000088468 001__ 88468
000088468 005__ 20200716101429.0
000088468 0247_ $$2doi$$a10.1016/j.ces.2019.04.037
000088468 0248_ $$2sideral$$a111410
000088468 037__ $$aART-2019-111410
000088468 041__ $$aeng
000088468 100__ $$aMaghami, S.
000088468 245__ $$aMathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes
000088468 260__ $$c2019
000088468 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088468 5203_ $$aDue to the temperature and pressure dependency of gas transport through polymeric and mixed matrix membranes, probing of their separation performance at different operational conditions seems crucial to determine an optimal operational condition. To minimize the number of costly and time consuming experiments, a modified form of van''t Hoff-Arrhenius model was developed to consider the simultaneous effects of temperature and pressure on the separation performance of polymeric and mixed matrix membranes. Moreover, the proposed model is capable to consider pressure dependency of energetic parameters of Arrhenius model including activation energies of permeability and diffusivity, heat of sorption and the corresponding pre-exponential factors. The validity of the proposed model was investigated by using permeation coefficients of CO 2 and N 2 in a binary mixture through 6FDA-DAM at different temperatures in the range of 35–55 °C and in the feed pressure range from 2 to 5 atm. Besides, from data taken from the literature, the proposed model was validated by the prediction of temperature and pressure dependency of transport properties of glassy and rubbery polymers as well as mixed matrix membranes (MMMs) for different gas molecules including He, H 2 , CO 2 , O 2 , N 2 , CH 4 and C 4 H 10 . Predictions corresponding to 300 data points revealed that the maximum average absolute relative error was 5.1%.
000088468 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T43-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77290-R
000088468 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000088468 590__ $$a3.871$$b2019
000088468 592__ $$a0.998$$b2019
000088468 591__ $$aENGINEERING, CHEMICAL$$b35 / 143 = 0.245$$c2019$$dQ1$$eT1
000088468 593__ $$aApplied Mathematics$$c2019$$dQ1
000088468 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000088468 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000088468 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000088468 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088468 700__ $$aMehrabani-Zeinabad, A.
000088468 700__ $$aSadeghi, M.
000088468 700__ $$0(orcid)0000-0001-6627-0079$$aSánchez-Laínez, J.$$uUniversidad de Zaragoza
000088468 700__ $$0(orcid)0000-0002-9934-1707$$aZornoza, B.
000088468 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, C.$$uUniversidad de Zaragoza
000088468 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, J.$$uUniversidad de Zaragoza
000088468 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000088468 773__ $$g205 (2019), 58-73$$pChem. Eng. Sci.$$tCHEMICAL ENGINEERING SCIENCE$$x0009-2509
000088468 8564_ $$s58978$$uhttps://zaguan.unizar.es/record/88468/files/texto_completo.pdf$$yPostprint
000088468 8564_ $$s211327$$uhttps://zaguan.unizar.es/record/88468/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088468 909CO $$ooai:zaguan.unizar.es:88468$$particulos$$pdriver
000088468 951__ $$a2020-07-16-08:47:42
000088468 980__ $$aARTICLE