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A B S T R A C T

Exotic animal diseases are transboundary hazards, characterized by their capability to cover global distances,
affecting animal health and welfare with significant economic losses. Their prevention is complex and requires
the dynamic management of potential entry points, transmission pathways, and preventative barriers. The well-
timed detection of an undefined or unexpected (exotic or re-emerging) threat could minimize the consequences
due to onward transmission. As a fit for purpose framework, OIE developed the import risk assessment i.e. a risk
assessment model focusing on the entrance of an exotic disease into a geographical area with naïve hosts. In this
paper, we propose an improvement of the model by integrating it with Social Network Analysis (SNA) ac-
counting for within-country animal movements. Our integrated model has been used as a combined tool to better
estimate the spatial probability of the introduction of at least one affected animal in Italian provinces using
Bluetongue (BT) as an example. Starting from international country-specific BT prevalence data, the model
estimated the probability of introduction to Italy via two different routes of release i.e. the import of infected
animals or the release of infected vectors either associated with imported livestock or through windborne dis-
persion from Africa. The conventional OIE model estimating the probability of BT entering Italy assuming the
same release probability for every Italian province was paralleled by a model integrated with outputs from SNA
to account for different release probability among provinces based on animal movements. The conventional
model predicted a remarkable homogeneity in the risk among the provinces with some peaks only visible during
the warmest months. The model incorporating the network analysis predicted the highest risk to be in the North
Eastern region of Italy but also highlighted the likely occurrence in a couple of Southern provinces, an output
mirroring past occurrence of BT in Italy. Moreover, the sensitivity analysis highlighted the main role for a couple
of model parameters i.e. the probability for a vector to become infected and the vaccine coverage, thus sug-
gesting that an extra effort in vaccine campaigns could be envisaged. The ability to measure animal movements
by SNA can allow the identification of geographical risk hot spots and therefore the risk-based targeting of the
surveillance system.

1. Introduction

Exotic animal diseases (EADs) are transboundary hazards, char-
acterized by their capability to cover global distances, affecting animal
health and welfare with significant economic losses. Their prevention is
complex and requires the dynamic management of potential entry
points, transmission pathways and preventative barriers. The well-

timed detection of an undefined or unexpected (exotic or re-emerging)
threat could minimize the consequences due to onward transmission.
Infectious diseases are transmitted among hosts by means of a variety of
mechanisms, including direct contact, airborne and vector-borne
transmission. The trade of live animals has been demonstrated to be an
important mode of transmission for many diseases such as bovine tu-
berculosis, classical swine fever and Bluetongue (Fevre et al., 2006;
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Bigras-Poulin et al., 2006; Gilbert et al., 2005; Natale et al., 2009;
Nöremark et al., 2011). For this reason, livestock movements can be
subject to strict controls to reduce the likelihood of disease transmis-
sion.

Risk analysis, in an animal health setting, is the formal process of
assessing the risks associated with exposure to an imported infective
agent (OIE, 2012). The first stage of this step-by-step process is the
identification of the hazard, i.e. of the infectious pathogen able to cause
adverse health effects in exposed populations; it is considered sepa-
rately from the subsequent stage which is known as risk assessment.
The latter is subdivided into three steps: (1) release (entry) assessment:
description of the probable ways to introduce the hazard into a ‘free’
country; (2) exposure assessment: description of the routes necessary
for exposure of animals to the hazard and the quantification of the
characteristics and sizes of the exposed populations; (3) consequence
assessment: quantification of the consequences, in terms of animal
health, economic and environmental effects, occurring after the in-
troduction and the establishment of the hazard (Peeler et al., 2015).
The integration of the previous steps produces an overall estimation of
the risk (OIE, 2012). A risk assessment model is a model focusing on the
entrance of an exotic disease into a geographical area with naïve hosts.
The risk assessment may also be performed in cases of sparse data but,
in this case, will depend on many assumptions, as well as on subjective
choices. For these reasons its success mostly lies in the choice of the
most appropriate risk model (Nurminen et al., 1999).

One of the main aims of the collaborative European research pro-
ject, SPARE, 'Spatial risk assessment framework for assessing exotic
disease incursion and spread through Europe' [SPARE, 2016], was to
develop a systematic methodology to rank the risk related to selected
exotic livestock pathogens based on the probability of incursion and
spread within Europe. An effective capability to recognise the emer-
gence of a new or re-emerging disease relies upon a multiagency ap-
proach for the detection, diagnosis and surveillance of infectious dis-
ease as well as on an integrated methodological approach (King et al.,
2004; Blancou et al., 2005; Walsh et al., 2005). With this in mind, fo-
cusing on Bluetongue (BT) as an example, we integrated Social Network
Analysis (SNA) into the classical exposure pathway used in SPARE with
the aim of quantitatively determining the geographical risk of exposure
of livestock to an exotic pathogen within Italy.

Social Network Analysis is a technique originally used to investigate
the links among local patterns of social relationships within a social
structure (Martinez-Lopez et al., 2009). In an epidemiological setting,
the description of a social structure provides a flexible framework for
investigating associations or interactions within a group. An advantage
of the analytical approach of SNA, compared to other techniques, is the
ability to handle bi-directional relationships within groups such as
contacts among individuals, trade or animal movements. The elements
of a network are: the nodes (or vertices or actors) and the connections
among the nodes, referred to as edges (or contacts or links). SNA has
different ways to be represented: (1) with a graph showing the set of
pairs of nodes constituting the network; (2) with a list of the groups of
elements and their interactions with a mathematical notation; (3) with
the number of contacts represented by an adjacency matrix of NxN
nodes, which are the number of contacts among the pairs of nodes in
the network (Martinez-Lopez et al., 2009).

Bluetongue is an infectious viral disease transmitted by insect vec-
tors and affecting ruminants. Sheep and goats are the most susceptible
species and can show severe clinical symptoms, while in cattle infection

is usually asymptomatic. This potentially presents an increased risk for
spread of the virus via livestock movements as asymptomatic animals
are less likely to be detected and removed from the system (https://
www.gov.uk/government/news/bluetongue-virus-detected-and-dealt-
with-in-imported-cattle). BT virus is almost exclusively transmitted by
biting midges, such as Culicoides imicola, and the disease is generally
considered to be present, or potentially present, in a zone between the
40° parallel North and the 35° parallel South, where climatic and en-
vironmental conditions are suitable to the vector's life cycle
(Giovannini et al., 2004).

The aim of our work was to develop a spatially explicit risk as-
sessment model to better estimate the spatial probability of the in-
troduction of at least one BT affected animal by province within Italy
per month. To better estimate spatial heterogeneity at a province level
we integrated SNA into the standard risk assessment framework. The
model was demonstrated using Italy as a case study but can be applied
to any Member State (MS), provided the availability of appropriate
animal movement data.

2. Material and methods

2.1. Overview

The model was based on a classical risk assessment pathway and
was developed in R (v3.3.3, http://www.r-project.org/). The frame-
work was modular, and each stage was developed independently with
the results of the previous stage acting as the input for the next. The
quantitative exposure assessment was stochastic with distributions
chosen to best represent the uncertainty in the data.

The inputs for the model were provided by a release assessment
developed by Simons et al., described in detail in another paper in this
issue (Simons et al., 2018, in this issue). Briefly, the model first esti-
mated the prevalence of the BT in each country of the world, using data
from the OIE WAHIS online database (OIE, 2016), then estimated the
probability of introduction to Italy via different routes of release. The
outputs of the release assessment were, therefore, estimates for the
annual release of BT into Italy by route of release. These were expressed
in terms of the number of infected animals and of the probability of at
least one infected vector incursion. These outputs acted as inputs to the
exposure assessment.

The stages of the risk assessment are outlined in Fig. 1. The first step
was to determine the number of infected animals and insect vectors (for
BT these are midges such as Culicoides imicola) entering the country.
The model considered release of BT via livestock movements and
windborne dispersion of insect vectors. For the livestock movements,
SNA was used to estimate the monthly probability of infected animals
going to each province within Italy. For the vector pathway, the release

Fig. 1. Model Framework diagram, outlining the stages of the risk assessment.
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was equal to the monthly probability of at least one infected vector
entering a single Italian province. The exposure assessment then esti-
mated the probability of transmission of the pathogen from the in-
troduced animal (or vector) to the local livestock population. The final
output of the model was the probability that at least one autochthonous
animal becomes infected from an infected import.

2.2. Monthly release of infected animals into each province

The model inputs were the probability that an infected animal was
introduced in a year from either the European Union (EU) or extra-EU
countries. These probabilities were provided by the quantitative output
of the SPARE release assessment model (Simons et al., 2019 in this
issue). The following assumptions were made:

1 The probability that an animal is infected is independent of exactly
where within a country and when it was imported;

2 The probability of an animal being imported is binomially dis-
tributed.

The Italian National Livestock Registry (https://www.vetinfo.sani-
ta.it), provided individual-level data regarding every movement related
to trade of sheep, goats and cattle recorded between January 1st, 2013
and December 31st. 2016, on a daily basis. Using this data, we con-
structed a network that showed the connections among the holdings
within a single province for each month. The static network was broken
down in monthly representations to identify the changes over time. As

this was a direct network, we considered only one measure referring to
the number of contacts that each node (i.e., province) received (in-de-
gree).

The objective of the SNA was to estimate the probability of im-
porting at least one infected animal to province h in month j, Pj,h. Let ni
be the expected annual number of infected animals imported to Italy
from source i, (where i= 1 for EU countries and i= 2 for Extra-EU
countries) given by outputs from the release assessment, and mi be the
expected total number of animals imported to Italy, obtained from the
livestock registry. Then, the estimated prevalence of infection amongst
imported animals, pi, was given by pi=ni/mi. Assuming no differences
due to seasonality or Italian provinces, other than the number of ani-
mals imported, then the probability of at least one infected animal
imported into province h in month j from source i, pi,j,h, was given by

=p p m1 (1 )i j h i i j h, , , , (1)

The final probability Pj,h was obtained by summing over the sources:
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is the probability that the infected animal is im-
ported from source i. Notice that Pj, h is the marginal distribution to
have an infected case, independently from the source, and it is the sum
of the conditional probabilities to have an infected case from source i,
multiplied by the probability that an animal is imported from source i.

Fig. 2. Pathway of the exposure assessment for Bluetongue infection starting from the probability of introduction of an infected animal.
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2.3. Monthly release of infected vectors into each province

The model considers two routes by which infected vectors may enter
Italy: via livestock and via windborne dispersion from Africa. For the
livestock route, the model assumes movement of vectors occurs to-
gether with the trade of animals and so the same SNA model as used for
release of infected animals can be used. Thus the probability of in-
troduction of at least one infected vector is the same as the probability
of introduction of at least one infected cattle, Pj,h.

For the windborne dispersion route, it was assumed that infected
vectors can travel from the north coast of Africa into Italian provinces.
It was further assumed that the closer the province to Africa, the more
vectors can reach it. Due to limited data, the probability of release of
infected vectors was not explicitly calculated, but we performed the
model starting from a single infected vector.

2.4. Exposure pathway

A scenario tree detailing the most likely exposure pathway for BT
within an Italian province was developed along with the equations and
their most appropriate parametrisation based on available data, in-
corporating variability and/or uncertainty where relevant. The ex-
posure pathway was split into two: one starting from an infected ru-
minant introduced into an Italian farm (Fig. 2), and the second starting
from an infected vector which enters Italy (Fig. 3). To quantify the risk,
we input a value for each single step included in the pathways (Tables
1a and 1b). We did not differentiate among different BT serotypes.

The probability that an autochthonous animal gets infected in
province h and month j from the introduction of an infected animal,
Pinf,j,h, is given by

=P P Pinf j h j h vir j h, , , , , (3)

where Pj,h is the probability of importing at least one infected animal to
province h in month j and Pvir,j,h is the probability that an auto-
chthonous animal in province h in month j is infected, given that an
infected animal is introduced. The probability Pvir,j,h is given by a

stochastic implementation of the scenario trees in Figs. 2 and 3.

2.5. Exposure via infected vector

Starting from previous research suggesting that the maximum dis-
tance covered by a Culicoides is equal to 700 km (Sellers, 1992; Roberts
et al., 2016), we considered the distance between Africa and Italy thus:
the probability of an infected vector arriving in Italy from Africa, EfAfh,
was described by a decreasing function of the distance,

=EfAf dmax 1; 0 1
700

* *0.0002,h A h, (4)

where dA, h is the minimum distance (in kilometres) between Africa and
province h and 0.0002 is an estimate of the seroprevalence of BT virus
in midges in Africa (Savini et al., 2005).

The probability at least one animal becomes infected in area h from
the introduction of an infected vector, Pfinal, j, h, is given by

= +P EfAf P P0.5* 0.5* .final j h h vir j h j h, , , , , (5)

Probability Pfinal, j, h is a weighted sum between the two components
(i.e. the probability that an autochthonous animal gets infected in
province h and month j from the introduction of an infected animal plus
the distance from Africa), where the weights are both equal to 0.5 and it
is the probability that when an infected vector enters Italy, it comes
from Africa.

2.6. Outputs

We produced maps for the exposure assessment model for BT in
Italian provinces, starting from the release of one infected animal or
from the introduction of an infected vector. Here only the latter is re-
ported.

The uncertainty of the model for each of the geographical units is
presented by means of a scatterplot of each monthly mean value and
the 95% Credible Interval (95%CI).

Fig. 3. Pathway of the exposure assessment for Bluetongue infection starting from the probability of introduction of at least an infected vector.
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To visually compare the results of our framework model with the
real occurrence of the disease we obtained the number and the map
reference points of BT outbreaks occurring in Italy from the official
database of the Ministry of Health (https://www.vetinfo.sanita.it/)
from the 1st of January 2016 to the 30th of April 2018.

2.7. Sensitivity analysis

Sensitivity analysis of the stochastic model parameters (i.e. the

index values of the Tables 1a and 1b: C2 = Temperature; C11 = Day
life of a vector; C12 = Spread of a vector in a week; C18 = Vaccine
coverage; C22 = Probability of dying; C24 = Duration of infection;
C25 = Vector density; C38 = Probability of transmission h_v.) was
done using a one-way analysis of variance (ANOVA) approach (Frey
and Patil, 2002; Patil and Frey, 2004). This is a standard statistical
methodology that has been used in previous risk assessments (Adkin
et al., 2016; Simons et al., 2016). Briefly, for each iteration y of the
model the ANOVA analysis compares a point estimate of the input

Table 1a
List of the inputs and their parameterization used to specify the exposure pathway starting from the probability of introduction of an infected animal. **= Minimum
and Maximum of the monthly Temperature for single province.

Ind-
ex

Description Value References (source of data)

Annual number of infected animals imported Release output
C2 Temperature C2∼Uniform (a2, b2) a2 = 22 b2 = 25 http://www.worldclim.org/
C3 Area of province Fixed value (variable among provinces) https://ec.europa.eu/eurostat/data/database
C4 Number of hosts Fixed value (variable among provinces) National Cattle Registry (https://www.vetinfo.it/)
C5 Number of farms Fixed value (variable among provinces) National Cattle Registry (https://www.vetinfo.it/)
C6 Host density (cattle)/Km2 C4/C3 National Cattle Registry (https://www.vetinfo.it/)
C7 Farm density (farm/Km2) C5/C3 National Cattle Registry (https://www.vetinfo.it/)
C8 Host per farm C4/C5 National Cattle Registry (https://www.vetinfo.it/)
C9 Probability of at least one farm/Km2 C9∼LogNormal(µ9, σ9) µ9∼Poisson(C7) σ9

2 =1
C10 Probability of at least one head of cattle in a farm/Km2 C10∼C9*(1-Poisson(C8))
C11 Vector density/Km2 C11∼LogNormal(µ11, σ11) µ11 = 750, σ2

11 = 2 Assumption
C12 Days of life for a vector =111.84*EXP(−0.1547*C2) Gerry and Mullens, 2000
C13 Spread (Km) of a vector in a week C13∼LogNormal(µ12, σ12) µ12 = 10 σ2

12 =1 https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/714607/
qra-BTV8-UK-160212.pdf

C14 Spread (Km) of a vector in a day C13/7
C15 Probability of contact farm/vector =1-(((1-C10)^C14)^C12)
C16 Incidence of infected farms 1/C5
C17 Expected number of contacted farms by vectors C15*C7*C3
C18 Probability that at least one vector contacts the only

infected farm
C30∼ 1-Binomial(C19, C16)

C19 Expected number of vectors for each farm C11*C3/C17 Discontools (https://www.discontools.eu/database.html)
C20 Incidence within the farm 1/C8
C21 Probability that at least one vector contacts the only

infected head
C21∼1-Binomial(C19;C16)

C22 Vector daily probability of feeding 1-EXP(−0.000171*C2*(C2-3.6966)*(41.8699-C2)
^(1/2.7056))

Gerry and Mullens, 2000

C23 Probability that a vector bites the only infected head C22*C23
C24 Probability of transmission from host to vector 0.075 Guis et al., 2011; Nunamaker et al., 1997
C25 Probability of transmission h_v C21*C23*C24
C26 Probability for a vector to become infectious C26–Beta(a26, b26) a26 b26 estimated based on a

distribution having
mean=1-EXP(−0.0003*C2*(C2-10.4)) and
variance=0.01

Hartemink et al., 2009

C27 Probability of vector infection from cattle C25*C26
C28 Probability of at least one ruminant in a farm/km2 C28∼(1-Poisson(C8)
C29 Probability of contact farm/vector 1-(((1-C28)*C14)^C12)
C30 Probability of transmission v->h 1
C31 Probability of viral transmission to the host =C23*C30*C29
C32 Vaccine coverage ruminants C32∼Beta(a32, b32) a32 b32 estimated based on a

distribution having mean=0.26 and
variance=0.01

https://bluetongue.izs.it/j6_bluetongue/resources/pdf/
docTecnici/vaccino/vaccini.pdf;jsessionid=
D85D7BB295CBC17DA0ED96DDFB033FA1.tomcatprod1

C33 Vaccine efficacy 1
C34 Probability of a susceptible cattle 1-(C17*C18) Guis et al., 2011
C35 Probability for susceptible cattle to develop infection 1
C36 Probability of dying (cow) C36∼Uniform(a32, b32) a32 = 0 b32 = 1e-04 Bluetongue entomologic surveillance Italy
C37 Probability of viremia (1-C36)*C31*C34*C35
C38 Duration of infection (Dinf) cattle C38∼LogNormal(µ38, σ38) µ38 = 16.4 σ2

38 = 1 Guis et al., 2011; Nunamaker et al., 1997
C39 Probability of a susceptible ruminant to be viraemic (1-(1-C37)^C38)
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parameter value against the value of a ‘response’ variable, returning an
F value which provides a measure of the extent to which the two are
correlated. In this analysis the response variable is the final probability
to have at least one autochthonous infection. We conduct independent
analyses for two provinces at high risk, Agrigento and Padova, and for
the two months at highest risk, July and August.

3. Results

The network built from the trade data is shown in the Fig. 4. This

figure shows that majority of animals entering Italy go to provinces in
the North West.

The map of the probability of the introduction of BT into Italy
without taking into account the trade of livestock, i.e. for vector release
only, is shown in Fig. 5. This suggests that the highest probability is in
July and August in the southern provinces of Lecce and Taranto.

The median probability of having an autochthonous case re-
presented by the final output of the parameterized model integrated
with the SNA is shown in the Fig. 6. In this figure we see that the
highest probability of having an autochthonous case is in North West

Table 1b
List of the inputs and their parameterization used to specify the exposure pathway starting from the probability of introduction of at least an infected vector.

Index Description Value Reference (source of data)

Probability of release at least one infected vector Release output
C2 Temperature C2∼Uniform(a2,b2), a2 = 22 b2 = 25 http://www.worldclim.org/
C3 Area of province (km2) Fixed Value (variable among provinces) https://ec.europa.eu/eurostat/data/database
C4 Number of hosts Fixed Value (variable among provinces) National Cattle Registry (https://www.vetinfo.it/)
C5 Number of farms Fixed Value (variable among provinces) National Cattle Registry (https://www.vetinfo.it/)
C6 Host density (cattle)/Km2 C4/C3 National Cattle Registry (https://www.vetinfo.it/)
C7 Farm density (farm/Km2) C5/C3 National Cattle Registry (https://www.vetinfo.it/)
C8 Host per farm C4/C5 National Cattle Registry (https://www.vetinfo.it/)
C9 Probability of at least one farm/Km2 C9∼LogNormal(μ9,σ9), μ9 ∼ Poisson(C7), σ9

2 = 1
C10 Probability of at least one head of cattle in a farm/Km2 C10∼C9*(1-Poisson(C8))
C11 Days of life for a vector =111.84*EXP(−0.1547*C2) Gerry and Mullens, 2000
C12 Spread (Km) of a vector in a week C12∼LogNormal (μ12,σ12), μ12=10 σ12

2 =1 https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/714607/
qra-BTV8-UK-160212.pdf

C13 Spread (Km) of a vector in a day C12/7
C14 Probability of contact farm/vector 1-(((1-C10)^C13)^C11)
C15 Vector daily probability of biting an host 1-EXP(−0.000171*C2*(C2-3.6966)*(41.8699-C2)

^(1/2.7056))
Gerry and Mullens, 2000

C16 Probability of transmission vector to host 1 Discontools (https://www.discontools.eu/database.html)
C17 Probability of viral transmission to the host =C15*C16*C14
C18 Vaccine coverage cattle C18∼Beta(a18,b18), a18,b18 estimated based on the

distribution having mean=0.26, variance=0.01
https://bluetongue.izs.it/j6_bluetongue/resources/pdf/
docTecnici/vaccino/vaccini.pdf;jsessionid=
D85D7BB295CBC17DA0ED96DDFB033FA1.tomcatprod1

C19 Vaccine efficacy 1
C20 Probability of a susceptible cattle 1-(C18*C19)
C21 Probability for susceptible cattle to develop infection 1 Discontools (https://www.discontools.eu/database.html)
C22 Probability of dying (cow) C22∼Uniform(a22,b22), a22=0, b22=1e-04
C23 Probability of viremia (Pvir) cattle (1-C22)*C17*C20*C21
C24 Duration of infection (Dinf) cattle C24∼LogNormal(μ24,σ24), μ24=20.6 σ24

2 =1 Guis et al., 2011
C25 Probability of a susceptible cattle to be viraemic (1-(1-C23)^C24)
C26 Vector density/Km2 C26∼LogNormal(μ26,σ26), μ26=750 σ24

2 =2 Assumption
C27 Probability of contact farm/vector 1-(1-C14)^C26
C28 Incidence of infected farm 1/C5
C29 Expected number of contacted farms by vectors C27*C7*C3
C30 Probability that at least one vector contacts the only

infected farm
C30∼1-Binomial(C29,C28)

C31 Expected number of vectors for each farm C26*C3/C29
C32 Incidence within the farm 1/C8
C33 Probability that at least one vector contacts the only

infected head
C33∼1-Binomial(C31,C32)

C34 Vector daily probability of feeding 1-EXP(−0.000171*C2*(C2-3.6966)*(41.8699-C2)
^(1/2.7056))

Gerry and Mullens, 2000

C35 Probability that a vector bites the only infected head C33*C34
C36 Probability of cattle to transmit infection C25*(1-C22)
C37 Probability of transmission from host to vector 0.075 Guis et al., 2011; Nunamaker et al., 1997
C38 Probability of transmission h_v C35*C36*C37
C39 Probability for a vector to become infectious C39∼Beta(a39,b39), a39,b39 estimated based on the

distribution having
mean=1-EXP(−0.0003*C2*(C2-10.4)) and
variance=0.01

Hartemink et al., 2009

C40 Probability of vector infection from cattle C38*C39
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Italy in Padova in July and August, but the probability in Sardinia and
Sicily remain fairly high throughout the year.

The uncertainty relating to the probability of having an index case
in the Italian livestock is shown by the scatterplots of Figs. 7 and 8,
where two specific months of the year are represented (January and
July respectively), considered as the two extremes in terms of tem-
perature. Italianprovinces are shown on the Y axis.

Fig. 9 shows the map of the Italian BT outbreaks which occurred
between the 1st of January 2016 and the 30th of April 2018. It can be
seen that observed outbreaks of BT occurred most often in North
Eastern Italy, but also in Sardinia, Sicily and a number of cases around
Campania and Molise. In Fig. 10 the model estimates over the period
April-October of the average probability of the introduction of the
disease are shown either a) without the network analysis or b) with the
network analysis. Comparing actual outbreaks in Fig. 9 to the model
predictions in Fig. 10, shows that areas of southern Sardinia and eastern

Sicily are relatively high risk, compared to other provinces. The model
without the network analysis did not predict relatively high risk any-
where else in Italy, while the model incorporating the network analysis
predicted the highest risk to be in the North Eastern region of Italy, and
also highlighted Salerno in Campania.

The sensitivity analysis (Fig. 11) revealed that the probability a
vector becomes infected (C38, index value in Table 1b) and the vaccine
coverage (C18, index value in Table 1b) as the parameters which had
the greatest weight in the model. Temperature (C2, index value in
Table 1b) was the parameter with the third highest F value. The
probability that a vector becomes infected is of most concern as while
temperature and vaccination are reasonably well parameterised, there
is high uncertainty surrounding the probability a vector becomes in-
fected due to limited data availability.

Fig. 4. Network of movements of livestock. An edge indicates the movement in the specific month and the thickness of the line is proportional to the number of
heads. Green lines indicate a trade from outside Italy (extra-EU trade is indicated by No EU) to Italy; the red lines are within Italy trades (movements from EU MSs
were omitted to allow better interpretation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 5. The maps show the median value of Pvir j h, , , that is, the probability of having an infected autochthonous case given that there is an infected imported vector.
The legend shows the absolute risk split in equal size categories; brown represents the highest risk, whereas blue represents the lowest risk. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Here, we have proposed a flexible model framework, adaptable to
different animal diseases, for the spatial risk of an imported EAD which
is useful to inform the preparedness of a Member State. The model was

parameterised to assess the probability of onward transmission of BT
virus, regardless of serotype, within individual Italian provinces. Our
model estimated the probability of BT entering Italy with two different
frameworks: one using a national probability, i.e. the same release
probability for every Italian province, and the other one using SNA to

Fig. 6. The maps show the median value of Pfinal j h, , , that is the probability of having an infected autochthonous case as the result of the model integrated with SNA.
The legend shows the absolute risk split in equal size categories; brown represents the highest risk, whereas blue represents the lowest risk. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Scatterplot of the mean value of the probability in January of at least one autochthonous case resulting from the introduction of at least one infected vector in
an Italian province (red dot) and its 95%CI (horizontal black line). Provinces are shown on the Y axis. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 8. Scatterplot of the mean value of the probability in July of at least one autochthonous case resulting from the introduction of at least one infected vector in an
Italian province (red dot) and its 95%CI (horizontal black line). Provinces are shown on the Y axis. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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estimate differences in the release probability among provinces based
on the relative frequency of livestock movements. In the exposure
pathway, by considering the combination of several parameters (i.e.
environmental features, animal susceptibility, livestock demography,
movements and features regarding vectors ability to survive) we gave
flexibility to the model which can be well adapted to other countries. By
integrating an import risk assessment model with SNA, we were able to
identify areas at higher risk of introduction of BT which, otherwise,
would not have been evident.

Results of the risk of introduction of an infected vector, including
SNA, suggest varying levels of risk among the different Italian pro-
vinces, and highlight the influence of trades and of distance from Africa
on the whole model. Areas with the highest number of exchanges have
been highlighted, both from EU and extra-EU. The network has been
useful to better differentiate the level of risk among the Italian pro-
vinces by accounting for the number of animal movements in one single
province. Maps resulting from the exposure pathway alone (i.e. without
accounting for animal movements) show a remarkable homogeneity
among the provinces which changes only during the warmest months
(Fig. 4). Scatter plots drawn down to highlight the uncertainty around

the mean values of probability show a high level of uncertainty only in
some provinces and during the summer season.

Moreover, the southern regions, show a constant risk, along all the
seasons, due to their proximity to North Africa. Conversely, the in-
tegration of SNA into the exposure assessment results in a larger het-
erogeneity of the risk by province. When integrating SNA into exposure
assessment the risk given by the proximity to North Africa is reduced,
because it is combined with the weight given to commercial exchanges
among countries. As emphasised by other authors (Seimenis, 2008;
Mintiens et al., 2008) commercial exchanges are an important risk
factor for the introduction and/or spread of the infection over vast
territories.

By comparing the observed data of BT outbreaks (Fig. 9) with the
modelled prediction maps it is evident that the exposure assessment
integrated with SNA (Fig. 10b) predicts outbreaks in a more reliable
way. The North–Eastern area, where a lot of BT cases have been de-
tected over the last two years, is not clearly identified by the exposure
model without the SNA (Fig. 10a), whereas it is well drawn by the
second model. The area in Campania, is also highlighted by considering
SNA, but it is ignored by the exposure pathway alone. The network

Fig. 9. Map of the BT outbreaks; each blue dot is a single BT outbreak, in any species and regardless of serotypes (1st of January 2016–30th of April 2018). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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model predicts also Cuneoin Piedmont (North–West of Italy) to have a
risk of introduction of the disease even if low, but no outbreaks have
been reported in this region. This prediction is likely due to the rela-
tively large numbers of cattle movements into this region (Fig. 4). The
lack of observed outbreaks suggests that there may be a protective
factor associated with this region not considered by the model, perhaps
the high altitude or lower temperature is inhospitable to the relevant
midge species. With appropriate data, such factors could be introduced
to the model in the future.

The ability to measure animal movements by SNA can allow the
identification of areas where the risk of introduction is higher than in
other zones; this could improve the effectiveness of a country's disease
surveillance system. The outputs of this assessment, considering the
uncertainties, can help to inform national surveillance policies, by
providing evidence for geographical areas where livestock are more
likely to be effectively exposed and to map the critical points within the
trade network.

For instance, based on the results of such a model a risk-based
surveillance system could be put in place, by identifying geographical
hot spots. Risk-based surveillance systems offer a more efficient

approach for early detection and management of diseases (Stärk et al.,
2006) and can provide the basis for efficient resource allocation
(Thornton, 2004). The core rationale underpinning risk-based strategies
is that issues that present higher risks merit higher priority for sur-
veillance resources as these investments will yield higher benefit-cost
ratios (Stärk et al., 2006).

A further added value is derived from possibility of carrying out a
sensitivity analysis. In our case study, the sensitivity analysis high-
lighted that vaccine coverage and the probability for a vector to become
infected as the most important parameters of the model. As it is quite
difficult to implement any barrier against midges becoming infected
with BT, an extra effort in the vaccine campaign against BT virus could
be a feasible strategy as an efficient control measure against the spread
of the disease.

When animal movement data are available, it is possible to refine
import risk assessment models by integrating them with SNA. Our
model demonstrates how this can result in the opportunity for member
States to optimise and target the surveillance measures to deal with
EADs.

Fig. 10. (a) Output of the exposure assessment of the average probability of at least one autochthonous case resulting from the introduction of at least one infected
vector in an Italian province, regardless of animal trade i.e. without accounting for the outputs of the SNA, in the period April–October; (b) output of the exposure
assessment of the average probability of at least one new case resulting from the introduction of at least one infected vector in an Italian province, considering animal
trades i.e. accounting for the additional information obtained through the SNA, in the period April–October.
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Fig. 11. Sensitivity analysis results for two provinces at high risk, Agrigento and Padova, and for the two months at highest risk, July and August as an illustration of
the outputs. Model parameters (C2, C11, C12, C18, C22, C24, C25, C38 of Table 1b) are shown on the X axis and the associated F values on the Y axis.
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