! .

Now the problem is that these are not even polynomials. Nevertheless, the Mellin transforms of both the 
Hermite polynomials and functions,

H(s, x) = 1
Γ(s)

∞∫
0

e−t2e2xtts−1 dt, H(s, x) = 1
Γ(s)

∞∫
0

e−(x+t)2ts−1 dt,

can still be analytically continued to entire functions which have as special values at the negative integers 
the respective polynomials and functions, i.e.,

H(−n, x) = Hn(x), H(−n, x) = Hn(x), n = 0, 1, 2, . . . ,

since it can be easily verified that the results in [12] are still valid with these trivial modifications to the 
generating functions. Moreover, in this case, the Mellin transform is defined for x ∈ R.

Lemma 10.

(a) For σ > −1 we have H(s, x) = 1
Γ(s)

∞∫
0

(
e−(x+t)2 − e−x2

)
ts−1 dt.

(b) Let ξ ∈ C with Im ξ > 0. Then for −1 < σ < 0,

∞∫
0

(e2πiξt − 1)ts−1 dt = (−2πiξ)−sΓ(s).

Proof. For the first part, we subtract the constant term from the Taylor series of H(s, x). Then for σ > −1
we have
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Γ(s)H(s, x) =
∞∫
1

e−(x+t)2ts−1 dt +
1∫

0

(
e−(x+t)2 − e−x2

)
ts−1 dt + e−x2

s
.

Since 
∫∞
1 ts−1 dt = −1/s, this proves the first formula. For the second formula, the same trick that improves 

the convergence at t = 0 yields

Γ(s) =
∞∫
0

(e−t − 1)ts−1 dt, −1 < σ < 0.

Now consider the parametric integral

G(a) =
∞∫
0

(e−at − 1)ts−1 dt.

It defines a function holomorphic for Rea > 0 and continuous for Rea ≥ 0. By changing variables we have 
G(a) = Γ(s)/as for a > 0, and the general result follows by analytic continuation and continuity. �
Theorem 11. For any x ∈ R and σ < 0,

H(s, x) =
√
π

∞∫
−∞

e−π2ξ2
(−2πiξ)−se2πixξ dξ. (21)

Proof. We start from the well-known Fourier transform

∞∫
−∞

(
e−(x+t)2 − e−x2

)
e−2πixξ dx =

√
π(e2πiξt − 1)e−π2ξ2

.

For −1 < σ < 0 we can compute the Fourier transform of H(s, x) using the first formula in Lemma 10 and 
Fubini’s theorem:

∞∫
−∞

H(s, x)e−2πixξ dx =
√
πe−π2ξ2

Γ(s)

∞∫
0

(e2πiξt − 1)ts−1 dt.

By the second formula in the lemma,

∞∫
−∞

H(s, x)e−2πixξ dx =
√
πe−π2ξ2

(−2πiξ)−s, −1 < σ < 0.

Since 
√
πe−π2ξ2(−2πiξ)−s ∈ L1(R) for −1 < σ < 0, the Fourier inversion theorem gives

H(s, x) =
√
π

∞∫
−∞

e−π2ξ2
(−2πiξ)−se2πixξ dξ.

Finally, note that the integral on the right is holomorphic for σ < 0, so (21) follows by analytic continua-
tion. �
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Remark. These entire functions which extend the Hermite polynomials are well-known and classical, as is 
the formula in the theorem. They may be found in [6, Section 10.5], for example. However, we are not aware 
of this particularly simple treatment using the Fourier transform and its inverse.

As a corollary of the theorem and the special values at negative integers, we obtain the following formula 
for the Hermite polynomials, which was known even before that in Theorem 11 (see for example [5, formula 
18.10.10]).

Corollary 12. For x ∈ R and n ∈ N,

Hn(x) =
√
πex

2
∞∫

−∞

e−π2ξ2
(−2πiξ)ne2πixξ dξ.

Remark. Given, as we have seen, that the Hermite polynomials play a role analogous to the Bernoulli poly-
nomials when considering Fourier transforms rather than Fourier series, one can wonder what generalization 
of the Hermite polynomials might play a role analogous to the Apostol-Bernoulli polynomials. A suitable 
definition could be to let λ = e−2πia and consider

e−t2e−2aπite2tx =
∞∑

n=0
Hn(x; a) t

n

n! .

With this generating function, we have

∞∫
−∞

e−t2e−2aπite2txe−x2
e−2πixξ dx =

√
πe−π2ξ2

e−2πit(ξ+a)

=
√
πe−π2ξ2

∞∑
n=0

(−2πi(ξ + a))n tn

n! ,

so

∞∫
−∞

Hn(x; a)e−x2
e−2πixξ dx =

√
πe−π2ξ2

(−2πi(ξ + a))n, n ∈ N.

Then, by the Fourier inversion formula,

Hn(x; a)e−x2
=

√
π

∞∫
−∞

e−π2ξ2
(−2πi(ξ + a))ne2πixξ dξ, n ∈ N.

Now, if we take Hn(x; a) = Hn(x; a)e−x2 for n ≥ 0, the new generating function is

e−(x−t)2e−2πiat =
∞∑

n=0
Hn(x; a) t

n

n! , t ∈ R.

and we can then define

H(s, x; a) = 1
Γ(s)

∞∫
e−(x+t)2e2πiatts−1 dt, σ > 0,
0
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which, as in Lemma 10, can be continued to σ > −1, satisfying

H(s, x; a) = 1
Γ(s)

∞∫
0

(
e−(x+t)2e2πiat − e−x2

)
ts−1 dt.

Several more similar properties can be established, for instance,

H(s, x; a) =
√
π

∞∫
−∞

e−π2ξ2
(−2πi(ξ + a))−se2πixξ dξ

as in Theorem 11. Unfortunately, it is immediate from the generating functions that

Hn(x; a) = Hn(x− πia),

so this “Apostol-Hermite family” is simply a translation of the ordinary Hermite polynomials. In terms of 
the associated entire functions,

ex
2H(s, x; a) = e(x−πia)2H(s;x− πia).

This can be understood as follows: in the Fourier series, translation of the kth Fourier coefficient, basically 
from k−n to (k+a)−n, leads to a truly more general family of polynomials. However, in the Fourier transform, 
translation of ξn to (ξ+a)n merely corresponds to a translation of the variable in the Hermite polynomials. 
Thus, although one could charitably say that there is indeed a family of Apostol-Hermite polynomials, it is 
a trivial modification of the classical Hermite family.
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