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Chapter 1

Complex Systems?

The greatest challenge today, not just in cell biology and ecology
but in all of science, is the accurate and complete description of
complex systems. Scientist have broken down many kinds of sys-
tems. They think they know most of the elements and forces. The
next task is to reassemble them, at least in mathematical models

that capture the key properties of the entire ensembles.

Edward O. Wilson [1].

This thesis covers the analysis of two fundamental ingredients for the
correct modeling of real macroscopic systems: Nonlinearity and Structural
Complexity. The study of systems where these ingredients are present is sys-
tematically related to the field of “ Physics of Complex Systems”. 1t is not easy
however to find a formal definition of what a complex system is and most books
on the matter submit the reader from the very beginning to some illustrative
examples of complex phenomena rather than establishing the general principles
and characteristics of a complex system.

The standard classification of the wide range of studied natural systems
into physical fields is mainly based on the energy range involved for their
description, namely, (ranging from higher to lower energy) particle physics;
nuclear physics; molecular atomic and optical physics; soft and condensed mat-
ter. With this classification in mind the question about what field the Physics
of Complex System belongs to naturally arises. However, complex systems
are common to a number of physical disciplines belonging to different “energy
ranges” so it is difficult to place them into a single physical compartment. In
addition, one can find lots of examples of systems called “complex” outside these
traditional branches of physics in chemistry, biology, ecology, and social and
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economical sciences. Then, rather than becoming a particular physical field,
the physics of complex systems has emerged as an interdisciplinary subject.
What are the unifying characteristics of complexity in the phenomena studied
by such a diverse branch of scientific disciplines? One can state that the finger-
print of a complex system is reflected by the display of organization without
a central organizing principle. This collective organizational behaviour is not
usually explained by decomposing a complex system into its parts and analyz-
ing their isolated properties. In this sense, the Physics of Complex Systems
is a new way for analyzing systems where complex phenomena are displayed
rather than a new physical field.

One of the first attempts to show the need of a Physics of Complex Systems
is due to Philip W. Anderson in his celebrated article “More is different” [2].
In this article, Anderson tells about the concept of broken symmetry reflected
when one moves from a small system to a macroscopic one. In this transition
it may happen that some symmetries of the single systems, that determine
their physical behaviour, are lost when embedded in a bulk of many systems
and unexpected phenomena occur (Emergence). In this latter situation the
knowledge of the physical laws governing each single building block is in many
cases not enough to explain the collective behaviour of the big system.

Emergentism versus Reductionism

This new way of thinking in physics is strongly related with the Emergen-
tism philosophy. The advent of Emergentism philosophy constituted a punch
at the old-fashioned Reductionist movement that led the theory of science for
decades and, in particular, the way of physics during the XIX century and the
first half of the last century.

Emergentism states that the observed phenomena are classified into differ-
ent levels of description and that each one of these levels is independent in the
sense that each has its own laws. The emergence of such levels is the result
of the increase of the problem’s complexity. On the other hand, reductionists
assume the unity of science so that a hierarchical organization is established
among disciplines:

e Chemistry is based on Physics.
e Fundamental Biology is based on Chemistry.
e Psychology is based on Biology.

e Sociology is based on Psychology.



e Political science and Anthropology are both based on Sociology.

Whereas the first two of these reductions were commonly accepted, it was not
the case for the last ones yielding a big controversy. For example, aspects
of evolutionary psychology and socio-biology are rejected by those who claim
that complex systems are inherently irreducible. On the contrary, strong re-
ductionists claim that the behavioural sciences should become truly scientific
disciplines by being based on genetic biology arguments. Examples of this
long-standing controversy can be found in several scientific forums. Perhaps,
the most fruitful ones, in the sense of the number of rationales on the sub-
ject, are found in the context of life sciences: the mind-body problem, the
explanation of Darwinian evolution theory, etc...

As the theory of science evolved, the Reductionism-Emergentism contro-
versy progressively affected each stage of the above chain of reductions, arriving
up to the very first level. In fact, it was Karl Popper, one of the godfathers of
the modern theory of science, who stated that Chemistry was not reducible to
Physics [3].

The big controversy arrives to Physics under the term “Complex Systems”
questioning the possibility of explaining every physical system only in terms of
the properties of its constituents (Constructionist hypothesis). As mentioned
above, a great deal of physical systems is said to display complex behaviour, 4.e.
they display some new phenomena that cannot be predicted by only looking at
their parts. This impossibility goes beyond the limitations related to the large
amount of elements that are involved; there are cases where the properties of
the isolated elements seem to be violated by the physical description of the
macroscopic behaviour. The concept of symmetry breaking is thus central for
a proper (in physical terms) definition of what is called emergent phenomena
in Physics. The aforementioned article by P. W. Anderson |2] introduced this
new concept in “one of the early manifestos for this infinitely quiet revolution”
leading the new way of looking at physical phenomena. Let us review the most
salient examples of the so-called complex behaviour.

Symmetry breaking arguments have been recursively invoked to explain
unexpected experimental discoveries in the field of condensed matter physics.
The most representative examples are superconductivity, superfluidity, liquid
crystals and antiferromagnetism. The physical explanation of each of these col-
lective phenomena has contributed to the growth of conceptually new frame-
works in many-body physics. It was Landau [4, 5] the first to formulate phase
transitions as processes where symmetry reductions occurred. This point of
view allowed him, after the theoretical explanation of ferromagnetism, to pre-
dict antiferromagnetism [6, 7] by generalizing the idea of spin rotation sym-
metry breaking. Subsequently, ideas on gauge symmetry breaking led to the
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explanation of superfluidity |8, 9] and superconductivity [10]. Anderson |[2]
thus claimed that symmetry breaking in many-body systems is a generalized
phenomenon yielding different emergent collective behaviours depending on
the particular type of broken symmetry. Therefore, it seems reasonable that,
since the principles that govern the behaviour of a macroscopic system of par-
ticles appear defined by the whole system, these phenomena should be studied
separately to those found for more elementary levels of description.

The success of the holistic description of simple (in terms of the knowledge
of the governing physical laws) systems where collective behaviour shows up,
paved the way for the search of new conceptual schemes to explain other emer-
gent phenomena at higher complexity levels. This search was carried out by the
study of mathematical models that account for different emergent behaviours
such as the appearance of dynamically coherent states, spontaneous localiza-
tion or pattern formation in extended systems. A second set of motivating
phenomena is revealed by the observation of self-similar (fractal) patterns in
natural systems, that is viewed as the emergence of self-organization behaviour.
These examples are different forms of the dynamical or spatio-temporal order
that appears in seemingly different systems of a large number of interacting
elements in nature.

The breakthroughs in the description of the first class of phenomena is
closely related to the advances in the studies of nonlinear dynamical systems.
From the very first soliton theory [11] in continuous nonlinear systems and
the discovery of localized states in nonlinear chains [12|, we have seen that
coherent structures emerge from large scale nonlinear models, possess their own
entity (particle-like behaviour, well-defined life times, characteristic interaction
patterns, etc...). In fact, no matter the complexity of the underlying equations,
spatial or temporal coherent structures are many times described with the help
of a low dimensional phase space.

The concept of self-organized criticality, introduced by Per Bak, Kurt
Wiessenfeld and Chao Tang [13, 14|, constitutes one of the best explanation
of nature complexity and, perhaps, it represents one of the major conceptual
achievements of the physics of complexity. Self-organized criticality tries to
capture the essential ingredients to explain the critical-like behaviour (man-
ifested by observations of fractal structure and power-laws) of many natural
systems without a central controller unit. The original idea was to describe the
dynamics of sandpiles, accounting for the avalanches that may happen when
grains are progressively incorporated, by means of a simple cellular automa-
ton model. The success of this simple model was seized to relate the model
to a variety of phenomena where criticality was already observed, like earth-
quakes, forest fires, epidemics and, indeed, evolution theory (relating it to the



the theory of punctuated-equilibrium [15]).

Reading again Anderson in [16] (written nearly 20 years after his treatise on
complexity) and reviewing the most relevant examples of complex behaviour
up to now, it is evident that emergence is progressively being accepted as a
necessary ingredient to face all the new phenomena that has appeared in the
last decades under the name of Complexity. A number of scientific institutes
and groups are nowadays contributing to the growth of complexity physics
which is still in its infancy. Centers with a long history tackling complexity
such as the “Sante Fe Institute”, the “Max Plank Institute for Physics of Com-
plex Systems” at Dresden, the “Complex Systems group and the Center for
Nonlinear Studies” at Los Alamos, the “New England Complex Systems Insti-
tute” at Boston, etc... and those of much recent creation like our “Institute
of Biocomputation and Physics of Complex Systems” at Zaragoza are actively
contributing to this growth.

In summary, the physics of complex systems tries to explain emergent phe-
nomena without losing the sight of the whole system (unlike the fully reduc-
tionist way of doing, which destroys the systemic level). It is then important
to keep in mind that, although physical systems have a clear hierarchical or-
dering (nobody doubts that a system is composed by its parts) “each level can
require a whole new conceptual structure’ [2] (at least for our limited way of
thinking), making thus impossible bridging the gaps by the systematic use of
a bottom-up approaches.

What are the essential ingredients of a Complex System?

All the examples listed above are labeled as complex phenomena due to the
impossibility to explain them by studying in isolation the parts of the systems
where they occur. The behaviour of these systems is thus intrinsically new
with respect to the properties of the single elements of the system.

It is clear that a complex system is composed of a large number of ele-
ments. However, a big ensemble of building blocks is not enough by itself to
guarantee the emergence of unexpected phenomena such as those described
above (long range correlations from short-range interactions, localization in
extended systems, self-organization and adaptability, etc...). Then, it is im-
portant to distinguish the attribute complex from complicated. Airplanes,
computers or swiss clocks are examples of complicated systems made up of a
large number of pieces. They all conform a directed cause-effect chain so that
the malfunctioning of a single piece stops the whole system. They are also
designed by an external agent (humans) for a unique function.
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What are then the key ingredients of a system for the observation of com-
plex phenomena? Before being tempted to answer this question, it comes the
doubt about whether it is reasonable to expect complex systems to have a
well defined number of characteristic properties. Unavoidably, our mind tends
naturally to overuse classification, which is the natural (hardwired) way of
thinking we manage for everyday’s life. However, the holistic roots of emer-
gent phenomena makes it intrinsically difficult to have well defined boundaries
between what is a real complex system and what is not. (In fact, we have up
to now defined a complex system by their behavioural rather than structural
properties.) On the other hand, the number of complex phenomena observed
numerically and experimentally gives us some hints for unveiling some recur-
rent structural ingredients. Let us briefly summarize the most relevant ones:

e Nonlinearity: It is clear that only a few natural systems can be de-
scribed by means of linear relations. The need for a nonlinear modeling
of the interactions is clearly seen by the nonlinear response of many real
systems to perturbations. In fact, nonlinearity also appears when first
principles equations are obtained for very simple systems.

e Non regular structure of the interactions: The network of inter-
actions is of utmost importance. It is revealed a high diversity in the
amount of connections that a single element of the system has with com-
bination of short-range and long-range links. In addition, loops are very
usual in real systems.

e Surroundings do matter: Many complex systems are open. They may
share a balance between dissipated energy and incoming energy flux with
the surroundings in order to achieve dynamical stability.

Although neither complete nor precise (they can be presented alone or all to-
gether), the properties listed above are shared by a number of systems where
complex phenomena is observed. Evidently, natural complex systems, like
e.g. a protein, incorporate all these complexity levels, but, on the other hand,
synthetic models incorporating only one of them are able to reproduce the rel-
evant phenomena. It is seen that one of these ingredients in synthetic models,
specially in the case of nonlinear systems with many degrees of freedom, can
lead the system towards complexity. It is also worth stressing that, as well
as the difficulties for explaining complex phenomena, all the above properties
incorporate additional mathematical and computational difficulties.

Despite the efforts for unveiling the attributes of a complex system, the
question about what are the essential ingredients that generate complexity
remains open, specially when it is clear that a variety of dynamical mechanisms
can produce self-similar structures.



Our “Complex Systems”

The association of several ingredients of complexity in synthetic models
is even more interesting than the study of systems where only one source of
complexity exists. One would expect the observation of new emergent phe-
nomena, different from those related to any of the sources of complexity. This
expectation motivates our studies in this Thesis. In particular, we will focus
on extended systems of interacting elements where two sources of complexity
are present, namely, nonlinearity and/or structural complexity.

As explained above, the emergence of coherent structures in extended non-
linear systems has been studied since decades. Our concern in this Thesis is
to dedicate a first part to the study of localization in nonlinear homogeneous
lattices. In particular, we will address the study of localized states in one and
two-dimensional nonlinear Schédinger lattices. These states, usually termed
intrinsic localized modes or discrete breathers are time periodic, spatially local-
ized and are seen as ubiquitous solutions to a number of homogeneous nonlinear
lattices (for it the attribute “intrinsic” in their denomination). Besides, nonlin-
ear Schodinger lattices are seen as paradigmatic equations of importance for
several branches of physics like Bose-Einstein condensates or nonlinear optics.
In this first part we will be specially interested in the mobility of such coherent
structures. The main difference with classical solitons in continuum equations
relies in the absence of continuum space translational symmetry, that makes
the finding of such solutions non trivial. Besides, we will study other types of
coherent states, like discrete vortices or oscillating discrete breathers, in order
to have a complete description of the behaviour of localized solutions in this
important class of lattices.

The second part of this Thesis will concern the study of complex networks,
1.e. extended systems of interacting elements where the patterns of connec-
tions between them is random. The study of this class of systems has been
traditionally ascribed to graph theory. However, the recent discoveries on the
self-similar character of the structure of connections in many real (social, bi-
ological, technological, etc...) systems have led to a burst in the activity of
the so-called physics of complex networks. There is a lot of important con-
sequences of the scale-free behaviour of real networks, like robustness under
random perturbations, the “small-world’ effect, absence of threshold for epi-
demics spreading and a complete new behaviour for most dynamical processes
that take place on top of them. The self-similar patterns of connections and
its ubiquity in nature lead to the conclusion that a large amount of systems
share the same self-organizational principles. However, the question about the
mechanism that drives the evolution of networks to these common structural
patterns is still unsolved. We will focus on both the modeling of network
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growth and the study of several simple dynamics of interest in human-made
(technological) scale-free networks.

The study of complex network structure and the analysis of simple dynam-
ics on top of scale free graphs try to unveil the improvements that a hetero-
geneous pattern of connections provides to the deployment of the network’s
function. However, these two elements, function (dynamics) and structure, are
many times presented to us entangled. That is, the growth and time evolu-
tion of the network of interactions (that determines its scale-free feature) is
performed at the same time the system develops its function. Therefore, the
structure is the result of a kind of selective process that drives to the most
efficient architecture. In this case, the study of how network grows is similar
to the problem of finding those network architectures that are the most effi-
cient for its functioning. Besides, most of the dynamics of real systems are
seen to be nonlinear and, therefore, the analysis of systems of elements with
both nonlinear and random interactions comes as necessary. Our main pur-
pose in the third part of the Thesis is to analyze two systems of this kind and,
therefore, approach to the problem on the Structure-Function relation. We will
analyze this relation in two biologically relevant systems, namely, a scale-free
network with activatory-inhibitory (Michaelis-Menten type) interactions and
the Kuramoto model of phase oscillators on top of different network architec-
tures. In these two studies we do not pretend to find the definite answer to
the Structure-Function problem, but to discuss new tools and discover new
phenomena that could lead to a better understanding of this relation.

The studies on this Thesis are thus separated in three parts depending on
the sources of complexity involved in their description: nonlinearity (Part I),
structural complexity (Part IT) and (finally Part III) both. Along this thesis
we will face problems associated to the emergence of coherent structures, self-
similar structural patterns and finally self-organization of dynamical patterns.
Therefore, the concept of emergence will be the recurrent idea behind our
studies.



Part 1

Intrinsic localization 1n
nonlinear Schrodinger lattices






Presentation of Part 1

In this first part of the Thesis we will analyze the phenomenon of intrinsic
localization in nonlinear lattices. In particular, we will focus on the study of
intrinsic localized states solutions to nonlinear Schrédinger lattices. Let us
first motivate this study by reviewing the birth and growth of the physics of
intrinsic localized modes.

Localized states in condensed matter physics has been usually ascribed
to the presence of inhomogeneities or disorder that, due to the breaking of
the discrete translational symmetry of the system, lead to the observation of
phonon modes which are localized around these inhomogeneities or to the so-
called Anderson localization[17]. This conception of localization in discrete
systems has been recently extended with the discovery [18, 19] of the so-called
intrinsic localization in completely homogeneous periodic structures. The term
intrinsic localization refers to the possibility of having spatially localized and
time periodic excitations due to the presence of both discreteness and strong
nonlinearity in homogeneous lattices. These two ingredients, discreteness and
nonlinearity, are seen as the essential ingredients for the observation of intrinsic
localized modes.

Intrinsic localized modes were also termed as discrete breathers in the lit-
erature. These two names reflect, as reported in [20], the convergence of two
different ways of interpreting this kind of solutions. On one hand, the view
of intrinsic localization in lattices as a result of the presence of nonlinearity
instead of impurities, and on the other hand, as a result of the stabilization
of the localized periodic oscillation due to discreteness, that avoids the decay
of the excitation into radiation. The former interpretation led to term these
solutions as intrinsic localized modes pointing out that localization of the peri-
odic state is a result of the self-trapping effects caused by the nonlinear terms
in contrast to the localization around extrinsic defects or impurities in linear
lattices. The latter point of view tries to resemble these states to that partic-
ular soliton solution (called breather due to its time periodicity) obtained for
the continuous sine-Gordon system [21]. The finding of this breathing solution
to the sine-Gordon model remained as a very exceptional feature for contin-
uous models related to its integrable character. While physicists concerned
with continuous models tried to reproduce these solutions in other continu-
ous models they realized that the discretization performed for the numerical
simulations provided an apparent robustness to localized breathing solutions.
These observations constituted the hint for the existence of discrete breathers
as true solutions of nonlinear lattices.
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The above two approaches to intrinsic localization in nonlinear lattices (one
going from linear to nonlinear discrete systems and the second from continu-
ous to discrete nonlinear models) finally converged to conclude that intrinsic
localized modes or discrete breathers should be generic solutions to nonlinear
extended lattices. The heuristic explanation argued was that in nonlinear lat-
tices the plane wave spectra are bounded due to discreteness, thus making pos-
sible the absence of multi-harmonic resonances of the exact discrete breather
solution with extended modes. Therefore, the combination of nonlinearity and
discreteness is sufficient for the physical existence of discrete breathers result-
ing in its generality and broad interest. This extreme was further supported
by the development of the theory for the existence of intrinsic localized modes
in nonlinear discrete systems 22| and nowadays the study of nonlinear lat-
tices have become the subject of a considerable multidisciplinary interest. The
broad range of applications in physics subdisciplines covers fields as diverse as
biophysics (myelinated nerve fibers 23], DNA [24, 25|, biopolymer chains |26]),
nonlinear optical devices (photonic crystals [27] and waveguides |28, 29|), and
Josephson effect [30] (superconducting devices |31, 32|, Bose-Einstein conden-
sates [33 35]), among others [36 38]. From a theoretical perspective nonlinear
lattices have been progressively recognized not as mere discretizations (un-
avoidable for numerical computations) of nonlinear continuous field equations,
but as a target of interest in their own right, due to the distinctive features
associated with discreteness, whose relevance to experimental features have
been largely established.

Though many of the properties of discrete breathers are today well charac-
terized!, several questions remain unsolved and their most promising applica-
tions are yet to be developed. From the theoretical point of view, the question
on their mobility has been a constant source of controversy. The heuristic ar-
guments tell about the impossibility of having moving localized structures in
lattices due to the radiative losses unavoidably associated to the translational
motion of the localized pulse in generic systems. Our main concern in this
part will be to analyze this problem for nonlinear Schrédinger lattices where
important applications are found.

The purpose of this first part of the Thesis is to characterize these mobile
solutions along with the well known pinned ones and, besides, more exotic
types of localized structures (like bound states of intrinsic localized modes,
oscillating discrete breathers, pulsons, or discrete vortices) by a systematic
study of their existence, stability and dynamics. For these purposes, we have
divided this part into three chapters. First, in chapter 2, we will briefly present
the nonlinear Schrodinger lattice equations and the essential techniques to be

nteresting reviews and tutorials on the subject are found in [20, 39 43].
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employed in the following chapters. Secondly, in chapter 3, we will analyze the
one-dimensional case, where we will mainly focus on the mobility of localized
structures and its physical interpretation. In this chapter, we will also analyze
a new type of pinned solutions, termed cuspons, that arise when competing
(self-focusing and self-defocusing) nonlinearities come into play. Finally, the
two-dimensional version of the model equations is studied in chapter 4. Here,
besides generic two-dimensional solutions like discrete vortices, two important
issues are of importance, namely: (i) the quasi-collapse instability of discrete
breathers (that turns localized solutions into pulsonic structures), and (74) the
extension of the one-dimensional mobile solutions to their two-dimensional
counterparts.

The discussion of the results in chapters 3 and 4 tries to unify different
approaches to and studies of the problem in order to provide a coherent enough
picture about the behaviour of discrete breathers in nonlinear Schrodinger
lattices. We hope that the results shown would provide a path for studying
similar problems in other interesting models.






Chapter 2

Discrete Breathers and
Nonlinear Schrodinger lattices

1 was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped but not so the mass of water in
the channel which it had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary elevation, a round, smooth and
well-defined heap of water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on a horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour, preserving

its original figure some thirty feet long and a foot to a foot and a half in height.

Observation of a solitary wave formation
in 1834 by John Scott Russel [44].

Discrete breathers, also called intrinsic localized modes, are ubiquitous so-
lutions {®,(t)}, with n = —o0,...,0,...,00, to extended anharmonic lattices.
These states are time periodic, with a well defined frequency wy, solutions
where the energy is confined on a few number of sites. A general form of this
solutions can be expressed as

D, (t) = f(n — xp)exp (iwpt) , (2.1)

with f(n — xg) ~ exp [-T'|n — z¢|] when n — +oo. The parameter ¢ is the
localization center and I' (> 0) accounts for the decay rate and hence quantifies
the degree of energy localization.

The first observations of energy localization in anharmonic lattices where
accidentally found by E. Fermi, J.R. Pasta, S.M. Ulam and M. Tsingou [12] in
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1955. This “little discovery” were followed by the burst of nonlinear science led
by theoretical advances in soliton theory or integrable systems. The growth
of computer processing power turned again the view to nonlinear lattices and,
after the theoretical work of A.J. Sievers, S. Takeno and K. Kisoda [18, 19] in
1988 discovering a new localized mode for pure anharmonic lattices, several nu-
merical observations of these kind of solutions were reported by several authors
for different nonlinear lattices [45 48]. It is worth mentioning that the observa-
tion of these localized states was found to be generic of homogeneous nonlinear
lattices and therefore different from that due to presence of Anderson modes
as a consequence of the existence of any inhomogeneity (defect or impurity) of
the harmonic lattice. Observations of genuine discrete breather solutions were
mainly based on the numerical simulations of the nonlinear dynamics.

The question on their existence as true solutions of the nonlinear lattice
remained unsolved until R.S. Mackay and S. Aubry |22] established the the-
orem for the existence of discrete breather solutions. This theorem is based
on the concept of anti-integrability (developed by S. Aubry for studying the
Frenkel-Kontorova model |49, 50]) or, applied to general lattices, the anticon-
tinuum limit. This concept refers to the limiting case when there is no coupling
between adjacent sites of the lattice so that the system is composed of a set
of independent oscillators whose dynamics is governed by their corresponding
on-site potentials. Then, considering the state where a single oscillator evolves
following an orbit of frequency wy while the remaining sites are in the rest
state one can ask whether this state of energy confinement would remain when
the coupling between sites is adiabatically incorporated. The continuability of
discrete breathers from the uncoupled limit implies two conditions

e Non-resonance condition: The oscillation frequency and its harmonics
must rely outside the phonon band of the lattice at the rest state

nwy #w(q) Vg€ |-m/2,7/2] (n=1,2,...) (2.2)

o Anharmonicity condition: The on-site potentials governing the dynamics
of the isolated sites must be nonlinear so that the frequencies, wy, of their
orbits fulfills Owy/0I # 0, where I is the action.

The proof of the existence theorem is based on the implicit function theorem
and provides a practical way for constructing localized solutions of the type

(2.1).

After the rigorous formulation of the existence conditions of discrete breathers
several questions arised. From one hand, its stability and robustness in noisy
environments has been studied in detail [51] since their experimental observa-
tion and potential applications to real systems implies relative large life times.
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Another hot topic is the issue of their mobility. Taking into account the gen-
eral form (2.1) of a pinned discrete breather one would expect their mobile
counterparts to have the form

D, (t) = f(n— vy — ) exp (iwpt) , (2.3)

with f(n — vy — xg) ~ exp [['|n — vpt — x0|] when n — £o0o. The possibility of
transferring energy packets across lattices opens the door to a wide range of
applications in nonlinear optics, solid state and soft matter physics. However,
since the continuous translational invariance is broken due to discreteness, the
computation of pinned discrete breathers of the form (2.1) does not guaran-
tee the success in constructing mobile localized states like (2.3) by means of
a change of the reference system. Different approaches have been used for
studying this problem ranging from the “kicking” method [52-55] (where a
static solution is perturbed with the so-called pinning or marginal mode in or-
der to make it move) to analytical approximations were continuous variables
(collective coordinates) accounting for the localization center are introduced
[56—60]. Our approach to this problem tries to generalize the method of con-
tinuation for pinned breathers to obtain mobile solutions. For this purpose we
start with make use of the concept of (p, q) resonant states that will allow us
to unify the problem of finding both mobile and pinned discrete breathers.

In this chapter we introduce the set of nonlinear Schrodinger equations
that we study along the two forthcoming chapters as well as to summarize the
basic definitions and techniques used for characterizing breather solutions to
these equations. We will start in section 2.1 describing the Salerno model [61]
which provides a two-parametric family of nonlinear Schrédinger lattices. In
section 2.2 we address the definition of the concept of (p, ¢) resonant solutions
to which general discrete breather solutions belong. Finally, in section2.3 the
basic technique to obtain and characterize discrete breathers are summarized.

2.1 The Salerno Model

The continuous nonlinear Schrodidinger equation (NLS) constitutes a key tool
for a number of fields as diverse as the study of Bose-Einstein condensates
(where the mean field approximation is of the NLS-type, the Gross-Pittaevskii
equation), the study of nonlinear (Kerr type) optical fibers, molecular chains
(where Davydov solitons are studied), etc... Besides, the NLS equation is
specially interesting for nonlinear physics since it appears when considering
the lowest order of nonlinearity for any dynamical equation on a dispersive
medium where energy is conserved. The most general form of this equation is

1®(2,t) = —V20(x,t) — v|®(x, t)[>®(x, 1) , (2.4)
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where ®(x,t) is a complex field which, in the context of Bose-Einstein con-
densates, accounts for the macroscopic wave-function of the condensate. The
parameter vy accounts of the competence between the dispersive (Laplacian
term) and the nonlinear parts. This cubic nonlinear equation posses the sin-
gular property of being integrable. The integrability was probed by means of
the Inverse Scattering Method (ISM) technique [11, 62, 63] in [64] providing a
family of nonlinear waves.

The Discrete Nonlinear Schrédinger equation

The physical relevance of the NLS equation along with its integrable character
make it one of the most studied models by nonlinear physicists during the
last decades. Besides, discretizations of this equation are also of great interest.
The natural the discretization of eq. (2.4) yields the so-called standard discrete
nonlinear Schrédinger equation (DNLS) 23],

lq)n = _C((I)n—l—l + q)n—l) - '7|(I>n|2(1)n 5 (25)

where @, is now a complex variable, the parameter C' amounts the nearest
neighbor coupling, and ~ is the strength of the nonlinearity. The above dis-
cretization does not conserve the integrability of the continuous model (2.4)
although the wide applicability to physical fields is preserved. In particular,
the DNLS equation is particularly relevant for

e Dynamical description of Bose-Einstein condensates trapped in a periodic
potential well (optical trap) [33 35, 65 68].

e Pulse dynamics in nonlinear waveguide arrays [28, 29, 69 72|.
e Adiabatic approximation of the Holstein polaron [23].

e Excitation dynamics in biopolymers lattices [26].

The dynamics governed by the DNLS equation (2.5) is derived from the Hamil-
tonian

H=-C (2,Bps1+ B Ppri1) % 3@ (2.6)

n

where ®,, denotes the complex conjugate of ®,,. Both variables, ®, and ®,,,
are canonically conjugated with the usual Poisson structure
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Beside, the DNLS equation has a second integral of the dynamics, namely the
norm,

N=Y a2, (2.8)

that in the context of Bose-Einstein condensates accounts for the total number
of bosons whereas for waveguides arrays it is the total power of the beam.

The Ablowitz-Ladik equation

Another important discretization of the continuous NLS equation is the so-
called Ablowitz-Ladik equation (AL). Although this lattice is not so physically
relevant as the usual discretization, DNLS equation (2.5), the AL model pre-
serves the integrability of its continuous counterpart (2.4). In fact, the AL
model is an extremely exceptional example of an integrable nonlinear lattice
that was discovered by M.J. Ablowitz and J.F. Ladik in 1976 |73, 74| by means
of the ISM in its discrete version [75, 76]. The AL model reads as follows

ICI)n = _((I)n—l—l + q)n—l) [C + %‘q)n‘ﬂ ’ (29)

where again ®,,(t) is a complex probability amplitude, the parameter C' amounts
the nearest neighbor coupling, and + is the strength of the nonlinearity. The
nonlinear term in the AL equation is of the intersite type and hence differs
with its counterpart in the DNLS model which is an onsite nonlinearity.

The AL model (2.9) has a deformed Poisson structure defined by

wvi=% e -] (D) | (210)

and the conserved Hamiltonian is

H=-C> (®nPni1+ PnPpyi1) - (2.11)

The integrability of the AL equation results in an infinite number of conserved
quantities. Along with the Hamiltonian the two conserved magnitudes of lowest
order in {®,} are

P o= i) (2,%ps1 — Bppia), (2.13)

n

which are the norm and the momentum respectively.



20 Chapter 2. Discrete Breathers and Nonlinear Schrédinger lattices

The integrable AL equation possesses a two-parameter family of exact
breather solutions of the form

o, = \/gsinhﬁ sech[B(n — zo(t))] x
exp [i(a(n —xo(t)) + Q(1))] . (2.14)

As can be observed the solutions possess the continuous spatial symmetry
xg — x¢ + € and hence analytic mobile breather solutions with a similar form
to eq. (2.3) are available for this exceptional lattice. The two parameters of
this breather family can be chosen to be the breather frequency wp and velocity

Vb,
2sinh [si
o = g = 2Smbfsina (2.15)
5
wpy = Q=2coshfcosa + avy, (2.16)

where —m < o < 7w and 0 < # < co. The AL moving breather (instantaneous)
profile interpolates between the rest state ®,, = 0 of the lattice (at n — +00)
in an exponentially localized region around z((t), while traveling with velocity
Vp.

The Salerno model

In the above two equations, DNLS (2.5) and AL (2.9), the self-focussing effect
of local nonlinearity balanced by the opposite effect of the dispersive coupling
makes possible the existence of localized periodic solutions (breathers) of the
discrete field, where the profile of |®,| decays exponentially away from the
localization center:

©,, (1) = |©n expliwp(t))] - (2.17)

In the uncoupled limit C' — 0 of the DNLS equation, also known as the anti-
integrable or anti-continuous limit, discrete breathers can be easily constructed
by selecting a periodic oscillation ®,,(t) of frequency wy, = v|®,,,|? at site ng
and ®,, = 0 for n # ng. These solutions can be uniquely continued (we will see
the procedure below) to nonzero values of the coupling C, and constitute the
one-parameter family of immobile on-site breathers of the DNLS equation.

Unfortunately, the continuation from the uncoupled limit does not provide
solutions where the localization center moves along the lattice with velocity vy
(as for the AL case), i.e, mobile discrete breathers. On the other hand, the

connection between the integrable (though physically limited) AL equation
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and the physically relevant (though nonintegrable) DNLS equation is provided
by the model originally introduced by M. Salerno in [77],

10, = —(Ppy1 + Ppi) [C + p|®@n)?] — 200, |®,|* . (2.18)

The above lattice provides a Hamiltonian interpolation between the stan-
dard DNLS equation (2.5), for 4 = 0 and v = /2, and the integrable AL
lattice (2.9) when p = /2 and v = 0. In the following we will set the value of
~v = 2. The Hamiltonian of the Salerno equation is given by

— — v
H= — 0§j(<1>n<1>n+1+<1>n¢>n+1)—2;§j|¢>n|2
n

n

14
+ 2ﬁzln(1+ul<bnl2), (2.19)

which contains the AL and DNLS Hamiltonian for the above limits. The
Poisson structure of the Salerno model takes the form

wvi=% [2_1 _ K_E} (14 pl®?) (2.20)

which, for u # 0, takes the same functional form as that of the Ablowitz-Ladik
equation, eq. (2.10), and in the limit g = 0 it becomes the standard Poisson
structure according to that of the DNLS limit, eq. (2.7). In addition to the
Hamiltonian, this equation possesses, for any value of the parameters p and v,
the following conserved norm

1
N = ;ZIn(lJru\q)ny?). (2.21)

While the SM was originally introduced in a rather abstract context, it has
recently found direct physical realization, as an asymptotic form of the Gross-
Pitaevskii equation describing a Bose-Einstein condensate of bosonic atoms
with magnetic momentum trapped in a deep optical lattice [78]. In that case,
the onsite nonlinearity is generated, as usual, by collisions between atoms,
while the intersite nonlinear terms account for the long-range dipole-dipole
interactions. This latter interaction may be attractive (u > 0) or repulsive
(1 < 0), if the external magnetic field polarizes the atomic momentum along
the lattice or perpendicular to it, respectively.

The continuation of the family (both pinned and mobile) discrete breathers
from the AL integrable limit allows numerical observations of the interplay
between the integrable term, weighted by the parameter p, and the noninte-
grability, weighted by v. We will inspect the effects that the combination of
these two nonlinearities, with both similar and opposite signs, has on discrete
breathers dynamics.
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2.2 Discrete space-time symmetries: (p, ¢) resonant
states

In order to unify the problem of finding pinned and mobile discrete breathers by
means of continuation methods we start defining the concept of (p, ¢) resonant
states. Suppose that a frequency wp = 27/T} is given, we will say that a
solution ® = {®,,(¢)} is (p, q) resonant with respect to the reference frequency
wp, if the following condition holds, for all n and ¢:

D (t) = Prap(t +qT5) - (2.22)

After g Typ-periods, these solutions repeat the same profile but displaced
by p lattice sites. In more technical terms, these (p, ¢) resonant solutions are
fixed points ® of the operator

LrTe = M (2.23)
M-T)® = 0, (2.24)

where £ and 7T are, respectively, the lattice translation and the Tj-time evolu-
tion operator

LL{®n(t)} = {Pn41(t)} (2.25)
T{(I)n(t)} = {(I)n(t+Tb)}' (2'26)

We now consider some examples of (p, ¢) resonant solutions with respect
to the frequency wy; the first example is simply provided by the family of plane
wave solutions of eq. (2.18):

®,,(t) = Aexpli(kn — wt)] . (2.27)

It is easily seen, by inserting (2.27) in eq. (2.18), that the values of w, k and
|A| define a surface in the three-dimensional space, the nonlinear dispersion
relation surface w(k, A) (see figure 2.1):

w=—2[1+ p|A*|cosk — 2v|A|* . (2.28)
Note that due to the nonlinear character of the eq. (2.18), the frequency w

depends on both wave number k and amplitude |A| of the plane wave.

One can easily determine those plane waves that are (p, ¢) resonant with
respect to wp: the eq. (2.22) imposes the following condition on w and k

wib = 3 (%k — m) , (2.29)
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where m is any arbitrary integer. These planes in the 3-d space (w, |A|, k)
intersect the dispersion relation surface at (in general) several one-parameter
families (branches) k;(|Al), in the first Brillouin zone (-7 < k < ).

If we are not interested in unreasonably large (and not interesting) ampli-
tude values |A| of the plane waves, the number of branches is finite: one can
see that for fixed values of all the parameters (p, q, wp, v, i), there is a finite
number of branches in the limit |A] — 0; there is also a well defined (parameter
dependent) threshold value of the amplitude at which a pair of new branches
(tangent bifurcation) appear (i.e. these plane waves can only resonate with wy
for amplitudes above some threshold value).

Thus, by a suitable bounding of the amplitude, for each couple (p, ¢) one
finds a finite number, s, of branches of (p, ¢) resonant plane waves. (Note also
that this number diverges when p/q tends to an irrational).

A different, and highly nontrivial, example of (p, ¢) resonant solutions is
provided by the solitary waves (2.14) of the AL lattice. From eq. (2.16) it is
clear that the choice 2mvy/wy, = p/q selects a (p, ¢) resonant solitary wave with
respect to the frequency wy, i.e. a breather solution where the two time scales
involved, given by its frequency wp and velocity vp, are commensurate. The
set of velocity values of resonant AL breathers is dense and any AL moving
breather is a limit of some sequence of resonant ones. Note also that immobile
breathers are (0, 1) resonant with respect to the frequency wy,.

In the integrable limit, the plane waves and the AL breathers are both
exact independent solutions. Integrability makes possible that the initial lo-
calization of energy is maintained with time evolution, without decaying away
by exciting radiation. It is a well established result that (even far away from
this integrable limit) immobile discrete breathers remain exact solutions of the
lattice dynamics. Our concern in the next sections is the question of moving

Figure 2.1: Plot of the nonlinear
dispersion relation surface of non-
linear plane waves, eq. (2.28), as
a function of the amplitude A and
the wave number k of the plane
wave. The values of p and v are
fixed to 0.5.
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discrete breathers away from integrability in eq. (2.18). In order to study
them, we will focus on (p, ¢q) resonant solutions. The motivating of this re-
striction comes from its accessibility to numerics. First we will motivate the
numerical (Newton) method that allow us to study these solutions with an
adequately high precision.

2.3 Discrete Breathers numerics

We introduce here the numerical techniques that we have used. As a whole,
one could refer to them as the (SVD-) regularized Newton method. They do
not constitute a novel method in "discrete Breather numerics", as they have
been already used, e.g. in [79] to refine moving breathers of Klein-Gordon
lattices obtained by other numerical means (see, by contrast, [80]). From the
methodological side, what is novel here is the systematic use of them in the
investigation of the family of moving Schrédinger breathers reported below in
3.1.

To some extent, the presentation here is self-contained but for further de-
tails on these techniques we refer to the Appendices and the proposed bib-
liography. First, in 2.2 we introduce the notion of (p, ¢) resonant solution,
providing some illustrative examples. The (SVD) regularized Newton algo-
rithm is presented in 2.3.1, and finally in 2.3.2 we briefly explain the basics of
Floquet stability analysis.

2.3.1 Newton continuation

A well-known numerical procedure to obtain exact periodic solutions of nonlin-
ear lattices is the Newton continuation [22, 53, 79, 81|. The different practical
implementations of this procedure work very successfully when, for example,
one obtains numerically exact immobile discrete breathers of eq. (2.18), from
the uncoupled limit ¢ = 0 and C = 0, where exact periodic discrete breathers
are trivially constructed.

The iteration of the Newton operator 7 converges rapidly to its fixed point
(i.e. the solution to be computed) provided the starting point, <i>0, is close
enough, and the solution of the following system of linear equations is a well-
posed problem:

(DT —1)(®" — ") = [T — 7]9", (2.30)

where D7 is the Jacobian matrix of the Newton operator, and ®" (the n-th
iteration solution of (2.30)) converges quadratically to the fixed point solution.
By adiabatic change of a model parameter, one constructs a uniquely continued
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exact fixed point solution for each parameter value, using each time, as starting
point of the Newton iteration, the solution previously computed.

The matrix (D7 — 1) must be invertible, in order to uniquely compute
®"*1. Degeneracies associated with the +1 eigenvalues of D7, if any, have
to be removed in order to obtain a unique fixed point solution. When contin-
uing immobile (time periodic) discrete breathers of eq. (2.18), a convenient
prescription is commonly used, namely to restrict the operator action to the
subspace of time-reversible solutions (see Appendix A and [53, 81|). This pro-
vides a practical way of removing degeneracies, allowing unique continuation
of immobile discrete breathers.

However, for the continuation of general (p, ¢) resonant solutions (of which
periodic solutions are only the particular case p = 0 and ¢ = 1), one has to use
M = LPT1 as the Newton operator. One has also to deal with the degeneracies
of M, and imposing time-reversibility could, in this case, be too restrictive,
since in general (p, q) resonant solutions are not time-reversible.

A well-known solution to the problem of removing degeneracies when no
clear restrictions are available, is provided by the so-called singular value de-
composition (SVD) [53, 79, 82, 83| of the matrix (DLPT?—1) :

(DLPTT—1) = J = PVQ, (2.31)

where P, V and ) are 2N x 2N square matrices. P and () are orthogonal matri-
ces and V' is diagonal (v;6;;) with possibly null (zero) elements, called singular
values, associated with the null space of J (the subspace that is mapped to zero
Jx = 0). The columns of P whose same-numbered elements v; are nonzero
are an orthonormal set of basis vectors that span the range of J (the subspace
reached by this matrix). The rows of @) whose same-numbered elements v; are
zero are an orthonormal basis for the null space of J. One can numerically use
this SVD decomposition, checking the (numerical) vectors spanning the null
space to identify degeneracies, and using at iteration steps the pseudoinverse
matrix

QVipr, (2.32)
where V1 is diagonal with elements 1/vj for vj # 0 and 0 for v; = 0.

The convergence criterion for the fixed point solution is that

So|(7 - 70mh) [ < N1070 (2.33)

where N is the size of the lattice, i.e. the solutions obtained along the two
forthcoming chapters can be regarded as exact up to machine precision. As a
judicious test of our numerical codes, we have used both procedures (reduction
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to time-reversible subspace and SVD decomposition) to obtain immobile dis-
crete breathers (for which both methods are valid) of the Salerno model. Both
agree, up to the highest possible accuracy, from the uncoupled limit up to the
A-L limit (and viceversa).

2.3.2 Floquet stability analysis

A very useful outcome of the numerical Newton method of computing solutions
of eq. (2.18) is the Jacobian matrix of the Newton operator, usually called the
Floquet matrix F'. This matrix is the linear operator associated with the linear
stability problem (see Appendix B and [84]) of the fixed point solution.

Indeed, the Jacobian F' of the Newton operator M
F =DM (2.34)

maps vectors in the tangent space of the solution (small initial perturbations
€(0) of the fixed point solution) into their Th-evolved vectors, i.e. €(Th),
after a period of M. That is:

&(Twm) = FE0) | (2.35)

The Floquet matrix of a Hamiltonian system is real and symplectic, so
the Floquet eigenvalues A come in quadruplets, A\, 1/A, X,1/X. The necessary
condition for the stability of the solution is that all the eigenvalues lie on the
unit circle of the complex plane, |A| = 1.

To illustrate the Floquet analysis of (p, ¢) resonant solutions of the NLS
lattice (2.18), we now obtain the Floquet spectrum of modulational instabilities
of a (p, ¢) resonant plane wave,

D, (t) = Aexpi(kn — wt) . (2.36)

One has to investigate the evolution of small perturbations, in both ampli-
tude and phase, of the plane wave

D, (t) = (A+1I,)expi(kn —wt + ¢y) , (2.37)

where we assume that the perturbation parameters are small compared with
those of the plane wave solution. Introducing expression (2.37) in (2.18) and
considering the following form for the perturbations {I,,, ¢, }:

I,(t) = ITexpi(@Qn— Q)
en(t) = pexpi(Qn — Q1) (2.38)
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Figure 2.2: Plot of the modulus of the unstable Floquet eigenvalues |A| (corresponding
to the positive values of () in eqs. (2.44) and (2.45)), versus the Floquet angle,
Ori0q- Both quantities are conveniently normalized to the period of the map T). The
amplitude of the excursion of |A| and the range of values of 0, for which |A| > 1
grow as the amplitude A of the plane wave is increased. The parameters in eq. (2.18)
are p = v = 0.5 and the wave number of the plane wave is k = 0.5.

we obtain the dispersion relation for the perturbation parameter €2:

[Q —2(1 + pA?)sinksinQ)? = 16(1 + pA?) x
sin? Q/2cosk[(1 + pA?)sin?Q/2cosk
— pA%cosk — vA?, (2.39)

as obtained in |85, 86]. From the above expression one derives the values of
Q(A,Q, k;v, u) for the modulational perturbations. When the parameter )
has a nonzero imaginary part, i.e. the right-hand side of (2.39) is negative,
the plane wave (A, k) becomes unstable under the corresponding modulational
(Q) perturbation, whose amplitude will grow exponentially fast in the linear
regime (tangent space).

Modulational perturbations (2.38) correspond to eigenvectors {I,,p,} of
the Floquet matrix:

I,(t + Trm) = exp(—iQT ) L, (1) (2.40)
On(t 4+ Trm) = exp(—iQT ) pn(t) (2.41)

with associated Floquet eigenvalues exp(—iQ2Ty(). The real part of Q2 gives the
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Figure 2.3: Plot of the Floquet spectra of a plane wave with modulational instabil-
ity (circles) and the theoretical prediction (lines) for the distribution of the Floquet
eigenvalues in the complex plane given by eqs. (2.44) and (2.45). The amplitude
and wave number of the plane wave are A = 0.1 and k£ = 0.1 - 27; the nonintegrable
parameter value is ¥ = 0.1 and the lattice size is of 400 sites.

angle in the complex plane,
Ortoq = —R(Q) T, (2.42)
while the imaginary part () gives the modulus of the Floquet eigenvalue,
Al = exp(S(Q)Tm) (2.43)
thus providing the information about the linear stability of the solution.

The distribution of angles and moduli in the Floquet spectrum of the mod-
ulational instability can be obtained from eq. (2.39) by taking the real and
imaginary parts of €2

REQ) = 2(1+ pA?)sinksinQ (2.44)
3(Q)? = —16(1 + pA?)sin® Q/2cos k x
X [(1+ pA?)sin® Q/2cos k
— pA?cosk —vAY . (2.45)

In figure 2.2 we represent the modulus of the unstable eigenvalues as a
function of the Floquet angle for the spectrum of a (p, ¢) resonant plane
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wave, taken as an example to visualize the non-point-like character of the
instability in the Floquet spectrum in the thermodynamic limit. Note that
there is no plane wave harmonic instability (0p;,q = 0) due to this mechanism
of modulational instabilities.

A numerical computation of the Floquet spectrum of a plane wave (with
arbitrary wave number) of a lattice of N = 400 sites, with periodic bound-
ary conditions is shown in the complex plane representation of figure 2.3.
The instability globes, at angles symmetrically placed around zero in this fig-
ure, nicely fit the theoretical (thermodynamic limit) values obtained from eqs.
(2.44) and (2.45).






Chapter 3

Discrete Breathers in
one-dimensional Nonlinear
Schrodinger lattices

A one-dimensional dynamical system of 64 particles with forces
between neighbors containing nonlinear terms has been studied on
the Los Alamos computer MANIAC I (...) The results show very
little, if any, tendency toward equipartition of energy among the

degrees of freedom.

First insights on intrinsic localization by E. Fermi, J.R. Pasta,
S.M. Ulam and M. Tsingou in 1955 (Extracted from [12]).

In this chapter we report on the most salient findings on discrete breather
solutions to the Salerno model (2.18). The generalized continuation scheme
based on the (p, ¢) resonance condition allows to find both pinned and mobile
discrete breathers continuing those analytical solutions found for the integrable
Ablowitz-Ladik equation.

In the light of the obtained results we can distinguish two regions of the
Salerno model. First, the so-called standard Salerno model where p > 0. In
this case pinned discrete breathers are feasible states of the dynamics and
their characterization for the interesting DNLS limit [87, 88| and the SM
[58, 59, 89, 90| has been deeply studied. Then, our primary concern in this re-
gion is the issue of discrete breather mobility. The main numerical facts about
mobile discrete breathers are shown in section 3.1. The numerical solutions are
found to be (up to numerical precision) the superposition of a traveling expo-
nentially localized oscillation (the core), and an extended background, which is a
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linear superposition of finite amplitude nonlinear plane waves. Then, contrary
to the exact immobile breather solution (space-homoclinic and time-periodic
orbit), which asymptotically connects the rest state (vacuum or ground state)
of the lattice with itself, each exact mobile localized solution is instead homo-
clinic to a specific lattice state of extended radiation. In other words, exact
stationary mobility of discrete breathers requires an extended excited state of
the lattice. In section 3.2 we analyze the numerical results in the light of collec-
tive variable theories, correlating them with the main theoretical predictions
of this successful (however incomplete) physical perspective. In particular, the
existence of Peierls-Nabarro barriers to translational core motion is confirmed,
and its subtle relation to the background amplitude is discussed. We present
also numerical confirmation of the existence of another type of localized states:
exact oscillating anchored breathers. Along with the discussion in this section,
a physical interpretation of the role of the interaction background-core in the
energy balance emerges, paving the way to a satisfactory integration of the
results into a collective variable theory.

The second region of interest is the Salerno model with competing nonlin-
earities (u < 0) that we study in section 3.3. In this case the Salerno Model
combines onsite self-focusing and intersite self-defocusing cubic terms, which
turns to be physically meaningful for describing a Bose-Einstein condensate
of dipolar atoms trapped in a strong periodic potential. The analytical re-
sults using the continuum approximation predicts a threshold value p. < 0 so
that for pu < p. pinned discrete breather solutions do not exist. On the other
hand, the numerical continuation of exact discrete breathers shows that the
pinned breather family continues beyond this threshold in the form of a novel
solution: cuspon states. In-phase and out-of-phase bound states of discrete
breathers are also constructed in order to shed light on the new transition
found. This results makes the Salerno model with competing nonlinearities
also interesting for what concerns pinned discrete breathers. Mobile discrete
breathers are finally studied in this region revealing the same results as in the
standard Salerno model: they are composed of a moving core and an extended
background.

3.1 Discrete breathers in the standard Salerno
model

The computation of (p, ¢) resonant discrete breathers in the standard Salerno
lattice (u > 0) is performed following the path v 4+ pu = 1 (see Figure 3.1)
from the AL integrable lattice (¥ =0, p = 1) to the standard DNLS equation
(v =1, p = 0). The choice of the path does not affect the generality of the
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U o Ablowitz-Ladik
i |
Salerno model
Figure 3.1: Two different paths
to reach the DNLS limit in the
(C, v, p) space. The standard
Salerno path, v+4u = 1, is used for
(0,0,0 DNLS continuing the AL (p, ¢) resonant

breathers to the DNLS limit. The
continuation from the anticontin-
\V) uum limit can be used only for im-
mobile ((0, 1) resonant) breathers.

results since for every solution for the nonlinear parameters (v, p) one can
easily obtain the corresponding one for other set (v, y’ = ,UVI/V) by means of
the rescaling ®, (t) = /v /v ®,(t).

We have computed pinned discrete breathers ((0, 1) resonant solutions) to
the DNLS equation (2.5) by (i) continuing those analytical pinned solutions of
the AL lattice (a = 0) following the Salerno path and (7) starting from the
anticontinuum limit C' = 0 of the DNLS equation and changing the coupling C.
These two approaches yields the same solutions when compared at the DNLS
limit. However, the continuation from the uncoupled limit does not offer the
possibility of continuing a second family of pinned, (0, 1) resonant, discrete
breathers present at the AL limit: Looking at eq. (2.15) one realize that for
(a = 7) a set of pinned solutions with phase difference betweeen adjacent sites
equal to m and wp < 0 is also available. This type of pinned solutions are
usually termed staggered discrete breathers and, as we will see below, their
behaviour in the standard Salerno model is far from trivial. One can study
this new type of pinned solutions by considering the case v < 0 for standard
(unstaggered) pinned breathers, corresponding to o = 0 in the AL lattice,
since the change v’ = —v, t = —t corresponds to a staggering transformation
of the solution ® = (—1)"®,. Then, the study of (p, ¢) resonant solutions
along the path u — v = 1 of the standard Salerno model (p > 0) is also of
interest. The Salerno continuation of standard pinned breathers also provides
further confirmation of an important and well-known theoretical result. At
the integrable AL lattice, one-site and two-site immobile breathers are but
two particular choices of the continuous one-parameter (xg, the localization
center) family of immobile solitary waves, i.e. constant zo(t) =n or n+ 1/2
respectively, in eq. (2.14). The well-known result, confirmed by our numerics,
is that away from the AL limit only these (one-site and two-site) immobile
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Figure 3.2: (Bottom) Convergence of the two solutions found at the DNLS limit
(v =1, p = 0) when one is obtained by continuation from the AL (v =0, p = 1)
following the Salerno path (Top-left) and the other by adiabatically increasing the
coupling C' from the anticontinuum limit of the DNLS equation (Top-right). The
frequency of the solutions is set to wp, = 4.3.

discrete breathers persist under adiabatic continuation. No immobile breather
centered in between exists. For positive values of the parameter v, the one-site
immobile one has a lower value of energy H, and it is a linearly stable solution,
while the energy of the two-site breather is higher and it is linearly unstable.
The relative situation is reversed for negative values of v. This result can
be interpreted as the emergence of a (Peierls-Nabarro) potential function of
the breather center xg, which destroys the continuous degeneracy of immobile
breathers, leaving only two of them per lattice unit, namely those localized
at maxima and minima of the Peierls potential. This interpretation, which is
captured in the theoretical framework of collective variable approaches, turns
out to play a central role in building up the physical interpretation of the
numerical results on mobile discrete Schrédinger breathers as we will see in

section 3.2.

As introduced previously the translational motion of discrete breathers in-
troduces a new time scale (the inverse velocity) so generically a moving breather
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excites resonances with plane wave band spectra. This fact poses no problem to
the persistence of localization when the lattice dynamics is governed by power
balance (forced and damped lattices [91 93]): the emitted power is exactly
compensated by the input from the homogeneous external force field, during
stationary breather motion. However, for generic (nonintegrable) Hamiltonian
lattices one would expect that the radiative losses would tend to delocalize en-
ergy and some energy compensating mechanism is needed in order to sustain
exact stationary states of breather translational motion. From the (particle)
perspective of collective variables theory it is well known that the localized
breather experiences a periodic Peierls-Nabarro potential function of its posi-
tion, so that the motion of the localized field oscillation over this landscape
should be expected to induce the emission of radiation at the expense of transla-
tional (and/or internal) breather kinetic energy, which thus would unavoidably
decay on time.

In this section, we focus on the numerical results on mobile discrete Schro-
dinger breathers in the NLS lattice (2.18). These numerics are computed using
the tools explained in the previous chapter. The Newton fixed point continua-
tion requires a good initial guess (meaning that the starting initial conditions
have to be in a small neighborhood of the fixed point). Very close to v = 0,
the AL solitary traveling waves (exact solutions at v = 0) provide good start-
ing points. After convergence to the fixed point, we increase adiabatically the
value of the parameter (Av = 1073), and start iteration from the previous
fixed point.

An important step in the numerical method used here, is obtaining a basis
for the subspace of (tangent space) vectors with Floquet eigenvalue +1. These
are associated to those degeneracies (symmetries) that one has to eliminate
in order to regularize the linear system at each (Newton) iteration step when
numerically converging to the fixed point solution.

Away from the AL limit, it is known (as reported e.g. in [94]) that only two
conserved quantities remain generically as dynamical invariants, the Hamilto-
nian (2.19) and the norm (2.21). They are respectively associated to the con-
tinuous time translation and gauge (global phase rotation) invariance. Using
the notation u; = R(®;) and v; = I(P;), one easily obtains that

5ul(t) = uz(t)
duit) = wi(t), (3.1)

is the perturbation associated with time translational invariance, while

dui(t) = wvi(t)
5Ui(t) = —ui(t), (3.2)
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is the one with gauge invariance. These are, consequently, Floquet eigenvectors
with associated eigenvalue +1, and we can easily check that they coincide with
the (two) basis vectors provided generically (i.e. except at special bifurcation
values of the parameter, see below in 3.1.3) by the numerical Singular Value
Decomposition (2.32) explained in the previous chapter.

In subsection 3.1.1 we summarize our findings on the generic structure of
mobile Schrodinger discrete breathers. For this, as explained earlier, we have
explored particular values for the integers (p, ¢) and performed continuation
of (p, q) resonant AL traveling waves. The variation of the main structural
characteristics of the fixed points along the continuation parameter v is exam-
ined in detail in 3.1.2, for both signs of this parameter. Of particular interest
are the observed drastic changes in the structure for v ~ —0.3 and v ~ —0.39.
Then, in 3.1.3, we show the main conclusions on the stability analysis of the
mobile Schrédinger discrete breathers, in a sector of the breather parameter
space.

3.1.1 The structure of the solution

In figure 3.3 we plot the spatial profile of a (1, 1) mobile Schrodinger discrete
breather for nonintegrability parameter value v = 1.0, and wp = 2.678.

A quick inspection of this figure provides a first glance of the general struc-
ture of the computed (p, q) resonant solutions: The fixed point d is the super-
position of an (exponentially) localized oscillation (the core) moving on top of
an extended background.

i) - qA) core + ngackg . (33)

In other terms, far away from the core localization site ng, the solution does
not tend to the rest state ®, = 0, but to an extended excited state of the
lattice , i.e. for [n —mng| > 1

A

(1) = (Speg)n(t) # 0. (3.4)

One easily realizes (for example, consider a site very far from ng) that the
background has to be itself (p, ¢) resonant. This can be quickly checked in our
numerics: Indeed, the power spectrum,

2

S(w) = ' /_ h R[®, ()] exp(iwt)dt| (3.5)

at a site n far from ng reveals a finite number of s peaks w;, 7 = 0,...,5 — 1;
one can check that each w; numerically fits to a branch of (p, ¢) resonant plane
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Figure 3.3: Instantaneous profile of a (1,1) resonant breather with w, = 2.678 and
vp = 0.426; the nonintegrable parameter is v = 1.0 (standard DNLS equation). (a)
Real part, (b) imaginary part, (¢) modulus and (d) phase. The resonant condition
for the harmonic composition of the background gives the contribution of three plane
waves. The existence of these plane waves is revealed by the modulation of the
extended tail in the modulus profile (¢).

waves (see eq. (2.27)); this provides a set of amplitudes A;, and finally one
confirms that the superposition of the (A4;, w;) plane waves fits the numerical
solution @, ().

While immobile discrete breathers can be described as a sort of homoclinic
(and time periodic) connection on the rest state, the mobile localized core in-
stead connects a specific linear superposition of low amplitude nonlinear plane
waves. One could say that the localized core needs for its motion to "surf over"
a specific extended state of radiation (see figure 3.4):

s—1

(Phackg)n(t) = > Ajexpi(kn — w;t) . (3.6)
j=0

We note that among the members of the (s-parameter) continuous family
of (p, q) resonant plane waves (see Section I), the fixed point solution contains
only a particular member (A4;, w;) from each branch (see figure 3.5.a). This



38 Chapter 3. Discrete Breathers in 1D Nonlinear Schrédinger lattices

selection varies smoothly with the (adiabatic) continuation parameter v. In
particular, the amplitude modulus |A;| selected increases smoothly from its
zero value at the integrable limit (v = 0), for both signs of v.

If the bare core of a fixed point solution (i.e. after subtraction of the back-
ground) is taken as initial condition for a direct numerical integration of the
equations of motion, one observes radiative losses, along with the correspond-
ing changes in shape, velocity, etc. of the localized moving core. The motion
of the bare localized core (not anymore a solution) excites extended states of
the lattice. Thus, regarding the exact fixed point solution, one could say that
radiative losses of the running core are ezactly canceled out when the localized
core runs, with specific velocity, on top of the specific linear combination of
(A, wj) resonant plane waves (3.6).

A complementary numerical observation is the following: Taking as initial
condition for a direct integration of the equations of motion (2.18), a superpo-
sition of an immobile discrete breather and the background of a (p, ¢) resonant
mobile breather, it evolves into a moving discrete breather, with approximate
velocity vy, = (pwp)/(2mq). One thus would say that the background promotes
breather translational motion with adequate velocity. In the next section 3.1.2,
a connection between background characteristics and the particle perspective
(i.e. the Peierls-Nabarro barrier of collective variable theories), will be estab-
lished in order to further illuminate the physical description of discrete breather
mobility.

Whatever physical perspective one may prefer, the numerical fact is that
the generic structure of the fixed point solution is given by the superposition
(3.3). Not too far from v ~ 0, where the amplitudes A; of the fixed point
background have small values, one can carefully check that if the bare core is

Figure 3.4: Time evolution of
|®,,|? profile of a mobile discrete
Schrodinger breather. The fre-
quency of the solution is w, =
5.050 and the velocity is v, =
0.804. Note that the background
is composed by a single plane
wave with amplitude A. The
nonintegrable parameter of eq.
(2.18) is v = 0.2.
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Figure 3.5: (a) Plot of the graphical solving of the resonant condition (in the A; — 0
limit) for a (1,2) resonant breather with w, = 2.384 and v, = 0.189. (b) Power
Spectrum S(w) of the background of this solution at v = 1.0. From (a) eq. (2.29)
gives the contribution of seven plane waves (j = 0, ..., 6) but only five (j =0, ...,4) of
them are visible due to the difference of orders of magnitude between the amplitudes
|A;|. The agreement between the resonant condition equation (for the fitted value of
A;) and the frequencies observed in S(w) is up to machine accuracy.

given as a starting guess for Newton iteration, this converges well to the exact
complete solution (core 4+ background), by developing the specific selection of
Aj amplitudes. This confirms the robustness of the numerics.

Though previous observations of nondecaying tails of numerically accu-
rate mobile discrete breathers in Klein-Gordon lattices |53 and/or (solitary)
traveling waves [95] in self-focusing equations had been reported (see also the
interesting discussions on this issue in [80] and [96]), no systematic study on
those tails and their role is available. However we clearly see that they are
an essential part of the exact solution. As argued in the introductory section,
the translational motion of a discrete breather introduces a new time scale. In
a nonintegrable context, this fact unavoidably implies resonances with plane
wave band spectra, and an exact self-sustained moving DB solution could only
exist on top of a developed resonant background. This seems to have been
(with a few exemptions) not fully appreciated in most of current literature
on mobile breathers, where the background is most often either ignored or
deliberately suppressed.

A notable feature of the plane wave content of the background (i)backg is
that the amplitude modulus |A;| in (3.6) differ by orders of magnitude, ¢.e.
|A1| > |Ag| > |As|..., so that only a few frequencies are dominant for most
practical purposes (see figure 3.5.b). In other words, the extended background
associated to a spatially localized moving core is, in turn, strongly localized in
the reciprocal (k-space) lattice. The possible relevance of this observation is
further discussed below in the concluding section.
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Figure 3.6: Background amplitude versus v for three different (1/1) resonant breathers
with frequencies: (a) wp = 5.65, (b) wp = 4.91, (c) wp = 4.34. Note the two different
behaviours: for positive values of v |(I)backg|2 is a monotonous increasing function of
v while for the negative part it shows smooth rises and falls.

3.1.2 The background amplitude

In order to characterize the specific features of the nonintegrable motion of dis-
crete breathers, we focus here on the (perhaps) most remarkable among those
features: the background amplitude of the uniquely continued fixed point. How
does it evolve along the continuation path in parameter space?

For positive values of v we have followed the line in parameter space (figure
3.1) p+ v =1 (see equation (2.18)), while for negative values, we took the
path 4 — v = 1. Note that taking this latter path is similar to studying
staggered breathers in the former one due to the staggering transformation
reported above. We do not expect other paths to make important differences.
As stated earlier, near v ~ 0, the amplitude grows from its zero value (at the
integrable limit) for both signs of this parameter, for it is a nonintegrable effect.
However, for larger values of nonintegrability |v| the background amplitude
evolution shows some important differences for the two signs of v.

In figure 3.6 we plot the background amplitude (modulus) of the (1, 1)
resonant fixed point, versus the continuation parameter v, for three different
values of the breather frequency wy. For v > 0, one observes that the amplitude
steadily increases with v before continuation stops (i.e. Newton iteration ceases
to converge beyond a certain maximum v value). Note that the amplitude
grows faster for higher values of the frequency, and that the continuation stops
(correspondingly) at a smaller value of v. This may suggest that the failure
of fixed point continuation is related to a somewhat excessive growth of the
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background amplitude, an issue that will be discussed later.

For v < 0, after an initial growth the background amplitude decreases down
to almost negligible values around v ~ —0.3, then grows and again decreases
close to zero at v ~ —0.39, and so on, in progressively narrower intervals with
larger peak amplitude, until continuation stops. Most noticeable is the fact
that the intervals neither depend on the breather frequency wp nor on the
breather velocity v,. Why do background amplitudes decay so dramatically at
those regions in parameter space? An important hint is presented in the next
section, where the Floquet stability analysis of immobile discrete breathers
will show a coincident situation of mirror-symmetry breaking (and its absence
for positive v values). For other values of p and ¢ that we have numerically
investigated, the same features of the background amplitude variation as shown
in figure 3.6 are qualitatively reproduced.

3.1.3 Floquet analysis

On the basis of the general arguments given in [84, 97|, the Floquet spectra
of immobile DB in the thermodynamic limit, N — oo, consists of two com-
ponents: the (continuous) Floquet spectrum of the asymptotic state of the
solution (rest state), and a discrete part associated with spatially localized
eigenvectors. The continuous part is composed by small amplitude (linear)
plane waves, the so-called phonons. However, for mobile DB the asymptotic
state of a (p, ¢) resonant fixed point solution is a superposition of plane waves,
the background (i)backg' From this, one should expect the Floquet spectrum
of a (p, q) resonant DB being composed of two components: the discrete (spa-
tially localized eigenvectors) and a continuous part associated with the linear
stability of the background plane waves. The continuous part of the Floquet
spectrum should reflect the same results of the modulational instability analy-
sis of section 2.3.2. In particular, this means that any modulational instability
a plane wave may suffer will be also an instability of a fixed point solution
whose background contains this plane wave. In the future we will refer to
any instability of the continuous part of the Floquet spectrum as background
instability. Any instability from the discrete part is a core instability.

First we focus on core instabilities. For this we turn attention to the con-
tinuation of mobile (p, ¢) resonant breathers. Figure 3.7 shows in the v — wy
plane (dotted line), the values vpqq(wp) where the numerical continuations
stop due to non convergence of Newton iteration for p=1, ¢ =1 and v > 0.
As it was remarked above, the continuation stop is associated with the rapid
increase of the background amplitude shown in figure 3.5. Only low frequency

breathers, for which the background amplitude increases more slowly, can be
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Figure 3.7: Continuation diagram of (1,1) resonant breathers as a function of the
frequency wp. The end of the numerical continuation, vi,q.(wp), is represented by
the line with dots. The region where mobile breathers suffer from core instabilities is
limited by the shaded area.

numerically continued all the way to the standard DNLS equation. The linear
stability analysis of (p, ¢) resonant breathers yields a well defined region in
the v — wy, diagram where core instabilities appear. There is an island inside
the continuation region of figure 3.7, where the Floquet spectra contain a real
eigenvalue A > 1. We observe the evolution of this Floquet eigenvalue (and
its complex conjugate) as the parameter v is increased in figure 3.8.a, for a (1,
1) breather of frequency w, = 2.678. Here the angle (6pjo) in the complex
plane is plotted versus v. The interval of constant zero angle corresponds to
the section (constant wp) of the instability island in figure 3.7.

Along the whole continuation path, the profile of the corresponding unsta-
ble eigenvector is localized. An example of this profile inside the instability
island is shown in figures 3.8.b and 3.8.c, where one observes that the localized
instability shows a decaying background along the direction opposite to the
motion. The decay rate increases as the modulus of the eigenvalue grows and
decreases again when A returns to the unit circle. On the other hand, the sta-
ble Floquet eigenvector associated with 1/A shows a wing decaying along the
mirror symmetric direction. The direct integration of the equation of motion
reveals that the unstable solution experiences a pinning after a transient of
regular motion with velocity v, = p/(¢T}). After the solution pins at site n, its
core center oscillates around this site. The trapping of the unstable MB could
be interpreted as a result of the energy losses that the growth of the linearly
unstable perturbation induces on the solution.

Returning to the instability island shown in the diagram of figure 3.7, some
final observations are worth summarizing: (¢) there is a range of frequencies
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Figure 3.8: (a) Floquet angle evolution of the spectra of a (1,1) resonant breather
with w, = 2.678. The thick trajectory corresponds to the localized eigenvector that
becomes unstable (0r;oq = 0 interval). Instantaneous profile of the real (b) and
imaginary (c¢) part of the Floquet unstable eigenvector of a (1, 1) breather with wy, =
3.207 and v = 0.26. The decaying tails along the direction opposite to the motion
reveals the energy loss that the unstable eigenvector causes to the solution.

where mobile breathers of the standard DNLS equation (v = 1) suffer from this
instability; (47) very high frequency breathers do not experience this instability
(in the short range where they can be continued); (4ii) very low frequency
breathers are stable all the way up to v = 1.

We turn now to background instabilities. Once we know the plane wave
content (ko, ki1,..) of a (p/q)-resonant fixed point, we can know whether the
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Figure 3.9: Modulational instability existence diagram for a plane wave with wave
number kg € [—m/2,0]. This diagram fixes the region where mobile discrete breathers
with a background composed of only one plane wave do not suffer from background
instability.

solution is subject to MI or not and, if it is unstable, what are the harmful
perturbations (@). This problem is not so simple because we cannot know a
priori the plane wave content if we do not have the amplitudes of each one
(2.29). However, we can derive a necessary condition for not having MI if we
consider that, from (2.29), the background is always composed of at least one
plane wave (m = 0) with ko between [—7/2,0]. From this we can simplify
the analysis of the background stability to the kg plane wave stability as a
necessary condition for the MB stability. For this we calculate, for each v and
k, the value of the right-hand side of (2.39) for all the range of @ ( [—m, 7] )
and A. If this value is always positive the plane wave with this kg is free from
modulational instabilities at this point of the model (2.18) with parameter v.
From this extensive exploration we obtain, see figure 3.9, the region in the
k — v plane where MI is present.

In the range of v between [—1,—0.5] there is no modulational instability
for single plane waves of any value of k between [—7/2,0], and in particular
for kg. However, this does not guarantee that moving breathers are free from
these instabilities in this region, unless the background has only one plane
wave (as is sometimes the case). On the contrary, in the region v > 0 any
moving breather suffers such instabilities. The transition area in the region
v € [—0.5,0] presents MI depending on which kg we have. For the range where
no plane-wave with k between [—7/2,0] is subject to MI we can assure that
if there is only one contribution, kg, to the background the corresponding MB
solution is stable. For example, this is the case for (1/1) resonant breathers if
wp > 4 and for (1/2) resonant breathers if w, > 8.46. The Floquet spectra of
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Figure 3.10: Floquet spectra of (1,1) resonant breathers: (a) for wp, = 4.348, v, =
0.692 and v = 0.08 the spectra shows the core (localized) instability; (b) for wy, =
6.610, v, = 1.052 and v = 0.07 the spectra shows the background (modulational)
instability (also present but not visible in (a)); (c) for w, = 4.348, vy, = 0.692 and
v = —0.39 the solution is linearly stable.
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Figure 3.11: Graphical representation of the two first symmetry breaking bifurcations
for v < 0. The quantity ¢ in the vertical axes of both figures is defined, referred
to the one-site breather, as the difference between the modulus |®| of the two sites
adjacent to the maximum (|®qz]), i-e. & ~ [Prmaz—1] — |Pmaz+1|. For the one-site
DB ¢ = 0 and for the two-site DB £ = 1, for this £ is conveniently normalized with the
the difference between ®@,,,, and ®,,4,+1. The continuous lines represent the regions
where the static solutions are linearly stable while the discontinuous ones represent
the unstable regions. The modulus profile of the three immobile coexisting solutions
are plotted in the central insets for w, = 6.215 and v = —0.3012.

a moving breather satisfying these requirements is plotted in figure 3.10.c.

After the analysis of both types of instabilities eventually experienced by
moving Schrédinger breathers, we finally report on a most relevant numerical
fact revealed by the Floquet analysis of the family of standard immobile dis-
crete breathers for v < 0 (or, similarly, the family of staggered immobile discrete
breathers for ¥ > 0). Near v ~ —0.3 an immobile two-site DB experiences a
mirror symmetry-breaking (pitchfork) bifurcation becoming linearly unstable.
When approaching the bifurcation point, two conjugate Floquet eigenvalues
quickly approach +1, where they meet, and then separate along the real axis.
The eigenvector associated to the unstable A > 1 Floquet eigenvalue is local-
ized and odd-symmetric, and is termed the symmetry-breaking or depinning
mode ¢%P. We recall here that the background of an immobile breather is
the rest state ® = 0, whose continuous spectrum consists of small amplitude
(linear) plane waves. The depinning mode, on the other hand, is a localized
core instability of the immobile breather, favoring a translation of the core
center. For a smaller value of v >~ —0.39 there is another symmetry-breaking
bifurcation where the two-site breather becomes stable, again interchanging
the stable character with the one-site. The corresponding bifurcation diagram
for these two symmetry breaking transitions is plotted in figure 3.11.
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In the first symmetry breaking bifurcation, two unstable mirror-asymmetric
immobile breathers emerge from the bifurcation point, progressively evolve
toward the (stable) two-site breather, and finally collide in a new pitchfork
bifurcation from where a unstable two-site breather emerges. The net result
is an inversion of stability between one-site and two-site immobile breathers.
Around the narrow interval of v values where these two bifurcations occur,
the energies of the three types of breathers involved (one-site, two-site, and
asymmetric) have very small differences. From a particle perspective, this
should make the breather motion easier. It is precisely in this same narrow
interval where (see 3.1.2) we observe that the background amplitude of moving
breathers becomes negligible. This is not a coincidence as we will argue in 3.2.

3.2 Particle perspective on discrete breathers

The appealing framework and success of collective variable approaches (see e.g.
[56 60, 98]) to the problem of nonintegrable motion of discrete breathers relies
on the fidelity of a particle-like description of these field excitations that they
provide. In these approaches, the effective dynamics of only a few degrees of
freedom (e.g. the localization center, and the spatial width of the state, etc...in
some instances [65, 68]) replaces the whole description of the moving localized
state.

Though unable to account for all the nonintegrable features, perturbative
collective variable theories of NLS lattices provide a sensible physical char-
acterization of important features of the nonintegrable mobility of localized
solutions, like the emergence [99] of a Peierls-Nabarro barrier to motion. Here
we summarize the main results of this particle-like description and compare
them with the behaviour of numerically exact (p, ¢) resonant moving breathers.
Our goal is twofold: to acquire a correct physical understanding of the numer-
ical facts, and then to make an assessment of validity and intrinsic limitations
of collective variable approaches.

3.2.1 Collective variables theory.

A presentation of the particle perspective on moving Schrodinger breathers
near the AL integrable limit can be found in |58, 59| (see also |56, 57, 60, 98]),
where the interested reader will find the relevant formal aspects of the theory.

Using the integrable solitary wave (2.14) as an ansatz for the moving
breather solution in the perturbed AL lattice, v # 0 and small in (2.18),
one considers the parameters «, 3, xg and € as dynamical variables (variation
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of constants). The time evolution of these parameters in the perturbed lattice
is governed by:

io = 2sin asmglﬂ (3.7)
Q = 2cosacoshf+ aig+ g(3) (3.8)
B =0
. 8 h? 3
a = I/Z 53 ;:nlslm 75/9) sin(27sxo) (3.10)
where
. .12 00
9(8) = 2 [ZSmhgcoshﬁ _ sm; B 1] n VZ47T2 cos(2msg)
s=1
[sinh2 B cosh(n?s/B)n?s B 2sinh? 8 N 2sinh 3 cosh 3 } (3.11)
B4 sinh?(72s/3) 33 sinh(72s/3) (2 sinh(r2s/3) |

These relations can be viewed as the Euler-Lagrange equations of the col-
lective variable Lagrangian obtained in [58, 59]|. The variation of the breather
parameters give the evolution of solution (2.14) for the perturbed AL equation.
Furthermore, one can regard egs. (3.7) and (3.10), as the Hamilton equations
for the canonical conjugate variables zg and « of the following effective Hamil-
tonian:

. 00 . 19
nh5 VZBéLwQsmh b cos(2mwsxg) . (3.12)

S1
Heﬂ‘—IZ-CH‘FVCH——zCOSOfT— :1W

This effective Hamiltonian dictates the dynamics of the position of the
solitary wave. Note that the (collective) variable (3 is an invariant of motion,
so it enters as a parameter into the effective Hamiltonian, and that the time-
average value of (the parameter wy, of the integrable solitary wave, now a
function of time) is an increasing function of this parameter 3. The effective
potential Veg acts as a barrier to the displacement motion (zy variations) and
is naturally related to the Peierls-Nabarro potential. The amplitude of this
barrier is an increasing function of both the nonintegrability parameter |v| and
(. The equilibrium points (representing immobile breathers) of this potential
are xop = n and n £ 1/2 with n an integer. For a = 0, the former are stable
(centers) one-site breathers, while the latter are unstable (saddle) two-site
breathers; for the case o = 7 (staggered breathers) the stability is reversed.

A remarkable further consequence is the following [57|: there are no pertur-
bative traveling wave solutions, for values of v larger than certain critical value
Ver(B). In particular, for 8 > (. ~ 3.6862 , one cannot continue AL mobile
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(a)

Figure 3.12: Collective variable («,z¢) phase portrait transition for a value of 8 =
3.0. (a) Shows the phase portrait for v = 0.2 (< v..), there are xzy-unbounded
trajectories (mobile breathers) coexisting with bounded ones (oscillating breathers).
Whenv =1.0 (> v.r) (b) we only have zo-bounded trajectories: there are no mobile
solutions.

breathers (i.e. v, = 0 (see also important remarks in [60]). This consequence
could be also (qualitatively) expected for a class of nonintegrable Schrédinger
lattices (for some qualified perturbations of the integrable limit) with on-site
nonlinearity. One expects also that lattices with purely inter-site (FPU-like)
nonlinearity do not show this kind of transition.

In figure 3.12 we plot typical phase portraits at both sides of v,.. figure
3.12.a shows the dynamics for v smaller than the threshold value (given by 3):
there are open trajectories in zg corresponding to mobile breathers and closed
orbits between the separatrix manifolds corresponding to breathers which oscil-
late around the equilibrium position of Veg. figure 3.12.b is the phase portrait
after the transition: there are no longer mobile solutions and (besides the os-
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cillating breathers) there are instead open trajectories in «. The transition
point, for a given [, occurs when trajectories with rotating a appear, and
moving breathers disappear as the effect of separatrix line rearrangement on
the cylinder (o, a(modulo27)) phase portrait.

Note that the existence of oscillating breathers is a consequence of the
existence of a Peierls-Nabarro potential. These breather solutions do not per-
turbatively continue from the integrable limit. In 3.2.3 we will investigate them
and provide further numerical confirmation of the existence of these genuinely
nonperturbative solutions, predicted by the collective variables theory.

3.2.2 Energy balance governs mobility.

In order to correlate collective variable predictions with the numerical results
presented in section 3.3.3 one should first realize that our direct numerical
approach computes breathers with fixed values of wp and vy and that these
parameters are not tied to any specific ansatz. In particular, the connection
of these two parameters with the collective variables is given by eq. (2.16) in
the integrable limit. For the perturbed (near-integrable) lattice, wy and vy are
identified as the time averages of 2 and iy, respectively.

The Peierls-Nabarro (PN for short) barrier is naturally identified as the
energy difference (given by the Hamiltonian (2.19)) between the two immobile
breathers of the same frequency wy, one centered at a site n and the other
(two-site) at a bond n £1/2 :

1
Epn(v,wp) = H(v,wy,n) — H(v,wp,n + 5) (3.13)

In the integrable AL limit this barrier is zero due to the degeneracy (continuous
translation invariance) of the breather family solution, but for v # 0 this
invariance is broken and only these two isolated solutions persist. The energy
difference of the two pinned solutions is thus viewed as the minimal extra

)

“Kinetic energy 7 of center of mass translation that a mobile breather must

incorporate for overcoming the barriers to its motion.

We have studied the behaviour of the PN barrier in the Salerno model by
continuing immobile breathers, both centered at a site and at a bond, while
computing their energy difference. The computations of the barrier are made
for a grid of values of wy. figure 3.13 shows the “equipotential’ lines of the PN
barrier in the (v, wp) plane. The results show different behaviours depending
on the sign of v:

e v < 0.- Here one observes the effects of the symmetry-breaking bifur-
cations cascade described in 3.1.3. The successive stability inversions
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Figure 3.13: Density Plot of the absolute value of the Peierls Nabarro barrier, |[Epy|,
as a function of wy, and v. For positive values of v, |Epy| is a monotonous increasing
function of v and w. For negative values the plot reveals the oscillating behaviour of
|Epn| as a function of v (for a given value of wy).

between site and bond centered breathers involve a substantial decrease
of the Peierls barrier. The appearance of asymmetric solutions in these
bifurcations introduces a new energy and, correspondingly, the Peierls
barrier is computed as the maximum energy difference between the three
pinned solutions: the two symmetric (site and bond centered) and the
asymmetric breather.

e v > 0.- In this case the behaviour of the Peierls barrier follows qualita-
tively the collective variable predictions on the effective potential expe-
rienced by the particle. The increasing character, with v and wy, of the
numerical barrier is qualitatively the same as that predicted from Vs
(as a function of v and ) by the theory.
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The PN barrier of (wp) immobile breathers and the background amplitude

of (wp, vy = *;’ng) mobile breathers are in fact strongly correlated. This corre-

lation is obtained considering the functions |Epy|(v) and |(i)backg|2(y)- Both
functions are plotted for a fixed value of wp = 4.34 in figure 3.14.a. The
behaviour of |Epy|(v) for negative v (revealing the cascade of bifurcations
explained before in 3.1.3) is closely followed by |(i>backg|2(y) with the corre-
sponding sequence of growths and decays. The strong correlation holds also
for positive values of v, where numerical PN barrier data are available for a
larger interval of v values (due to the absence of the symmetry-breaking cas-
cade of bifurcations). Indeed, the correlation is so strong that one is tempted
to view the PN barrier and the background amplitude as complementary as-
pects of a single phenomenon: the breaking of the continuous translational
invariance, and the associated lack of core momentum conservation. Indeed,
the background amplitude of moving breathers is a monotone increasing func-
tion of the PN barrier of pinned breathers of the same frequency, as shown in
figure 3.14.b, where |®poery|?(|Epn|) is plotted.

However, we also observe clearly in figure 3.14.a that, when the continua-
tion end is approached, the rate of growth of |<i>backg|2(y) increases dramatically
(the concavity of the curve in log scale turns upwards), while the PN barrier
does not increase much faster than before. This is reflected in figure 3.14.b,
where the slope approaches verticality, indicating that, in this range of Epy
values, the background grows rapidly.

This numerical observation suggests taking a closer look at the precise
influence of the background amplitude on the core energy variations associated
with the existence of PN barriers. To this end, we use the conservation of the
Hamiltonian (2.19) and insert this equation into the form (3.3) of the (p, q)
resonant fixed point. The energy of the solution can be decomposed in the
following terms:

H[D] = H[Peore] + H[Poackg) + H™ (3.14)
where H™ is the interaction energy, 4.e. the crossed terms of deore and (i)backg-
Let us now consider the simplest case in which the background has a single
resonant plane wave. Along with the total energy, also the energy of the plane
wave is a constant in time so that

M [Peore]  OH™

= (3.15)

In other words, the variations of the core energy during the motion are exactly

compensated by those of the interaction term.

If one takes, as an ansatz for (i>co7“e; the AL solution, one formally obtains

A

for H"® = H[Pore) the collective variables Hamiltonian (3.12). But note that
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Figure 3.14: Peierls Nabarro barrier |Epy| from immobile breather with w, = 4.34
and background square amplitude |®pqerq|? for a (1,1) resonant breather of the same
frequency (v, = 0.691). In (a) we show both quantities in semi-log scale as functions
of v, illustrating the strong correlation between them for both signs of v. Figure (b)
shows for positive values of v, the nonlinear relation between |(i)bac]€g|2 and |Epy|.
Note the sudden increase of the slope close to the end of numerical continuation.

here it would not anymore be a constant of motion, due to the interaction with
the background. Instead, we directly compute numerically the evolution of the
core energy H"® which in turn determines H** up to an additive constant.

For this we take a fixed point solution with a single plane wave in its
background, and then subtract off the plane wave to obtain Ci)cm«e, from where
Hee(t) is computed. In figure 3.15 we have plotted the evolution of the core
energy as a function of the localization position (center) of the breather core.
The localization center of a lattice function ®,, is defined using the conserved
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core
H

Figure 3.15: Plot of H"® of a (1, 1) resonant breather as a function of the localization
center x( for different values of v. The parameter of the solution are w; = 5.056 and
vy = 0.805. The values of v are 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.25 and 0.2512
(end of the continuation), the amplitude of the oscillation of H™ grows with v.
(The minimum value of H™ has been set to zero in order to compare the different
functions.)

norm (2.21):

In(1 + p|®y |2

As expected, the core has extracted the maximum available from the interac-
tion energy (with the background) when the core passes at n+1/2 (maxima of
the PN barrier) and has returned it to the interaction term when at n (minima
of the PN barrier).

Another interesting feature of these numerically obtained functions is seen
from the variations in the form of the oscillation of H"® as the nonintegrable
parameter v is increased. At the same time, as the energy difference between
n and n+1/2 increases the modulus of the derivative 9H"¢/Jz( in the neigh-
borhood of zg = n also increases. These variations become faster when the
end of the continuation is approached, reaching a cuspidal point for the last
v reached. The background amplitude is included in H**, and of course in
OH™ /dt; the dramatic variation of it at the end of the continuation could be

interpreted in terms of this derivative variation in xg = n.
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3.2.3 Oscillating breathers

The emergence of the Peierls barrier and the behaviour of the background
amplitude illustrate the physical interpretation of this background as a (p/q)-
resonant energy support to overcome the barrier to motion. We now confirm
this statement searching for another kind of solution: oscillating breathers.
These solutions are predicted by collective coordinates approaches and are a
consequence of the loss of translational invariance out of the integrable limit.
Following the above interpretation of the background role one can imagine
certain solutions with a background amplitude not high enough for surpassing
the Peierls barrier and allowing travel along the lattice. In terms of a well
defined potential, considering the particle perspective, the center of these lo-
calized solutions would be oscillating between (n —1/2) and (n + 1/2) for the
unstaggered ones or between n and (n 4 1) for the staggered ones.

From our perspective, the oscillating breathers are solutions with two fre-
quencies: the internal one of the breather (wp) and the one corresponding to
the oscillatory motion (wys.). Once again, we have a problem dealing with two
time scales and consequently we have to impose that the two frequencies are
commensurate pw, = qwes.. The fixed point problem is now associated with
the map:

%Tb@n(t) = (I)n(t) (3-17)

We cannot, however, develop the Newton iteration scheme in a similar way
as for mobile breathers. There is no longer any family of oscillating breathers
providing a good start point for the continuation (they are intrinsic solutions of
the nonintegrable regime because they appear as the Peierls barrier emerges).
The way to obtain a good ansantz (as Cretegny and Aubry already used to
find mobile breathers in Klein-Gordon lattices [53]) is to perform a small per-
turbation of the static solution (pinned at a site n) with the depinning internal
mode:

q)transcmtz — (I)Ztatic(wb) + 65(}5%61) (318)

The dynamics of the perturbed solution for small enough values of € shows the
oscillating behaviour expected and for large enough values of ¢ the breather
starts to move. Obviously in both cases the motion finishes after a transient
due to radiation (they are not exact solutions). Tuning the parameter ¢ we
search for those oscillatory transients whose wys. is resonant with the breather
frequency wp. The transient is much more stable when the nonintegrable pa-
rameter v is very small, close to the AL limit. We first search here for a good
initial guess for the method and then obtain the exact solution of the map
(3.17). Once the exact solution is obtained for a small v, we can perform the
continuation to higher values in the same way as we did for mobile solutions.
In figure 3.16.a we show the evolution of the amplitude of oscillation as v is
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Figure 3.16: (a) Evolution of the localization center xg of an exact (1/18)-oscillating
breather for different values of v: 0.05, 0.06,.., 0.18. The internal frequency is wy =
3.086. The amplitude of the oscillation of xg increases with v revealing the nonlinear
character of the motion for the highest values of v. (b) Density plot of the time
evolution of |®,|? for the above oscillating breather.
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increased from 0.05 to 0.18. The amplitude of the oscillation is represented
by the phase portrait of the localization center of the breather defined as in
(3.16). The continuation reflects that the amplitude of the oscillation, for a
fixed value of wyge, grows with v. In figure 3.16.b the density plot of |<i>n|2 is
shown as a function of time, revealing the oscillating pattern of the solution.

The existence of exact oscillating breathers is a consequence of the exis-
tence of a Peierls barrier. The structure of these solutions reveals the existence
of a background (resonant with the map) whose amplitude grows as v (and
consequently the amplitude of oscillation) is increased. This is the picture we
expected from the role played by the interaction background-core in the energy
balance during motion. The monotonous growing behaviour of the background
versus the oscillation amplitude, strongly suggests that if the amplitude of the
former is increased the solution will be able to translate steadily. This has been
checked by direct numerical integration, because no exact solutions connect-
ing the oscillating with the mobile ones can be obtained due to the different
maps employed to obtain both types of solutions. However, the existence of a
background in the exact oscillating breather solutions and its behaviour with
the amplitude of the breather oscillations are fully consistent with the inter-
pretation of the results obtained for the mobile solutions.

3.2.4 Validity and limitations of particle perspective

The most basic result of the perturbative collective variable theories away from
the integrable regime is the existence of a Peierls-Nabarro potential function of
the core (collective variable) center. It expresses (in particle-like terms) that
the breather position is no longer indifferent because the continuous transla-
tional invariance has been broken. From this also naturally comes the existence
of oscillating breathers. We have seen how our numerics fully confirm the qual-
itative validity of these predictions.

A further prediction concerns the phase portrait’s transition studied in
[57]. Despite the fact that our end of continuation is correlated with the
equipotential lines profile of the numerical PN barriers, and the phase portrait
transition is also related to their sudden growth, no clear connection (between
transition and end of continuation) can be established. The end of continuation
is itself sensibly interpreted as a numerical consequence of the sudden increases
of the amplitude background, and does not imply neccesarily the existence of
any global phase portrait transition.

However, in some respects the perturbative collective variable theory is
clearly incomplete: For example, it is unable to predict the observed localized
(core) instability bifurcation and the observed symmetry breaking transitions
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for v < 0. These bifurcations could easily appear in a theory with (at least) two
variables (a dimer) experiencing the Peierls-Nabarro potential, which would
demand an improved perturbative ansatz. This improved ansatz must coincide
in the integrable limit with the AL solution. One can use the numerical results
to guide the construction of such an improved ansatz. In this respect, the
following observation may be relevant. The parameter (8 of the AL solution
determines both the amplitude and the width of the localized pulse. However,
our numerical estimates of these breather characteristics for immobile breathers
show clearly that, for fixed value of wy, the breather width is independent of
v, while the amplitude varies with it. In other words, away from integrability,
width and amplitude of the (immobile) breather are no longer a single collective
variable.

Beyond any other limitation of the perturbative collective variable theory,
the background (an indispensable part of the exact solution) is absent in the
perturbative ansatz, and it cannot appear later in that context. A complete
theory of (nonlinear Schréodinger) breather motion should somehow incorporate
the background in the ansatz itself. If correct, it should then predict that the
background amplitude grows from zero with the nonintegrability parameter v,
and (ideally) so on with all the numerically observed behaviours. One possible
way to develop the analytical approach could be to use the method presented
in [100]. In this scheme, eq. (3.15) may play an important role, for it provides
the energy balance governing the translational motion of the breather core. In
other words, our results show that the core energy is not an invariant of motion
and this requires the existence of a finely tuned background whose nonlinear
interaction with the core compensate the core energy variations.

3.3 Discrete breathers in the Salerno model with com-
peting nonlinearities

In the above sections we have mainly focused on the study of mobile discrete
breathers. In fact, the characterization of usual (non-staggered) pinned discrete
breathers along the standard (u > 0 Salerno path was already considered in
previous works [58, 59, 89, 90| concluding that eq. (2.18) gives rise to pinned
discrete breathers at all values of the DNLS parameter v, and all positive
values of the AL coefficient, u. As already mentioned above if v is negative
one can make it positive by means of the staggering transformation, and hence
study those staggered pinned discrete breather along the SM with v > 0 (and
hence finding the symmetry breaking bifurcation reported in section 3.1.3).
However, the sign of p cannot be altered. In particular, the proper AL model
(v = 0) with g < 0 does not give rise to localized solutions. The latter
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circumstance suggests considering soliton dynamics in the SM with u < 0, i.e.,
with competing nonlinearities, which is the subject of the present section .

In order to study the SM with competing nonlinearities, it is necessary to
redefine the conserved norm (2.21) and Hamiltonian (2.19) by

N = %Zln(|1+,u|¢n|2|) , (3.19)

H=> [ = (@1 + Posa®;) — 2%](1%]2

+ 2§1n(\1+m<1>n\2\)] . (3.20)

Whereas the Poisson structure of the standard Salerno model (eq. 2.20) re-
mains valid. The above redefinitions of the norm (3.19) and Hamiltonian (3.20)
are introduced in order to remain valid when [1 4 u|®,|?] takes negative values
at some sites, due to the use of p < 0.

In this section we will study the existence and characterization of both
pinned and mobile discrete breathers when these two competing (on-site self-
focusing and inter-site self-defocusing) nonlinearities coexist in the Salerno
model. In 3.3.1 a continuum approximation (CA) of the Salerno model is used
in order to investigate the behaviour of the discrete breathers when p < 0
in an analytical form. It is found that, although they might exist in a semi-
infinite band of frequencies (as occurs for the above studied case p > 0), they
actually occupy a finite band, with an solution (peakon) at the edge of the
band. After this calculations a family of discrete breathers is constructed for
# < 0 in section 3.3.2 by means of a continuation of these pinned solutions
from the standard DNLS limit (z = 0) where they are easily obtained. The
continuation results show that they form a family of regular pinned discrete
breathers, including a peakon-like one, similar to what was found in the CA,
but discrete breathers extend beyond the peakon in the form of a novel solution
termed cuspon that we will characterize in this part. In section 3.3.2, the pinned
breather stability is explored by means of both standard Floquet analysis and
direct simulations, with the conclusion that only a small part of the family
is unstable. Two-breathers bound states are reported in 3.3.2, where it is
demonstrated that stability exchange between in-phase and out-of-phase states
occurs at a point where the bound breathers are peakons. For what concerns
to mobile breathers we show in section 3.3.3 that they can be continued up to
a critical strength of the inter-site self-defocusing nonlinearity.

'Remind that the SM with y < 0 is also physically relevant for it describes the repulsive
case for the long-range dipole-dipole interactions in a Bose-Einstein condensate of bosonic
atoms with magnetic momentum trapped in a deep optical lattice as introduced in section
2.1.
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3.3.1 Continuum limit

To introduce the continuum approximation (CA) in eq. (2.18), we define
®(x,t) = ¥ V(z,t), and expand V11 ~ U + U, + (1/2)¥,,, where ¥ is
now treated as a function of the continuous coordinate z, which coincides with
n when it takes integer values. After that, the continuum counterpart of eq.
(2.18) is derived,

iy = =21 = ) 2P~ (1= ] [9) @, (3.21)
where we have set v = +1 and p < 0, in order to inspect the interesting region.

Equation (3.21 ) conserves the norm and Hamiltonian, which are straightfor-
ward counterparts of expressions (3.19) and (3.20),

1 [ro°
Neow = ;/ d In (|1 — |ul[%2)). (3.22)
Mo = [ 192 (r =1 ) 192+ pin (1= 9% 329

Localized solutions to eq. (3.21) are sought as ¥(z,t) = U(z)e™?, with a real
function U(x), this solutions are usually referred to as envelope solitons in the

continuum context [101]. The localized envelope U(x) obeys the equation

d*U  w—2(1—|u|)U?
dz? 1— |u|U?

U, (3.24)

which may give rise to solitons, provided that w > 0 and |u| < 1. The absence
of soliton solutions for x| > 1 implies that if the intersite self-defocusing,
accounted for by p < 0, is stronger than the onsite self-focusing, the self-
trapping of solitons is impossible in the CA. Equation (3.24) can be cast in the

form
Uz wW'(U) (3.25)
(Jul=t=1) ’ '
where the effective potential W (U) is
1 1-Q . || w
W=—=U?>-——In(1—|p/U?) , with Q= : 3.26
2 gy O ) T
the expansion of the potential (3.26) for U? — 0 yields
—QU? 1-Q)U!
W L a1 - U (3.27)

2

This form of the equation shows that solitons exist in a finite band of frequen-
cies, 0 < Q0 < 1, rather than in the entire semi-infinite band, £ > 0, where
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the linearization of equation (3.24) produces exponentially decaying solutions
that could serve as the solitons’ tails. The reduction of the semi-infinite band
to a finite one is typical for soliton families in models with competing nonlin-
earities, such as the cubic-quintic NLS equation [102]. Further, it follows from
the divergence of potential (3.26) at U? = 1/|u| that the solitons’s amplitude
A, which is a monotonously increasing function of €2, is smaller than 1/\/m
for 0 < Q< 1,and A=1//|u| at Q= 1.

Solitons can be found in an explicit form near the edges of the existence
band: at small w (i.e., small )

Y

U(x) ~ \/w (1 — |p|)sech <\/ﬂx) , (3.28)

while precisely at the opposite edge of the band, 2 = 1, the exact solution is

Upcaton(@) = (1/+/11]) exp (=/(/Tul) = 1Jal) (3.29)

In other words, at a given frequency w, the peakon solution is found at

a peakon,

il = lppl =1/ (1 +w). (3.30)
Note that norm (2.21) of the peakon is
Npeakon = 7T2/[6 |:u|(1 - |:u|)] ) (331)

and its energy is also finite. Close to this point, ie., for 0 < 1 — Q <« 1,
the solution is different from the limiting form (3.29) in a narrow interval

lz| < /|pl/ (1 —|u])(1 — ), where the peak is smoothed.

Finally let us remark that the CA based on eq. (3.21) is valid if the intrinsic
scale of all continuum solutions, that may be estimated through the curvature
of the soliton’s profile at = 0 as [ ~ 1/+/|UZ. /U], is large, | > 1 (recall the
lattice spacing is 1 in the present notation). According to eq. (3.29), the latter
condition implies (1/|u|) —1 < 1 (i.e., strictly speaking, the CA applies in the
case when the competing nonlinearities in the SM nearly cancel each other).

It is relevant to note that, in the standard version of the SM (previously
studied in sections 3.1 and 3.2), with g > 0, the CA presented here give rise
to pinned envelope solitons in the entire semi-infinite band, w > 0 and then
consistent with the exact solutions obtained for the discrete model in the above
sections and earlier works [58, 59, 89, 90].

3.3.2 Pinned discrete breathers

In order to find exact pinned ((0, 1) resonant) discrete breather solutions in
a numerical form, we look for solutions to eq. (2.18) which are localized and
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time periodic with frequency w, = 27/T}, (that is related to w in the continuum
equation (3.21) by wp = w — 2). Pinned solutions are widely known for the
DNLS limit (¢ = 0) since they can be obtained both continuing the analytical
AL pinned beathers along the standard SM (as previously done in sections 3.1
and 3.2) and by the continuation from the anticontinuum limit, C' = 0, of the
DNLS equation (2.5). It is then possible to make a numerical continuation
of such solutions for g < 0 by adiabatic changes of the model parameter p
and successive applications of the shooting methods in order to obtain the
numerically exact pinned discrete breather for a given frequency w, and pu.
In general all the pinned solutions were computed starting from the DNLS
limit, u = 0, and increasing |u| at a fixed value of wp. The continuations were
performed using an increment §(|u|) = 1072 at each step, or smaller if higher
accuracy was needed.

As shown in the previous section, the breather family in the continuum
equation (3.21) ends with the peakon solution (3.29). To compare the numeri-
cally determined shape of the discrete breathers with the feasible peakon limit,
we fitted the breathers’ tails to the asymptotic form

] = Aexp [T (Jn — nol)] , (3.32)

with constant A, I", and ng, which follows from the linearized equation (2.18)
for large |n|. This procedure yielded the decay rate, I' = I'(u, wp), amplitude,
A = A(p,wp) (and the center’s position ng), as functions of parameters p and
wp of the pinned breather family. Once A(u,wp) and ng were found, we defined
Y(p,wp) = A —|Pp,| to measure a deviation of the true discrete soliton from a
conjectured peakon shape obtained by formal extension of the tail inward.

In figure 3.17.a we show the evolution of vy produced by several continua-
tions of the discrete breather solutions (at different frequencies wy). We define
pp(wp) as a value of p at which an exact discrete peakon of internal frequency
wp is found, that we realize as vanishing of v (p,wp) at g = pp. In figure
3.17.b we plot the evolution of the breather’s amplitude as the continuation is
performed. It is observed that the amplitude increases with |u|, reaching the
predicted value, 1/\/m, at the exact peakon solution.

A noteworthy result, evident from figure 3.17, is the persistence of discrete
breathers beyond the peakon limit (which means continuability of the solutions
to v < 0). The apparent intersection of different curves at one point in figure
3.17.a is a spurious feature (see the inset in the figure): an accurate consid-
eration shows that the curves actually intersect at close but different points.
In contrast, the intersection of the curves in figure 3.17.b indeed happens at a
single point, which corresponds to discrete breathers taking the peakon shape.

Figure 3.18 displays typical examples of the numerically found discrete
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Figure 3.17: (a) The mismatch with the peakon shape, v , as a function of |u|, for
discrete breathers found at different frequencies wy,. (Note in the inset that there is
no common intersection of all the curves). (b) The breather’s amplitude vs. |p|. The
axes are rescaled to show that the amplitude of the peakon solutions (attained at
1| = |pp|) are equal to 1/+/]ul, as predicted by the continuum approximation.

breathers. It demonstrates that the solutions corresponding to v < 0 are
cuspons, with a super-exponential shape, that do not exist in the continuum
equation (3.21). The discrete character of the SM with the competing nonlin-
earities allows this new type of solution, as happens with the quasi-collapsing
states in the standard DNLS equation in two dimensions (see next chapter).
Cuspon solutions continue into the region of |u| > 1, where the CA yields no
breathers, but, due to the sharp change of the solution with the increase of |p/,
finding numerical solutions at larger values of |u| becomes increasingly more
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Figure 3.18: Generic examples of three different types of discrete breathers of fre-
quency w, = 2.091: a quasi-continuous sech-like solution at |u| = 0.3, an exact
peakon at |u| = 0.956, and a cuspon at |u| = 2.64.
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Figure 3.19: (a) The value of |u,|, at which the soliton assumes the peakon shape:
the prediction of the continuum approximation, equation (3.30) (solid curve), and
numerical results for discrete breathers (dots). The small region where the pinned
discrete breathers are found to be unstable (for that purpose, the vertical axis shows
|pe|, rather than |u,|) is also shown. The inset displays the relative difference between
the numerically found values of |y,| and the predicted ones, [uS|, provided by the
continuum approximation. (b) Zoom of the area in the (wp, |up|) plane where the
instability island is located. (c) Norm of the discrete breathers vs. their frequency

for |u| = 0.884.

difficult.
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In figure 3.19.a we compare the line of the existence of the peakons in the
continuum limit, and the actual location of discrete peakons. It is seen that
the agreement between the CA and numerical findings is good for smaller |wy|
(in this case, the discrete breathers are broad), while at larger |w;| the discrete
breathers are narrow, hence the agreement with the CA deteriorates.

Floquet analysis

Performing the linear stability analyses of pinned breathers it is found that
these solutions are linearly stable along the whole p-continuation, except for a
relatively small region, as shown in figure 3.20.a. The entire instability island
in the (wyp, |u|) plane is displayed in figure 3.19.b. The instability displayed
is revealed by a Floquet multiplier leaving the unit circle at +1 (harmonic
bifurcation). The eigenvector associated to this multiplier show a localized
profile around the pinned solution. Note, in particular, that the peakon and
cuspon solutions are stable. The stability of the discrete breathers was also
checked by direct simulations of perturbed (along the unstable direction given
by the Floquet eigenvector whose Floquet multiplier is A > 1) solutions, using
the full equation (2.18). The results of these simulations corroborated the
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Figure 3.21: The norm of the discrete breathers vs. the frequency, for |u| = 0.884.

predictions of the linear stability analysis.

Direct simulations of the evolution of perturbed unstable breathers, a typ-
ical example of which is displayed in figure 3.20.b, show that, after a transient
stage, a localized pulson (showing simultaneous width and amplitude oscilla-
tions) is formed. The pulsons are (quasi-)periodic in time, and persist indef-
initely. This behaviour resembles that found in the ordinary two-dimensional
DNLS equation in quasi-collapsing states that will be described in next chap-
ter.

A necessary stability condition for soliton families in models of the NLS
type may be provided by the Vakhitov-Kolokolov (VK) criterion [103]: if the
norm N of the breather is known as a function of its frequency wy, the breathers
can be stable against small perturbations with real eigenvalues, provided that
dN/dw, < 0. Although the applicability of the VK criterion to the present
model has not been proven (and counter-examples are known, when solutions
predicted by the criterion to be unstable are actually stable [104]), it is rel-
evant to test the criterion here, numerically computing N (wp) according to
eq. (3.19). The result is that the VK criterion precisely explains the stability
and instability of the discrete breathers, except for the cuspons (see below), as
shown in figure 3.19.c.

A noteworthy feature of the NV (wp) dependence is a divergence of the total
norm due to the infinite contribution of the central site to expression (3.19)
in the case of the exact peakon solution, with |®,,|* = 1/|u|. An example of
the N (wp) dependence showing the divergence is plotted in figure 3.21. As
concerns the cuspons, whose amplitude exceeds the critical value, 1/1/|u], the
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norm (3.19) converges for them, and features a positive slope (see figure 3.21),
dN/dwy > 0. The VK criterion predicts instability in this case; however, the
direct computation of the Floquet multipliers, as well as direct simulations,
reveal no instability of the cuspons. Thus, while the VK criterion is perfectly
correct for regular pinned breathers and peakons in the present model, it is
irrelevant for cuspons, cf. the situation in [104].

Bound states of breathers and their stability

The above findings on the characterization and stability of pinned discrete
breathers suggest looking at the behaviour of more exotic (0, 1) resonant lo-
calized structures. For this purpose, we have also explored bound states of
pinned discrete breathers solutions to the SM with competing nonlinearities.
For this purpose, we performed numerical continuation in pu, starting with the
well known bound states of the standard DNLS equation (constructed by con-
tinuation from the anticontinuum DNLS limit) at ¢ = 0. In that limit, two
different types of bound states are known, in-phase and m-out-of-phase ones,
which are represented, respectively, by even and odd solutions. It is well known
that only the states of the latter type are stable [105, 106].

The numerical continuation of breather bound states was performed for
pairs of identical discrete breathers of a given frequency wy and different dis-
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Figure 3.22: (a) Profiles of typical in-phase (top) and out-of-phase (bottom) bound
states of two peakons, with different distances between their centers, at w, = 3.086
and |pu| = |pp| = 0.645 . (b) Absolute values of the Floquet multiplies that determine
the stability of three bound states, with the same fixed frequency, w, = 3.086, and
different separations between the breathers. The in-phase (top) and out-of-phase
(bottom) bound states are stabilized and destabilized, respectively, at the point where
the bound breathers are peakons, see panel (a). Unstable states are less unstable (with
smaller absolute values of the Floquet multipliers accounting for the instability) if the
distance between the breathers is larger.
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tances between them. The continuation of in- and out-of-phase bound states
gives bound states of peakons, see figure. 3.22.a. The latter solution is found at
exactly the same value, p = p,(wp), which gives rise to the single peakon. We
have also examined the linear stability for the computed solutions. A remark-
able feature of the bound states observed with increase of |u| is the stability
interchange between the in-phase and out-of-phase states, as shown in figure
3.22.b. This stability interchange occurs precisely at p = p,(wp), regardless of
the separation between the bound breathers.

3.3.3 Moving discrete breathers

In order to complete the full picture on the characterization of discrete breather
solutions in the SM with competing nonlinearities we turn our attention to mo-
bile breathers. We have proceeded in the same way as for the standard SM
and used the generic method for the continuation of (p, ¢) resonant solutions.
In order to explore the behaviour of these solutions we have numerically con-
tinued them from the DNLS limit where, in turn, they were earlier obtained

2. Among those mobile solutions we have chosen for the

in previous sections
continuation into the SM with competing nonlinearities only those that were

linearly stable at the DNLS limit.

As in the standard SM when v # 0 the obtained states are composed
of a traveling localized core and an extended background, ®, = (®,)core +
(®r)bekg, see figure 3.23 which is a superposition of nonlinear plane waves
whose amplitude is related to the height of the corresponding Peierls-Nabarro
barrier.

The important result obtained along the continuation by the SM with p < 0
is that the mobile breathers can only be continued up to a certain critical value,
i = pe(wp), close to, but smaller in absolute value than, p,(wp) at which the
pinned discrete breather becomes a peakon. The Floquet stability analysis
reveals that the extended background of the mobile breathers is subjected to
modulational instability. (However, this is too weak to manifest itself in the
simulations and it is only noticeable by looking at the Floquet spectra when
the amplitude of the background is very high). On the the other hand we do
not observe any localized eigenvector with eigenvalue |A| > 1 and thus the core
is not affected by any unstable perturbation. The stability of mobile solutions
is corroborated when simulations of the dynamics are performed, allowing for
interesting numerical experiments (see below). The background amplitude is

2Remind that only a subset of those mobile solutions (those with small enough frequency)
continued from the AL limit (¢ = 1, v = 0) remains along the whole standard SM path
(1> 0) to the DNLS (u =0, v = 1). Then, only those states that could be obtained at the
DNLS limit are, in principle, continuable into the SM with competing nonlinearities (@ < 0).
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Figure 3.23: The real and imaginary parts of the lattice wave field in a moving discrete

breather, for w, = 2.24 and p = —0.7.
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Figure 3.24: The background amplitude (a) and the height of the Peierls-Nabarro
barrier (b), as functions of |u|, for three mobile discrete breathers.
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a growing function of |u| having a very sharp increase when |u| approaches
i = pe(wp), see figure 3.24.a. This behaviour of the background amplitude
suggests that the PN barrier also grows with |u| and becomes very high near
the critical point. To check this expectation, we have computed the height
of the PN barrier for the same frequencies wy for which the mobile breathers
were numerically calculated, using the energy definition as in equation (3.20).
Figure 3.24.b confirms that the PN barrier dramatically increases when the
continuation approaches the critical point, 1 = p.(wp), although the PN barrier
diverges not exactly at this point, but rather at g = p,(wp), where the pinned
breather assumes the peakon shape.

The strong dependence of the PN barrier on p suggests a numerical experi-
ment to test the behaviour of mobile breathers when the lattice’s pinning force
suddenly changes. To this end, we took an initial mobile breather at values of
w and wyp for which the PN barrier is low. Then we monitored the evolution
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Figure 3.26: Contour plots showing
n the evolution of the lattice field |®,,]
in three cases of collisions between
identical breathers moving in oppo-
site directions. The breather’s fre-

0 100 200 300 400 500 quency is wp = —2.11, and |u| = 0.6
time (a), |u[ = 0.8 (b), and |u| = 0.9 (c).

of the moving solution following an instantaneous change in the nonlinearity,
i — i+ 6p = i/, which makes the PN barrier essentially higher than expe-
rienced by the original soliton. The numerical experiments are illustrated by
figure 3.25. We observe that the core of the mobile breather does not become
pinned due to the increase of the PN barrier, but rather accommodates itself,
with some radiation loss, into a broader state with a smaller amplitude, so that
the PN barrier, as experienced by the new state for p = ', is low enough to
allow the breather to remain mobile. Besides that, we observe an increment in
the core’s velocity, so that the larger the jump of the PN-barrier’s height the
faster is the new moving state. The fact that the sudden increase of the PN
barrier does not prevent the motion of the breather solution reveals, on one
hand, that the relation between PN barrier and mobility is far from trivial,
and on the other hand, that mobility is quite a robust feature.

Finally, we simulated collisions between identical lattice breathers moving
in opposite directions. The results show that the colliding breathers always
merge into a single localized state, which subsequently features intrinsic pulsa-
tions. If the PN barrier is low, the emerging pulse can itself move in a chaotic
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way, due to interaction with the lattice phonon field (radiation) generated in
the course of the collision. On the contrary, for values of i and wjy at which the
original breathers experience a high PN barrier, the finally generated single
soliton is always strongly pinned.

The most notable and generic feature of the collision manifests itself in
the merger scenario. When the cores of the mobile breathers collide, sudden
delocalization is first observed, with transfer of energy from the collision point
to adjacent lattice sites. Then, almost all the energy is collected back at the
collision spot, and thus a single localized state emerges. An example of the
collision is shown in figure 3.26. This scenario was observed in all simulations
of the collisions. The appearance of pulsons as the product of soliton collisions,
as well as the fact that they also appear as asymptotic states of the evolution
of perturbed unstable breathers (see section 3.3.2), shows the ubiquity of this
type of localized excitations in the present model.

3.4 Conclusions and Prospective Remarks

In this chapter we have studied numerically several features about discrete
breathers solutions to the one-dimensional Salerno lattice (2.18). It is then
convenient to summarize the results and obtain a global picture of the work.
A schematic picture of the results obtained in this chapter can be found in
figure 3.27.

Pinned Breathers.- This class of solutions have been extensively studied
by earlier works for the standard Salerno model (x> 0) with positive values
of the nonintegrability parameter, v. In this region we have confirmed that
the continued (along the SM path) breathers coincide in the DNLS limit with
those obtained by a continuation from the uncoupled (anticontinuum) limit of
the latter equation. We have extended the computation of numerically exact
pinned breathers in the standard SM (p > 0) for negative values of v. In
this case there exist narrow regions where the immobile breathers experience
mirror symmetry-breaking bifurcations.

The analysis of the pinned discrete system in the Salerno model with com-
peting nonlinearities (u < 0) yields a family of breathers, which includes a
peakon as the continuum counterpart predicts. However, the family continues
beyond the peakon, in the form of special pinned discrete breathers termed
cuspons. Stability analysis of the pinned breathers in the SM with competing
nonlinearities reveals that only a small part of the soliton family is unstable;
the evolution of the unstable breathers leads asymptotically to pulsons, i.e.
localized solutions where the width oscillates. In this part of the SM bound
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states of identical breathers were also investigated, revealing a stability ex-
change: the in-phase and out-of-phase bound states, which are unstable and
stable, respectively, in the DNLS limit, exchange their stability character ex-
actly at the point where the bound breathers are peakons.

The computation of pinned breathers both on-site and inter-site centered
has served for computing the Peierls-Nabarro barrier and thus provide a useful
tool to analyze the results obtained for mobile breathers.

Mobile breathers.- Using a regularized Newton method we have continued
the family of mobile Ablowitz-Ladik discrete breathers into the nonintegrable
domain of model parameters. The continuation was then performed for a fine
grid of frequencies belonging to the family of (p = 1,¢ = 1) resonant discrete
breathers. We find that these solutions decay asymptotically, in space, to an
excited lattice extended state (the background), whose amplitude vanishes at
the integrable Ablowitz-Ladik limit. This component of the solution is unam-
biguously found to be a linear combination of nonlinear resonant plane waves
whose amplitudes decay typically, in k-space, exponentially. The exponen-
tially localized oscillation (the core) of the amplitude probability rides over
this extended radiation state.

é = <i> core + ngackg (333)

This expression defines the purely localized component deore of the solution.
The background is a finite linear combination of nonlinear plane waves,

(@bckg)n(t) =3 Ajexpli(kjn — w(ky, Aj)t)] . (3.34)
j=1

These plane waves are exact solutions of the Salerno model (2.18). The re-
sults concerning the characterization of the background can be summarized as
follows:

(i) The set of “s” plane waves which take part in the background of a
(p, q)—resonant discrete breather with internal frequency wj, is derived
by the simple selection rule for the wave-numbers k;

M 1<pk—m), (3.35)

o g\
i.e. only the plane waves which are (p,q)-resonant with the internal
period of the breather can be components of {@ECkg(t)}. The number

of solutions of (3.35) fixes “s”.

(ii) The amplitudes {A;} of the nonlinear plane waves differ by orders of
magnitude yielding a localization in the k-space.
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(iii) There exist a strong positive correlation between the amplitude of the
background and the strength of the Peierls-Nabarro barrier arising from
the periodic lattice. This correlation is particularly clear when symmetry
breaking transitions occur for the also studied case of v < 0 and p > 0,
and reflects the link between non-integrability and the existence of the
background dressing of the mobile core. Another interesting effect is
obtained for the SM with competing nonlinearities. In this case the
continuation of mobile breathers of a given frequency stops near the
divergence of the Peierls-Nabarro barrier for pinned breathers with the
same frequency.

(iv) Finally, the interpretation of the correlation described in (74i) is reinforced
from a study of the energy evolution of the mobile core: There is an
energy balance brought by the background when the core mowves along the
lattice. In particular, it can be observed how the core energy oscillates
periodically so that it takes the maximum energy value when the core
visits the inter-site configuration. This extra energy periodically obtained
by the core is provided by the interaction background-core, with the
energy maximum clearly related to the background amplitude.

It is worth stressing that the most relevant predictions of perturbative col-
lective variable theory are confirmed by our numerical results, which show the
existence of Peierls-Nabarro barriers to breather translational motion. Further-
more, the existence of exact oscillating breather solutions for the standard SM
is numerically confirmed. They are found to contain an extended background
whose amplitude is typically much smaller than for mobile breathers.

The correlation between the Peierls-Nabarro barrier Epy (computed from
immobile breathers) and the amplitude background of moving breathers cor-
rectly suggests that the background has a role in the energy balance required
to overcome the barriers to translational motion. The interpretation is also
fully consistent with the observations on the background amplitude behaviour
of spatially oscillating anchored breathers in the standard SM. Currently used
effective particle (collective variable) theories are thus seen as intrinsically in-
complete, because core energy is not an invariant of motion. Any sensible
improved approach must adopt equation (3.33) as starting point for improved
perturbative ansatzes, and we hope that our work will stimulate further studies
along these lines.

Numerically exact moving discrete breathers with an infinitely extended
tail of small amplitude were already observed in some cases for Klein-Gordon
lattices with Morse potential by Cretegny and Aubry [53], however no inves-
tigation of the background of these exact solutions is reported, so they were
able to "..suggest that generally a strictly localized breather cannot propagate
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Figure 3.27: Schematic plot of discrete breather’s existence diagram in the (v, p)-
plane. For the standard Salerno model g > 0 we have continued pinned breathers
along the path y 4+ v = 1 for (v > 0) from the Ablowitz-Ladik integrable lattice
to the DNLS limit. Mobile breathers can be continued all the way (from AL to
DNLS eqs.) along this path provided their frequencies are small enough. For the
standard Salerno model with v < 0 we have performed the continuation along the path
p — v =1 finding a symmetry breaking bifurcation for pinned breathers at v ~ —0.3
that prevents continuing both pinned and mobile solutions far beyond this point
and then excluding the possibility of reaching the DNLS equation with v < 0. The
staggering transformation between the two regions (v > 0 and v < 0) of the standard
Salerno model implies that staggered breathers cannot be continued to the DNLS limit
with v > 0 because of a symmetry breaking bifurcation. For the Salerno model with
competing nonlinearities (1 < 0) we find a transition from smooth peaked pinned
breathers to cuspon states where the energy is hyperlocalized around the breather
center. Cuspon breathers appear as stable solutions of the dynamics. Mobile breathers
in the competing Salerno mobile cannot be continued beyond this transition point
since the Peierls-Nabarro energy diverges at this point. The staggering transformation
implies that these latter results applies for staggered breathers when p < 0 and v < 0.
However, this region could not be explored for typical breather states since, on one
hand, the purely AL lattices with u < 0 does not admit localized states as solutions
(preventing the continuation from v > 0 and p < 0 ) and, on the other hand, the
continuation from v < 0 and p < 0 stops near the symmetry breaking bifurcation as
reported above. Then, this region of the Salerno model with competing nonlinearities
remains unexplored and apparently forbidden for our continuation methods.
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without radiating energy". Our systematic study of the NLS lattices allows
us to go further by showing that the extended background (here fully char-
acterized) plays an important and subtle role in the translational motion of
the localized core. Indeed, it is an indispensable part of the exact solution
in the nonintegrable regime. Exact mobile localization only exists over finely
tuned extended states of the nonlinear lattice. Mobile "pure" (i.e. rest state
background) localization must be regarded as very exceptional [96].

Before concluding this chapter, it is worth commenting on some of the
differences between the Newton continuation of fixed points that we use in
this chapter, and other important recent approaches to breather numerics.
The work by Ablowitz et al [107]| uses discrete Fourier analysis to obtain a
nonlinear nonlocal integral equation, from where the " ... soliton is thus viewed
as a fized point of a nonlinear functional" (sic) in the Fourier transformed
space of functions. Following these authors, their results seem to differ from
those of early pioneering work [108] (nowadays textbook material [23]) “ in
which a continuous traveling solitary waves were reported using Fourier series
expansions with finite period L while assuming convergence as L — oo " (sic).
Ablowitz et al term continuous a solution that can be defined off the lattice
points, which they see as "necessary when discussing traveling waves in lattices"
(sic), and disagree with some conclusions reported in the earlier works.

The ("orthodory matters") discussion above helps us to clarify how dif-
ferently our numerical approaches "sees" the discrete Schrodinger breather
problem: The very concept of a variable defined off the lattice points is intrin-
sically alien to our discrete approach, which neither needs of it nor excludes
its eventual consideration. In contrast to those views (but not at all in logical
opposition), we consistently view the thermodynamical limit (N — oo) in lat-
tice space, much in the sense used e.g. by Serge Aubry in his celebrated work
on the Frenkel-Kontorova ground state problem [49]: The infinite size limit is
built up from a subsequence of PBC (finite) lattices for which the limit is well
defined. This will make the Fourier-transformed k-space continuum.

Closer to our approach in some respects, though technically different in
many others, is the formal approach purposed recently by James and collab-
orators [109, 110]. It is also worth mentioning that these results have been
reproduced recently for other kind of solutions (dark breathers) [111] and have
constituted [112] a “(negative) result’ about the impossibility of constructing
“exponentially localized fundamental (single-humped) moving discrete solitons”
in the nonintegrable part of the Salerno model.

There are, at very different levels, several open questions to further re-
search. From a technical point of view, it is important to analyze carefully
the irrational limit p/q — o, of the solutions. In particular, in this limit the
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number of resonant plane wave branches tends to a continuum and one could
(or not) expect that exponential localization in the reciprocal lattice persists
in that limit. This can be addressed numerically, though systematic investi-
gations may require some efforts in optimizing the time efficiency of current
numerical schemes.

An important issue regarding applications is the phenomenology of multi-
breather states. In particular, studies on collisions of a pair of breathers may
find in this study of exact mobility a useful reference in order to deal with the
complexities that emerge from the many time-length scales involved in these
physically relevant phenomena. Much simpler multibreather states, e.g. train-
like chains of (moderately) separated moving breathers could also be investi-
gated. Not least, the perspective and results presented here may be of some
interest to studies of the effects of coupling to (nonthermal and/or thermal)
radiation baths in the breather and multibreather states of nonlinear lattices
[51] and the practical manipulation and patterning of localized "hot spots" by
external fields [113].






Chapter 4

Discrete Breathers in
two-dimensional Nonlinear
Schrodinger lattices

Given the ubiquity of such breathers in discrete nonlinear physical systems (which
exist on essentially all length scales), these nonlinear excitations are likely to be
important in many physical phenomena, including melting, fracture, and the buck-
ling and folding of biopolymers. They may also prove useful in technologies ranging
from ’smart’ materials with tunable collective responses to light-induced, all-optical
switches and networks. With the acquisition of this new animal, the nonlinear ’zoo’

has become an altogether more interesting place.

David K. Campbell in [114].

The study of two-dimensional nonlinear Schrédinger lattices has attracted
much attention [115, 116] in recent years due to the new phenomena emerging
when the dimensionality of the lattice is increased. Some examples of these
new features are the existence of vortex-breathers [117] which supports en-
ergy flux, the appearance of an energy threshold for the creation of discrete
breathers [118 122| and the ubiquity of an instability (the quasi-collapse) of
some discrete breather solutions leading to a highly localized pulson state [123—
128|. These theoretical efforts have their counterpart in recent advances in the
field of nonlinear optics. The studies of two-dimensional arrays of coupled non-
linear waveguides allow the experimental observation of those effects studied
theoretically. Specially relevant is the recent experimental breakthrough (theo-
retically designed in [129]) by Fleisher et al |72, 130], where a two-dimensional
array of nonlinear waveguides is induced in a photosensitive material. This
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technique provides a clear experimental verification of the two-dimensional
discrete breather existence in this system. In particular, besides the observa-
tion of standard discrete breathers, these works reported the first observations
of staggered discrete breathers.

Our study in this chapter focus on the computation of numerically exact
discrete breathers in two-dimensional anisotropic nonlinear Schrodinger lat-
tices, ¢.e. where the couplings in the two spatial directions are not necessarily
equal. The use of the shooting methods introduced in section 2.3.1, and rede-
fined here for the two-dimensional case in section 4.1, allow us to find these
solutions and analyze their structural and stability properties. Both pinned
and mobile discrete breathers are studied. In the latter case we will study only
the ones whose motion is along one axis of the lattice. The analysis of the nu-
merically exact solutions help to shed light on some features of the properties
and stability of localized solutions reported in previous works.

After introducing in section 4.1 the two-dimensional anisotropic Salerno
lattice and provide explanations on the implementation of the numerical pro-
cedures used to study the dynamics of 2D discrete breathers, we will focus
on pinned ones. The analysis of the results on pinned discrete breathers for
anisotropic nonlinear Schrédinger lattices is reported in section 4.2 for both
the standard version of the SM (section 4.2.1) and that with competing nonlin-
earities (section 4.2.2). In both studies we present the numerical computations
of the fixed point norm, as a function of three parameters: breather frequency,
transversal coupling, and nonlinearity (see below). They show, as anticipated,
the so-called quasi-collapse transition. In these studies we present numerically
computed sectors of the bifurcation surface and take a brief look at the nonlin-
ear dynamics on the unstable manifold, whose typical trajectories have been
called pulson states. Early numerical work on the 2D quasi-collapse phenom-
ena in isotropic lattices was reported in [127, 128] and [125]. A three-year-old
account of the "state of knowledge" on 2D Schrédinger lattices can be found
in Section six of [131]. Interestingly, for the case of competing nonlinearities
a transition to 2D cuspon states is also found. In this region of the Salerno
model we have also studied the existence and stability of in-phase and out-of-
phase bound states of pinned breathers motivated by the results obtained in
the previous chapter for the 1D case (section 3.3.2).

As introduced above, a new class of breathing solutions are possible in
the 2D model: discrete vortices [117]. We investigate vortex breathers of two
types, vortezr crosses and vortex squares, in section 4.3 (in the framework of the
isotropic model). The analysis of their linear stability reveals parametric sta-
bility regions (which turn out to be rather narrow) for the vortices, and helps
to identify various bifurcations (including a generic Hamiltonian Hopf bifur-



4.1. The Salerno model in two dimensions 81

cation) responsible for their destabilization. Direct simulations demonstrate
that the instability transforms the vortices into ordinary breathers in the case
of the standard Salerno model, and into vortex pulsons, that keep the vortical
topology, in the most interesting case of competing nonlinearities. Finally, we
have also introduced bound states of vortex crosses and analyze their stability.

Mobile solutions are finally reported in section 4.4. For this type of solu-
tions we have focused on a single type of mobile breather, namely those moving
along the direction of stronger lattice coupling constant. The structure of each
of these mobile exact discrete breathers is that of a localized moving core su-
perimposed on a specific extended state of resonant small amplitude radiation,
the background. An extensive Floquet stability analysis of this type of solu-
tions is performed in two sectors of the three-dimensional parameter space,
revealing the existence of two different transitions. The tangent space eigen-
vectors associated to each of the transitions are presented, and the relation of
the unstable manifold trajectories to pulson states is analyzed afterwards.

4.1 The Salerno model in two dimensions

Motivated by the results reported in the last chapter our aim here focus on ex-
tending the continuation scheme for calculating exact discrete breathers in
higher dimensional systems. In particular we focus on the following two-
dimensional nonlinear Schrédinger lattice

iq.)nm = - [Cl((pn-l—l,m + @n—l,m) + C2(q)n7m+1 + cI)mm—l)] (1 + N|(I>n,m‘2)
7 e S (4.1)

This lattice can be viewed as the two-dimensional Salerno model. The two cou-
pling parameters C; and C5 provide a technical advantage for numerics (see
below), but they are also introduced for theoretical and experimental interest.
The possibility of controlling the ratio between the two linear couplings of the
two transversal directions has been studied in various works as a way of an-
alyzing how the intrinsic 2D phenomena (such as the quasi-collapse) emerge.
In fact, for C; << C, p = 0 and v # 0 equation (4.1) describes a set of
weakly coupled nonlinear waveguide arrays and can be considered as a case of
“tntermediate dimensionality’. This extreme has been studied experimentally
in [132] and using perturbative methods in [133]. On the other hand, this
equation incorporates, as two particular limits, the physically relevant stan-
dard two-dimensional DNLS equation (x = 0, v # 0) and the two-dimensional
counterpart of the AL lattice (ux > 0, v = 0) which is not integrable. The
continuation between these two limits provides a useful tool for studying the
interplay between the on-site and inter-site nonlinearities in the 2D case. More-
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over, the anisotropy (or freedom in the values of the coupling parameters C;
and C3) allows to include an integrable model among the members of the fam-
ily of nonlinear lattices described by eq. (4.1). That is, for v = 0, C; = 0
and Cj # 0 one obtains a set of integrable AL 1D chains. In this sense, every
2D model included by eq. (4.1) is connected with this integrable model where
analytic discrete breathers are available.

The SM (4.1) may find a straightforward physical application as a discrete
model for the BEC of dipolar atoms trapped in a deep two-dimensional optical
lattice [78]; in that case, as stated for the 1D Salerno model, assuming that a
strong magnetic field aligns the momenta parallel (perpendicular) to the lattice
plane, and the condensate is strongly confined in the vertical direction, one will
again deal with the dipole-dipole attraction (repulsion), i.e. p >0 (p < 0) in

eq. (4.1).
Similarly to the 1D version of the Salerno model eq. (4.1) has two dynam-
ical invariants, the Hamiltonian

H= - C(1 Z ((I)n7m$n+17m + qbn—l—l,man,m)

n,m

- 02 Z (q)n,m$n,m+1 + (I)n,m+1§n,m)

n,m
2 2
— IS Bl + 2> 0 (|14 @) (4.2)
Nn,m K n,m

and, due to the phase invariance of the equations of motion, the following norm
(4.1)

N = iZlnﬂl—i—u\@mm\zD : (4.3)

n,m
Note that we have included here the needed redefinition in the logarithmic
terms of both quantities in order to manage with a correct description of the
dynamical invariants within the Salerno model with competing nonlinearities.

In the same manner as in the 1D case we will focus on a special set of
2D discrete breathers. For this, we have to generalize the definition (2.22)
introduced in section 2.2 for a (p, q) resonant solution in the 1D model to
the 2D case. In this context, discrete breathers solutions are characterized by
three time scales. Namely, one associated with the internal oscillation wj, and
the other two derived from the translation of the localization center, i.e. its
velocity U, = (vz,vy). The subset of 3-tuples (wp,p) that fulfill the (ps, py, q)-
resonance condition

2 Dz

= 4.4
Umwb p (4.4)

27 Dy
Uy— = == 4.5
Yy, q (4.5)
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(where p,, p, and ¢ are integers) denote the breather solutions that can be
obtained with our continuation method. These solutions are those that after ¢

periods of the internal frequency, ®(to+¢T}), translates p, and p, lattice sites
in the z and y direction of the square lattice, respectively, i.e.

D (t0) = Prtpy mtp, (to + 1) (4.6)
where, again, PBC are applied ®n,11.m = P1m, Pom = Pn,m., D, Ny+1 =
®,1 and @, 0 = Py N, (with N, and Ny being the lattice size in the x and
y direction respectively). Consequently, a (pg,py,q)-resonant state will be a
solution of the following set of equations

LY IETE, ey e [{@nm(to)}] =

Fp pysg,00,0,C1,02) [{‘ﬁn,m(to)}]

= {(i)n,m(t)} ) (4.7)
where the operators L; are the lattice translation in the ¢-direction,
Lw[{q)n,m(tO)}] = {(I)n—i-l,m(tO)} ) (4.8)
Ly[{q)mm(tO)}] = {(I)n,m-i-l(to)} :

Besides, T(y,,,,,c1,0,) 1s the time evolution operator given by equation (4.1) over
one period Tp = 27 /wy,

T ,1,C2) [{ P (t0) ] = { @ (o + T1) } - (4.10)

In order to illustrate the 2D time scales resonance let us to consider the
plane wave solutions of equation (4.1): ®,,,,(t) = Aexpli(kyn + kym — wt)].
These solutions possess the following nonlinear dispersion relation

w(k, A) = 2(C} cos ky + Cy cos ky)(1 + pA?) —2vA% . (4.11)

Hence, we can obtain the subset of plane waves which are (p,, py, ¢)-resonant
with some time scale 7 (i.e. after a time g7 they have translated p, and p,
sites in the x and y direction, respectively). Each member of these subsets will
be labeled by the pair k =(k, k,) and from the condition (4.7) it follows that
the corresponding set of values of k for each family will satisfy the relation

- 1 - m
RoA) =— (5 k-2 412
w(k, A) P o (4.12)
where m is an integer and p'=(p,, py). In figure 4.1 the corresponding values
of k are represented for two resonances of type (p, = 1,p, = 0,¢ = 1) and
Pz =1,py =1,g=1).

The method used for solving equation (4.7) for each resonant 3-tuple (wy, )
is the same as in the 1D case, already described in section 2.3.1. Then, the
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Figure 4.1: Wave numbers, k = (ks, k,), of the (1,0,1) (a) and (1,1,1) (b) resonant
plane waves for m = 0 (see equation (4.12)). Different values of Cs, while C; is fixed

(C; = 1), are shown. The reference time scale for the resonance is set to 7 = 2.4315
(w=2.584).

implicit function theorem assures that a fixed point solution of a map (4.7)
given by 5:(px, Py, ¢, wp, v, C1, C2) can be obtained provided that (i) the
Jacobian of the operator Fg[{q)n,m(to)}] — I is invertible, and (7i) we know a
fixed point of a map corresponding to an infinitesimally close set of parameters,
5—55: (Pa, Py, 4, wp— 0wy, v—6v, C1—0C7, C2—0C3). As explained in section
2.3.1 the first demand can be satisfied using a singular value decomposition
(SVD) of the Jacobian in order to obtain the pseudo-inverse operator. On the
other hand, when the second condition is fulfilled convergence of the Newton-
Raphson iterative scheme is guaranteed. For this, we start with a sufficiently
good trial solution, {®9  (fo)} and solve the equation

{005, (to)} = ~DFz[{®5,(to)}] ™ Fr [{®%, . (t0)}] . (4.13)

in order to obtain {®},,.(to)} = {®%,,(to)} + {6®) . (to)}. We iterate these
calculations to the desired convergence, and then the solution, {®,, ,(to)}, is
obtained. In our numerics this is the case when

Fe[{@,,,(to)}] < N-10716 (4.14)

(where N is the total number of sites in the square lattice) is fulfilled. Once
the solution is found we use it as the following trial solution, {®} ,(to)}, for

solving the map (4.7) corresponding to the next set of parameters £ = &+ 6¢.
There are two possible paths for developing the continuation method de-

pending on the choice of the starting point of the continuation. One possibility
is to start from the full anti-continuum limit, C; = Cy = 0, where a pinned
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breather solution of frequency wy is written as

Bpron (1) = g O /% expl(iwpt) - (4.15)

Starting from the above solution, we can perform the continuation increasing
the parameters C7 and Cy as usual, and so obtain the whole family of (p, =
0,p, = 0,¢q = 1) resonant discrete breathers. An alternative path starts from
the one-dimensional limit, Cy = 0. The choice of this second limit (which
implies taking as the very initial trial solution of the continuation the whole
set of 1D solutions obtained in the previous chapter) is justified when seeking
mobile solutions. As stated above, this limit offers the possibility of studying
strongly anisotropic lattices as a controlled interpolating situation between
one and two dimensions. On the other hand, employing this strategy we can
only obtain those solutions which are (p, = p,p, = 0,¢)-resonant, i.e. the
two-dimensional continuation of those one-dimensional (p = p,q)-resonant
discrete breathers. Hence, the solution from which we start is

Dy (1) = Sy @iL (1) (4.16)

where Cfﬁ,l@D(t) is the corresponding (p = pg, g)-resonant one-dimensional solu-
tion.

In what follows we will employ both continuation paths when we study
the case of pinned breathers (section 4.2), and we will show that the results
obtained are the same when approaching the same limit (the standard two-
dimensional DNLS).

4.2 Pinned discrete breathers

We first focus on the characterization of pinned ((0,0,1)-resonant) discrete
breathers for the standard Salerno model (with special attention to the DNLS
equation) in section 4.2.1 and for the SM with self-defocusing inter-site non-
linearity in section 4.2.2.

4.2.1 Pinned discrete breathers in the standard Salerno
model

As we have discussed, we can choose two different starting points for the contin-
uation of (0,0, 1)-resonant fixed points (pinned breathers) of equation (4.7): (3)
the full anti-continuum (AC) limit (C; = C2 = 0), or (#1) the (one-dimensional,
1D) limit of uncoupled chains (Cy # 0,Cy = 0), where they were obtained in
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the previous chapter from continuation along the standard 1D Salerno model
by increasing values of the parameter v from the one-dimensional AL lattice
(2.9). As a test for our codes, we have checked that both paths arrive to the
same solution. In fact, unique continuations can proceed along any path on
the plane of parameters (Cy,v) that we have explored.

Early works [123-125] on the isotropic two-dimensional standard DNLS
equation analyzed the so-called quasi-collapse instability of pinned discrete
breathers, i.e. the condensation of all the energy into a few modes in dis-
crete nonlinear systems, which corresponds to the onset of a singularity (wave
collapse) [126] in multidimensional continuum models. Subsequent numeri-
cal works [127] extended these studies to the isotropic 2D Salerno lattice and
addressed the question of how the instability is affected by the presence of
impurity lattice sites.

As expected, our results further corroborate the existence of quasi-collapse
instabilities in the anisotropic case: The phase diagram in parameter space
(wp, C2, v) consists of two regions (stable and unstable) separated by the
surface of transition. As we perform the continuation of breather solutions
across the parameter space we scan the Floquet stability of the computed
solution. In figure 4.2 we present the two stability transition curves in the
plane (wy, Co, v = 1), d.e. the function C*(wy), corresponding to the two
different continuation starts. The continuation from the AC limit is made
through the path C; = Cy and the one from the 1D limit is made at C; = 1.

The convergence of the two paths at Cy = 1 is clearly seen.

The Vakhitov-Kolokolov criterion [103] for stability of the pinned discrete
breather solution derived and used for the 2D DNLS in [124, 125],

(8—N> >0, (4.17)
80][, 02711

is of a very general character and our numerics illustrate it clearly. On the other
hand, the Floquet stability analysis detects the dimensionality (and a basis
in tangent space) of the unstable linear manifold associated with the quasi-
collapse instability that these exact discrete breathers experience for some
parameter values. We have computed numerically, for a fine grid of wy values
and a coarser grid of C and v, the function N(wp, Ca,v), from which we show
some sectors in figures 4.3 and 4.4.

In figure 4.3 we show the numerically computed norm (4.3) as a function
of the breather frequency N(wy), for three different values of the transversal
coupling Cy, and a fixed value of ¥ = 1 (anisotropic DNLS limit). We observe
the existence of a minimum value, min N(wy) = N* # 0, which is thus seen
as an excitation threshold for the creation of these solutions. The position of
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Figure 4.2:  Evolution of the threshold value of the coupling parameter, C%h, as
a function of the frequency, wy, for two different continuations starts. The values
of C" limit the region where pinned discrete breathers are linearly stable (unstable
for Co > Ci"). The instability yields a hyper-localized state (quasi-collapse). The
continuation from the fully uncoupled limit (C; = Cy = 0) (filled circles) is performed
using the path C; = Cs. For the continuation (bold circles) from the 1-dimensional
limit (C7 = 1, C = 0) the coupling in the new direction C5 is progressively increased.

the minimum wf)h(C’g), which naturally increases with Cy, separates the stable
and unstable branches of pinned breathers. Breathers corresponding to values
of wp where N(wp) has a negative slope are unstable: This is shown in the
insets, where the Floquet spectra of two representative examples of pinned
discrete Schrodinger breathers are plotted in the complex plane. Note that
the high accuracy of the numerical solution allows an unprecedented detailed
Floquet analysis of the instability, paving the way to rigorous analytical char-
acterizations of the quasi-collapse unstable manifold. This is a one-dimensional
manifold, as our numerical results unambiguously confirm. Then, in the regime
of small time scales, the unstable manifold is fully characterized by a single
Floquet eigenvector.

Figure 4.4 shows the (surface) function N(wp,v) for the volume sector of
constant Ca(= 0.5). Most noticeably, the critical (threshold) line of bifurcation
points (g—a = 0), as seen in the inset, does not define a monotone function
wih(y). In fact, in the whole interval of 0 < v < 1 values, the range of values of
wgh is quite short, indicating the insensitivity of the gross features of the quasi-
collapse transition to the value of v. However, considering finer details, one
sees that the threshold curve w,’gh(u) smoothly reaches its slightly larger values
around midway between the DNLS and the AL limits. In other words, in-
termediate values of the interpolating (Salerno) parameter v somewhat favour
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Figure 4.3: (a) Plot of the Norm, N, of the computed solutions as a function of their
frequency wy for different values of the coupling parameters. The continuations have
been made starting from the one-dimensional limit (C; = 1). For the regions where
ON/Owy is positive (negative) the continued solutions are stable (unstable). We can
monitor the change of the linear stability of a solution of a given frequency during
its continuation in Cs looking at the Floquet spectra. Figures (b) and (c¢) show the
Floquet spectra of a discrete breather of frequency w, = 3.93 at C; = 1, Cy = 0.7
(where ON/Owp, < 0) and at Cy =1, Cy = 0.2 (where ON/Owp, > 0), respectively.

M
. kit
M

L Y N NHHHnntg
2:5 SN D
0 0
5
v 1 35 4.5 5.5
Wy

Figure 4.4:  Surface N(wp,v) for the case C; = 0.5. The inset shows the curve
v(wp) corresponding to ON/Owy, = 0. This curve gives the transition points where the
discrete breather changes its stability character.
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Figure 4.5: (a) Time evolution of the amplitude |®,, ,,,| for the localization center
(n = 11, m = 0) and two adjacent sites (n = 10, m = 0) and (n = 11, m = 1).
Each amplitude is normalized to its initial value, so that it can be seen how the
quasi-collapse instability is developed. The parameters of equation (4.1) are C; =1,
Cy = 0.5, v = 1.0 (u = 0) and the frequency of the pinned breather is w, = 3.50.
When the instability is fully developed, we analyze the final state by means of the
Power Spectrum S(w) of the time evolution of 2 [®19,0(¢)] (the real part of localization
center). As can be observed in (b) the internal frequency of the breather (highest
peak in the spectrum) shifts to a higher value (w; = 4.03) and the other peaks are
located at the frequencies of the harmonics resulting from the combination of the
internal frequency with the frequency (wq. = 0.78) associated with the amplitude
|®,, m | oscillations shown in (a).

the enhancement of the quasi-collapse unstable region. These conclusions are
in contrast with the stated conclusion (for isotropic lattices) in [127] that the
Ablowitz-Ladik term increases the stability regime.

When instability is allowed to develop beyond the fixed point tangent space
into the nonlinear realm of perturbations, the trajectory obtained by direct
integration of the equations of motion invariably ends after a transient (of time
scale given by the real Floquet exponent larger than 1) in a localized solution
with complex dynamics, the pulson states, that we have already observed in
the one-dimensional Salerno model with competing nonlinearities for a narrow
region in the (u,wp)-plane (see section 3.3.2). In the two-dimensional context

"... where the

these states were characterized in [131] in the following terms
peak intensity |®,,,|? oscillates between the central site and its four nearest
neighbours (...) it is not known whether these pulson states represent true
quasiperiodic solutions to the DNLS equation". What makes these trajectories
on the unstable nonlinear quasi-collapse manifold of much practical relevance
and interest is their ubiquity: They appear as persistent localized states in
the Hamiltonian dynamical evolution from a wide variety of initial conditions.
Their description requires at least two frequencies, namely the internal (genuine

breather-like frequency) and the frequency of the oscillations of the breather



90 Chapter 4. Discrete Breathers in 2D Nonlinear Schrédinger lattices

width around a mean width value, which turns out to be less than the width
of the unstable exact discrete breather. Second and outer shells of neighbours
(in both lattice axes) also participate in the width oscillations.

Though a more detailed characterization of the pulson states would be re-
quired, it is illustrative to consider (figure 4.5) the power spectrum S(w) (eq.
3.5) of the field at the central site of a typical trajectory on the unstable nonlin-
ear manifold of a quasi-collapsing pinned discrete breather. This shows peaks
at the combinations wy + jwge (7 = 0,£1,42...), where wgy is the frequency
of the width oscillations characterizing the pulson state, while wy > wy is a
frequency higher than the (initial condition) fixed point frequency wy. The new
frequency wjy turns out to be very close to the breather frequency of the same
(initial) norm on the stable branch. In other words, the instability drives a
shift of breathing frequency towards the stable branch, while the excess energy
is transferred to the oscillatory motion of the observable width. This behav-
ior seems to be the essence of the physical characterization of the nonlinear
quasi-collapse manifold dynamics.

The numerical observation of a two-frequency power spectrum for a typical
pulson state points towards an eventual positive answer to the question (on
true quasiperiodicity) arised in [131]. This point serves to illustrate how the
high accuracy of the fixed point numerical solution provides detailed clues on
many still unsolved (from a mathematical and physical point of view) questions
on two-dimensional Schrédinger localization, which are of prospective experi-
mental interest in nonlinear (photonic, Josephson, ...) physics technologies.

4.2.2 Pinned discrete breathers in the Salerno model with
competing nonlinearities

Let us now analyze the effects that competing on-site self-focusing and inter-
site self-defocusing nonlinearities have on pinned discrete breathers. For this
purpose we start from the above computed pinned breather solutions for the
2D DNLS equation, corresponding to g = 0, and parameterized by the corre-
sponding values of wp, C1 and Ca. In paticular we will keep fixed the value
C1 =1 and let vary Cy = C'. We will also keep fixed the value of v = 1 (due
to the scaling invariance of the model (4.1)). Then, our continuation seeds
is a set of solutions at different frequencies and several different values of C|
which are subsequently continued in g < 0. With these continuations we are
able to construct families of the breather solutions (labeled by their internal
frequency wy) for different values of p and C. In this way, we scanned the
family of discrete breathers in the entire (C,u < 0,wp)-space of the Salerno
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Figure 4.6: Intensity profiles, |®, ,,|?, of two discrete breathers found for C' = 1
(isotropic case) and frequency wy, = 4.22: (a) p = —0.2; (b) p = —0.88. The latter
solution is a cuspon, which features stronger localization at its center than in the tails.

model with competing nonlinearities!.

As noted above, varying C from 0 to 1 allows one to observe the transition
from one- to two-dimensional lattice and to study the strong anisotropic limit
(C << 1). We will concentrate on the existence of 2D cuspons and their sta-
bility. Let us remind that in the 1D case, cuspons exist for u < 0, when the
on-site and inter-site nonlinearities are competing (see section 3.3.2). These
solutions present highly localized profiles, with the decay rate around the lo-
calization center higher than in tails of the solutions. Another relevant result of
the 1D case is that small-frequency breathers are unstable in a narrow interval
of negative values of u. The instability observed in the 1D case transforms the
discrete breather into a pulsonic state. We have seen in the previous section
4.2.1 that the standard Salerno model (and in particular the 2D DNLS lattice)
features a similar unstable behavior for small-frequency breathers. It is then
interesting to find a link between the breather instability in the 2D standard
Salerno model (4.1) with x4 > 0 and the above-reported instability of breathers
in the 1D Salerno model when p < 0.

First, we consider the shape of solutions produced by the continuation. As
expected, cuspons appear when p is negative and of sufficiently large absolute
value. In figure 4.6 we display discrete breathers found at C' = 1 (in the
isotropic lattice) and wp, = 4.22; for two different values of p. As seen in figure
4.6.b, the cuspon indeed features a higher spatial decay rate around its center,
(ng, mgp), than far from it.

To characterize the transition from usual discrete breathers to the cuspons,
we fitted the decaying tail of the breather along the vertical and horizontal
directions on the lattice, (ng, m — 4o00) and (n — £o00,my), to the expected

!Typically, the difference between the breather frequencies used for each C' was dw, =
8.1072 (which is also the lowest frequency taken close to the edge of the phonon band), and
the continuation step in p was du = 21072,
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Figure 4.7: Solid and dashed curves show, respectively, the critical values of the inter-
site nonlinearity coefficient, p,, and p, = 0, as a function of the breather’s frequency
for several values of the anisotropy parameter C'.

(asymp) (asymp)
ng,m—=300 n—=+o00,mo

Ay exp(—T'z |n — ngl), respectively. Once two pairs of parameters (A,,T';) and
(Ay,Ty) are found, one can determine whether the decay rate (localization

asymptotic forms, |® | = Ayexp(—Ty |m —mg|) and |® | =

degree) around the breather’s center is higher or lower than in the tails, by
defining two sharpness parameters (this is a similar definition to that adopted
in section 3.3.2 for the 1D case), 7. = Az — |Pngmol, and vy = Ay — [Prg.mo |-
Obviously, 7, = 7, in the isotropic model (C = 1); however, 7, and v, are
different in anisotropic lattices. We have computed both quantities as the
continuation in pu was performed for each breather at frequency wp. For a
given pair of parameters C' and wy, it was found that, for higher (in particular,
less negative) values of i, both v, and ~, are positive, thus pointing out that
the localized states are ordinary discrete breathers (not cuspons). Decreasing
i, one finds a critical value, = p,, at which v, = 0, which corresponds
to a peakon profile in the (vertical) direction of weak coupling, (ng,m). If p
is further decreased, we then have v, < 0, while 7, is still positive (i.e., the
breather is a semi-cuspon), until the second critical point is reached, u = p, <
fty, where 7, = 0, and the breather assumes a peakon profile in the (horizontal)
direction of strong coupling, (n,mg). Finally, at @ < g, both v, and , are
negative, and the discrete breather is a cuspon in both directions. Figure 4.7
shows the critical values, p, and p,, versus wy for several fixed values of C.
As noted above, p, = py when C' = 1, while for C' = 0 (the 1D limit), only p,
exists.
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Floquet analysis

Concomitant with the continuation of the breather solutions in u, we examined
their linear stability. Performing the Floquet analysis for every computed
solution, we have generated a full stability diagram in the (wj, p)-plane for
several values of C' (including both positive and negative y in order to link the
unstable region of the 1D SM at p < 0 and those found for the standard 2D
SM). This is shown in figure 4.8. At the isotropic case, C' = 1, and for u > 0
we observe, as expected from the results obtained in the previous section, an
unstable region corresponding to the low-frequency breathers. As previously
reported, the development of this instability yields to the development of a
pulsonic state (similar to what was found in in the 1D version of the model
when < 0). On the other hand, for u < 0, all cuspons are found to
be linearly stable. This is a new result concerning 2D nonlinear lattices of the
Schrodinger type. Taking a close look at the evolution of the stability diagrams
as C decreases, one can monitor a transition from the 2D isotropic model to its
1D counterpart. We thus observe (see contour plots in figure 4.8) that there is
a subregion in the (wyp, 1) plane, for each value of C, where the largest values
of |\;] are much higher than in the rest of the unstable region. This subregion
continuously deforms as C' varies, and, as C — 0, it approaches the unstable
region found in the 1D Salerno model.

We have also checked the validity of the Vakhitov-Kolokolov (VK) criterion
for the stability of breathers in the Salerno model with competing nonlineari-
ties. For this we have computed the norm of the solutions as per eq. (4.3), to
generate surfaces N (wp, pt) for several values of C'. These surfaces are plotted in
figure 4.8. In the figure, we have also plotted curves at which 0 NOwy, changes
sign, thus separating the predicted stable and unstable regions. Comparison
with the rigorous results produced by the Floquet analysis confirms again the
validity of the VK criterion for predicting the unstable region found for pinned
breathers at p < 0. A noteworthy feature of surfaces N(wp, p) is the diver-
gence when the breather’s amplitude attains the value |®,,m,|* = 1/|u|. In
the 1D model (C' = 0), this happens for an exact peakon solution, whereas
for C' > 0 we observe that the divergence curve in the (wp, 1) plane is located
below the curve of = py(wy), i.e. it happens for cuspon states. Examining
the norm for cuspons with the amplitude exceeding l/m, we conclude that
ONOwy, < 0 for all wy, in this region (after the divergence of the norm occurs).
Then, the VK criterion predicts that cuspon breathers are unstable contrary
to the results of the Floquet analysis. Hence, the VK criterion does not apply
to the cuspons with |®,,, mo| > 1/4/]1]. The stability of perturbed cuspons
was also confirmed by direct simulations of the dynamics (4.1) revealing not
only that they are linearly stable solutions but also high robust.
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Figure 4.8: Stability diagrams in the (u,ws) -plane corresponding to different values
of the anisotropy parameter C. Contour plots show maximum absolute values of the
Floquet multipliers, max {|\;|}. Beside each contour plot, norm surfaces, N(u,wp),
are plotted for the corresponding values of C'. Curves at which the sign of slope
ON /0wy changes are plotted on top of the surfaces. According to the Vakhitov-
Kolokolov criterion, these curves separate stability and instability regions.

Bound states of discrete breathers

In addition to isolated pinned breathers, we have studied their bound states
when p < 0. Two types, in-phase and m-out-of-phase, of pairs of identical
breathers, with the same frequency wp and different distances between them,
has been analyzed. For this purpose, we first continued these solutions, at u =
0, from the anti-continuum limit up to the 2D DNLS equation (C =v = a =
1), and then decreased the value of i into the region of competing nonlinearities
(u < 0). At the same time, the linear stability analysis of these periodic
solutions was performed by the numerical computation of their Floquet spectra.

We have computed two different patterns of bound states of breathers. The

first type consists of two discrete breathers with their centers, (n(()j), mgj)), with
(1) (2) ((]1) m(2))

Jj = 1,2, lying on the same lattice axis (so that ny’ = ng~ or m, 0
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Figure 4.9: The absolute value of the Floquet multipliers as a function of p for in-
phase (top) and out-of-phase (bottom) axis-aligned bound states of breathers with
wp =7 (C =1). The figure shows cases when the two breather centers are separated
by d =3, 5 and 7. It can be observed that, irrespective of the value of d, the stability
interchange occurs at y = —0.3.

(1) _

whereas for the second type of bound states the centers are related by ny~’ =
n((]2) £+ d and mgl) = m(()z) F d, i.e. they are aligned along a diagonal of the

lattice.

In figure 4.9 we show the absolute value of the Floquet multipliers as a
function of u for in-phase and out-of-phase bound states, aligned along a lattice
axis for the case of wp = 7.0, with three different values of the distance between
breather centers in the pair. Results of similar computations for the diagonal-
aligned bound states with wp, = 8.0 are shown in figure 4.10. As in the 1D
version of the model (see section3.3.2), for ;4 = 0 in-phase bound states are
linearly unstable (the more unstable the closer breathers are in the pair), while
out-of-phase pairs are stable. As observed in figures 4.9 and 4.10, at u = —0.3
for the pattern of the first type (wp = 7.0), and at u = —0.25 for the second one
(wp = 8.0), the in-phase bound states become stable regardless of the distance
between breathers. Simultaneously, out-of-phase states become unstable, also
regardless of the separation between breather centers.

The same stability exchange between in- and out-of-phase states was ob-
served in the 1D case, where it occurs at the value of u at which the dis-
crete breather solution is a peakon. However, here in the 2D case the discrete
breathers in the pair are cuspons on both sides of the stability-exchange point.
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Figure 4.10: The same as in the previous figure for in-phase (top) and out-of-phase
(bottom) diagonal-aligned bound states of breathers with w, = 8 (C' = 1). Shown are
the results for the states with the separation between the breather centers d = 1, 2
and 3. It can be observed that for all these states undergo the stability exchange at
w=—0.25.

Nevertheless, we find, for both types of the bound states, that the values of
w at this point is exactly the same at which the cuspon’s norm, N(wp, i), di-
verges (see the previous subsection). In other words, the stability interchange
between in- and out-of-phase bound states is associated with the divergence of
the breather norm N (wp, i), rather than to the appearance of a peakon (con-
trary to the 1D case, where the emergence of a peakon and norm divergence
occur simultaneously).

As a conclusion, although the divergence of the norm does not switch the
stability of single pinned discrete breathers, it marks the stability border of
bound states of breathers, regardless of their size and orientation relative to
the lattice.

4.3 Discrete vortex breathers

A natural generalization of the fundamental discrete breathers are discrete
vortices, which are well-known solutions of the ordinary 2D DNLS model [117].
A vortex is characterized by the phase circulation around its center, Af, that
must be a multiple of 2w. Hence they may be labeled by an integer number
(vorticity, or topological charge), S = A8/(2).
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Figure 4.11: Two examples of fundamental (|S| = 1) discrete vortices. Profiles of the
real part of the square vortex with M = 1 and vortex cross are shown in the top and
bottom panels, respectively. Both solutions are found for y = —0.4 and w, = 7.0 (as
noted in the text, we fix C' = 1 for the vortex solutions).

In this section, we consider vortices only in the isotropic model (C = 1),
with the purpose of analyzing their behaviour at both the standard SM (u > 0)
and at the SM with competing nonlinearities (1 < 0). In the framework of
the 2D DNLS model, influence of the lattice anisotropy on fundamental and
vortical discrete breathers was studied in [134]).

We will construct two types of vortices, on-site- and off-site-centered ones
(alias wortex crosses and wvortex squares), both with |S| = 1. Vortex squares
are characterized by the number of lattice bonds, M, that each side of the
square comprises; in this section, we only deal with M = 1. Two examples of
these two species of the solutions are plotted in figure 4.11.

4.3.1 Vortex crosses

In order to construct fundamental (|S| = 1) vortex crosses centered around the
lattice site (ng,mg), we start with the anticontinuum (C; = Cy = 0) DNLS
(o = 0) limit. The corresponding seed pattern includes nonzero fields

(I)nmmo-i-l = _i(I)no+1,mo = _(I>no,mo—1 = Z'(I>no—1,mo = wb/2 . (4-18)
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Figure 4.12: (a) The absolute value of the Floquet multipliers as a function of pu
for a vortex cross with w, = 8. Two bifurcations can be inferred from the Floquet
distributions in panels (c) and (d): a Hamiltonian Hopf bifurcation at p = 0.46, and
a harmonic bifurcation at 4 = —0.3. A similar set of two bifurcations is found at
other frequencies. The entire stability diagram is displayed in panel (b), showing a
narrow stability region. (As noted in the text, we fix C' = 1 for the vortex solutions).

Then, by adiabatically increasing the inter-site coupling (Newton continuation
in C using C7 = Cy = C), we reach the isotropic DNLS model, and start the
continuation to positive values of the inter-site nonlinearity, . Performing
the continuation in C at u = 0, we have found that, for low-frequency vortex
solutions, there is a critical value, C., that depends on frequency wyp, at which
a Hamiltonian Hopf bifurcation (HHB) [135] occurs and the vortex solution
turns unstable for C' > C¢(wp). This phenomenon was already reported in
previous works [117, 134].

Higher-frequency vortex solutions, which are stable in the DNLS equation
in the considered range of parameters, undergo destabilization through a bi-
furcation of the same type as a result of the continuation in g, at C = 1. The
Hamiltonian-Hopf character of the bifurcation can be seen in figure 4.12.c,
which shows the Floquet spectrum after the bifurcation: it is seen that a
quadruplet of complex eigenvalues A; exit the unit circle. After this (first)
bifurcation, further bifurcations of the same type occur at increasing values of
1, as observed in the right part of figure 4.12.a. Similar to what was reported
in Ref. [117] for the DNLS model, in direct simulations unstable vortex crosses
evolve into on-site-centered fundamental discrete breathers (with S = 0) by
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transferring almost all the energy to one of the sites which originally formed
the cross. The corresponding instability border (for C = 1) in the (u, wp)
plane is depicted by the right curve of figure 4.12.b.

More interesting is the case of p < 0. In this regime, we have found that
fundamental vortex crosses experience another bifurcation, with a quadruplet
of Floquet eigenvalues leaving the unit circle at A = +1 (the so-called har-
monic bifurcation). With the decrease of pu, the corresponding two pairs of
the eigenvalues move along the real axis in the opposite direction, until each
pair breaks up, as shown in figure 4.12.d. The unstable eigenvectors, §®* and
6P, associated with this bifurcation are plotted in figure 4.13.a and 4.13.b
(in this notation, * does not stand for complex conjugation). The shape of
each eigenvector reveals strong localization at two opposite sites of the vortex
cross, each one separately breaking the spatial symmetry (2D isotropy) of the
original solution. Adding a small perturbation to the solution along one un-
stable direction causes oscillations of the amplitudes around the vortex center,
as shown in figure 4.13.c. Such behaviour persists at longer times; in fact, the
vortex pattern does not disappear but rather suffers irregular modulations of
its local amplitudes.

This picture of the instability development supplements the stability dia-
gram for the fundamental vortex crosses, which is displayed in figure 4.12.b in
the (i, wp) plane (as noted above, for the isotropic model, with C' = 1). Note
that the border of the instability which transforms the vortex cross into its
oscillatory counterpart (the left curve in the figure) stays in the pu < 0 region,
even for large frequencies. Therefore, unlike the HHB described above, this
instability is dominated by the competition between the self-defocusing inter-
site and self-focusing on-site nonlinearities. A further insight into the nature
of this bifurcation is provided by the observation that it coincides exactly with
the divergence of norm N(wyp, ) of the discrete breather (and of the vortex
cross solution), and thus it coincides with the stability interchange between
in-phase and out-of-phase bound states analyzed above in section 4.2.2.

Regarding the vortex cross as made up of two (perpendicular) out-of-
phase bound states of breathers (say, left-right and top-bottom), one would
be tempted to interpret the quadruplet of eigenvalues leaving the unit circle
at +1 as the two pairs of eigenvalues that signal the simultaneous instability
of both out-of-phase bound states. At least, this interpretation would explain
the fact that a quadruplet of eigenvalues simultaneously leave the unit circle
at +1, and it is fully consistent with the shape of the Floquet eigenvectors in
figure 4.13. This interpretation suggests that the bifurcation of vortex crosses
occurring in the left part of figure 4.12.b is the same one experienced by out-of-
phase bound pairs of breathers in figure 4.9 (for separation d = 1). In any case,
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Figure 4.13: (a) and (b) Intensity profiles of the unstable Floquet eigenvectors, 6®*
d®**, corresponding to the bifurcation at = —0.3 (for C' = 1) of the vortex cross
with wp = 8, see figure 4.11.d. (c) Time evolution of the lattice field at sites around
the center of the same unstable vortex solution. Pulsonic dynamics of the amplitudes
is observed, without decay of the vortex pattern.
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a noteworthy numerical finding is that these bifurcations (of bound states and
vortex crosses) not only coincide but are also characterized by the divergence
of the breather norm.

4.3.2 Vortex squares

We have also studied the smallest (M = 1) vortex squares carrying S = 1
vorticity. For this purpose, we have performed the continuation of the cor-
responding solution family, starting from a configuration with nonzero com-
ponents @0 o = —i®p motr1 = —Prgt1motr1 = 1 Prgt1,me = \/wb/2 in the
anticontinuum limit, eq. (4.18). As in the case of the vortex cross, we have
first performed the continuation in the coupling constant C' to obtain the cor-
responding solutions for the DNLS model (C' = 1, p = 0). Again, for low-
frequency vortex squares, we have observed an HHB at some critical value of
C. For high-frequency solutions, a bifurcation of the same type is observed
when the continuation is performed from the DNLS model to values p > 0.
In figure 4.14.a, one can observe this bifurcation for the vortex square with
wp = 8. The corresponding HHB (see figure 4.14.c) occurs with a quadruplet
of the Floquet eigenvalues leaving the unit circle. The behavior of the unstable
solution is the same as for the vortex cross, and, after a transient, a regular
breather with S = 0 emerges at one of corner sites of the former vortex square,
while the field at three other corners nearly vanishes (i.e. the energy mainly
concentrates at a single site of the initial vortex structure).

With the continuation of the vortex square to u < 0, we have again (as
in the case of vortex crosses) found that the solutions suffer a destabilizing
bifurcation different from that at u > 0. However, the bifurcation for u < 0 (see
figure 4.14.d) is also different from its counterpart for the vortex cross (which
was displayed above in figure 4.12.d). At some value g < 0, a quadruplet
of Floquet multipliers leave the unit circle, to return to it at +1. After this
brief excursion, they immediately leave the unit circle again, and instability
grows with |u|. Unlike its counterpart for the vortex cross, this bifurcation
does not correspond to the interchange of stability for the bound state of
breathers analyzed in 4.2.2, which actually occurs at a lower value of u, where
the vortex square is already unstable. However, it is remarkable that precisely
at this value of p the quadruplet of eigenvalues outside the unit circle meet
instantaneously at +1, so that the vortex square is marginally stable at that
point.

Profiles of unstable eigenvectors, §®* and 6®**, are shown in figure 4.15.a
and 4.15.b. Each one is localized at two non-adjacent corners of the plaquette
where the vortex square is located. The dynamics triggered by the original
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Figure 4.14: (a) The absolute value of the Floquet multipliers as a function of p for
a vortex square of minimum size (M = 1) with w, = 8 (C = 1). Two bifurcations
are revealed by Floquet distributions in panels (¢) and (d). At g = 0.14, we find
a Hamiltonian Hopf bifurcation, whereas at © = —0.04 a quadruplet of eigenvalues
leave the unit circle and start a short trip to +1, from where they leave the unit circle
again. The entire stability diagram is represented in panel (b), showing a narrow
stability region.

solution being perturbed by this §®* (or equivalently §®**) is displayed in
figure 4.15.c. Again (as in the case of the vortex cross), the vortex pattern is
not destroyed (in contrast with the unstable behavior at p > 0). Instead, the
lattice field at the vortex-square sites develops a periodic pulsonic behavior,
in which at least two frequencies can be identified. One of the frequencies
accounts for periodic transfer of energy between four corners of the square
vortex, following the same path as the flux current:

(ng, mo) — (ng,mo+1) — (ng +1,mo + 1) — (ng + 1, mg) — (ng, mo) — ...

(4.19)
Another noteworthy feature of the dynamics in this case is that the total
amount of energy that is periodically transferred between neighboring sites
varies, also in a regular periodic fashion, thus giving rise to the second fre-
quency. Again (as happened for the vortex cross), the instability observed at
1 < 0induces a pulsonic dynamics of the lattice amplitudes but, in the present
case, the dynamics is much more regular. An intriguing numerical observation
is that the value of p at which the quadruplet of eigenvalues meet at +1 (so
that the vortex-square solution momentarily becomes marginally stable) occurs
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Figure 4.15: (a) and (b) Intensity profiles of the unstable Floquet eigenvectors, 6®*
and §®**, corresponding to the bifurcation, at u = —0.04 (for C' = 1), of the vortex
square with wy, = 8, shown in figure 4.13.d. (c¢) The time evolution of the lattice field
at the vortex-square’s corners for the same unstable solution. The simulations reveal
periodic evolution of the amplitudes with a clear sequence of energy transfer between
the adjacent sites following the same pattern as the current flux in the original vortex
solution.
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exactly when the breather norm diverges.

The entire stability diagram for the fundamental vortex squares is presented
in figure 4.14.b. Again, we find a narrow stability region for low-frequency
vortex squares that expands as the frequency increases.

4.3.3 Bound states of discrete vortex crosses

As a first step towards the characterization of the stability of more complex
2D arrangements of vortices, we have studied two types of bound states of
vortex crosses, with the vortex centers aligned along a lattice axis (say, the
z-direction). In the two types of the bound state, the vortices have equal
or opposite vorticities, see figures 4.16.a and 4.16.b. Both types of solutions
were studied on the isotropic Salerno lattice with competing nonlinearities
(C =v =1 and u < 0), and were numerically obtained by the continuation
at 4 = 0 from the anticontinuum limit (C' = 0), followed by the a second
continuation in the direction of negative inter-site nonlinearity u. The Floquet
spectrum of the solution was also numerically computed along the continuation
path.

At p = 0, bound states of vortices with equal vorticities are stable, while
those with opposite vorticities are unstable. To explain this numerical ob-
servation, one has to realize that the right-most member of the breather set
forming the left vortex, and its left-most counterpart in the right vortex are
out-of-phase (in-phase) in the former (latter) case, see figures 4.16.a and fig-
ures 4.16.b. Then, the stability analysis of bound states of breathers reported
above in section 4.2.2 suggests that the stability of the bound states of vor-
tices is actually dominated by the stability of the local bound state of the
two constituent breathers (one from each vortex) that are in the closest prox-
imity. This analysis is further validated by comparison of unstable Floquet
eigenvalues for the bound state of vortices with opposite vorticities and those
for the bound state of in-phase breathers (for the corresponding values of the
frequency and separation between the centers).

When p decreases, a destabilizing bifurcation occurs, as expected, in the
equal-vorticity bound state, precisely at the same value of p where the simul-
taneous instability of the vortex cross (in section 4.3.1) and the out-of-phase
bound state of ordinary breathers occurs. By inspection of the Floquet spec-
trum for the bound state of vortices, one can clearly identify pairs of eigenvalues
associated with each of these instabilities that take place simultaneously at this
bifurcation point. It clear that the stability of bound states of discrete vortex
and that of single vortices in the SM with p < 0 is related to the behaviour
found for bound states of two pinned breather solutions. The decomposition
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Figure 4.16: A schematic representation of the in-phase (a) and out-of-phase (b)
bound states of vortices with S = 1, in the limit of C' =0, v = 1, 4 = 0. Vectors stand
for the instantaneous values of ®,, ,, in the complex plane, with |®, | = /ws/2.
These solutions are continued in C up to C' =1, and then continued in p. Panel (c)
shows the evolution of the Floquet multipliers as a function of y when p < 0. The
results correspond to w, = 8 and the distance between the two vortex centers is set

to be d =5 (as seen in (a) and (b)).

of any complex solution in terms of this latter building blocks is clearly of

importance.
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4.4 Mobile discrete breathers

Early and current attempts to explore straightaway discrete breather mobility
in isotropic 2D Schrédinger lattices seem to agree that "kicking" procedures
meet huge difficulties in delivering good mobile solutions, contrary to the nu-
merical experiences in 1D lattices. We note here that the formal basis for those
methods [52] takes advantage of the Floquet spectra analysis of exact pinned
breathers, where the so-called depinning (symmetry-breaking) mode is identi-
fied. This allows, provided Peierls-Nabarro barriers are small enough, to obtain
nice numerical 1D mobile discrete breathers, by computing trajectories from
perturbations of the exact pinned breather along the tangent space direction
specified by the depinning eigenvector. The presence of symmetry-breaking
instabilities leading to exchange of stability between one-site and two-site cen-
tered pinned breathers [91] and the associated lowering of the Peierls-Nabarro
barriers to breather displacements (as we observed for the 1D standard SM
when v < 0 in section 3.1.3), hugely facilitates the success of these procedures
when applied to (both Hamiltonian and dissipative) one-dimensional lattices

92, 93].

In contrast, our "anisotropic lattice" continuation approach takes advan-
tage of the availability of exact 1D mobile solutions by monitoring the param-
eter Cy of transversal coupling, and then does not rely on how easily one pro-
motes clean mobility from pinned localization. In this way we obtain accurate
numerical (pg,py = 0,q) fixed points, that is Schrodinger discrete breathers
moving along the strong coupling direction. We will leave open the question
for arbitrary direction of motion which would imply more sophisticated (and
possibly more unclean) methods of construction.

In this section we will focus on the behaviour of the 1D mobile breathers
found for the standard SM (then we set C7 = 1) when the coupling in the
transverse direction (accounted by C5) is adiabatically incorporated and hence
the dimensionality of the solution is increased.

4.4.1 Structure and stability of (1,0,1) fixed points.

In figure 4.17 we visualize the instantaneous real and imaginary components
of the 2D discrete field profile of a typical (1,0,1) Schrédinger breather. Its
structure can be seen as the natural extension to two-dimensional lattices of
the structure of mobile Schrédinger breathers analyzed in the previous chapter.
The numerical solution is spatially asymptotic to a finely tuned small-amplitude

extended (delocalized) radiation state (®pckg)  (f) when m,n — oo. The

m7n(
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fixed point solution can be thus decomposed as
q)m,n(t) = (q)core)mm(t) + ((I)bckg)m’n(t) ’ (420)

which defines (®core),, ,(t), the spatially localized component of the solution.
It turns out that the spatially delocalized component is a highly localized state
in the (continuum, in the thermodynamic limit) k-space of wavevectors. More
precisely, (®pckg)  (
linear (i.e. amplitu7de—dependent frequency w) 2D planewaves. It can be said

t) is a finite linear combination of (1,0,1) -resonant non-

that, as might be expected, 1D Schrédinger breather mobility smoothly persists
when (strong Ci-coupling) 1D chains are coupled transversally. Importantly,
the numerical continuation for increasing values of the transversal coupling
Cs proceeds far from the weak coupling regime into where the genuine two-
dimensional effects start to be manifest, as we will see below.

Most noticeable, the SVD-regularized Newton procedure invariably selects
the values k, = £7/2 for all values of Cy and v, and thus the values of k; for
the 2D resonant planewave are independent of Cy (so it remains equal to the k
values of the 1D (1, 1) fixed point for the uncoupled chain). The appearance of
an extended background modulation in the transversal direction of k, = 4m/2
appears naturally as the best choice to take advantage of approximately 1D
breather propagation along strong coupling direction, for it keeps the value
of k, favoured by the strong coupling Cy value: Any other value of k, would
entail a different k, value. Note however that this provides only a plausibility
argument for the interpretation of the numerical observation (k, = +m/2).

The high accuracy of the computed solutions allows a detailed analy-
sis of many issues concerning 2D Schriodinger breather exact mobility along
the strong coupling direction. We will focus here on how the existence of
quasi-collapse instabilities of pinned Schrodinger breathers, for increasing Co-
coupling values, influences the stability properties of moving (1,0, 1) breathers
in the standard SM. In other words, we search here for genuine 2D effects on
these "strong-coupling-direction" (quasi-1D) moving breathers.

We have performed an exhaustive exploration of two sectors of the param-
eter space (Co,wp,v), corresponding to the breather frequency values w, =
2.5843, and wy, = 2.712, by computing the continued (1,0, 1) fixed point along
the standard Salerno model. These values of w, were chosen low enough to
allow the analysis of pinned breather quasi-collapse effects on mobility, which
occurs at relatively low values of C%*(v) for these values of w as seen in section
4.2.1 (see e.g. figure 4.2 for the case v =1, u = 0).

The Floquet analysis of the computed solutions provides the stability dia-
grams represented in figures 4.18. Both show no qualitative differences: There
are two regions in the (Cy,v) plane where the (1,0,1) mobile breather is lin-
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Figure 4.17: Real, (a) and (b), and imaginary, (c) and (d), of a mobile (1,0, 1)-
discrete breather of frequency w, = 2.712. The parameters of equation (4.1) are
Cy =1,Cy = 0.14 and v = 0.95 (u = 0.05). The insets in (a) and (c) show the
background far from the moving core. It can be observed that the wavenumbers in
the transversal direction are k, = £7/2. (b) and (d) show the contour plot for both
real and imaginary parts.

early unstable. The figures are not "schematic": Every point of the plane in a
fine grid of values of C5 and v has been analyzed, i.e. the Floquet spectrum of
the computed (1,0,1) fixed point is scrutinized, as shown in figures 4.18.b and
4.18.d, where the modulus of the Floquet eigenvalues is shown as a function of
either v (figure 4.18.b) or Cy (figure 4.18.d).

The first unstable region appears at low values of Cy and intermediate to
high values of the Salerno parameter v, i.e. it does not occur close to the
AL limit. This unstable region is also bounded above in the direction of Cj:
The variation of the modulus of the unstable Floquet eigenvalue versus the
transversal coupling parameter Cy shows that the mobile breather becomes
stable again at larger values of Co, before the second instability at even higher
coupling takes place. An important observation is that the pinned discrete
breather of the same frequency is linearly stable at the points in this unstable
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Figure 4.18: Stability diagram and evolution of the modulus of the Floquet eigenvalues
for two (1,0, 1)-discrete breather of frequencies w, = 2.584 (a) and (b), and wy, =
2.712 (¢) and (d) (C; = 1). The stability diagram (a) and (c) show two regions
where the mobile discrete breather becomes unstable. For low values of the coupling
C5 there is a subset of values of v where the breather suffers from fission (see text
and figures (4.19.a) and (4.19.b). On the other hand for higher values of C5 there is a
second region (quasi independent of v) where the unstable breather yields a traveling
quasi-collapsing state (see text and figures (4.19.c) and (4.19.d)). The evolution of the
modulus of the Floquet eigenvalues along different paths v = 0.50 (b) and Cy = 0.17,
0.16, 0.02 (c) is shown.

region for (1,0,1) mobile breathers. Thus this instability cannot be ascribed to
pinned quasi-collapse effects.

The second transition occurs for values of Co close to, but slightly higher
than, the values C’éh of the quasi-collapse of the pinned breather of the same
frequency. We had already seen in the previous section that the quasi-collapse
transition Cﬁh(u) is only very weakly dependent on the value of v, and note
that the same is true for this mobile breather bifurcation. These results suggest
that this second transition is related to quasi-collapsing phenomena. Signifi-
cantly, the stability of the (1,0, 1) mobile breather persists for a small interval
of coupling values above the pinned breather quasi-collapse. This should be
regarded as natural, for the mobile breather is a different solution. Note in
figure 4.18.b that the modulus of the unstable Floquet eigenvalue, in the inte-
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rior of the unstable region, reaches much higher values than those typical for
the first type of instability, and decreases for larger values of Cy, before the
breather solution ceases to exist and only plane wave solutions are obtained
by our numerical method. Note that this behaviour of the unstable Floquet
eigenvalue also fits well to the main features of the pinned quasi-collapse insta-
bility strength, as described by the slope ON/Ow,. From now on we will refer
to this instability of mobile breathers as the quasi-collapse instability.

In the next section we characterize both generic types of instability, by
looking at the details of the unstable manifold associated with each type. As
we will see, pulson states turn out to play a role in the description of typical
trajectories on the unstable nonlinear manifolds.

4.4.2 Unstable manifold behaviour and ubiquity of pulson
states.

First, we analyze the quasi-collapse instability of (1,0,1) mobile breathers.
The unstable linear subspace in the tangent space of the fixed point is one-
dimensional. The typical instantaneous profile of the (modulus) unstable Flo-
quet eigenvector driving the instability is shown in figure 4.19.d. It is an expo-
nentially localized 2D profile which decays asymptotically to zero as m,n — oo,
1.e. it does not excite radiation. These characteristics are shared by the quasi-
collapse unstable eigenvector of the pinned breathers, which further reinforce
the previous considerations leading us to consider this instability as the mobile
counterpart of the pinned quasi-collapse transition.

In figure 4.19.c we have visualized the time evolution of the field modulus
contour plot for a typical trajectory on the unstable manifold. This is obtained
by direct numerical integration of the equations of motion, from an initial con-
dition in which a small perturbation along the quasi-collapse eigenvector has
been added to the unstable fixed point solution. One sees that the breather
translational motion slows down, and the energy is transferred to width oscil-
lations. These oscillations turn out to be more irregular, see figure 4.20, than
those observed in section 4.2 when we inspected typical trajectories on the
unstable nonlinear manifold of pinned breathers.

The difference in the character of the width oscillations in both (pinned
and mobile) cases may be ascribed to the presence of an extended background
component in the mobile breather solution, which naturally enters into the
energy transfer taking place during temporal evolution. The slowing down
of the translational motion continues and eventually the breather pins into a
convulsive pulson state surrounded by the remaining radiation.

Now we pay attention to the “low Cy” instability of (1,0, 1) mobile breathers.



4.4. Mobile discrete breathers 111

(b) 04
035
0.6 ‘6‘1?1,m‘ 8-35
oa 02
g:g I/}'t' 8%5
0.2 s AN :
gy °
0 ) 76
30
06
05
0.4
03
02
01

20 -3 m

Figure 4.19: Time evolution of two unstable solutions, (a) and (c), of frequency
omegap = 2.584 and the associated unstable Floquet eigenvector, (b) and (d) re-
spectively (Cq = 1). Figures (a) and (c¢) show the time evolution of the contour
lines corresponding to three different values of |®,, ,,|, in order to visualize the 4-
dimensional functions |®,, ,,|(t). Figures (a) and (b) shows the fission of the breather
solution when perturbed along the unstable “M-shaped” Floquet eigenvector plotted
in (b). It can be seen how a low amplitude pulse emerges and the mobile breather be-
comes pinned. After this transient this low amplitude pulse decays into radiation. The
parameter of equation (4.1) are C; =1, C5 = 0.08 and v = 0.5 (1 = 0.5). In the case
of figures (c¢) and (d) the parameters are the same except for Cy = 0.19. In this case
the solution is in the “quasi-collapse” unstable region shown in figure (4.18.a). The
final state when perturbed along the unstable eigenvector (d) is a traveling breather
whose amplitude oscillates in the same fashion as that of the pinned quasi-collapsing
breathers, i.e the localization center oscillates out of phase with respect to all the
other sites on the lattice.

The modulus profile of the unstable Floquet eigenvector that drives this insta-
bility is M-shaped (bimodal), as shown in figure 4.19.b, and is asymptotic to
an extended planewave-like profile as m,n — oo, i.e. it is not a purely local-
ized perturbation. It is indeed rather different from the quasi-collapse unstable
eigenvector analyzed above, which is consistent with the fact that the pinned
breather of the same frequency is linearly stable in this region of parameter
space. As argued above, this instability is not related to quasi-collapse phe-
nomena, and it does not appear in the region of small values of the Salerno
parameter v, close to the AL limit.

A typical trajectory on the unstable manifold associated with this insta-
bility is shown in figure 4.19.a, where we have plotted the time evolution of
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Figure 4.20: Time evolution of the maximum value of the modulus |®,, ,,|(¢) along the
central (m = 0) chain and the adjacent (m = 1) one for a mobile (1,0, 1) breather with
frequency wy, = 2.584. This magnitude is normalized to the initial value |®,, ., |(to).
Figure(a) shows this evolution for an stable situation (Cy = 0.15, v = 0.5). It can
be observed how the localization center (m = 0) and is neighbour in the transversal
direction (m = 1) follows two in-phase periodic trajectories in their modulus due
to the Peierls-Nabarro barrier surpassed during the motion. In contrast, figure (b),
shows the case when the breather is unstable (Cy = 0.19, v = 0.5). Here the quasi-
collapse dynamics is manifested while the localization center moves across the lattice.
As can be observed, the oscillations of the two amplitudes are out of phase and the
amplitudes of these oscillations are one order of magnitude higher than those of figure

(a).

the field modulus contour plot. We can see there that the mobile breather
pins quickly while a small pulse moving backwards is ejected, which spreads
and finally mixes with the remaining delocalized background. However some
energy is transferred to width oscillations of the pinned breather so that also
in this case we observe the formation of pulson states surrounded by the re-
maining radiation. As the main difference of this behaviour, with respect to
the evolution observed on the quasi-collapse unstable manifold, is the ejection
of the small moving pulse, we refer to this instability as fission.

By increasing the strength of the initial perturbation along the direction
of the unstable eigenvector, one observes that the size of the ejected pulse
increases. This observation is consistent with the results reported in [127],
where the evolution of initial moving Gaussian pulses in isotropic 2D Schro-
dinger lattices was studied. These numerical experiences lead the authors to
conclude that "the characteristic feature of the discrete quasi-collapse of a
moving pulse is the splitting of the initially moving broad pulse into a track of
the standing narrow structures ..." (sic). However, we see from our study of
the stability of exact moving discrete breathers that the fission and the quasi-
collapse instabilities have different origins and they appear in different regions
of parameter space. On the other hand, the ubiquitous phenomenon of width
oscillations of pinned localized structures (pulson states) cannot be ascribed
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to quasi-collapse. They also appear as the preferred way to allocate excess of
(localization) energy in regions of parameter space far from the quasi-collapse
unstable region.

4.5 Conclusions and Prospective Remarks

We have studied here the dynamics of exact numerical discrete breathers
(pinned, vortical and mobile ones) in a two-dimensional anisotropic nonlinear
Schrodinger lattices. These solutions are computed from a set of uncoupled
1D chains into increasing non-zero values of the coupling in the transversal
direction in order to reach the 2D limit. It is convenient review the most
salient results in order to have a compact picture of the 2D behavior of dis-
crete breathers.

Pinned breathers.- We have performed an extensive exploration in the pa-
rameter space (wp, Co, v) of breather frequency, transversal coupling and
Salerno parameter, by computing the Floquet spectra of the numerical so-
lutions. Both the 1D solutions of the standard and the competing SM have
been continued into the 2D regime in order to see the effects of the dimen-
sional increment. In particular we have found the link between the unstable
behaviour found for certain breather frequencies in the 1D competing Salerno
model (whose pulsonic character resembled those of the well known 2D unsta-
ble solutions) and the quasi-collapse instability that appears for low frequency
breathers when the coupling in the transverse direction is incorporated. Fur-
thermore, we have analyzed the dynamics on the quasi-collapse unstable man-
ifold, where the unstable breather experiences a shift in frequency towards the
(higher) value of the stable breather with the same norm. The excess of en-
ergy is coherently transferred to oscillations of the breather width, so that the
resulting pulson state is characterized by two frequencies. We have also recov-
ered the 2D counterpart of the 1D cuspons and peakons for the 2D SM with
competing nonlinearities. Again these hyperlocalized states are stable Finally,
the stability analysis of in-phase and out-of-phase bound states of breathers in
the isotropic lattice reveals that there is a stability interchange between both
types of bound states, precisely at the same value of the intersite-nonlinearity
parameter (u) where the breather norm diverges as happened for the 1D model.

Vortex breathers.- In addition to fundamental breathers, discrete vortices
of two types, cross- and square-shaped ones, have also been constructed, and
their stability regions identified. In direct simulations, unstable vortices in
the standard 2D Salerno model of the ordinary type transform into regular
breathers, while in the model with the competing nonlinearities the instability
turns vortices into localized vortical pulsons, without destroying their topo-
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logical character. It is then worth mentioning the ubiquity of this pulsonic
attractors of the dynamics in the model. Regarding the stability of bound
states of vortex crosses, we have shown that it is determined by the stability of
the local bound state of two constituent breathers (forming the two vortices)
which are in the closest proximity.

Mobile breathers.- We have studied discrete breathers moving along the
strong coupling direction for the standard 2D SM. These solutions are com-
posed of an exponentially localized core on top of an extended background
which is itself the finite sum of a finite set of nonlinear 2D plane waves. The
time scales associated with these plane waves are resonant with the core inter-
nal frequency as happens in the 1D case. In particular, the background chooses
a finite set of plane waves from a continuous family of resonant solutions. The
Floquet analysis of these mobile discrete breathers reveals the existence of two
distinct types of instability. One is the counterpart, for mobile breathers, of
the quasi-collapse experienced by pinned breathers. The other instability oc-
curs in a region of parameter space where pinned breathers are linearly stable.
The analysis of the dynamics on the unstable manifold show that the excess of
energy is partly transferred to a small moving pulse, ejected from the center
of localization, which justifies the designation of a fission instability. However,
part of the energy excess is also transferred to width oscillations. The ap-
pearance of pulson states far from the quasi-collapse regime indicates that the
tendency to allocate energy in the form of width oscillations is a general 2D
feature, not exclusively associated to quasi-collapse instabilities.

We leave the question on mobility of 2D discrete breathers in an arbitrary
lattice direction. The results obtained here shed light about how this mobil-
ity can be obtained. In fact, our experiences show that mobility of pinned
breathers can be induced based on the existence of the extended background
in the numerically exact mobile solution. On the other hand, the results ob-
tained here and the aforementioned future work may help to design and better
understand recent numerical experiments reported in [136], concerning the in-
teraction between high amplitude pinned breathers and mobile ones. These
experiments provides a possible way for routing and blocking mobile discrete
breathers via the interaction with the high amplitude pinned ones, resulting
in a plausible implementation of logical functions.
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Presentation of Part II

The second part of the Thesis is devoted to the study of the structure
of complex networks. Traditionally, physics has focused on systems where the
underlying topology of elements’ interactions is described by regular lattices
such as those studied in the preceeding part. However, in the recent years,
physicists have started to look to those systems where the interactions among
constituents reflect the abstract relations between pairs of elements rather
than being determined by the proximity in a physical space. These relations
can be determined by the existence of monetary transactions between banks in
economic networks, or cooperative and friendship relations between individuals
in social networks, or assemblies of different molecules working together to
develop cellular tasks in biological networks, etc... From the highest to the
lowest level of description we find complex networks of interactive elements
that cannot be described by regular patterns of connections. The growing
interest in the characterization of the above systems has led to the emergence
of the so-called network science [137]. Let us review the development of this
new interdisciplinary field.

One can settle the first steps of network science with the works on graph
theory [138, 139] in the middle of last century. The most remarkable result
is the theoretical analysis of a random network by the mathematicians Paul
Erdés and Alfréd Rényi |140, 141|. However, networks where interactions
among elements are completely random are a coarse-grained approach to real
networked systems, assuming a homogeneous disorder in what concerns the
patterns of connections. The burst in the study of complex networks came
with the advent of the XXI century along with the development of the Inter-
net and the World Wide Web. This development has provided a large amount
of data-sets for unveiling the relations established among industrial compa-
nies, institutions, scientists, etc... Besides, the explosion of human mobility
(provided by the increase of accessible infrastructures and transportation com-
panies) and the boom of new telecommunications tools (mobile phones, instant
messaging services, etc...) has hugely facilitated the stablishment of new agent
networks with a high global character. These two ingredients, the emergence
of new networked systems and the high accessibility to data-sets describing
them, constituted an unprecedented opportunity for scientist to analyse their
topological features.

The analysis of real complex networks revealed that seemingly different
systems share a common property when looking to the distribution of the
number of connections that the elements of the networks have. It is found
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[142-154| that most of the networks present a power law functional shape for
this statistical quantity and, therefore, they differ from that accounted by Paul
Erdos and Alfréd Rényi, where all the elements present a similar number of
neighbours. Besides the surprising fact that real networks (accounting for many
different types of interactions) share the scale-free character, understanding the
(common or not) origin of this internal organization has become a challenging
question for many researchers.

The above astonishing findings lead physicists to construct simple models
of network growth in order to reproduce the “universal” properties found for
real networks. In this sense, the models developed by Duncan J. Watts and
Steven H. Strogatz [155], and Albert-Laszl6 Barabasi and Réka Albert [145]
deserve special mention. Another direction of research has been focused by the
search for statistical measures of network topology in order to handle efficiently
the large amount of available data-sets and characterize those networks they
represent with a few meaningful indicators. The purpose of these two types
of studies differ strongly from those of concern of traditional graph theory
(where rigorous theorems of difficult real application are proved) and, at the
same time, are methodologically far from the meticulous system characteriza-
tion performed by biologists (who tend to overpay attention to single element
details to catalogue systems so that a unitary analysis of different systems
becomes difficult). The statistical point of view and the unitary approach to
the problem of network characterization performed by physicists have clearly
taken advantage over other disciplines under the name of statistical physics
of complex networks?. In chapter 5 we will briefly review the most important
tools for characterizing network structure and present two model of synthetic
network generation.

The next step of network science has been to look to network dynamics.
Most networks are not composed of mere static objects but, on the contrary,
their elements develop a function. This function can be as simple as being
routers for the transfer of entities among their elements, or as complicated
as being regulatory agents of some internal dynamical processes performed at
each network node.

It is important to difference two kind of studies to the problem of network
dynamics. On one hand, given that real networks can be described by a set of
statistical measures and that one can stablish subsets of networks which are
qualitatively similar in terms of these quantities, it is therefore interesting to
find how to implement dynamical processes on top of the network in order to
take advantage of these topological characteristics. This search for efficient
algorithms is not only motivated for practical purposes but it is also interest-

*Interesting reviews and tutorials on the subject are found in [156 163].
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ing for studying the interplay between dynamics and the underlying networked
substrate. In this sense, the models developed for constructing synthetic net-
works are a useful benchmark for studying this interplay before applying the
results to real networks. This first kind of studies are therefore interesting for
networks whose dynamics can be modeled or modified. This is the case of
technological, logistic and certain social networks, e.g. information and trans-
portation networks are susceptible targets of this kind of studies. In chapter 6
we will deal with two related problems, namely the interplay between network
structure and, first, the performance of immunization strategies aimed at stop-
ping the spread of epidemics and, second, the routing policies for information
dynamics.

As we mentioned above there is a second kind of studies on network dy-
namics. Instead of varying the dynamical properties assuming a fixed substrate
in this second class of studies both structure and dynamics are asummed to
co-evolve towards a stable state where system’s performance is optimal. We
will leave the discussions on this interesting problem for part III and now let
us focus on the study of the structure of networks and its influence over the
dynamical performance.






Chapter 5

Network Structure and
Generation

There may well be no useful parallel to be drawn
between the way in which complexity appears in the
simplest cases of many-body theory and chemistry
and the way it appears in the truly complex cultural
and biological ones, except perhaps to say that, in
general, the relationship between the system and

its parts is intelectually a one-way street.

— Philip W. Anderson in More is Different [2].

This chapter is devoted to the description of the structure of networks and
the modelling of their growth and evolution. We have seen in the preceding
pages that a great amount of empirical data about the patterns of connections
among the constituents of social, technological, logistic and biological networks
is nowadays available. At this point several questions arise such as How sim-
ilar real networks are? or Is there any common feature (reqularity) between
networks with the same function? In order to answer (if possible) these kind
of questions we have to define some properties that would allow us to give a
quantitative and qualitative description of the architecture of networks. After
defining these magnitudes we will briefly describe some important models of
synthetic networks that try to capture some of the ingredients observed when
analysing the “native” ones. We will round off the chapter with a deep analysis
of two models of network design that will be employed along the forthcoming
parts of this Thesis.
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5.1 Describing Complex Networks

Before defining the magnitudes employed for describing the networks we give a
brief account of some formal definitions and notations inherited from classical
graph theory. Afterwards, we list and explain the most used quantities for
characterizing networks’ structure at local, global and mesoscopic levels.

5.1.1 Basic definitions

We start with the formal definition of a network (or, in mathematicals terms,
a graph) G(V, E) as an ordered pair of set of sets: a non null set V' of elements
called nodes (or vertices) and another set F of pairs (7, j), with i, 5 € V, called
links (or edges, arcs) that denote that nodes ¢ and j are connected. Normally
one imposes that ¢ # j so that self-connections are avoided. We will denote
by N and L the cardinalities of the sets V and E respectively. Along with
this definition we can also consider that the elements in F are ordered pairs
(7,7) # (4,7). In this case we will talk of a directed network (or digraph). It
is also very common to assign weigths (numbers) to the edges so that we have
a weighted (or valued) network. The cardinality of V and E can tell us about
the nature of the graph. Taking into account that the maximal cardinality of

Eis < N > we will talk about a sparse network when £ <« N? and a dense one

when £ ~ N2
A subgraph G'(V', E') of G(V, F) is a graph such that V' CV and E' C E.

A subgraph is said to be mazimal with respect to a given property if it cannot
be extended by adding elements either to V' or E' without loosing its property.
Aditionally, we say that a subgraph G is induced by G if E' contains all the
pairs (i,j) € E with 4,5 € V.

The complement of a graph G(V, E) is the graph G'(V', E') (sometimes
denoted G) so that V = V' but whose edge set E' consists of the edges not
present in E. Then a graph G(V, E U E/) will be a complete graph, i.e. every
node will be connected with the rest of the N — 1 nodes.

In order to manage with a graph one usually label with natural numbers
the elements of V' so that ¢ = 1,..., N. Different assignation of labels to the
elements of V' yield isomorphic networks and the topological properties are not
affected. Formally, two graphs G1(Vi, F1) and Go(Va, Ey) are said isomorphic
when one can stablish a bijective relation ¢ : V3 — V5 that preserve the
connections, i.e. if (4, j) € Ey then (¢(i), #(j)) € Eo.

One can represent the graph with the so-called adjacency matriz A whose
elements are a;; = 1 if (i,j) € E and a;; = 0 otherwise. This matrix will



5.1. Describing Complex Networks 123

be symmetric for undirected graphs but, in general, this is not the case for di-
graphs. In the case of weighted networks one can replace the non zero elements
of A by the weights of the corresponding links in order to obtain a complete
representation of the graph.

The analysis of the adjacency matrix will give the topological characteri-
zation of the networks. At present, there is a large amount of different mag-
nitudes used for characterizing the networks architecture. However, the more
specific field we study the more properties we will find for describing these
complex topologies. Then, we will only emphasize on those quantities which
are of general use and therefore will be used along the works described in this
Thesis. We will divide the magnitudes depending on the scale involved for
their definition. From our point of view this is a useful definition since local
(microscopic) or global (macroscopic) properties play a key role depending on
the kind of dynamics placed on top of the network.

5.1.2 Single nodes properties
Local Magnitudes

We will refer to local quantities when one takes into account a node 4 and its
neighbours, I';. Obviously, the first local property is the degree of a node i, k;,
which is the cardinal of the set I';, 7.e. the number of nodes which ¢ is linked
to or, in terms of the adjacency matrix

N
k‘i = Zaij . (5'1)
j=1

If one is considering a directed network one will talk about the “in-degre” of a
node ¢, k‘%n, and its “out degree”, k", which are the number of incoming and
outgoing links that a node shares with its neighbours. Again, we can obtain
such quantities from the adjacency matrix by

N N
kin = Z aij and K" = Z aij . (5.2)
j=1 i=1

Another interesting local measure is the so-called clustering coefficient of
a node which measures the number of connections among the neighbours of
a node, e;. This quantity is usually normalized to one by dividing by its

maximum value ( b ) so that it measures the probability that two neighbours

J and m of a node i (aj; = aim = 1) are also linked to each other (a;, = 1).
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A formal expression of the clustering of a node ¢ with k; neighbours is

23N et Qijim@m
ki(ki — 1)

(5.3)

C; =

A third local property arise when looking at the degree of the neighbours
of a given node (here we assumme that this information is on the local horizon
of the nodes) so that we can define the average nearest neighbours degree. We
can write this quantity as

N N
21 @ij <Zm:1 ajm)
K, = S . (5.4)
Zj:l @ij

Global Magnitudes

Now we will define two properties that are defined taken into account pairs
of nodes that are not necessarily linked and are then influenced by the topol-
ogy of the whole graph. These measures are the closeness centrality and the
betweeness centrality. As we will see in section 6.2 these two magnitudes will
play a key role when dealing with problems of propagation through networks.

First of all we define the distance between two elements of the network, d;;,
as the length of the geodesic that goes from node ¢ to j. In principle, one can
observe more than one geodesic for a pair of nodes. One can then construct the
distance matrix D so that the element D;; = d;;. This matrix is symmetric in
the case of undirected graphs but, in principle, this is not the case in directed
ones. Once we have constructed D one can compute the closeness centrality
of a node, D;, as the inverse of the average distance between it and the rest of

the nodes
N -1

Zjev i dij '

The purpose of measuring this property is to know whether a node holds a

D; = (5.5)

central or a peripheral position in the network.

Figure 5.1: Two different situ-
ation in terms of the clustering

— of the striped node. In the first
case (left) clustering is 0 while
for the second example (right)
the probability of finding two
connected neighbours raises to
2/7.
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Closely related with the above magnitude but rather more sophisticated
is the betweeness centrality of a node, b;. The betweeness tell us how many
geodesics between any pair of nodes (j, m) go through node i. Then, measuring
the betweenes of a node implies not only knowing D but the different sequences
of nodes (of minimal cardinality) we have to cover for going from one node to
another. If we express by o;,, the number of geodesics for going from j to m
we can construct a o, X N matrix G(j,m) whose elements are either 1 or 0
so that row k tell us the sequence of nodes that are contained in geodesic k by
G(j,m)r, = 1 if node [ is part of the geodesic sequence and 0 if not. Then we
can express the betweenes of node ¢ by

Z S0 G(j, M)k, .

U]7m

b; = (5.6)

{j,meV|j#m}

It is easy to realize that this magnitude will be important whenever there is a
flow of information across the network since it allows us to unveil which nodes
will support the highest traffic levels.

5.1.3 Network properties

Up to now, we have defined quantities that only made reference to the prop-
erties of single nodes. However we need a statistical characterization of these
magnitudes in order to have a proper description of the networks. These sta-
tistical indicators will involve averages of the single-node quantities over the
whole set V' of nodes. This implies that the validity of the information pro-
vided by the statistics will be only justified when the cardinality of V', is very
large N — oo. This assumption is not always fulfilled when looking at real
networks, e.g. the largest studied network (the WWW) has 10? nodes which
is orders of magnitude smaller than the number of particles of the systems
studied by statistical and condensed matter physics. However, the use of a
statistical description has turned out to be very convenient when studying
networks and the existence of finite size effects do not prevent physicist from
considering networks as macroscopic objects (although in terms of statistical
mechanics they are mesoscopic ones).

Degree Distribution

The degree distribution, P(k), gives the probability that a given node is con-
nected to k neighbours. The construction of P(k) is obviously easy when one
knows the connectivity k; of every node ¢ and then one can compute the num-
ber of nodes with a given connectivity k, Ny = NP(k). With the degree
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Figure 5.2: Degree distribution of the three real networks: Gnutella peer-to-peer
network [164], the Internet network at the Autonomous Systems representation [165]
and at the Router level [166]. The network sizes are N = 711, N = 11174 and
N = 228263 respectively.

distribution one can measure the average degree of the nodes
(k) = kP(k) . (5.7)
k

Analogously, we can define the in-degree and out-degree distribution of a
directed graph, P™(k'") and P°(k°""). In this case we will obtain that
(k™) = (k°"*) = (k)/2. In order to obtain information of the fluctuations
on the degree distribution one can compute the second moments of P(k),

(K?) => kK P(k) (5.8)
k

The behaviour of (k?) turns out to be very important for studying dynamical
process as we will see in chapter 6.

As mentioned above, the measurement of the degree distribution in real
networks lead to an astonishing result. It was found that lots of networks share
a common pattern for the shape of P(k): a power law behaviour P(k) ~ k7.
This result is far from the expected result when considering a fully random
graph (one would expect to obtain a Poisson distribution as we will see below)
and, as a plus, the form of a power law pointed out that there was a kind of
sef-organization in real networks. Power laws appear in the context of phase
transitions when a system goes from a disordered to an ordered phase. It is well
known that at the transition the system posseses a self-similar character, that
is, no matter the re-scaling we employ to analyse the system we will always
observe that the system looks the same. This effect is reflected by a power
law since it is the unique function that after changing the scale remains with
the same functional form: if & — ak then P(k) — a~7P(k). Because of this
feature this class of networks are ususally termed “Scale-free” networks in the
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literature. In figure 5.2 we show different degree distributions observed when
analysing real networks. We will analyse the emergence of such behaviour for
the degree distribution in section 5.2.3. Let us remark here that the term
scale-free could be in principle misleading because the absence of a typical
scale in the degree distribution does not imply that we cannot observe scales
when looking at other topological magnitudes.

Degre-Degree Correlations

The knowledge of the degree distribution fully characterize the network topol-
ogy when the statistical independence of the nodes is fulfilled. However this
is not the case for many real networks. Then, it is convenient to compute the
conditional probability P(k'|k), i.e the probability that a node of degree k is
linked to another one with degree k. This probability satisfy

> P(k[k) =1 (5.9)
-

and
kP (K |k)P(k) =k P(k|KP(K') (5.10)

which are the normalization and the detailed balance' respectively. As we
stated above, for uncorrelated graphs P(k'|k) is given by the degree distribu-
tion. From (5.9) and (5.10) we obtain in this case P(k'|k) = k' P(k")/ (k).

In order to measure the behaviour of P(kl|k), it is convenient to compute
the average degree of the neighbours of a node with connectivity k, kn, (k).
In general, the computation of the matrix, P, , = P(k'|k), yields very noisy
results since the finite size effects do not allow a proper statistical treatment.
Then, we can compute the function k,,(k),

knn(k) = >k P(k'[k) , (5.11)
k/
by simply computing the average neighbours degree,k,,, introduced in section
5.1.2 and averaging in every subset of nodes with identical degree

D fieV | ki=k) Fnni

(5.12)

When degree correlations are absent eq. (5.12) yields ky, (k) = (k?)/(k)
and thus ky,, (k) does not depend on k. As noted above this is not the case

!This equation is constructed by introducing the probability of finding a link connecting
two nodes with degree k and k , P(k,k ) = 2kP(k)P(k |k)/(k), and imposing its simmetry
property P(k,k ) = P(k ,k).
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10— (a) Figure 5.3: Degree-degree correlations
i of some of the real networks used
1Pk . in this thesis.  (a) Average con-
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of real growing networks and one can usually find that k,,(k) ~ k. When
knn(k) is a increasing (decreasing) function of k, v > 0 (v < 0), we say that the
network is assortative (dissasortative). The assortativity denote the tendency
of nodes of similar degree to connect with each other while in dissasortative
networks higly connected nodes tend to be surrounded by low degree ones.
There is a clear difference in the behaviour of &y, (k) depending on the type of
the network. In particular, it has been observed that social network tend to
be assortative while the rest ones (like technological and biological networks)
show dissasortative trends. In figure 5.3 we show the analysis for ky,,(k) on
two real networks.

Average Shortest Path Length

We can condense the information of the distance matrix D by computing the
mean of all the geodesic lengths between the nodes of the network. This gives
the average shortest path length, L

1
L=——— dij . 5.13
N, 2 W (>:13)
{i.ieVii#i}
Along with L we can define the diameter of a network as the maximum value
of the distances between nodes, D = max {d;; | i,j € V}. The analysis of this
quantity tells us whether the graph is composed by one or several components.
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[ | | [ Figure 5.4: An example of a tree-
I ' ' | like graph with coordination num-
ber 2.

We term a component of a graph as a subset of nodes V' C V so that the
distance between any node i € V' and the rest of nodes j € V \ V' diverges
while the distance with the nodes j € V' remains finite. Obviously both L and
D will diverge if the graph is partitioned in two or more components. In real
graphs this situation is commonly found and one usually restrict the analysis of
the network to the component with maximal cardinality which is the so-called
“giant component’.

Formaly, a network whose L grows logaritmically with the number of nodes,
L ~log N, or even slower, is called a “small-world’. This term comes from the
famous experiment by Milgram in the 60’s [167]. This experiment consisted in
asking a group of people to deliver some documents to a person characterized
by his name, place of residence and his proffesion. Then people were asked to
send the documents to those of their acquaintances that they think of being
closer (either physically or socially according to the initial parameters given)
to the final recipient. The results pointed out that every pair of people in the
world are in average connected by only 6 steps in the global network of social
acquaintances. This results is broadly known as the “siz degrees of separation”.
Other experiments performed using the e-mail networks [168] confirmed the
small-world character of the global society.

From the mathematical point of view the small-world effect is nothing
but the outcome of an exponential increase of the nodes with the distance
from a central element. A simple proof of the small-world phenomena can be
performed using one of the simplest networked structure: a tree-like graph. A
tree-like graph (see figure 5.4) is composed of a hierarchical structure where
every node is connected to d descendants and its ancestor (d is usually termed
coordination number). In this case the number of nodes which are in the ¢
shell (or generation) from a given node is N; = d’. Then, the whole set of
nodes are N = d¥ so that the average path length of the network is given by
L =log N/logd so that L remains small even for large tree-like graphs.
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Clustering

In section 5.1.2 we introduced the concept of the clustering coefficient of a
node, ¢;. One can measure the average clustering coefficient of the nodes of a
network, ¢, and consider it as a measure of the density of small loops of length
3 in the network. Then, ¢ will tell us how similar is our network to a tree-like
networked structure (see figure 5.4) (if ¢ — 1 one can say that the network is far
from being a tree graph). This measure was introduced by Watts and Strogatz
[155] but there are, however, another possible formulation for measuring the
density of short circuits in a network that is called transitiviy, T. Trasitivity
is defined by

o 3xcard[{(i.g,m) | (i.4), (i.m), (G,m) € E}]
card [{(i, 4, m) | (i,5), (i,m) € E}]

(5.14)

While clustering was introduced recently in the physical literature the con-
cept of transitivity was largely employed mainly by sociologist. These two
magnitudes turn out to be meaningfull when looking at networks of different
fields. It is well known that social networks of acquaintances present a high
clustering denoting the fact that two friends of a person are very likely to
know each other. That is the case of scientific coautorship networks [148, 169].
On the other hand, technological networks like peer-to-peer networks [170] or
power grids [155] are very poor in length 3 loops since they are redundant in
what refers to resources supply.

The existence of a high clustering together with the small-world charater
lead to very efficient communication structures. This is because the increase
of networks’ clustering leads to a growth of the number of geodesics between
the pairs of nodes.

5.1.4 Looking at Networks Mesoscale

The statistical description of the networks considered above can be extended
by looking at the kind of internal organization of subsets of nodes (if there is
any). This implies that neither single nodes nor the whole ensemble of vertices
are studied, but groups of them whose cardinals may vary a lot depending on
the kind of network we deal with. The scale involved in such studies neither
can be called “micro” nor “macro” and thus we term it the network mesoscale.
Two concepts are central in this picture of the networks: communities and
motifs.
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Communities

The concept of community? has to do with the existence a cohesive subset
of nodes. This cohesion is achieved by the existence of large number of links
among the members of this subset compared to the typical number of links
that they share with the rest of the network. More formally we can say that,
given a graph G(U,V) a community is a subgraph G'(U’, V') so that L' <
card{i € U"| (i,j) € V,j € U}. Obviously, we need a quantitative description
on how cohesive a subset of nodes is in order to decide whether or not they
form a community.

Several ways for quantifying community structures have been proposed.
However we can distinguish to kinds of definitions depending of the conditions
imposed. The first type imposes certain constrains to the number of links
within the members of the community. In this sense, the strongest definition
states that a community is a subgraph G'(U’, V') so that if i, j € U’ then
(i,7) € V'), i.e. all pairs of community members are linked to each other.
This definition is too restrictive and then far from being useful. In fact, the
maximal subgraph G'(U’,V’) that fulfills the above requirement is termed a
cliqgue. One can relax the conditions and considering that communities as the
n-cligue of the graph. N-cliques are maximal subgraphs in which the largest
geodesic distance between any two nodes is no greater than n. Other way for
relaxing the former condition is to reduce the number of other nodes in the
subgraph to which each node must be connected, the concept of k-plex is then
applied. A k-plex is a maximal subgraph containing n nodes, in which each
node is adjacent to no fewer than n — k nodes in the subgraph.

The above definitions have to do only with the links within the elements of
the subgraphs and there is no mention to the ratio between these inner-links
and those going to the rest of the network. From our point of view this kind
of arguments have to be incorporated to our criterion in order to get closer to
the cohesive picture. Then, we have to look to communities as groups of nodes
within which connections are dense, and between which connections are sparser
or, more formally, we can say that, given a graph G(U,V) a community is a
subgraph G'(U’, V') so that L' < card{i € U’ | (¢,5) € V,j € U}. An example
of this consideration is plotted in figure 5.5.a. There are several definitions
with this philosophy (see [171]). One definition is the following: G'(U’, V") is
a community if the sum of all degrees within G’ is larger than the sum of all
degrees toward the rest of the graph [172].

2The first network description in terms of communities appear in the context of social
science [171]
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(a) (b)

Figure 5.5: (a) Schematic picture of a set of 4 communities (surrounded by dashed
circles). The density of inner-links between nodes of the same community is much
larger than that of the links with members of the rest of the network. (b) The 7
possible 4-nodes motifs.

Motifs

We define a motif M as a pattern of interconnections so that its occurrence
in a graph is significantly higher than in randomized versions of the graph,
i.e. graphs with the same number of nodes, links and degree distribution
as the original one, but where the links are distributed at random. More
formally, M is usually considered as a m-node connected graph which is a
subgraph of G. An example of all the possible 4-node connected graphs is
illustrated in figure 5.5.b. The concept of motifs (originally introduced by
Uri Alon and coworkers [173-177|) was employed for studying the finding of
recurrent patterns of interconnections between a small number of nodes in
biological and other networks.

In order to obtain a quantitative description for the appearance of the
significant motifs in a graph G, one makes use of matching algorithms for
counting the total number of occurrences of each n-node subgraph M in the
original graph and in the randomized ones. Then, one can define the statistical
significance of a given motif M by some score function, like the so-called Z-
score |174, 176]

_ oy — (nfPY)
naf
where njys and nﬁ@nd are the number of times the subgraph M appears in G

rand
nnm
of the number of appearances in the randomized network ensemble.

and in its randomized counterpart repectively. o is the standard deviation
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5.2 Overview of network generation models

In this section we briefly account for several important network models. Nowa-
days there is a huge number of ways for generating complex networks that try
to capture the properties of real graphs. Many of them are variations of the
models we present below since they represent seminal works on the matter.
For a complete review on currents trends in network modeling we refer the
reader to [156, 158, 159, 163].

5.2.1 Random graphs

We call random graphs to those network where the links between nodes are
randomly distributed?. In their seminal work in the subject, Erdés and Rényi
[140] (ER for short) proposed a method for the construction of random graphs
with N nodes and £ links: Starting from N isolated nodes, pairs of randomly
chosen nodes are linked avoiding self and multiple connections. This process is
stoped when L links have been stablished. A single graph obtained using the

N
above recipe is one of the ( ( 2 ) > possible equiprobable realizations. The

set of all these possible realizations is called the set of uniform random graphs
with N nodes and L links, gﬁf}. In a random graph the probability that two

given nodes are linked is ﬁ/( 5 )

Another possible strategy for constructing random graphs is to sample
every pair of nodes and with probability 0 < p < 1 link them. This procedure
defines a different set called random binomial graphs, Qﬁg, that contains graphs
with different number of total links £ being

N )—L

£ —p)l 2 (5.16)

the probability that a graph belonging to Qﬁ,f;; has £ links. Then the average

number of links of a graphs in this set is p( N

The two sets (uniform and binomial) of random graphs are tightly related
to the canonical and grand canonical ensembles of the equilibrium statistical
mechanics when one looks at the number of edges as the number of particles
in the system. Both ensembles converge to the same set in the thermodynamic
limit N — oo when approached keeping (k) fixed (wich is equivalent to fix
2L/N and p(N — 1) in the uniform and the binomial sets repectively).

3In fact, all the network models analysed in this chapter are strictly random in the sense of
the mechanism adopted for their construction. However, the term random graph is overused
in the literature for calling Erdés-Rényi networks.
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The structural properties of the ER graphs vary as a function of p, showing
a dramatic change at the critical probability p. = 1/N that corresponds to
(k) = 1. In particular:

o If p < p., the size of the giant component of the graph is of the order
O(In N) graph and there is no graph component with more than one
loop.

e If p = p., the size of the giant component goes with O(N?%/3).

o If p > p., the graph has a giant component with a number of loops that
scales as O(N) and there is no other graph component with more than
O(In N) elements neither with more than one loop.

This transition (characterized by Erdés and Rényi in [141]) is strongly related
with the percolation transition studied in the theory of critical phenomena

[178)].

In ER graphs the probability that a node has k neighbours follows the
binomial distribution

N -1 1-
P(k) = < L )p’“(l—p)N o, (5.17)
that for (k) fixed and N — oo tends to the Poisson distribution

(k)

P(k) = o eXp (—(k)) . (5.18)
Erdds and Rényi graphs are uncorrelated since the links are launched at
random independently of the degree of the nodes. As a consequence, P(k,|k)
and ky, (k) are independent of k. Concerning to the connectivity properties of
an ER graph, when p > In N/N nearly all the generated graphs are composed
of one single component and the average path length takes values around (k) =
In N/In (pN) = In N/(k) because locally the ER topology is viewed as a tree
like structure where a single node has (k) neighbours, (k)? nodes at distance
2,... Finally, since p is the probability of two nodes sharing a link there will
be pk(k — 1)/2 links among the neighbours of a node of degree k so that
the clustering coefficient goes as ¢ = p = (k) /N, and then it vanishes in the

thermodynamic limit.

5.2.2 Small-world networks

In 1998 Watts and Strogats (WS) proposed a method of graph constrution that
allows to obtain networks with a high clustering coefficient and small average
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Figure 5.6: Three kind of networks obtained used the Watts-Strogatz method starting
from a regular one-diemnsional network where every node is linked to its 4 nearest
neighbours. For p = 0 we obtain the regular network. For small values of p < 1 we
have “Small World’ networks from the small amount of reassigned links. Finally, for
p =1 random networks are obtained.

path leghth [155]. We have seen that ER graphs present a small value of L
and that ¢ vanishes when N — co. On the other hand, a regular network with
connections to first, second, third,... next nearest neighbours presents a high
value of the clustering coefficient joined with large values of L. In some sense,
the WS model interpolates smoothly between these two topologies.

The WS procedure starts from a ring (see figure 5.6) where every node is
symmetrically linked to its 2m next nearest nodes so that there is L = mN
links. Then, every link is considered and with probability p it is substituted
by another link that connects one of the original nodes with a new one chosen
at random. Note that for p = 0 we maintain the original regular topology
whereas for p = 1 an ER random graph is generated. In figure 5.7 it is shown
how for a range of p values the WS model generates networks with both the
small world property (due to shortcuts added when p # 0) and high clustering
coefficient (inherited from the regular topology), two characteristics shared by
a number of real networks. This result reveals that the clustering coefficient
is very robust under link reasignation whereas L rapidly decreases when a few
shortcuts are incorporated.

Analytical calculations on the transition observed in the WS model are
found in [179 182]. It has been shown that the appearance of the small world
character as p increases is not a phase transition but a crossover phenomenon.
The characteristic length satisfy the scaling relation L(N,p) = N f(Np) where

if rx1

it x>1 (5.19)

g

1@~ {

xT
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Besides, in [181] the authors found the analytical expressions for the clustering
and the degree distribution as a function of the control parameter p

cp) = 723((22__11))( -p)’

min(k—m,m) )k—m—i

P(k;p) = Z < T > (1 —p)ipm_i% exp(—pm)5.21)

=0

(5.20)

the last equation (5.21) is valid provided & > m otherwise P(k < m;p) = 0.
The WS model was later modified by Newman and Watts in order to solve
the possible formation of disconnected graphs of the network as shortcuts were
incorporated. Then, they proposed to add new links between randomly chosen
nodes instead of making the rewiring process [183]. They considered every
node and with probaibility p a link was stablished with any other node of the
network so that the average number of shortcuts added is p/V.

5.2.3 Scale-Free networks

There are a large number of models that reproduce the power law functional
form for the degree distribution. However, we will focus here on those models
that incorporates the growing character present in real networks, where the
amount of nodes grows with time, to the formulation of the model. These
models usually consist of an initial small subset of nodes to which new nodes
are sequentially incorporated by launching new links over those nodes that
already take part of the network (see figure 5.8). In particular, the work by
Barabasi and Albert (BA) in 1999 |145| suposed an important breakthrough
to the problem of finding the roots of the SF behaviour of real networks and
had the growing process as a key ingredient of their formulation.

The BA models works starting from an initial core of mg isolated nodes.

IEETETE O ST L T 7 Figure 5.7: Evolucion of the clus-
= . _ =B & tering coefficient and the average
osf . Co)/ &) ] shortest path length as a function
o _ -3
sl ] of p. Note that near p =410
. the clustering remains comparable
haud 8 . ? 7 to the values of the regular net-
wf Lo s ] work whereas L has decreased sig-
' e ., " nificatively.
u.umm B.E;IEII i].'D1 Elt 1 ll'l|1

~small world start p
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At each time step a new node is incorporated to the network by launching
m < my links over the already existing ones so that the network core grows
linearly in time. The probability that one of the core nodes, i, receives a link
from the new node is proportional to its degree, k;,
k.
I = 7]\,(1) , (5.22)
Zj:l k;

where N(t) is the number of nodes that form the network core at time ¢,
N(t) = mp +t — 1. Besides, the total number of links at time ¢ evolves
as L(t) = mt. The above rule for node selection was termed preferential
attachment and favours that a node with more links than others will increase
its connectivity at a higher rate (this is usually referred to as richer gets richer).
Obviously, the soonest a node is incorporated to the network core the most
connected it will be at larger times.

The solution of the BA model was found by the same authors by means of
a mean field approximation? [145, 187|. In this formulation the connectivity
of a node 1, k;, is considered as a real continuous and time-derivable variable.
Considering that new nodes are uniformly incorporated in time and that they
attach m new links, we can write the evolution equation of k; as

ok; k; k;
T = Il (k) = m—— = o (5.23)
ot SNy 2

with the initial condition k;(¢t;) = m, and ¢; being the time when node i was
added to the network core. The solution to eq. (5.23) is

m@)=n1<§>wz. (5.24)

i

*Other solutions to this important model have been found solving the rate equation for
the connectivity distribution [184 186].

Figure 5.8: Schematic representation of the
grwoth process. At each time steps a new
node is incorporated to the network core
linking to m = 3 nodes that already belong
to the core.




138 Chapter 5. Network Structure and Generation

10
10*
107 : o
= Figure 5.9: Degree distribution,
. 103 | . P(k), for a BA network with N =
"-'\., 5-10% The linear fit of the data in
10 o 1 the log-log plot yield an exponent
. -——veae for the power law of v = 3.
10° '
10° 10 10° 10°
k

In order to obtain the degree distribution we first take the cumulative distri-
bution, P(k; < k). From (5.24) one obtains

P(k‘z < k‘) =P <ti > 7:—;25) . (5.25)

Finally, since the adition of new nodes is performed uniformly, the probability
of finding at time ¢ a node that was incorporated to the network at time ¢; is
P(t;;t) = 1/(mo +t). Then, the above probability (5.25) can be written as

m2t
Pki<k)=1— ————, 5.26
(ki < ) 2(mo + 1) (5:26)
so that the degree distribution yiels
P(k; 2m?
pery < 2P < k) _ 2m7t s (5.27)

ok mo+1

Taking the limit when t — oo we obtain the power law P(k) = 2m2k~3 with
the exponent v = 3. In figure 5.9 we show the numerical results for the degree
distribution when the BA is implemented.

Analytical calculations accounting for other magnitudes have been per-
formed. For example in [188] the authors showed that the shortest path length
is smaller than that observed for ER graphs. In particular L ~ log N/ log (log N).
Besides, the clustering coefficient in BA networks vanishes in the thermody-
namic limit as happened for ER graphs. However, although the clustering
decay is seen to be slower, ¢ ~ N34 than in the case of ER networks, it
represents a major weakness of the BA model.

Variations of the preferential attachment rule (5.22) has been broadly stud-
ied after the BA model appeared. These variations try to obtain more flexible
models in order to grow networks with other characteristics similar to those
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found in real network for which the BA fails to reproduce (existence of high
clustering, the presence of degree corelations, the variety of exponents found
for the ower law distribution, etc ...) while keeping the SF character induced by
the preferential attachment. Some examples of these variations can be found
in [186, 189-199|.

5.3 Global versus local knowledge

In this section, we revisit one of the main assumptions of the Barabéasi-Albert
model: the preferential attachment rule. We study a model in which the PA
rule is applied to a neighborhood of newly created nodes and thus no global
knowledge of the network is assumed. We numerically show that global prop-
erties of the BA model such as the connectivity distribution and the aver-
age shortest path length are quite robust when there is some degree of local
knowledge. In contrast, other properties such as the clustering coefficient and
degree-degree correlations differ and approach the values measured for real-
world networks.

As explained in Sec. 5.2.3 the first scale-free network model, introduced by
Barabasi and Albert, postulated that there are two fundamental ingredients
of many real networks [145, 187]: their growing character and the preferential
attachment (PA) rule. The preferential attachment rule considers that the
probability that an old node links to newly added nodes is proportional to its
degree k (see eq. 5.22). However, the BA model assumes that one knows the
connectivity of all nodes when a new node links to the network. This is clearly
an unrealistic assumption. This drawback of the model construction has not
passed unnoticed and many models have been introduced to produce scale-free
networks and to test whether or not the basic assumptions of the BA recipe
are necessary conditions to build up these networks [156, 158|. There are some
models in which the PA rule is limited to a neighborhood due to geographic
constraints |200], or where its linear character is investigated [201].

In the model decribed here, we adopt a different perspective. Our aim is
to test to what extend the global character of the PA rule in the original BA
model is important. We introduce a model in which the PA is applied only to
a neighborhood of the newly added node depending on the value of a variable
which measures the affinity between different nodes. By going down from the
BA limit of the model to the the limit where all nodes are distinct, we test to
what extend the global knowledge of each node’s connectivity is fundamental to
get a scale-free graph. Through numerical simulations we find that in a wide
range of the model parameters, average quantities such as the connectivity
distribution and the shortest path length are not affected by the use of local
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knowledge of the network whereas other properties like the clustering coefficient
are more sensitive to local details.

5.3.1 The model

The model is defined in two layers. The first discriminates among all the nodes
by assigning to each node at the moment of its creation a parameter a; which
measures how close or distinct a given node is from the rest of the elements
that compose the network. Then, we apply the preferential attachment rule
in the neighborhood defined by nodes with common affinities. Specifically, the
network is constructed by repeated iteration of the following rules:

(i) Start from a small core of nodes, m,, linked together. Assign to each of
these m, nodes a random affinity a; taken from a probability distribution,
P(a). In what follows, we will use for simplicity a form for P(a) uniformly
distributed between (0, 1).

(11) At each time step, a new node j with a random affinity a; is introduced
and linked to m nodes already present in the network according to the
rules specified below.

(i13) Search through all nodes of the network verifying whether or not the
condition a; — pu < aj < a; + p is fulfilled, where 1 is a parameter that
controls the affinity tolerance of the nodes. The nodes that satisfy the
affinity condition are grouped in a set A as potential candidates to gain
new links.

(iv) Apply the preferential attachment rule to the set A °, i.e., when choosing
the nodes to which the new vertex links, we impose that the probability
that vertex ¢ connects to the new node depends on its connectivity such

that
(k) = ki (5.28)
' ZSEA ks ‘ .
(v) Finally, repeat steps (ii)-(iv) t times such that the final size of the network
is N =m,+t.

It is worth mentioning that the inclusion of the affinity parameter a is not a
mere artifact. Indeed, most real systems are formed by non-identical elements
and thus it is natural to assume that although a given node could have a

5In case that the number of elements in the set A is smaller than m we just add a link
to all nodes in A without applying the PA rule.



5.3. Global versus local knowledge 141

large connectivity a newly created element will not link to that node because
they have very little in common. This feature is clearly manifested in social
networks like the WWW —where individuals bookmark different web pages
accordingly to their “affinity”— or the scientist citation network [142|. In this
way, it is very unlikely to find a citation in a condensed matter paper referring
to a paper wrote by a psychologist. Additionally, the same argument can be
translated to biological networks such as predator-prey webs or protein-protein
interaction networks.

Obviously, when p is large enough as to dilute the first layer of the model,
we recover the BA model. The problem then consists of determining to what
extend the local preferential attachment will give the same results, or in other
words, does the knowledge of the entire network substantially contribute to
the properties observed in the BA networks?

5.3.2 Network properties

We have performed extensive numerical simulations of the model described in
the preceding section. In all cases, the numerical results have been obtained
after averaging over at least 500 iterations varying the system size from 103 up
to 1.2 x 10* nodes. We first generate the BA network by setting the parameter
w to its maximum value such that the preferential attachment applies to the
entire set of nodes and then tune p in order to systematically reduce its value
and therefore the size of the set A to which the second choice eq. (5.28) is
applied.

Figure 5.10 shows the number of nodes with connectivity k for several val-
ues of p. It turns out that irrespective of the range to which the preferential
attachment is applied the stationary probability of having a node with con-
nectivity k is the same as for the BA model, namely, P, ~ k=7 with v ~ 3.
This result could be intuitively understood by noting that although the rules
for the network generation has been changed at a local level, from a global
perspective the average properties should not change radically. To realize this
point, think of the network as being made up of different small components, as
given by the affinity constraint, each of which is constructed following the BA
algorithm. It is then clear that for large system sizes, each graph will follow
the power law distribution P, ~ k™2 and so will be for the entire network.

The above argument applies only to average global properties, but there is
nothing that guarantees a priori that the components of the network will link
together in such a way that other properties will not be affected. This is the
case of the average shortest path length L. As already introduced, complex
networks show the noticeable property, known as small-world property, that the
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Figure 5.10: Number of nodes with connectivity k for different values of u. The size
of the network is N = 10* nodes and m, = m = 3. The power-law distribution has
an exponent equal to 3. Note that the BA limit corresponds to p = 1.
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Figure 5.11: Ratio between the average shortest path length for different p values,
L(u), and that of the BA network (L(1)) for several system sizes. The horizontal line
marks the BA limit. A transition from graphs fulfilling the small-world property to a
regime in which networks break down in many small pieces rising the value of L(u)
is observed. See the text for further details.
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Figure 5.12: Graph representations of four networks produced with different values
of p. The values of i correspond to (a) =1, (b) p=0.2, (¢) u=0.1, (d) = 0.04.
Each network is made up of N = 500 nodes.

average path length increases at most with the logarithm of its size. We expect
that for high values of u the network is composed by a unique giant component
and no fragmentation arises. When the range to which the affinity criterion
is applied decreases, the network will gradually loose its compactness and will
stretch approaching a one-dimensional structure with some small components.
Further reduction of u provokes the break down of the network in many isolated
clusters.

Figures 5.11 and 5.12 substantiate this picture. Figure 5.11 represents
the ratio between the average path length obtained for different values of u
and that of the BA network, for several system sizes. As p restricts the PA
range, the network undergoes a transition characterized by a growth of L(u) an
eventually becomes fragmented giving rise to an infinite shortest path length.
We note here that although the results shown in the figure have been obtained
for a uniform distribution of affinity values a;, the qualitative behavior does
not change for other probability distributions and only the value at which the
transition is observed slightly shifts to the right. The shape of the network
as the parameter p is varied can be observed in figure 5.12, where we have
represented how the network looks like for the limiting values of u. It is clear
that when the PA range reduces too much the structure of the network radically
changes while keeping the same degree distribution.

We now focus our attention on other properties with a local character. This
is the case of the clustering coefficient of a node ¢;. The clustering coefficient
is of local character as it gives the probability that two nodes with a common
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Figure 5.13: (a) Average clustering coefficient ¢;, of nodes with degree k for five
different values of the parameter . Note that as p decreases, the clustering coefficient
departs from the BA limit (u = 1). (b) The average clustering ¢ as a function of u
confirms this result. The parameters used for the generation of the networks are as
of figure 5.10.

neighbor are also linked together. Thus, it is expected that this magnitude, in
our model, depends on the affinity of each node and the range of preferential
attachment given by p. Figure 5.13.a shows the average clustering coefficient
of nodes with a given connectivity k, for different values of the parameter pu.
The BA limit exhibits almost no correlations with the degree k of the vertices
and the smallest value for the clustering coefficient. As p is reduced, the first
selection of nodes by their affinity values plays a more dominant role contribut-
ing to the rising of ¢; for small and large connectivities. Near the transition,
1~ 0.04, the average coefficient is about one order of magnitude greater than
that of the BA network. In order to see this growth of the clustering as the
locality of the PA is increased we show in figure 5.13.b the mean clustering
coefficient (averaged over all the elements of the network), ¢, as a function of
. The results reveals that the clustering grows in a rather regular fashion
when p decreases so that finally c¢ is incremented by a factor 3 at 4 = 0.1
respect to the value at the BA limit.

These results are important for what concerns to the existence of cycles of
small length in the network (triangles and rectangular loops are among these
graph components). They are important because they express the degree of
redundancy and multiplicity of paths among nodes in the topology of the net-
work. The results obtained for ¢j indicate that as the region where the PA
applies is reduced, the number of cycles increases and non-random correlations
arise. This is illustrated in figure 5.14, where the average nearest neighbor
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Figure 5.14: Average nearest neighbor connectivity k,, against k for several values
of p. Results are averaged over 100 network realizations for each p value. Other
parameters are as of figure 5.10.

degree, ky,y, (k) of a node with connectivity k is depicted. While the BA model
exhibits no correlations, it is manifested the tendency that networks gener-
ated with small values of p display disassortative mixing at both ends of the
connectivity range.

Finally, let us point out that although the values found for several magni-
tudes can not be directly associated with real data, there are some regions of
the parameter space u where non-trivial properties arise. In this sense, it would
be interesting to perform the same analysis in more realistic growing network
models looking for more similarities with real-world networks. For example,
the exponent of the connectivity distribution can be tuned to small values by
incorporating the first level of selection of the present model in the general-
ized BA model [158], which is known to give arbitrary 7 values in the interval
(2,3). As a plus, this model can be used to test the dependence of the net-
work functioning with its topological structure (when the degree distribution
is fixed). In particular, we will make use of it for analysing the performance of
different processes placed on top of the network [communication between nodes
(section 6.2.2) and sinchronizability of Kuramoto networks (section 8.2)] when
clustering and average path length are varied.
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5.4 Interpolation between Random and Scale-Free
networks

The seminal paper by Barabasi and Albert [145, 187|, showed that many real
world networks can not be described by Erdds-Rényi type graphs where the
connectivity distribution follows a Poisson-like distribution. While today we
have recognized that preferential attachment is not a necessary condition for
the formation of scale-free networks [202], it seems to be clear that it is an
important mechanism. Indeed, most of the existing models intrinsically incor-
porate a preferential attachment like rule. On the other hand, uniform random
linking of nodes on growing networks gives rise to networks where the degree
distribution decays exponentially fast with the degree k, thus producing ho-
mogeneous networks with a well defined (and meaningful) average value for
k [155, 181]. The combination of the two rules, i.e, uniform and preferential
linking, have been also analyzed in several models for interpolating between
scale-free and exponential networks. For instance, Liu et al [203| have studied
a model in which the probability of establishing new links goes as a linear
combination of both in such a way that a new link is established between a
node ¢ and a new one proportionally to (1 — p)k; + p, where p weights the
contribution of the two mechanisms. However, in previous models of this sort,
there is an assumption that does not apply always. It has to do with the fact
that the network always grows around a single component of connected nodes
and uniform or preferential links from the emerging nodes are always made
with elements belonging to this unique cluster. This single component grows
linearly in time until it reaches the size of the network. Since there are no
clusters of nodes other than the giant component, the models can not account
for phenomena such as the coalescence of small networks into a larger one, nor
for situations in which more than one node is added to a preexisting structure
at each time step, features that may be relevant in social, economic and other
networked systems.

In this section, we analyze a model that interpolates between Erdds-Rényi
and scale-free networks as far as the degree distribution is concerned through
a tunable parameter. The novel feature of the model is that, by construction,
new links are not always established with nodes previouly incorporated to the
network and thus allowing to interpolate with the classical ER graphs. We
explore analytically and numerically the time behavior of nodes attachment as
well as of the degree evolution. We find that, depending on the interplay be-
tween uniform and preferential linking, the transition from an ER like network
to an SF one is smooth or more abrupt. The present model is useful as it pro-
vides a unique recipe to go progressively from homogeneous to heterogeneous
topologies as well as for exploring the interplay between them.



5.4. Interpolation between Random and Scale-Free networks 147

5.4.1 The model

The model introduced in this work generates a one-parameter family of com-
plex networks. This parameter, o € [0, 1], measures the degree of heterogeneity
of the final networks. Let us assume the final size of the network to be N. The
network is generated in the following way:

(i) Start from a fully connected network of mg nodes and a set U(0) of
(N — myp) unconnected nodes.

(11) At each time step choose a new node j from U(0).
(#i) This node makes a link in two ways:

(a) With probability « it links to any other node i of the whole set of
N — 1 nodes with uniform probability

rrymiform — (N )7t (5.29)

(b) With probability (1 — «) establish a link following a preferential
attachment strategy, that is, the probability for any other node i to
attach to node j is a function of its connectivity as,

A = Fky) , (5.30)

where different choices for the functional form of F(z) are analyzed
below.

(iv) Repeat m times step (4ii) for the same node j.

(v) Repeat U(0) = (N — myg) times steps (i) to (iv).

A schematic plot of the linking procedure at step (74) is shown in figure 5.15.
The above rules allow for the coexistence of two classes of nodes. On one hand,
there are nodes with at least one link. This set will be referred to henceforth
as the connected set Q(t) . On the other hand, there is another set U(t) of
isolated nodes such that its size is N — Q(t). At variance with other models
in which there are only nodes with connectivity different from zero and thus
the connected component grows linearly with time, the above rules allows the
addition of more than one node to the set Q(t) as a result of random linking.
Therefore, we expect the time dependency of Q(t) to be highly non trivial.

SWe recall on the possibility that the connected set is temporarily composed by more
than one connected component. This is the case for the initial stage of the network growth
when o — 1. However, when N is high enough the final network is composed by a unique
connected component.
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Figure 5.15: Schematic representation of the

/ ] general procedure for generating the networks.
| [ With probability « one of the m links can be
\ /& made with any of the nodes (and with the same
NG // uniform probability) that will take part in the
T final network. On the other hand, with proba-

U (t) (0) bility (1 — «) the link will be made only with

those nodes that form the connected set at that
time because the node will choose a preferential
linking strategy.

5.4.2 Network growth and degree evolution

In order to describe the evolution of the nodes degree, one has to consider
the functional form of F(x) for the preferential attachment probability (5.30).
However, we can take into account some previous considerations that do not
depend on the particular form of F(z).

First of all, it is useful to consider two kind of links in order to analyze the
model. Namely, the ones that arise from a uniform random choice, k", and
the remaining, kP?, corresponding to the implementation of the preferential
attachment rule. The dynamics of k" is completely independent of the dynam-
ics of the PA links, kP?, but the opposite is not necessarily true. From this, it
follows that the probability that one node has k" uniform links, P"(k"), is a
Poisson distribution with (k") = 2am.

2am)k“e—2am

kvl
As a consequence, we will concentrate on analyzing the growth dynamics of
the PA links for the studied models.

prge) = ¢ (5.31)

It is particularly interesting to study at this point how uniform random
linking affects the evolution of the connected set since this is completely inde-
pendent on the specific PA rule considered. This feature represents one of the
main differences between the studied model and other previous mechanisms
used to generate growing networks. That is, in our model nodes are not in-
corporated to the connected set at a constant rate (like e.g. in the standard
Barabéasi-Albert model) due to the possibility of adding new nodes from U(t)
by applying uniform linking at time ¢ and therefore the set U(t) # U(0) — t.
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We can easily derive the evolution of the connected set size, Q(t) = N —U(t),
for any value of the parameter «. For this, we consider the growth of the
connected set at each time step, i.e. when a new node of U(0) throws its m

links
Qt+1) = Q) + N]i(_t—% +am <1 - %) : (5.32)

In the above equation the second term on the right accounts for the probability
that the new node (which is throwing its m links) of ¢(0) does not belong al-
ready to the connected set at time t (due to the possible uniform links obtained
from previous nodes of U(0) already connected to the connected set (t)). Be-
sides, the third term on the right describes the probability that any uniform
link thrown by the node is directed to a node belonging to U(t). These two
terms account for the growth rate of the connected set. We can consider that
both time and €(t) are continuous variables and make the time step small
enough in order to obtain the corresponding ODE associated to eq. (5.32),
whose solution is given by

Q(t) = N + (t +mg — N)e om/N (5.33)

The agreement between this calculation and Monte Carlo simulations is shown
in figure 5.16 for different values of @ and a preferential attachment as described
in what follows (model A). It is worth noting the highly nonlinear behavior of
Q(t), at variance with models in which its size changes at a constant rate.

We formulate below two different ways to implement the preferential at-
tachment rule, which give rise to different behaviors. In both models we will
consider that the PA probability of a node j depends only on the PA links of the
node, k‘?a. This new separation between PA links and uniform ones introduces
a higher differentiation between the two simultaneous kinds of link dynamics
implemented here allowing us to manipulate (as shown below) the degree of
correlation between them. The two models interpolate between scale-free and
Erdos-Reényi topologies but the structural transition is quite different (as we
will show in section 5.4.3).

MODEL A

In this first model we shall study a preferential attachment rule strongly cor-
related with the simultaneous uniform random linking. First, we consider that
the PA probability of a node ¢ is linear with the incoming PA degree of the
node, l}:?a, that is, those links received by i when other node launches (in aver-
age) (1—a)m links following the PA rule. This particularity of the PA rule was
already considered by Dorogovtsev et al [186]. Besides, we consider that when
a node is introduced in the connected component (because either it is chosen
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Figure 5.16: Size of the connected set Q(t) as a function of time. Solid lines correspond
to the analytical results (eq. (5.33)) and points are the Monte Carlo results of network
construction (employing model A (sec. 5.4.2)). The comparison is made for N = 10°
and several values of . The parameters of the model are set to A =m = mg = 1.

Figure 5.17: Model A. Monte Carlo simulation (points) versus mean field (lines)
results for kP2(t = N) as a function of the birth time ¢ for different values of o. The
parameters of the model were N = 10° and A = m = mg = 1. The statistics of the
Monte Carlo simulations were performed using 10 networks for each value of a.
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at random by any node or it is launching its m outgoing links over the rest of
nodes) it has an initial attractiveness (or fitness) A. In other words, each node
has an associated parameter A; that is zero if the node 4 is not in the connected
set and is A; = A if ¢ is linked to other nodes (i.e., it belongs to Q(¢)). We
further consider that the attractiveness A; enters linearly in the preferential
linking probability of node i. With these two ingredients, the expression for
H?A is given by )
pa
PA it f’aAi , (5.34)
ZjEN(k? + Aj)

The introduction of the fitness A correlates the PA rule with the uniform
linking in the sense that the more links are established uniformly (the higher

«), the more new nodes with /Aslpa = 0 are incorporated to the connected set
from U(t) and hence (by the presence of A in the PA probability) the more
candidates to obtain PA links are available. This can be observed from the
evolution of the connected set Q(t), when « is high there are a lot of nodes
added into (t) at the early stage of the network construction so that the
potential growth of the PA degree of the former members of the connected set
is strongly weakened. In order to confirm these heuristic considerations we
derive the mean field evolution for the incoming PA degree of a node i, l%zpa
diP*

kP2 4+ A
—(1— i
" ( a)m

(1—a)ymt+AQ(t)’

(5.35)

(with the initial condition l;:fa(tg) = 0). Obviously, in the limit & = 0 we
recover the mean field equation for the Generalized Dorogovtsev model [186]
(which, when A = m, describes the Barabasi-Albert model). For a # 0 the
influence of the uniform random linking is evident from the presence of Q(¢).
The number of nodes that start to have the above dynamics at some time g is
dQ(t)/dt evaluated at time t = ¢y which for a # 0 is not constant as we have
seen in the previous calculation of (¢). The solution of (5.35) is then given
by

N dt
# (1—a)mt+ AQ1)

EP*(t = N)

I (1 —-a)m

= —1+exp (5.36)

We have solved numerically eq. (5.36) in order to obtain kP*(t = N) (or
kP*(t = N) = kP*(t = N) + am) as a function of tj. This function, along
with the number of nodes which are incorporated to the connected set at time
6 = tp, gives the degree distribution of the PA links. We have compared the
results given by eq. (5.36) for different values of a with the corresponding ones
obtained by performing Monte Carlo simulations of the model (averaging over
10* networks for each value of ). The results, plotted in figure 5.17, show
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a very good agreement for the mean field model and the numerical network
construction. As expected, the sooner a node is incorporated to the connected
set the higher its final PA degree. However, as discussed above, one can observe
that this gain of the oldest nodes becomes less important when the value of «
grows due to the combination of two effects: (i) the application of the PA rule
becomes less frequent and (i1) the fast growth of the connected set tends to
make more homogeneous the PA probability of the nodes.

MODEL B

In the second proposal the two different linking processes are completely inde-
pendent. For this, we consider that HFA is a linear function of the (incoming
and outgoing) links that appear as a product of the application of the PA rule.
Then, kP will be zero until it launches its am PA links over the rest of the
nodes, 4.e. regardless of k}'. Then, the mean field equation for the evolution
of k™ is given by

dkP*

EP?
—(1- i
" ( a)m

2(1 — a)mt +myg ’

(5.37)

with the initial condition kP (¢)) = (1 —«)m and t}) being the time when node
1 launches its m links. Solving the above equation yields

/
’“T B (5.38)

(0 = (1= apm |

0
Because the nodes launch their links at a constant rate (one node per time
step), it is easy to obtain the degree distribution P(kP?)

P(kP*) = 2(1 — a)*m?(kP) 3 | (5.39)

which is simply a power law distribution with a Barabasi-Albert exponent
regardless of the value of a. On the other hand, the relative weight of the power
law with respect to the Poisson distribution in the total degree distribution
P(k) will be obviously affected by a (as the prefactor in the above equation
suggests).

5.4.3 Network properties

In this section we discuss the transition from SF to ER networks in terms of
the global topological features of the networks. We have performed Monte
Carlo simulations of the two models and compared how the relevant topologi-
cal measures evolve as a function of a. We are interested in obtaining how the
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Figure 5.18: Monte Carlo results for the degree distribution P(k) and rank-degree
relation for several values of a. (a) and (¢) show the results for model A revealing a
progressive increase of the tails decaying rate when ao — 1. The results for model B
((b) and (d)) show how the decaying rate is not affected by a. The networks were
generated with the following parameters N = 10° and m = mg = 3 (A = 3 for model

A).

different correlations between the uniform and PA linking rules affect several
structural measures. To do this, we have studied the behavior of three magni-
tudes that behave very different in the two known limiting cases (SF and ER
networks), namely: the degree distribution P(k), the average shortest path
length (L) and the second moment of the degree distribution (k?).

Degree distribution - The degree distribution evolution is clearly different
for the two models. In figure 5.18 we have plotted the degree distribution and
the rank-degree relation for both models. The rank-degree relation provides a
useful tool for analysing the degree heterogeneity of the networks [204| and thus
it is helpful when looking at the transition between ER and SF networks. As
can be observed from figures 5.18(a) and 5.18(c) the correlated model A shows
a smooth transition from the power law (o = 0) to the Poisson distribution
(. = 1). The decay of the tails (k >> 1) of the degree distribution and
the rank-degree relation becomes progressively faster as « grows revealing the
decrease of the exponent of PP?(kP?) as expected from the results obtained
by the analytical insights developed for model A. For model B the transition
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is completely different as it is shown in figures 5.18(b) and 5.18(d). In both
representations the decaying rate of the tails is independent of « and the
transition to the Poisson distribution is much more apparent for low values of
k. In this sense one can conclude that highly connected nodes persist along
the transition of model B while for model A the heterogeneity is progressively
lost.

Average shortest path length - The different evolution of the degree dis-
tributions observed above suggests to look at how the average shortest path
length behaves along the two paths of interpolation. It is well known that the
existence of high degree nodes makes the network more compact due to the
possibility of finding shortcuts between nodes going through the hubs. Hence,
the persistence of highly connected nodes determines the small diameter of
the scale-free network. The results obtained are shown in figure 5.19(a). As
expected, the average shortest path length as a function of a grows slower for
model B because the probability of finding hubs is higher than for the networks
generated using model A for the same value of «.

Second moment of P(k) - In order to obtain a quantitative measure of the
evolution of the degree heterogeneity for the two models it is convenient to
measure the second moment of the degree distribution, (k?). This magnitude
diverges (in the thermodynamic limit N — oo) for scale-free networks with
exponents between 2 and 3. So, we expect a decrease of the heterogeneity
on the path to ER graphs. As can be observed from figure 5.19(b), model
A shows a faster decrease of (k%) as expected from the study of the degree
distribution while for model B the transition is much smoother revealing again
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the persistence of highly connected nodes along the path to the ER limit.

As for other properties like the clustering coefficient and degree-degree
correlations we have checked that they remain unchanged irrespective of the
value o and wheter model A or B is implemented.

The present model provides a useful tool to study the influence of the degree
of heterogeneity in dynamical processes of different kinds just as the Watts-
Strogatz model have proved to do so in the transition from regular to random
structures. In particular, there exist open questions in phenomena such as
the synchronization of coupled oscillators [205] where this kind of model could
be particularly relevant to explore the system’s behavior in the region where
homogeneous and heterogeneous architectures coexist. This question will be
deeply analysed in section 8.3.






Chapter 6

Propagation through Complex
Networks

The better a simulation is for its own purposes,
by the inclusion of all relevant details, the more
difficult it is to generalize its conclusions for other
species. For the discovery of general ideas in ecol-
ogy, therefore, different kinds of mathematical de-
scriptions, which may be called models, are called
for. Whereas a good simulation should include as
much detail as possible, a good model should in-

cludes as little as possible.

J. Maynard Smith in Models in Ecology [206].

In this chapter we will focus on two of the main dynamical processes stud-
ied on top of complex networks, namely, the analysis of Epidemic spreading
and Information dynamics. The interest of studying these problems is twofold.
First, the simplicity of the description of the two procceses allow for analyti-
cal results, heuristic insights and extensive numerical simulations in order to
explain the role that the underlying topology has on the dynamics. Then, one
of the advantages of studying these dynamics is that the simple formulation
of the models (usually expressed by means of linear rules) used for their de-
scription does not mask the effects of the topological complexity. Besides, one
can realize by looking at the literature that a great number of the networks
whose characterization is available (mostly due to the simplicity for unveiling
the links between their components) can be regarded as either technological or
logistic networks. Then, the study of epidemics and information propagation
is justified for practical purposes.
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6.1 Epidemic spreading and Immunization

The history of the studies on epidemic spreading starts with the first works by
epidemiologist at the beginning of the 20th century [207|. However, the burst
in the mathematical modeling of disease transmission took place in the middle
of the 20th century by the formulation of a large variety of models (interesting
books on the matter are [208-211]) aimed at reproducing the evolution patterns
of the number of casualties and infected people during epidemic periods (see
figure 6.1). Recently, the attention has been redirected to the spreading of
informatic viruses. The interest in this field has been coupled to the availability
of data about potential transmission networks (like the internet or peer-to-peer
networks). The development and deployment of a digital immune system to
prevent technological networks from the spreading of viruses and to minimize
the damage produced by intentional attacks are in the root of recent research
efforts [161, 212-222|.

In this section we will first introduce two general models (SIR and SIS)
that describe the spread of epidemics on homogeneous systems. Then, we will
turn our attention to the disease transmission in heterogenous substrates and
the performance of different immunization strategies will be compared. Finally
we will report on a new immunization strategy based on the covering problem
of complex networks. The performance of this new algorithm depends on the
local structure of the network. We will implement this strategy along with the
afore mentioned in order to compare their results when deployed on top of real

networks.
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6.1.1 Modeling epidemic spreading

There are many different models to describe the epidemic transmission prob-
lem. However, nearly all of them are variations of some general and coarse
grained models like the SIR (Susceptible-Infected-Removed) and SIS (Susceptible-
Infected-Susceptible). The different variations have to do with an increased
complication of the models to study particular diseases. In order to focus
on the importance that the topology of the network has on the spreading of

a disease we will deal with the most simplified descriptions of the epidemics
dynamics.

The SIR model

The SIR model was introduced by Kermack and Mc¢ Kendrick in 1927 [207] to
explain the rapid rise and fall in the number of infected patients observed in
epidemics such as the plague (London 1665-1666, Bombay 1906) and cholera
(London 1865). This model was recovered by the work of Anderson and May
|223] after being oversought for decades. The SIR model is a typical example
of the so-called compartmental models. In this class of models the elements
are viewed as parts of several groups (or compartments) so that the evolution
equations are referred to the number of elements of each group. The SIR model
describes the spreading of infectious diseases in which each individual can be
either immunized or dead after the contagion. Following this assumption we
can classify the population into three different groups:

o Susceptible: Those healthy people who have not been infected and thus
are likely to contract the disease in the future.

o [Infected: People who has been contagied and are currently suffering the
effects of the disease. They can infect Susceptible people in the course of
their disease.

e Recovered and Removed: Composed by people that finally died due to
the disease or recovered and got immunized.

Then, individuals can change their state by means of the jumps between the
three compartments, S — I — R. The dynamical rules accounting for the flux
among the three states determine a set of differential equations for the densities
of the population groups s(t) = S(t)/N, i(t) = I(t)/N and r(t) = R(t)/N.

The change rate for susceptible elements is always negative and propor-
tional to the number of contacts among infected and susceptible elements.



160 Chapter 6. Propagation through Complex Networks

We call X\ the probability that one susceptible individual gets infected in one
contact, then we can write

ds

— = —X(k)s(t)i(t) . (6.1)
dt

The evolution of the proportion of infected individuals, i(¢), has two contri-

butions, one positive —$(¢) and one negative accounting for the recovering (or

death) rate of the infected individuals

di . .

3 = ME)s(@)it) —pi(t) (6.2)
where 1 is the recovering (or death) rate that corresponds to the inverse of
the average disease time for an individual. Taking into account that r(t) =
1 — s(t) —i(t) the last evolution equation for the recovered density is

dr

T =wilt). (6.3)

The above formulation of the model equations assumes the homogeneous
maxing hypothesis that considers that the set of susceptible people with whom
an infected individual establishes contacts is taken at random within the whole
population. This is manifested in the constant value for the number of con-
tacts (k) so that the approach is only valid for homogeneous networked systems.
Along with this assumption we have considered homogeneity in the agent char-
acteristics so that A and p (although seen as averages) are meaningful. This
model is seen as a mean field approximation to the epidemic spreading prob-
lem. One can modify the SIR model by adding more compartments (like e.g.
in models for VIH propagation where a set of people suffering an incubation
period, or more technically a latency period, should be distinguished from
those who have the disease already diagnosed) or by considering that the time
scale involved is slow enough so that additional terms accounting for natural
birth and death rates should be incorporated. We can rescale conveniently the
above equations (u — 1, t — pt, A — A\/p) in order to have a single control
parameter X to study the behaviour of the model.

The question to answer in the SIR model has to do with the conditions
under which a small infectious seed leads to a significant fraction of individuals
at the recovered state when the steady state (i(¢) = 0) is reached for the
whole system. One can translate this question in terms of a general bond
percolation problem since an epidemic is set when there is a large enough
fraction of “occupied” bonds (those that the epidemy used to spread) to lead
to the formation of a network component whose size scales with the size of
the graph (signaling an epidemic percolation). In fact, there exist an exact
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mapping between both problems [224, 225] that can be used as a powerful
tool for solving the epidemic spreading across general networks [226, 227|. In
order to answer this question we consider the initial conditions s(0) = 1/N,
i(0) = r(0) = 0 and we look for the value r* = lim;_,~ r(¢) It is easy to notice
that r* = 1 — s* because ¢* is necessarily null. Then, dividing eq. (6.1) by eq.
(6.3) to get rid of i(t) we have

© o AR~ s(t) = exp (M) — =1 —exp (<A

(6.4)
Last equation has always r* = 0 as a solution (no epidemic percolation) and if
Ry = X(k) > 1 there is a second one with 7* # 0 corresponding to a significa-
tive spread of the disease. Ry is usually termed as the effective reproductive
rate and its physical meaning is clear: it corresponds to the average secondary
infections produced when a single infected individual is introduced in a healthy
population. If this number is greater than one the disease reaches a non null
fraction of the population. From the phase transitions point of view one would
speak about r* as the appropriate order parameter and A\ as the control pa-

rameter. It can be obtained that at the critical point, A = (k)~!, 7* behaves
as 7 ~ (A — (k)~1) so that the critical exponent is 1 as expected from a mean

field treatment.

The SIS model

The SIS model was originally introduced by Hethcote and Yorke [228] in 1984
for describing the propagation of gonorrhea and has been largely used for
studying the transmission of tuberculosis. These diseases have several common
attributes that make it different from other infections. The most important
difference is that the infection does not confer immunity to recovered subjects
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so that the SIR model is no longer valid. The SIS model considers only two
compartments composed of susceptible and infected nodes so that a continu-
ous flux between both compartments is allowed, S <> I. Then, the relevant
equation for the SIS model is

de

g = MBI =@ it) — pi(e) (6.5)
where we have assumed s(t) = 1—i(¢) (i.e. no deaths associated to the disease
are considered). Again we can rescale the equation in order to obtain u = 1.

The SIS model is analogous to the SIR model in what refers to the ex-
istence of a epidemic transition. However in the SIS model the two regimes
are differentiated by whether the disease persist indefinitely in the population
(due to the fact that subjects can be reinfected many times) or not. Then,
imposing di/dt = 0 in (6.5) we obtain two different steady states, one with
i(t) = 0 and the second one, for the case A > (k)~!, with i(t) = (A — 1/(k))/\
corresponding to the an endemic state.

Due to the manifest analogy between SIR and SIS models we will focus
on the SIR formalism in the forthcoming discussions about the behaviour of
epidemic spreading on heterogenous networks. It has been shown that the
same qualitative results are also obtained for both models when studying more
complex topologies.

6.1.2 Epidemic spreading in general complex networks

The homogeneous mixing hypothesis assumed in the previous discussion can-
not be applied to many real systems like technological networks where their
components do not interact with a similar number of network elements. Then,
it is necessary to incorporate the ingredient of heterogeneity to the problem
of epidemic spreading. In the SIR model (and analogously for the SIS formu-
lation) the different compartments S(t), I(¢t) and R(t) are now characterized
by the subsets {Sg(t)}, {Ix(t)} and {Ry(t)} labeled by the connectivity k& of
their components [212 214, 216, 227|. These variables are normalized so that
Sk(t) + Ii(t) + Ry (t) = 1, then

ST Ek: %t):%:P(k)Ik(t);, RT ZP )Ryt

(6.6)
This second classification of the compartment elements into degree classes al-
lows to take into account the heterogeneous character of real networks.

At a mean field description the evolution of these new magnitudes satisfy
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the following set of coupled differential equations

dSk

= —AES(He(), (6.7)
% = MeSp(t)O(t) — I(t) (6.8)
Sk = n, (6.9)

where we have already set y = 1. The quantity ©(¢) represents the probability
that an element is linked to an infected node. This probability is given by

o) - SO0,

Note that we are considering here that the degree correlations are absent in the
network with the assumption that ©(t) is the same for any set Sj regardless

(6.10)

of the connectivity of its components.

Considering initial conditions consisting on a infinitesimal fraction of in-
fected nodes distributed homogeneously over the connectivity sets, I;(0) =
ip < 1, we can consider Sk(0) ~ 1 and integrate eq. (6.7) to obtain Sk(t) =
exp [—Ak¢(t)], where

_ SpkP(R) o I(r)dr S, kP(k)Ri(1)
() m

In order to obtain a closed relation for Ry (o0) we compute the time derivative

of (t)

o(t) (6.11)

do
=160

2 kP(K) exp[=Ako(t)]

(k)
Solving the above differential equation we can obtain R} = Rp(co) = 1 —
Sk(00) = 1 — exp[—Ak¢(o0)] and compute the total epidemic prevalence R*.
The solution ¢(t) to eq. (6.12) is not available for a general degree distribution
P(k). However, we are interested in the behaviour of ¢* = ¢(t — 00) to obtain
information about R*. In this limit ¢(t) = 0 so that eq. (6.12) transform into
a consistent equation for ¢*

(6.12)

>k kP (k) exp(=Ak¢™)
(k) '

The above equation has always the solution ¢* = 0 (implying R} = 0 Vk,
R* = 0) and when

b =1 (6.13)

Ly ARP(k)

<k> > 1 (6.14)
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it has a second non trivial solution ¢* > 0 that yields R* > 0 indicating a
significative epidemic prevalence. Then, the epidemic threshold is given by
(k)

Ae = (k—2> . (6.15)
This result is very relevant since it points out that complex networks with
heterogeneous degree distributions (like SF networks with 2 < v < 3) show
a vanishing epidemic threshold (since (k?) — oo as N — o0o) and become
extremely fragile under possible infections. An identical result for the threshold
value is found when analyzing the SIS model [212, 214|. In this case the
results are explained by a persistence of low levels of infected individuals for
low values of X. This interpretation is coherent with the long term prevalence
found for real informatic viruses and in principle can only be understood in
the framework of homogeneous networks by the (unrealistic) existence of a
global tuning of the parameters in order to work close enough to the epidemic
threshold. However, the bad news about the absence of epidemic threshold are
somehow played down when one looks at the behaviour of R* when \ < 1.
Considering the BA model (P(k) = 2m?k~3) we can compute this behaviour

[212, 214, 216] finding

wew (o) (6.16)

mA

so that the epidemic prevalence approaches smoothly to 0 at A\, = 0.

Correlated Complex Networks

The above results have been obtained assuming that degree correlations be-
tween pairs of nodes are absent. However correlations are present in most real
networks and therefore they cannot be neglected in the expression for © ,eq.
6.10, [215, 218]. The equations for the SIR model (6.7), (6.8) and (6.9) are
then modified to
dSk

o —*kSk@)Ek;P(k’rk)fkf(t), (6.17)
% - )\ksk(t)%:P(k/’k)Ik’(t)_Ik(t)7 (6.18)
dd—}?c = L(t). (6.19)

In order to have some insight above the behaviour of the system for a general
form of P(k'|k) one consider again the initial conditions S ~ 1. Then eq.
(6.18) becomes uncoupled and can be written as

% - Z P‘kp(kl’k) - Mék',k] I (t) = ZLk,k’Ik’ . (6.20)
K %
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The stability of the initial state corresponds to the situation when there is no
epidemic prevalence and it is then characterized by the sign of the eigenvalues
of the Jacobian matrix L. Since the matrix C whose elements are C}/ , =

kP(K'|k) has the same eigenvalues as its transposed (see eq. (5.10)) all its
eigenvalues are real. If A is the maximum eigenvalue of C we obtain that the
solution I(t) = Ry(t) = 0 Vt is stable if —u + AA < 0 and therefore the
epidemic threshold is defined as

Ae = A (6.21)
Then, the existence of an epidemic threshold is completely determined by the
matrix C and hence a non zero A, can be recovered depending on the nature
of the correlations. It has been shown numerically [218] that for assortative
networks the threshold remains zero and the behaviour is qualitative the same
as for uncorrelated networks.

6.1.3 Immunization strategies

The above study of epidemic spreading suggests the incorporation of mecha-
nisms or strategies for stopping the advance of the infections across the net-
work. From the SIR point of view this means to incorporate some degree of
immunity to a fraction g of elements so that they cannot be infected and thus
they would locally stop the possible subsequent infections. The question then
is where to locate this subset of immune nodes. Obviously, the answer will
depend on the topological characteristics of the underlying network so that an
efficient immunization design would differ depending on what kind of network
we are dealing with.

In the following we will characterize the most common ways for perform-
ing such immunizations in order to compare these mechanisms with a new
immunization proposal described in the next section.

Random Immunization

Random immunization consists of choosing a fraction g of the nodes with
uniform probability and confer them immunity to the epidemy. This is the
simplest way for placing immune elements on a complex network since the
choice of the nodes is completely independent of any attribute or characteristic
of the set. The presence of a fraction g of immune nodes simply rescale the
transmission probability in the above discussed mean field approach, A" =
(1 — g)A. Then, for homogenous networks and for a constant value of A we
obtain a critical fraction g. = 1 — 1/(A\(k)) so that r = 0 if ¢ < g.. On the
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Figure 6.3: Time evolution of a SIR epidemic in the Internet Autonomous Systems
representation when A\ = 0.8 and 1% of infected nodes at ¢ = 0. Pink and blue denote
susceptible and recovered nodes respectively. (a) Corresponds to the case when no
immunization is applied and (b) when targeted immunization is applied (g = 0.01).

other hand, for the same situation in heterogeneous non-correlated networks
we obtain g. = 1 — (k)/(A(k?)) so that g. = 1 regardless of the value of \ for
SF networks with (k%) — oo and thus random immunization of heterogeneous
networks is completely inefficient.

Targeted Immunization

The failure of random immunization when applied to SF networks can be un-
derstood by the well known results on random failures in these networks. SF
networks are very robust (it keeps the global cohesion) under random removal
of nodes. Then, in terms of epidemic spreading, no matter the amount of im-
munized nodes the infection will always find a path to arrive to any susceptible
node. On the other hand, SF networks are extremely weak when intentional
attacks are performed, 7.e. when a selective removal of those highly connected
nodes is applied. It is then interesting to apply a targeted immunization strat-
egy [217] just collecting those nodes with the highest connectivity and confer
them immunity.

In order to make an estimation of the effects that targeted immunization
has on SF networks we take the nodes with k£ > k; and immunize them'. Then

'Note, however, that in order to do so we should have complete knowledge of the network
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we have that the fraction of immune nodes corresponds to

g=>Y_ P(k). (6.22)

k<ky

This implies that those nodes, and the links that pointed to them, are removed
from the remaining effective network available for the spread of the epidemy.
Then, if we call p(g) the probability that any link of the original network point
to an immune node we obtain

Dk BP(E)
plg) = — (6.23)

so that the degree distribution of the new network after removing those immu-
nized nodes is

k¢
R =3 r@) ()0 salstar. (6.21)

q<k

With this new distribution we can compute its first and second moments so
that we can compute the new A, from eq. (6.15). These moments can be
expressed in terms of p(g) and the old moments of the original network as
(k)e = (k)[1 —p(g)] and (k%) = (k*)[1 —p(g)]* + (k)p[1 — p(9)] [217]. Applying
these results we obtain for the BA network a critical value g. as a function of
A so that if g < g. the epidemic prevalence is zero

ge ~ exp(—2/mM) . (6.25)

The above equation clearly shows that critical immunization is exponentially
small for a range of low values of A. Although the above estimations are only
valid for homogeneous random networks, we illustrate the effects of this type
of immunization in SF networks in figure 6.3. The evolution of the SIR model
on top of the Internet map at the Autonomous System level when there is no
immune nodes (figure 6.3.a) and when targeted immunization is applied (figure
6.3.b). Besides, in figure 6.4 we show the results on both the AS and Router
levels for three cases of targeted immunization and the case with zero immune
nodes.

Single Acquaintance Immunization

Single acquaintance immunization (SAI) was introduced in [219] as the first
local algorithm to immunize complex networks. In this strategy a fraction p
of the network nodes is selected at random and one of their corresponding
neighbours is chosen at random and immunized. Then, only a knowledge of
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the node neighbourhood is assumed and even the degree of its components
is not needed for the performance of the SAI immunization. This is not the
same scenario as for random immunization since the probability that a node
with connectivity k is chosen by one of its neighbours is proportional to kP(k)
and thus immunization of highly connected nodes is favored compared to the
purely random situation [229].

The calculation of the critical fraction of nodes g, is performed looking at
the percolation threshold of the network (considering again that immunized
nodes and their links are removed from the network) so that the infection
would become arrested in one part of the network. This calculation [219]

Nkpc
ge=1->_ P(k) (1 - ﬁ) : (6.26)
k

where p, is numerically computed from

Z%@J_l) (1 ) ﬁ>N(k—z)pc e <—ipc> _1 (6.27)

k

yields a value

for every type of network depending on the degree distribution P(k).

Single acquaintance immunization is a useful choice when only minimal
network knowledge is available. However, this case is not so usual in real
problems when neither the complete knowledge of the network (as targeted
immunization assumes) nor the ultra-short horizon of nodes (where SAI pro-
posal is applied) are present. An intermediate situation between targeted and
SAI immunization is described in the next section.
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6.1.4 Covering based Immunization

The immunization strategy reported here has to do with a general class of
problems in the context of graph theory: the problem of identifying the minimal
subset of nodes that fulfills certain prescriptions. In particular, we report here
on a heuristic method that allows to find near-optimal solutions to the covering
problem in networks. The covering problem consists of obtaining the minimum
set of covered vertices such that every vertex is covered or has at least one
covered vertex at a distance at most d (d-covering problem). The introduction
of the distance constrain leads to a wide applicability of the solutions found
that can be considered as sets of servers in technological networks or large
storing facilities in logistic networks as well as immunized nodes in contact or
technological networks. Then, the algorithm implemented here will serve us
not only to conveniently place those immune nodes that would help to stop
the spread of the disease, but to consider more general problems. In fact,
the allocation of network resources to satisfy a given service with the least
use of resources is a frequent problem in communication networks. For the
immunization problem, we would like to have a robust system in front of a
disease or virus spreading process while saving resources, that is, using the
minimum number of immune nodes.

For this purpose, we will make use of a heuristic algorithm that targets
high degree vertices and computes an upper bound to the minimum fraction
of servers needed to cover the network. We will apply the method to three real
networks: the AS and Router level graph representations of the Internet and
the Gnutella peer to peer network. As exposed in section 5.1.3 these graphs are
qualitatively identical in what concerns the degree distribution and the small-
world property but, however, they differ from the point of view of the degree
correlations between nearest neighbor vertices: the AS and Gnutella networks
exhibit disassortative degree correlations whereas for the Router networks as-
sortative degree correlations are displayed (see figure 5.3). The results shown
below point out that the solution to the d-covering problem strongly depends
on the degree of similarity between the connected vertices. As a consequence,
we show that when designing networked systems, whether a centralized or dis-
tributed allocation of these immune/serving/storing nodes (henceforth called
covered nodes for generality) is to be used relies upon the network properties
at a local level. Therefore, the interest of applying this heuristic strategy to
correlated real networks is twofold. First we will obtain a nearly optimal cover-
ing distribution and secondly we asses the impact of correlations on the design
of networked systems.

Before explaining the heuristic method and the results obtained it is worth
making a deeper analysis of the real nets considered here. In the d-covering
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problem one is interested in distances beyond d = 1, therefore we also analyze
the degree correlations for d > 1 (see figure 6.5). For the disassortative graphs,
the average degree of distance-d neighbors < k‘,%) > (k), restricted to root
vertices with degree k, follows the same trend as < k‘,(iln) > (k), tending to be
less correlated for larger d (figure 6.5.a). For the assortative graph, however,
the degree correlations are assortative up to d = 2, becoming disassortative for
d > 2 (figure 6.5.b). Finally, for d > 6 the degree correlations in the originally
assortative graph show a similar trend than in the disassortative graphs.

We propose the following heuristic algorithm to obtain an upper bound
to the d-covering problem. Local algorithm: For every vertex in the graph,
cover the highest degree verter at a distance at most d from the verter. In
case there is more than one vertex with the highest degree, ome of them 1is
selected at random and covered. To test this algorithm we first consider the
case d = 1, known as the dominating set problem [230]. In this case we
can use a leaf-removal algorithm as a reference method, which yields a nearly
optimal solution together with an error estimate. The leaf-removal algorithm
is defined as follows. To each vertex ¢ we assign two state variables x; and
yi, where x; = 0 (z; = 1) if the vertex is uncovered (covered) and y; = 0
(y; = 1) if the vertex is undominated (dominated). Here a vertex is said to be
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dominated if it has at least one neighbour covered. Starting with all vertices
uncovered and undominated (z; = y; = 0 for all 7), iteratively, (i) select a
vertex with degree one (leaf). If it is not dominated, cover its neighbour, set
dominated its second neighbours, and then remove the leaf, its neighbour, and
all their incident edges. (7) If no vertex with degree one is found, then cover
the vertex with the larger degree (hub), set dominated its neighbours, and
then remove the hub and all its incident edges. Finally, if some vertices with
degree zero remain, they are covered if they are not dominated, and removed
from the graph. Since step (i) always provides an optimal solution, the error
in computing the average fraction of covered vertices (z) = Zi\il x;/N is less
than or equal to the fraction of vertices covered applying step (7).

The comparison between the local and leaf-removal algorithms is shown in
figure 6.6. First, notice that the solutions obtained with the leaf-removal algo-
rithm are almost exact for the networks considered here and d = 1. The local
algorithm yields satisfactory, though non-optimal, solutions to the covering
problem, with some differences depending on correlations between connected
vertices. For the AS and the Gnutella graphs, which exhibit disassortative de-
gree correlations, the local algorithm gives a good estimate, quite close to the
optimal one for the AS graph. In contrast, for the Router graph we observe a
larger deviation from the optimal solution. The origin of this difference is due
to the fact that the local algorithm exploits the degree fluctuations among con-
nected vertices. Indeed, these fluctuations are bigger in disassortative graphs
as connected vertices likely have different degrees. In contrast, in assortative
graphs, although there may be high degree fluctuations between two vertices
selected at random, connected vertices tend to have similar degrees, result-
ing in poorer solutions. These results indicate that the general belief that
heuristic algorithms targeting the hubs may be sufficient to solve computa-
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Figure 6.7: (a) Average fraction of servers (z) covering the graph for different values
of d. The continuous lines are the best fits to an exponential decay. (b) Average
fraction of vertices (n) served by a server for different values of d. The inset shows
the graph size dependence of (n) for the AS graph and d =1, 2.

tional problems on graphs with wide degree fluctuations may not be the case
for assortative graphs.

The d = 1 covering problem results in a distributed architecture because
a finite fraction of the vertices is covered. Let us now extend the method and
discuss the results obtained with the local algorithm for the more general and
complex problem d > 1. In figure 6.7.a we show that, with increasing d, the
average fraction of covered nodes decays exponentially fast, indicating that if
we allow the covers to be more distant, a substantial decrease in the number
of required covers is obtained. This exponential decay is a consequence of
the small-world property of these networks. The decrease in (z) is, however,
achieved at the expense of an increase in the average fraction of vertices (n)
served by a covered node (figure 6.7.b). This is a key metric as it marks the
trade-off between the number of covers needed and their capacity.
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Again, a remarkable difference depending on the graph assortativities is
appreciated. For the Gnutella and AS graphs, with disassortative correlations,
(n) increases significantly from d = 1 to d = 2. Indeed, a finite size study for
the AS graph, with a growing tendency from 1997 to 2002 [231], reveals that
(n) decreases to zero with increasing the graph size for d = 1, while it remains
almost constant for d = 2 or larger (see inset of figure 6.7.b). On the other
hand, in the Router graph, with assortative correlations, (n) increases much
slower with increasing d, being almost zero up to d = 3 (figure 6.7.b). These
results are the signature of a phase transition. There is a threshold distance
d. such that the average fraction of vertices served by a covered vertex is very
small for d < d., going to zero with increasing N, while it is finite for d > d..
For disassortative graphs d. = 1 while for assortative ones d. > 1. Note that
the value d. ~ 3 for the Router graph coincides with the distance where the
degree correlations become disassortative, indicating that the phase transition
is determined by the change in the degree correlations. Furthermore, this

transition gives a practical measure to get the desired trade-off between (z)
and (n).

Since the graphs considered here are characterized by wide fluctuations in
the vertex degrees, one can also compute the average number of covered vertices
(n), restricted to vertices with the same degree k. In all cases an increasing
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tendency of (n), with k is observed, as it is expected from the definition of the
local algorithm, which targets high degree vertices. Two distinct behaviors are
once again observed depending on the degree correlations. In the disassortative
graphs, (n), is already as large as 10% of the vertices for d = 2 and k > 10
(figure 6.8.a). In contrast, in the assortative graphs, only beyond d = 4, one
observes that large value of (n),.

The striking differences between disassortative and assortative correlations
have important consequences form the practical point of view, for example,
regarding how resources for immune response or fast recovering are allocated.
For disassortative graphs, except for the case d = 1, one would need covers with
a vast capacity, serving a large fraction of vertices. The most efficient strategy
is, therefore, the allocation of resources in a few covers with a large capacity.
The scalability of the cover system would in this case be determined by the
single cover capacities, which should be increased as the graph size grows. In
the assortative case, we have a different scenario. The decrease of the number
of covers with increasing d is not as dramatic as for the disassortative graphs.
In compensation, each cover serves a small fraction of vertices. Hence, the
most efficient strategy is to allocate the resources in a large number of covers
with a limited capacity. The scalability of the system would be driven by the
number of required covers, which augments with increasing the graph size. In
turn, regarding the design of communication networks, we can decide between
disassortative or assortative topologies depending on the available resources.
A disassortative topology will be more appropriate for a centralized design,
with a few covers having a large capacity, while an assortative network will
be best suited for a distributed design, when a large number of covers have a
limited capacity.

SIR with immune covers

In order to apply the covered sets found to the problem of SIR epidemic spread-
ing we will consider covered vertices as immune nodes to the spreading of a
disease or virus. For instance, in a technological network, they could be thought
of as being special devices devoted to filtering out any virus or attack. This
would imply that the spreading process stops when it arrives to such nodes.
This is of course the ideal situation. However, it happens more often that im-
mune nodes can not catch the epidemic, but they are not able to stop spreading
it through other nodes — as when you have an up-to-date anti-virus. There-
fore, we study the worse scenario and consider that immunized nodes just repel
the virus cutting the path to infection spreading.

We will consider the different d-cover sets labeled by the corresponding
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distance d used to solve the d-covering problem. For each distance we compute
by Monte Carlo simulations the epidemic incidence, R(d), in both the Router
and AS representation of the Internet for a constant value of the epidemic
transmission rate, A = 1, when their corresponding d-covers are considered as
immune nodes. We will then focus on the influence of degree correlations on
the final size of the outbreak?.

Figures 6.9 and 6.10 reflect the differences in the algorithm’s performance
for the AS and the Router maps of Internet. Figure 6.9 illustrates the relative
difference of the epidemic incidence as a function of d, taking as a reference
the size of the outbreak at d = 1. The behaviour depicted in the figure is
quite similar to the dependency of the number of nodes covered by each im-
mune node, (n), when d is increased (figure 6.7.b). For the AS network, the
fraction of infected nodes at the end of the epidemic spreading process rapidly
increases. In contrast, the increase in the epidemic incidence for the router
network takes place at larger values of d. This indicates that for the same
d > 1, the immunization strategy works better at the router level as confirmed
in figure 6.10, top panel. The reason of this behavior becomes apparent by
noticing that for the router level (x) is bigger than for the AS, but the number
(n) of nodes served on average by each immune node is smaller. The combi-
nation of the two factors leads to a more efficient immunization at the router
level, however, at the cost of more resources. Both strategies tend to be closer
as d is increased because at the router level the correlations change beyond
d>3.

The previous result has to be carefully interpreted and should not be mis-
understood. A closer look at the influence of the correlations reveals that,
although in general they determine (x) and (n) for each map, these two quan-

2Tt should be noticed that a number of other topological features such as clustering and
hierarchy properties may also be at the root of the different behaviors. Our guess is mainly
based on the performance of the local algorithm that we will use below.
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tities alone do not suffice to explain all the differences observed. Indeed, the
local structure of the network turns out to be at the root of the immunization
efficiency and the optimal trade-off between the size of the outbreak and the
least use of resources. To see this, we have analyzed the situation in which
both (x) (though the d’s are different) and (n) are almost the same in the two
representations. This case is represented in the bottom panel of figure 6.10.
As can be seen from the figure, in the latter case, the immunization scheme for
the AS outperforms that for the router level. This behaviour is due to the fact
that in the AS network, the immune nodes are more distributed throughout
the network because highly connected vertices alternate with poorly connected
ones. On the contrary, at the router level, the hubs are topologically closer to
each other (the correlations are positive) and thus some of the immune nodes
are not highly connected resulting in a less efficient protection in front of an
epidemic.

In principle, one may think that as we are immunizing covers (highly con-
nected nodes), the use of the (global) targeted immunization strategy would
produce the same set of immune nodes. Obviously, this is not the case since
the covering operates at shorter distances than targeted immunization (which
operates at d = D, the diameter of network). In fact, a direct comparison of
what the immune nodes are in both algorithms shows that no more than 50%
of them are the same and both sets are equal only when d reaches the diameter
of the network. Moreover, as a further evidence of the influence of the graph
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representation in the performance of immunization schemes, it is found that
for the router level the percentage above can increase up to 70%.

Comparing immunization strategies

The next step is to compare the performance of all the immunization strate-
gies presented in this chapter when SIR epidemic modeling is employed. It is
worth stressing that the heuristic covering-based immunization proposed above
is based on a tuned local knowledge of the network (only requiring information
about the graph topology up to a distance d), a key property of utmost im-
portance for most real applications. Indeed, all the graphs considered here are
incomplete representations of the systems they are aimed to represent, as it
generally happens in graph representations of large systems. An added value
of the method developed here is that the covering-based strategy does not only
deal with the degree of the immune nodes, as targeted immunization does, but
naturally introduces the practical constraint of having limited resources to be
distributed in the system on top of which the epidemics is spreading.

Before comparing the performance of the different algorithms let us illus-
trate the importance of the local properties of the network on the performance
of targeted immunization. The results depicted in figure 6.4 suggest that again
the degree correlations is one of the main factors influencing the performance
of the immunization policy. We see that even for small percentages of immune
nodes, targeted immunization performs better in the AS graph. This may be
due to the compact distribution of hubs (which play a key role in targeted im-
munization) in the router map whereas for the AS representation they are dis-
tributed throughout the whole network. Therefore, in the AS representation,
targeted immunization works better because immune nodes are more efficient
in cutting the paths leading to poorly connected nodes, the more abundant.

We now focus on the implementation of the SIR epidemiological model on
top of the Internet maps at the AS and router levels and compare with the
results obtained by using targeted, random, SAT immunization as well as the
heuristic covering-based immunization strategy described above. The results
indicate that the local algorithm performs quite well and is near the optimal
one. We have performed Monte Carlo simulations of the SIR model on top of
the Internet maps starting from an initial state in which a randomly chosen
set of nodes corresponding to a 1% of the network is infected. The results
have been averaged over at least 1000 realizations corresponding to different
initially infected nodes. We have performed extensive numerical simulations
making use of the four different immunization schemes. The immunization ob-
tained following the covering algorithm fixes the fraction, g. = (), of immune
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Figure 6.11: Comparison of the immunization strategies for the Internet AS map.
In the figure, we have represented the ratio between the epidemic incidence of the
four immunization strategies considered (R) and that of the original system without
immunization (Rgrg) for different values of (x). The legend refers to the follow-
ing immunization strategies: the one based on the covering problem (CB), targeted
immunization (Targeted), random immunization (Random) and single acquaintance
immunization (SAI). In this case, 1% of the non-immune nodes were initially infected
at random. See the text for further details. The distances considered in the local
algorithm are: (a) d=1, (b) d=2, (c) d=3, (d) d =5.

nodes in the whole network for each value of d. Then, we cannot compare the
performance of the four immunization mechanisms as a function of the fraction
of immune nodes g. in a continuous way. Instead, we have to fix this quan-
tity g, for random, targeted and SAI immunization to a discrete set of values
{g9:(d)} = {{x)q} prescribed by the corresponding solutions of the d-covering
problem of each graph. Then, Random immunization means that a fraction
ge(d) = (x)q of immune nodes is randomly placed on the networks. Targeted
immunization looks for the (z)4N highly connected nodes and immunizes them
and, finally, the single acquaintance immunization algorithm proposed is run
taking p > (x)4 and ensuring that the total number of immune nodes is the
same in all the schemes. In all cases, the results are again averaged over many
realizations for each value of A and (x). The results are displayed in figure 6.11
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Figure 6.12: Same as previous figure but for the Internet router map. The distances
considered in the local algorithm are in this case: (a) d =2, (b) d =5, (¢) d =7,
(d) d = 10.

and figure 6.12.

As expected, targeted immunization produces the best results for both
topologies. Note that, as discussed in the previous section, the performance of
the algorithm depends on the specific topology and produces different results
for AS and router maps. On the other extreme we find random immunization,
whose performance is not affected by the structure of the underlying networks.
Turning our attention to local algorithms, it is found that the immunization
scheme based on the covering algorithm performs better than the SAIL even
for small values of d, where it is truly local. In fact, it is outperformed only
by the targeted procedure and for all values of the parameters d and A it lies
between the most efficient and the SAI scheme. Additionally, from a practical
point of view, the covering strategy could be a good policy since it balances
the degree of local knowledge and the efficiency of the vaccination. Moreover,
as all network topologies are not neither completely known nor completely
unknown, the covering allows to fine-tune the value of d on a case-by-case base
(that is, according to the degree of local knowledge of the network) and thus it
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is more flexible than other immunization strategies (recall that it is the result
of an optimization).

The strategy introduced has been shown to perform better than all previous
methods irrespective of the degree of local knowledge, except for the case of
targeted immunization. We finally remark that the introduced covering-based
immunization could be more appropriate when more complex immunization
devices are placed in the network nodes since the distance constrain allows
for a fast communication in order to stop the spread by a possible response
mechanism departed from covered nodes.

6.2 Information transmission and Jamming

The problem of epidemic propagation shares a common feature with other dy-
namics like rumour diffusion [232]: the set up of the problem is the spreading
across the network of some signal (epidemy, rumour, information,...) launched
from a small set of nodes (spreaders) and the study is focused on whether a
significative fraction of the network is finally affected (or reached) by this sig-
nal. Here, we will address a different class of propagation problems in networks
where, as well as the source nodes, the destination of the information is well
defined and unique for a particular signal. In this case, the information dy-
namics between any given source and the destination will end when it arrives
to the target. Besides, the information between every pair of nodes follows a
single path and it is not bifurcated during its trip as occurs in spreading pro-
cesses. In this context we find interesting applications to information dynamics
between agents in real networks like the internet. The interesting phenomenon
found in this class of problems has to do with the existence of overloads and
failures due to the excess of information carried on top of the network. This
is usually known as jamming. We are concerned in whether or not a network
architecture or a routing policy for the information packets is more favorable
for handling a large amount of traffic in the network. In principle, the finding
of SF character in information networks like the Internet is naively attributed
to the compact architecture achieved with this design. However, although the
existence of hubs in these networks allows the fast distribution of the infor-
mation between pairs of nodes, these highly connected nodes are exposed to a
large amount of data and thus will be easily congested. Therefore, a detailed
analysis of the interplay between both the topology and the routing strategies
is needed. We begin this chapter with a review on the more interesting works
on the subject and then report two studies on the influence of these two im-
portant ingredients (topology and routing) on the functioning of information
dynamics.
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6.2.1 Information dynamics on Networks

Real data analysis of traffic levels on real computer networks has provided the
characterization of information flow [233 235]. This characterization allows
for accurate modeling of information dynamics on networks. Among these
reported observations and measures are:

e Long-range correlations and self-similarity are observed in the time evo-
lution patterns of the number of data packets, A(t).

e Power law behaviour in the power spectrum of the time activity of the
network load,

2
S(f) = ~ [t (6.28)

/ A(t) et dt

where &, called the Hurst exponent, was found to be £ ~ 1.

These findings were attributed to the existence of a dynamical phase transition
due to jamming in the system. The explanation of this critical behaviour of
the system has been explored by means of models where this large scale orga-
nization was reproduced. However, the reasonable doubt about the influence
that the substrate network has on the critical behaviour makes essential the in-
corporation of such ingredient in order to obtain a complete description of the
system’s dynamics. The availability of the topology of these type of communi-
cation systems allows for a detailed description incorporating both the complex
dynamical rules and the topology of interactions among the constituents.

Computer network traffic can be modeled in diverse ways. However, the
general picture of a traffic model consists in a constant (in average) injection
of p packets per unit time in the network. Each packet, which is created
with a source node (sender) and a target one (recipient) assigned, is delivered
from a sender to a recipient by hops between adjacent nodes and when the
packet arrives to its destination it dissapears. The main magnitude used to
describe the state of the system is the total amount of traffic in the network
which is usually defined as the number of active packets that are currently
searching their destination at time ¢, A(t). The balance between delivered
packets and incoming ones governs the behaviour of the system. In the free
flow state the balance is reached after a transient time and the network is
able to deliver packets at the same rate as new ones are introduced (A(t) is
constant in average). This is obviously found for low values of p but, on the
other hand, when p is high enough the network is unable to handle the load
of information and it gets jammed yielding an unbounded growing of A(t).
This scenario is common for a variety of models although they are different
concerning particular details. These peculiarities can be summarized as follows:
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e Each node of the the network can be modeled as either a router or a host.
A router node simply store and distributes among its neighbours all the
traffic packets that it receives from them. On the other hand, host nodes
are, at the same time, senders and recipients of the packets and hence the
generation and death of information packets occurs at them. Although
this node classification was considered in [236 238|, in most models host
and routers are not distinguished so that all nodes are senders, routers
and recipients of the packets at the same time.

e The strategy employed by routers to decide which neighbour is the most
convenient for a packet to move in depends on the particular model we
use. This is frequently based on the router knowledge, local or global,
on the placement of the destination node of the packet. It is frequently
assumed that a router knows its relative position to every node in the net-
work and therefore the packet follows a shortest path between its sender
and its destination [239]. However, this is not a realistic assumption
and randomness is usually incorporated to the routing protocol when
the destination node is not found on the router horizon [240-243|.

e The relation between the number of packets a router can deliver per unit
time (the routing rate), r, and p is also meaningful. It is always assumed
that a router can only deliver one packet per unit time » = 1 and then
no rescaling is needed. This routing limitation introduces the concept
of router queues which are composed by the packets allocated in a node
waiting for being delivered. The maximum amount of packets a router
can hold is called the buffer capacity, H. The general assumption is that
buffer capacity is infinite but there are models where buffer size is limited.
In these models, packets moving into a node with a full buffer are lost and
never reach their destinations. Therefore, in these models the jamming
picture described above is not valid anymore since the network has a
limited capacity of active processes, max[A(t)] = N - H, and another
quantity accounting for lost packets is then necessary.

e There are several ways for routers to manage the packets allocated in
their buffers. One can consider that the router picks up the packet which
is at the head of the queue at each time step, this is the so-called First-In-
First-Out (FIFO) queue. On the contrary in Last-in-First-Out (LIFO)
queues it is the last packet in the queue the one chosen by the router.
Queues where packets are chosen at random at each time step are also
considered.

The different models reported below belongs to the above described general
picture. The efforts are always directed to capture the jamming phenomena
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deduced by the experimental observations and, at the same time, to obtain the
simplest and the most tractable modellization of the system.

The Ohira-Sawatari model

One of the first attempts to reproduce the jamming transition on computer
networks was proposed by Ohira and Sawatari [239]. This model distinguish
two classes of nodes: hosts and routers (which are capable of queuing an un-
limited number of packets). In this work the routing strategy was based on
shortest paths (thus assuming that routers have global knowledge of the net-
work architecture). In general more than one neighbour can be chosen due to
degeneracy in the shortest path from the router ¢ to the destination node k of
the information packet. Then, the router has to decide what neighbour is the
best choice among the set of neighbours that are in the way of a geodesic to
k, L(i,k). Ohira and Sawatari used the following probability for each possible
neighbour to catch the packet

pk — exp (_5Xj)
T DYlengn exp (—6X1)

where X is the number of packets routed by 4 towards j in the past. Besides,

(6.29)

[ has the role of an inverse temperature in order to have an interpolating
parameter from the complete deterministic routing when § — oo (with long
time routers memory) and the random [ — 0 routing (where packets are
distributed at random among the possible shortest paths). Between these two
limits the probabilistic routing can be explored. The model has been studied
on simple network architectures as 2D lattices with hosts on the boundaries.
As a function of p, it shows a sudden transition to a congestion state. The
congestion was measured in terms of the average travel time of packets. The
relevant result is that the phase transition point, p., depends on the routing
strategy adopted ((3). In particular, a high degree in randomness (5 ~ 0.01) in
the path choice is found as the optimal routing policy achieving the maximum
shift of the onset of traffic congestion.

Cyclic search routing

The use of shortest path routing is linked to the unrealistic assumption of
global knowledge. Besides, this is not the best routing strategy when dealing
with SF networks because of the fast congestion of highly central nodes (which
usually are the hubs) that lead to a global congestion in the network. To
avoid these problems Tadi¢ et al [240 243| have developed the so-called cyclic
search routing. This strategy consist of employing a global random routing
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joined to a local shortest path strategy. The implementation of such strategy
is as follows: every router has a finite horizon of radius d so that if the target
of a packet is inside this horizon the packet is directly moved towards the
target following the shortest path, otherwise it is randomly sent to one of the
router neighbours. The simulations of this cyclic search algorithm have been
performed on top of a variety of network topologies including SF networks.
Besides, the jamming transition for high values of p the dynamical behaviour in
the free flow phase was explored. They study the patterns of the time evolution
of the network load, A(t), as a function of p. In the free flow regime, well
below the critical point, the power spectrum of the network activity followed
a power law S(f) ~ f~¢ with exponent & = 1.2 for the so-called “Web graph”
3. In this regime the queue effects are negligible and thus the topology is
governing the system behaviour. When the system approach the transition,
p — pe, the A(t) patterns manifest crisis-like activity with sudden growths of
the load for relative large windows and the power spectrum of A(t) lose its
temporal correlations manifested by an increase of the Hurst exponent, £ ~ 2.
The waiting times (the time a packet spends in routers queue during its trip)
distributions were also investigated. The results for the free low regime showed
a power law distribution compatible with those obtained empirically in |233] for
the Internet dynamics. However, when the critical point was approached (and
hence crisis in A(t) were found) this distribution turned into a Cauchy-type
showing long queue times.

Self-regulated traffic

The findings using cyclic search algorithms about the fluctuations on the load
activity in the free flow regime are in agreement with the results when ana-
lyzing real time series of data traffic in real networks. Besides, the Internet
data analyzed does not (or rarely) manifest a behaviour similar to that of the
jammed regime when the activity grows over large times. On the other hand,
the whole system efficiency is achieved for p values near the critical point when
the average constant activity A(¢) is maximum. Valverde and Solé suggested
|236] that there is a feedback between users and the system activity so that
users demand enhances the congestion of the system but as congestion in-
creases users tend to slow down their requests and tend to leave the network.
This feedback has the overall result of set the system operation point near the
onset of congestion. This self organization of the system was proposed in a
model where router and host nodes where differentiated [237|. They proposed
a mean field model for the evolution of the density of information packets

This is a directed graph displaying SF behaviour and high clustering and degree corre-
lations [244]
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% —pR— LD = 1) (6.30)
where R is the density of host and 7 is the mean life time of information packets
(1 ~ (L) in the free flow state). The fixed point solution guarantees that free-
flow is achieved. When this solution is lost the jamming regime is reached. This
occurs for eq. (6.30) at p. = (k)/(47R). Assuming the feedback between the
density of hosts and the delivery rate p. in order to reach a constant activity I'
the model predicts a scaling between these two quantities of the form p ~ R~
In [238] the authors have studied an improved mean field model including p as

a dynamical variable.

Search and Congestion

Shortest path routing lead to the problem of the fast congestion of hubs. An-
other possible alternative to the cyclic search was proposed in [245 247] where
the routing mechanism studied takes into account node congestion. In these
works packets follow paths of minimum length from their origin s to their des-
tination [. At each time step, all the packets allocated in the nodes try to move
from its current position ¢ to the next node j in their path with a probability
¢i; which is called the quality of the channel. This magnitude is defined in
terms of the capabilities of the two nodes, ¢; and ¢; as ¢;; = |/g;q; so that,
when one of the nodes has capability 0, the channel is disabled. High qualities
(gij ~ 1) imply that packets move easily, while low qualities (g;; ~ 0) imply
that it takes a long time for a packet to jump from one node to the next. It
is assumed that ¢; = f(n;), i.e. the capability of a node i is a function of the
number of packets n;, currently at node i. The general function f(n) =1 for
n =0and f(n) = n~7 for n = 1,2,3,..., with v > 0, has been considered.
For £ > 1 (£ < 1) the number of delivered packets from 4 to its neighbour j,
1 — j, is proportional to nil_fy. Then, the transmission between two adjacent
nodes decreases (increases) with the number of accumulated packets. For the
special case v = 1 the number of delivered packets is independent of the num-
ber of accumulated packets. This routing policy has been studied in 1D, 2D
lattices and Cayley trees. To characterize the jamming transition the authors
employed an order parameter, p, defined as

A+ t) = A2
p= tlig‘lo ot - pN

(6.31)

A smooth critical transition to congestion is found only for v = 1, while for
v > 1 the transition to congestion is discontinuous and jumps from p = 0 to
p = 1 at p.. This is due to the progressive deterioration of the transmission
channels as congestion grows in the network leading to a state where no packets
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are transmitted and thus p = 1 at the end. This final state is reached by the
emergence of a congestion nuclei. The behaviour of the spectra of A(t) for
p < p. was also analyzed showing a power law behaviour S(f) ~ f~¢ with
&~ 2.

The choice of an specific routing policy (shortest path, random, cyclic
search, etc...) is equivalent to define an effective distance matrix between
every pair of nodes (we will return to this picture in section 6.2.3). Obviously,
when the shortest path algorithm is chosen this effective distance will be the
same as the topological one. In [248] the authors developed a general formu-
lation of the model of traffic dynamics by making use of the probability that
a packet located at a node ¢ and whose destination is a node k will move into
node j in the next hoop, pf] The construction of these probabilities depends
on the particular routing algorithm employed and several magnitudes can be
expressed in terms of them. For example, the probability for a packet with
target k to travel from ¢ to j in n steps

Pi(n)= > phnl (6.32)

l1,sln—1

The above probability Pi];» (n) allows to calculate the average number of steps
between ¢ and j for a packet traveling to k, dfj =>. nPZ’;, which defines the
matrix d¥. Then, the element dfk is the effective distance from ¢ to k, i.e. the
main topological magnitude governing the flow of data traffic at a given node
when shortest path routing is implemented. For this general situation the effec-
tive betweenes of the nodes can be also calculated as Bj = >, > . ., >, lej(n)
Hence, for a general routing strategy when p packets per unit time and node are
sent and the routing rate is 7 a node j will be congested when pB; /(N —1) > r.
For the whole network one can establish a lower bound for the critical point
at p. = r(N —1)/B*, where B* is the maximum node betweenes. The general
formulation of the traffic problem performed in this work is of great interest
since it allows avoiding extensive numerical simulations of the hard problem of
looking for optimal topologies when a given routing strategy is prescribed. In
fact the authors found that for a random routing strategy a dramatic change
in the optimal network topology is obtained when p is increased jumping from
a highly centralized star-like topology at low values of p to a homogeneous one
when p grows.

6.2.2 Shortest path routing

After the above brief summary on the modeling of information dynamics on
networks we focus now on the influence of network structure on the data flow
efficiency. Here we will consider a simple routing mechanism based on shortest



6.2. Information transmission and Jamming 187

path routing so that we assume global knowledge of routers. In order to discuss
how the local topological properties influence the efficiency of a given routing
protocol, we use the network studied in section 5.3. Let us recall that in this
model, the network is generated by considering the Barabasi-Albert procedure
[145] (section 5.2.3) but introducing an affinity variable f; and a tolerance p,
which determine the peers j a new node can attach to. This is done by requiring
that f; € (fi & p). This network shows the same global properties of the BA
graph, like the SF degree distribution, regardless of the tolerance. However,
depending on the value of u, other local properties, such as the clustering
coefficient and correlations, differ from the original BA network. The clustering
coefficient showed the major deviation compared to the values at the BA limit
(where clustering effects are negligible) and grows as p decreases. Besides, the
average path length L remain nearly constant for a wide range of u values
but shows a sudden increase when the tolerance approaches p = 0. These
two quantities, clustering and average path length, are of importance for the
information disemination on networks as we will show below.

Let us now define the set up of the problem. We will assume that routers
deliver data packets by ensuring that all routers converge to a best estimate
of the path leading to each destination address. In other words, the routing
process takes place following the criterion of the shortest available path length
from a given source to its destination. We will consider a situation consisting
of an initial amount p of information packets to be transmitted across the
network. That is, we will not consider the situation before where the network
is subjected to a constant flux of processes like in the works described but,
instead, we will study how the system relax to its “ground state” (A(t) = 0)
when an initial perturbation is performed. Then, in our simulations p packets
are created at the beginning and both their destinations and the sources are
chosen at random. In subsequent time steps, each node ¢ holding a packet
sends it to its destination j following the shortest path length between node ¢
and j until all packets reach their destinations. That is, each packet is diverted
in such a way that the distance d;;, measured as the number of nodes one needs
to pass by between ¢ and j, is minimized. In the case that there are more than
one possible path, the choice is made at random. Besides, we consider that
routers deliver r = 1 packet per unit time and that the router buffer size is
infinite, H — oc.

The above procedure is repeated many times for a number of processes
ranging from p = 1 to at least p = 500. Different realizations of the dynamics
and the network substrate for the same p are performed in order to average
the relevant quantities. As a measure of the efficiency of the process, we have
monitored the relaxation time, (Ty¢jq), by computing the maximum time it
takes for a packet to travel from its source to its destination, averaged over
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different realizations %. Since the SF topology is shared by all the networks
studied here, we expect that the packet dissemination follow the same trend
for any value of u. That is all the packets will tend to concentrate into the
hubs queues at first instance. In these queues packets will spend most of their
life times so that the influence of other topological factors would be captured
by the convergence and scape times of the trips into and from the central hubs

core.

The numerical results show that this magnitude scales linearly with the
number of processes as can be expected from the simple shortest path routing
protocol. An example is shown in figure 6.13 where the linear scaling is shown
for several values of u. Therefore, the derivative of Tyeiqz(p) is a proper pa-
rameter to characterize the routing performance. figure 6.14 shows the slopes
of the straight lines as a function of the control parameter p which determines
the local properties of the network. It is clear from the figure that the algo-
rithm’s outcome depends on the topological details of the network. For the
family of networks labeled by p the average shortest path length L is roughly
the same as that of the BA network up to a value around p ~ 0.2. This fact
somehow breaks the entanglement between the influence of the characteristic
length and other local properties of the network on the packet dynamics al-
lowing to study them separately. As shown in figure 6.14, the efficiency has
a well defined maximum and a minimum in the range p values 0.2 < u < 1
where L(p) remains almost constant. This implies that local properties are
responsible for the behavior observed, namely the clustering coefficient c.

We have distinguished four p-ranges in the figure depending on the perfor-
mance of the packet dynamics relative to that of the BA network. In region
I, 0.8 < u < 1, we find that the performance is almost the same as in the BA

“Note that the choice of (T,ciaz) is arbitrary. One can also use (Thug) or (Trms), which
leads to the same behaviours.
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Figure 6.14: O(Tmax)/0p, as a function of the network parameter p. The figure
illustrates the dependency of the standard routing protocol on the local properties of
the network. The right panels show the variation of ¢ with p. The size of the network
is N = 10* nodes and m, = m = 3. The degree distribution is a power law with
exponent equal to 3. Note that the BA limit corresponds to 4 = 1. See the text for
further details.

limit. In this range both clustering and L show the same values as the BA
network. Region II and III, 0.35 < p < 0.8 and 0.2 < p < 0.35 respectively,
show a different performance with respect to the BA topology. In region II
the relaxing times increase significantly reaching a maximum at pu ~ 0.5. On
the other hand, in region III an enhancement in packet diffusion is manifested
revealing an optimal topology for packet difussion at p ~ 0.22. In both regions
IT and III the deviation from the BA performance can be only atributted to the
clustering growth since L is almost constant in the whole p-range. The result
is apparently contradictory since the growing behaviour of ¢ as p decreases is
held for the two regions. However, it can be explained in terms of the clustering
evolution. Since the number of links is constant for all the networks explored
here (due to the growth mechanism employed in section 5.3) an initial growth
of the clustering yields to the appearance of loops of length 3, triangles. These
structures are useless for the shortest path routing, as figure 6.15.b shows, in
the sense that those links used to link neighbours of a given node ¢ does not
contribute anymore to any shortest path from ¢ to other nodes in the network.
However, if the clustering is further increased the probability of forming loops
of length 4 is incremented, see figure 6.15.c, and then the degeneracy in the
shortest path from pairs of nodes is incremented. This fact is very important
for shortest path routing with congestion since the queue times are decreased
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Figure 6.15: Schematic representation of the different structures found in the neigh-
borhood of a particular node (white coloured in the figures) when clustering is in-
creased as happens when going from region I to region III in figure 6.14. When
clustering is small (I) the tree-like structure in the neighbourhood of nodes makes the
packets to choose a particular branch depending on their destination. When cluster-
ing increases (II) the links employed by our model for connecting its neighbours are
useless and decrease the number of choices. However, if clustering is even larger (III)
the formation of closed loops of length 4 diversify the possible shortest path to be
followed by a single packet delivered from the white coloured node.

when packets going to similar parts of the networks are distributed in several
shortest paths. Now, packets can circumvent more easily congested nodes,
thus making the shortest path protocol more efficient. The routing enhance-
ment provided by the large clustering is lost when length effects appears at low
values of u. For very small p, L diverges (see inset in figure 6.14) leading to
a bad performance of the protocol, although the clustering continues to grow
for these p values, since the algorithm works on a shortest-path-delivery basis.
The crossover from the minimum to the divergence of (T y4)/0p is achieved
in the parameter region IV where the interplay between ¢ and L breaks down
and the contribution from L to the routing performance prevails.

The above results indicate the strong dependence of the routing efficiency
on the underlying topology. Let us finally take a look at the queue times
distribution, i.e. the probability that a packet spends a time Tjycye Waiting
in the queues of the nodes visited in its trip to the destination node, when
several u values are employed for the network substrate. We have plotted in
figure 6.16 these distributions for = 1 (BA limit), x = 0.5 (corresponding
to the local maximum in figure 6.14, p = 0.22 (corresponding to the optimal
topology as explained above) and for the Autonomous System network. For all
the networks generated by our model we find a power law behaviour truncated
at long queue times where the differences between the topologies are revealed.
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Figure 6.16: Queue time dis-
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AS representation of the inter-
net. Truncated power law be-
haviour is well appreciated for
the networks generated using
our model.  These networks

P(Tqueued)

were grown up to a similar size

of the AS map N = 11174.

T

aueued

The distribution corresponding to the AS network shows however a different
trend and the power law behaviour is not recovered. In this case, (as we
explained in previous chapters), although the SF charater is also preserved,
local properties such as degree correlations are very different from those in the
modified BA model employed here confirming the importance of these local
ingredients on the packet dynamics.

6.2.3 Congestion-aware routing

The preceding analysis shows that the routing protocol may be very sensitive
to local details of the network on top of which the spreading process is taking
place. It is then advisable the use of real nets in order to obtain reliable results.
To this end, we will use the Internet Autonomous System map [165], which is
a SF network with v = 2.2 and N = 11174 nodes. It is worth stressing that
each AS groups many routers together and the traffic carried by a node is the
aggregation of the traffic generated at the internal routers and on individual
end-host flows between the ASs.

Our aim here is to explore routing mechanisms more sophisticated than
purely random or shortest path strategies. The first modification of the routing
scheme is introduced by noting that the shortest path procedure does not take
into account the traffic on the network. Specifically, a routing policy based on
the shortest path between two given nodes neglects the queue in overloaded
nodes which makes the process slower as the queue lengths become larger. That
is, it may be more efficient to divert a packet through a larger but less congested
path. Let us hence assume that a node [ is holding a packet that should be
sent to a node j and define an effective distance df]ff from a neighboring node
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Figure 6.17: Schematic representation of the neighbour choice for a packet transmis-
sion. The neighbours of a given node can be at distance d—1, d or d+ 1 to the packet
target (where d is the distance from the actual packet position to the target). When
h =1 only those neighbours at d — 1 account for the delivery as only geodesics from
the node source to the node destination are to be considered. However, for h < 1, a
larger but less congested path could be the choice for the packet route.

1 of [ to the destination j as
df]ff = dij +¢, (6.33)

where d;; is the shortest path between node 7 and j and ¢; is the number of
processes (or packets) in the queue of i. The above definition, however, does
not allow us a direct comparison with the other standard procedures. It is
then convenient to redefine the effective distance as

51 = had; + hec | (6.34)

so that the limit h, = 0 contains the shortest path protocol. Furthermore,
without loss of generality, we take hy + h. = 1. This algorithm will be called
deterministic protocol henceforth. The procedure for 0 < hg < 1 combines
knowledge of the structural properties of the network and its current dynamical
state at a local scale, consequently, a trade-off associated to packets’ transit
times is naturally and dynamically incorporated (see figure 6.17).

Taking into account the above effective distance, di]}f, we first study a
similar situation to the one presented in the previous section. Starting from p
packets in the network, at each time step, the remaining packets are delivered
in such a way that the neighbour chosen when a packet towards j departs from
a node ¢ is that which minimizes d?}f‘

A first look at the dynamics shows that a protocol implemented in this way
is more efficient than taking into account only the shortest path criterion. In
fact, (Tyelqz) departs from the linear behavior previously observed and is well
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Figure 6.18: Dependency of (T,iaz) on the number of initial packets p in the deter-
ministic limit of the model (8 = 20) ran on top of an AS Internet map made up of
around 11000 nodes. Each point is an average over at least 200 realizations. The
standard protocol corresponds to the limit hy = 1. Note that although the tendency
of the curves is to cross the straight line as p increases, there is an optimal value of
hg such that the interception would take place in the limit of very heavy traffic.

below the straight line up to a high p. This behaviour clearly depends on hg,
since it is straightforward to realize that if hy is zero, the packets are diverted
following the less loaded node regardless of the path length which results in an
uncontrolled increase in the distance traveled by the packets from the sending
nodes when p grows.

The above algorithm can be further generalized by including a probabilistic
view. In other words, once we have determined the df]ff for all pairs (i,7), we
can allow for a stochastic choice of the paths. Hence, our second algorithm,
referred to as stochastic protocol considers a score function or “energy” H;; =
hqdij + (1 — hq)c; and that the probability II;; that a packet with destination
J is sent precisely through node 7 is given by,

. — exp (—BH;;)
T Y aevy exp (—BHy)

where ( is the inverse of the temperature. In the limit § — oo (at zero

(6.35)

temperature) we recover the deterministic protocol.

Figure 6.18 shows the dependency of (T}¢jqz) on the number of packets p
for several values of hy in the deterministic limit of the model, which we found
to be fulfilled for 8 = 20. A dynamics which does not take into account the
amount of traffic handled by the neighbors of a sender node —straight line in
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Figure 6.19: Dependency of (Tyejqz) on the number of packets, p, for a middle 8 =5
value. The network parameters are as in figure 6.18. In this case, the hy range in
which the stochastic strategy performs better than the standard one is reduced.

figure 6.18— performs worse than the one which integrates both ingredients.
However, this depends on both the specific weight of each metric in H;; and p.
In the regime where the traffic is not heavy (small p values) all curves are below
the shortest path protocol performance, but as the amount of traffic handled
by the network increases, the deterministic protocol starts performing worse
for a range of hy values. From the results, it seems that eventually, when the
traffic increases too much, the curves cross the straight line indicating that at
those limits the shortest path strategy is best suited. Note, however, that for
hq = 0.75 the convergence of the two algorithms occurs for a very heavy load.
Consequently, we can assert that there is an hg region where the combination of
the two ingredients gives rise to the best performance. On the other hand, the
existence of an optimal hy value distinct from zero can be understood by noting
that a mechanism lacking some degree of path length information between the
source and destination nodes of the packets performs badly because the packets
travel along too large paths that do not compensate the time they would loose
trapped in the queues of congested nodes.

The completely stochastic limit of the model corresponds to 3 = 0. The
performance of the protocol in this limit is however very bad. In fact, for an
infinite temperature, all neighboring nodes of a given sender have the same
probability to receive the message regardless either their congestion level or
their distance to the targets. Then, the dynamics becomes a random walk
process. With no topological information about what are the destinations of
the packets, they arrive to the receiver at longer times and the algorithm is the



6.2. Information transmission and Jamming 195

2.4
2.2
g
=
V
= 1.8
3
5
1.6

Figure 6.20: Phase diagram of the system’s dynamics. The network parameters are
as in figure 6.18. The number of processes is p = 500. Calculations for higher p show
that the minimum of (T4, ) is also attained around hy = 0.8 £ 0.1.

worst. For intermediate values of 3, we have an stochastic dynamics in which
topological and traffic information coexist with some degree of randomness
in the choice. This is the case depicted in figure 6.19 for the same values
of hg used in figure 6.18. As can be noted from the figure, the stochastic
protocol increases (Ty.eq) by at least one order of magnitude as compared to
the deterministic limit (§ = oo). Moreover, the shortest path routing seems
to be the best choice for a wider range of hy values, although hy = 0.75 still
performs better.

Figure 6.20 summarizes our results for different values of the control pa-
rameters § and hg. It turns out from the study of the whole phase diagram
that the best algorithm is one which includes information about both path
lengths and congestion at a local scale. Besides, the deterministic limit with
hq = 0.75 gives the best results for (Ty.cqz). It would be worth noticing at
this point that, although the figure 6.20 was obtained in not too heavy traffic
conditions, the results are consistent for larger values of p. Different tests al-
low us to conclude that the optimal value is hg = 0.8 = 0.1. In any case, this
confirms that it would be possible to device more elaborated protocols with
the aim of diminishing the time needed for a packet to spread through the
network. In light of the present results, such an strategy may be implemented
by also taking into account the amount of traffic handled by a local area of the

network.
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As suggested by figure 6.20, the best protocol is the deterministic one,
which, on the other hand, should be easier to implement in practice. The
microscopic dynamics of the routing process in this limit reveals that it is
desirable that the routing process incorporates some knowledge of the node’s
queue lengths. However, the contribution in the score function of the second
term in eq. (6.34) should not weigh in excess. For small values of hg, say 0.25,
the algorithm performs better that shortest path routing for moderate values
of p because the packets do not pass by the hubs of the network, which are
likely to be in the shortest path route to any node. Instead, they go around the
hubs and (T}.¢jqz) is smaller. If p is increased, the neighbors of the hubs also
get congested. This leads to a situation in which the packets around a hub get
trapped in its neighborhood, getting in and out from it, but without finding
their routes to their destinations. We will analyze in depth this situation below.

Jamming transitions at constant information flux

To analyze in more detail the performance of the congestion-aware protocols we
turn our attention to the more realistic situation where the network is subjected
to a constant flux of newly created packets. Starting from an unloaded network,
at each time step p new information packets are created. As before, the source
and destination of each packet are chosen at random among all the nodes and
each node sends only one packet at each time step, r = 1. As an appropriate
measure of the efficiency of the process, we monitor the aggregation of packets
in the network, given by the number of packets that have not reached their
destinations at each time step ¢, A(t). Figure 6.21 shows the results obtained
for different values of p and hy. As it can be seen, when the external driving
is applied at low rates (i.e., small p), both protocols allow for a stationary
state where A(t) > 0 is constant. In this state, the system is able to balance
the in-flow of packets with the flow of packets that reach their destinations.
This stationary state, where no macroscopic signs of congestion is observed,
corresponds, as already introduced in previous sections, to the so-called free
flow phase. The situation changes when the rate at which new packets are
introduced increases. As we will see below, there is a critical value p. beyond
which a congested phase shows up. Let us now note that for the shortest path
protocol (hg = 1) (figure 6.21.a, dotted line), when p > p., A(t) grows linearly
in time V¢ as expected from earlier works where this routing was implemented
[239]. On the contrary, for the traffic-aware algorithm, hy < 1, we observe that
A(t) grows slowly at short times and then becomes steeper as time goes on
with a constant slope (figure 6.21.c).

In order to characterize the phase transition from a free phase to a con-
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Figure 6.21: Total number of active packets as a function of time steps. Figures (a)
and (b) correspond to the shortest path protocol, hy = 1 while (c¢) and (d) have been
obtained for the traffic-aware routing with Ay = 0.85. In each figure, the continuous
line stand for subcritical values of p ((a) and (b) p = 3.0, (d) p = 8.0) and the dotted
line corresponds to p > p. ((a) and (b) p = 4.0, (c¢) and (d) p = 13.0).

gested one, we use the order parameter introduced in [245], eq. (6.31)

o i Al — AW

t—o0 D

where 7, the observation time, was typically fixed to 200 time steps. We
recall that the limit in the above expression is introduced only to ensure that
the system is not in a temporary regime, for our purpose it ranged from few
thousands to 10* time steps depending on the system behaviour. The order
parameter p hence measures the ratio between the outflow and the inflow of
packets during a time window 7. Then, p equals 1 when the congestion is
maximal (no packet reaches its destination) and 0 when an equilibrium is
established, i.e., in the stationary state.

For the shortest path routing the computation of p is simple because of
the linear behaviour observed for both the free-flow and the congested phases.
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Figure 6.22: (a) Time evolution
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around 0, whereas when p > p., the
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constant.

On the other hand, for the routing aware protocols at the congested phase we
have to be careful about the measures of p. The first transient regime observed
in figure 6.21.c can be regarded as a linear regime for the neighbourhood of
the corresponding value p.. In fact, as observed from figure 6.22.a for values
of p so that p. < p this transient regime could be of the order of several
thousands of time steps. If one monitorizes the evolution of p(t), figure 6.22.b,
this quasilinear behaviour is reflected as a nearly constant low values of p(t)
for initial times. This behaviour is interrupted by a suddenly growth of p(t)
to a larger value, where it remains constant signaling that the system have
reached its dynamical equilibrium. At first look it seems that, at the beginning,
the system is being charged by the unbalanced load of traffic and when the
dynamics reaches a critical number of active packets it explodes yielding to the
rapid increase of A(t) shown by the large slope of the final state. Although we
will analyze in more details this process below, it is important to stress here
that no matter how slow the charge rate of the transient regime is, the system
will experience the final dramatic increase in A(t). Obviously, as we approach
pe from the right, the time needed by the system to reach the final equilibrium
diverges and hence the estimation of the critical point p. is computationally
hard.

Figure 6.23 depicts the system’s phase diagram. The dynamics of the
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Figure 6.23: Jamming transitions as a function of p. The order parameter p is given
by eq. (6.31). Note that hy = 1 corresponds to the standard strategy in which traffic
awareness is absent. As soon as traffic conditions are taken into account, the jamming
transition is reminiscent of a first-order phase transition and the critical point shifts
rightward (see right inset).

system is characterized in both shortest path and congestion-aware protocols
by a critical point beyond which a macroscopic congestion arises. However,
as expected from the previous observations, there are two radically different
behaviors for the onset of traffic jams. In the standard protocol (hy = 1), the
critical point is small, p. >~ 3 and the jamming transition is reminiscent of a
second order phase transition. On the contrary, when hy # 1, the critical point
pe =~ 9 is distinctly larger than for hy = 1, but the appearance of a congested
phase turns out to be consistent with a first order phase transition, with a
sharp jump of p at the transition point. Moreover, the order of the transition
for the latter protocol is independent of hy provided that h # 1.

The two different types of transitions depending on whether or not traffic-
awareness is incorporated in the protocol at work, poses an interesting issue.
Which of the two protocols will be best suited to handle traffic? It depends
on the system. While for the standard protocol we get a smaller critical point,
the jammed phase does not appear suddenly. Hence, if we would like to have a
system in which traffic jams appear and grow smoothly, the standard algorithm
is the best choice. On the contrary, we could implement a sort of traffic-aware
protocol if we are interested in delaying the appearance of congestion, however
at the cost of a sudden jump to a highly jammed phase due to the lack of
previous warnings.
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Microscopic origin of the critical behaviour

In order to provide more insights into the nature of the phase transitions, we
now focus on the microscopic details of the system’s dynamics that lead to the
macroscopic results shown previously. We have inspected how the nodes get
congested. As both classes (shortest path and congestion-aware) of protocols
incorporate a shortest path delivery strategy, a suitable description can be
obtained by monitoring the number of active packets at each node as a function
of the betweenness of the nodes. As explained in section 5.1.2; the betweenness
or load of a node ¢ gives the total number of shortest paths among all pairs of
nodes in the network that pass through ¢ [161, 169, 249|. It is then a measure
of the centrality of a node in the network so that it becomes a relevant quantity
in traffic low modeling. In particular, for our system, AS representation of
the Internet, the betweenness of a node scales with its connectivity & [161].
Figure 6.24 clearly illustrates the distribution of congested vertices for the
two protocols analyzed. The shortest paths connecting the sources and the
destinations of any active packet always tend to visit first the more connected
nodes and then go down to the less connected ones. This is a consequence of
the hierarchy of the network and is called up-down strategy [161]. For hy = 1,
the protocol only works on a shortest path delivery basis. Then, the hubs
become congested early in the process causing the packets to get trapped in
a few nodes as shown in figure 6.24. When traffic conditions are taken into
account by the routing mechanisms, the same up-down strategy applies up to
the hubs. Then, instead of getting trapped in them, the packets circumvent
highly jammed nodes and the load is distributed to nodes other than the hubs,
provoking the aggregation of traffic in neighborhoods of overcrowded nodes.
As it is shown in the figure, when hy < 1 the congestion gets first localized
in the most central nodes, the hubs, and it is progressively distributed among
the rest of the nodes following the centrality hierarchy, from the most centrals
nodes to the less ones. At the long time limit, the congestion is spread through
the network instead of getting trapped in the hubs as happens for hy = 1.

It is possible to get deeper into what is going on in the system for hgy # 1
by analyzing the redistribution processes that make the packet follow the less
congested paths. Let us suppose that a node ¢ is holding a packet to be sent
to j through one of its k; neighbours. Among all the neighbours of 4, there is
one node with the lowest load c¢p;,. Now, assume the extreme situations in
which by going through a given neighbour [ the packet is one hop closer to its
destination, but taking the path for which the congestion is minimum, it is one
hop farther from j. Thus it follows that whenever the relation

2hg
1—hy

(6.36)

Cl — Cmin >



6.2. Information transmission and Jamming 201

hd:O.85 hd=1.0

Figure 6.24: Congestion levels as

35000+ N a function of time and nodes’ be-
tweenness. At each time step,

28000+ | )
the color-coded scale is normal-
21000 - _ ized by the number of packets ¢;
in the queue of the node with
14000 - - the largest congestion. Two rad-
ically distinct behaviors are ob-
7000 - tained for the shortest path rout-
. ing (hg =1, p =4 > p. = 3,

' [ ' right panel) and for the traffic-
11.3 13.3 15.3 17.3 17.3

aware protocol (hg = 0.85, p =
ln(B) 13 > p. =9, left panel).

0 02 04 06 08 L0

is verified, no packets (regardless of their destination) will be sent through .
This node [ is impenetrable for i. Then, if a node is impenetrable for all its
neighbors, we call it just impermeable, since it does not participate in traffic
delivery.

Following this picture, as congestion spreads throughout the network, the
number of impermeable nodes would increase up to a constant value since
the definition of impermeable nodes is relative to their neighbourhood (it is
impossible to obtain a network composed only by impermeable nodes). Then,
regardless the total load of the network (that increases with time), the number
of impermeable nodes remain nearly constant. Besides, its distribution would
change dynamically since an impermeable node does not admit new packets in
their queues but it does continue sending packets to their neighbours so that its
level of congestion relative to that of their neighbours can only decrease while
its neighbours receive its packets. Therefore a dynamical backbone made up

Figure 6.25: A node [ is called impermeable to
its neighbour ¢ when eq. (6.36) is fulfilled.
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Figure 6.26: Time dependence of the total number of packets in the system and
average size of the clusters formed by non impermeable nodes. Note that A(t) becomes
steeper just when the inflection of (G)/G . (t) changes. hg = 0.85 and p = 13. See
the text for further details.

of all nodes that are able to transmit the packets comes up. This picture is
similar to the percolation of a fluid through a porous media. Here, packets can
flow only through non impermeable nodes as a fluid can only flow through the
pore channels.

The existence of impermeable nodes provokes the appearance of both small
network components in the form of impenetrable regions, and clusters of al-
lowed paths. By identifying those impermeable nodes at some time ¢ follow-
ing the criterion (6.36), it is possible to find those dynamically unconnected
network components whose boundaries are composed by impermeable nodes.
Figure 6.26 depicts the time dependence of the average cluster size (normalized
by the largest cluster size) of allowed regions. Starting from ¢ = 0, as time
goes on, the total number of packets in the network increases and there is only
one cluster of the size of the network. When signs of congestion first appear,
(G)/Gmaz (t) decreases departing from unity signaling that impermeable nodes
start to appear. At longer times, traffic jams reach more nodes (see, figure 6.24,
for t > 21000) causing the congestion to be more distributed in the network
and hence the growth of the total amount of impermeable nodes. Finally, the
flow of packets in the network reaches the regime in which A(t) increases lin-
early in time and p(t) saturates to its stationary value (figure 6.22). In this
state, marked by an inflection point in the (G)/Gaz (t) curve beyond which
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Figure 6.27: Jamming transitions for the Gnutella, Barabasi-Albert and Erdds-Rényi
networks. The bottom right plot shows the estimation of the critical point, p., for
these topologies. Synthetic networks (ER and SF-BA) have the same size as the
Gnutella peer-to-peer network N = 711.

the average cluster size of allowed regions stabilizes, the system seems to have
self-organized the distribution of jammed nodes.

This self-organization phenomenon nicely explains why one can not go
smoothly from these results to those corresponding to the use of the short-
est path protocol by making hy — 1, as it can seem from eq. (6.34). The
discontinuity at hg = 1 is therefore due to the lack of alternative paths in the
standard protocol. Even for hy very close to 1, the system will self-organize
itself into a state in which congested nodes are distributed and not limited to
the very hubs of the network. The only dependence with hy is manifested in
the time needed for self-organization, that becomes very large and eventually
diverges when hg — 1.

The results found here are reproduced when using more general network
topologies as the traffic substrate. We have inspected the case of synthetic
networks like Erdos-Rényi and Barabasi-Albert graphs as well as other real
maps like the Gnutella peer-to-peer network (see figure 6.27). The results are
qualitative the same as those shown above: a little knowledge of the local
congestion levels enhances the performance of the information dynamics in
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what refers to the shift of the critical point p., but on the other hand, the
transition to the congested regime changes from a smooth to a sudden one due
to the dynamical fragmentation of the network explained above. Our results
demonstrate that whether or not a given protocol is best suited for traffic
handling depends on a delicate trade-off between the system’s performance
and traffic capabilities (how large p. is) and how congestion arises (smoothly
or suddenly).

6.3 Conclusions

We have explored in section 6.1 and 6.2 two propagation processes in complex
networks, namely: epidemic spreading and information routing. Assuming
that the networked substrates are scale-free, several features have been stud-
ied in detail. As we introduced at the beginning of this second part of the
Thesis, the main purpose concerning the study of network dynamics here, is
to know how the heterogeneous topology and other structural properties affect
the development and efficiency of the dynamics.

The first set of results, explained in section 6.1, concerns the immunization
strategy of complex heterogeneous networks. Taken into account that hubs
play a central role in these kind of processes it is clear that the best choice for
stopping the epidemic spreading is to confer immunity to these most connected
nodes. However, taking into account that knowledge of network structure is not
complete in most situations, we have proposed a new immunization strategy
based on a heuristic solution to the covering problem. This new immuniza-
tion scheme is neither local nor global, and hence, we have explored several
situations corresponding to different knowledge horizons (from local to global
knowledge). The immunization strategy, based on the covering solution, takes
advantage of the heterogeneous structure of networks and it has been shown
to perform better than all previous methods irrespective of the degree of lo-
cal knowledge, except for the case of targeted immunization. We have also
shown that the solution found for the immune set of nodes, i.e. the covering
solution, and therefore the output of a SIR epidemics strongly depend on the
nature of the degree-degree correlations of the network. In this sense, it is
worth mentioning that the traditional belief that by targeting hubs one can ef-
ficiently solve most problems on networks with a power-law degree distribution
is not completely true if the degree-degree correlations are assortative, where
a distributed covering-based immunization is desirable.

We have also analyzed the problem of information routing in complex net-
works in section 6.2. We have studied different strategies for traffic delivery
in complex heterogeneous networks. The results showed that the performance
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of the standard approach, based on routing through minimal distance (be-
tween sender and recipient) paths, is sensitive to local topological changes.
Specifically, the clustering properties may play a key role in message delivery.
Besides, we have studied alternative strategies to the shortest path routing
policy. In particular, we have studied algorithms which integrate topological
and traffic information. This congestion-aware algorithms have been shown to
perform better that the standard protocol when relaxation processes occur. At
the same time, we have characterized the jamming transitions that take place
when a constant flux of information is introduced in the network. The results
have shown that when traffic awareness is incorporated into the routing proto-
col, new cooperative effects arise and the jamming scenario is totally changed.
The use of congestion-aware routing is seen to imply a better performance,
for what concerns the onset of jamming, i.e the network allows a higher load
of data traffic at the free flow phase. On the contrary, when jamming occur
there is a sudden increase of the congestion levels and an abrupt transition is
observed in contrast to the well known second order phase transition found for
the standard shortest path routing.

The two main strategies introduced in this second part of the Thesis,
covering-based immunization and congestion-aware routing, are oriented to
take advantage of the scale-free nature of the substrates where the associated
dynamics, epidemic spreading and information traffic, take place. In the forth-
coming part we will care about the two way relation between structure and
dynamics.
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Nonlinear Dynamics of
Complex Networks






Presentation of Part III

In the two preceeding parts of the Thesis we have dealt separately with
both dynamical and structural complexity. In part I we have been concerned
with dynamical systems coupled in a simple regular way conforming perfect
nonlinear lattices. These geometries of the arrays of dynamical systems are,
in most cases, realistic when concerning applications in fields as solid state
physics, optics, etc... and they are currently the subject of a considerable
multidisplinary interest [23]. However, there are yet another kind of prob-
lems, most of them associated with biological systems, where these simplistic
assumptions for the topology of interactions are not valid and, therefore, struc-
tural complexity is linked to nonlinear dynamics.

Although our analytical tendency is to separate these two sources of com-
plication, an unitary approach is needed in order to explain how structural
and dynamical complexity influence each other [250]. This direction of study
is deeply related with the growing interest in the understanding of the many
aspects of the correlation between Structure and Function in systems made up
of discretely many nonlinearly interacting components. The main assumption
behind these studies is that the structure of the network of interactions is the
result of a selective process that yields an advantageous topology for the system
functioning. The common scale-free character found for many real networks
support these speculations and many efforts are currently being made in order
to find dynamically based optimization principles for modeling network growth
and evolution.

The most interesting problems on the relation between structure and func-
tion arise in the context of biological systems such as biomolecular (protein-
protein interaction, gene regulation, cell metabolism), cortical brain and eco-
logical (trophic networks, mutualism) networks. There exist many dynamical
models accounting for the interactions among the elements of such systems
and, at the same time, the advances in experimental techniques allow for hav-
ing the topology of these interactions mapped into a large amount of biological
networks. The scientific basis are thus well established and the research is
now being oriented to the study of the mutual influence between dynamics
and topology, attracting the attention of scientist from diverse fields to this
interesting problem.

The most relevant results would eventually come from those mentioned
network models that, instead of defining network growth in terms of structural
properties, incorporate the efficiency of the dynamics (function) of the network
as the leading principle for network evolution. However, most of studies up



210

to now have concentrated in analyzing how structure affects the emergence
of dynamical effects like synchronization patterns, self-sustained dynamical
activity, etc... These first approaches to the problem provide useful insights
for more ambitious projects where optimization of dynamical properties like
synchronizability, dynamical adaptability and stability, etc... will be explicitly
employed in network design.

Our main concern in this last part of the Thesis is on the line of these
first approaches to the Structure-Function relation problem. We will use the
concepts applied in the two former parts to study the dynamical patterns that
appear when two different dynamical systems are placed on top of complex
geometries. We will characterize both dynamically and structurally these pat-
terns in order to unveil the interplay between topology and dynamics. These
patterns are seen as the product of the two coupled sources of complexity and,
as we will see, lead to the emergence of new properties that cannot be obtained
from a separate study of dynamical and structural complexity.

In chapter 7 we will study a class of complex networks where there exists a
competition of inhibitory and activatory interactions between elements. These
kind of systems are related with gene regulatory networks and metabolic re-
actions chains. The description of the system functioning is performed via a
Michaelis-Menten equation, widely used for describing the reaction kinetics of
catalytic processes. We will first study in detail the phase portrait of the sys-
tem as a function of the ratio between activatory and inhibitory interactions
of the network and characterize the diverse bifurcations found. This dynami-
cal characterization of the system constitutes a generalization of those studies
performed in random Boolean networks. A second purpose of this study is
to characterize topologically the substructures of self-sustained dynamics that
are observed. In this regard, we analyze the emergent dynamical clusters by
means of the statistical measures introduced in the second part of the Thesis,
chapter 5, and observe that new structural properties absent in the network
substrate show up.

Chapter 8 is devoted to the study of synchronization in networks of Ku-
ramoto phase oscillators. Here we will characterize the synchronization transi-
tion in several network topologies. In particular, we will describe the evolution
of the system towards synchronization paying attention to the emergence of
dynamically coherent clusters of nodes as the coupling between network nodes
is increased. These studies aim to highlight that the route to synchronization
depends strongly on the underlying topology, not only for what concerns the
quantitative values for the onset of synchronization, but in the qualitatively
different organizational principles that lead to the formation of a macroscopic
synchronized cluster.
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These two structural studies of the dynamical patterns, that emerge when
coupling dynamical systems in a networked substrate, will help to understand
what kind of topologies are best fitted for systems function.






Chapter 7

Activatory-Inhibitory
interactions in Complex
Networks

How would we express in terms of the statistical theory the marvelous faculty of
a living organism, by which it delays the decay into thermodynamical equilibrium
(death)?... the device by which an organism maintains itself stationary at o fairly
high level of orderliness... really consists in continually sucking orderliness from its

environment.

— Erwin Schrédinger in What is life? The physical aspect of theliving cell [251].

How does the interplay between complex structures and nonlinear dynam-
ics may shed new light on what is going on at the cellular and molecular levels
of organization of biological systems? As in other natural systems, on one
hand, scientists have begun to look for patterns of interactions in biological
systems. The idea behind this approach is that we can not completely under-
stand the functioning of the cell by studying its components separately. The
next step consists of taking into account the dynamics governing the unraveled
interactions. This is certainly not an easy task as one has to deal with two
sources of complexity: one coming from the unraveled structural patterns and
the other from a dynamics in which analytical insights are difficult to take.

In this chapter we address the problem of networks of agents that regulate
their activity by means of activatory and inhibitory interactions. This kind
of systems constitute the coarse grained description of regulatory networks of
genes at the cellular level. We will first describe in section 7.1 the current
trends in modeling biological networks with special interest in gene networks.
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The results obtained when a simple case of this class of systems is analyzed
are described in section 7.2.

7.1 Modeling biological networks

In 1999, Hartwell and collaborators published an influential paper discussing
the new challenges of modern biology [252]. The authors pointed out that an
issue of utmost importance is to develop a general framework in which biologi-
cal functions could be understood as part of a complex modular organization of
molecules or cell’s constituents. In other words, modern biology should explain
not only the functioning of individual cellular components, but also how these
components are interconnected through a complex web of interactions leading
to the function of a living cell. It is then natural to ask what these biologi-
cal networks at the cell organization level look like, and how their structure
couples to the dynamics.

Cells are life’s fundamental units of structure and function. It was expected
that, once the complete instructions encoded in DNA would have been inter-
preted, one could map a gene (the basic information unit in the DNA) into
a specific activity or function, with all the consequent potential applications
such as targeted drug development [253]. On the contrary, although today the
complete knowledge on the genes of several organisms is available, yet the rela-
tionship between blueprints in DNA and functional activities of the cell is not
fully understood. For instance, the p53 gene and protein (having the function
of controlling cell’s life and death) are known as tumor-suppressor, since it was
found that the p53 protein does not function correctly in most human cancers.
However, despite the many studies performed on p53 gene and protein, the
way on how effectively suppressing the growth of cancer cells is missing at a
genetic level. Recently, it has been proposed that the understanding of such
cancer cell growth mechanism would be gathered not only from the study of
the pb3 gene and protein, but taking into account the whole network inter-
acting with them [254]|. That is, the function of the gene should be analyzed
through a network in which the gene participates. Similarly to p53 network
case, several other observations prove that some functional activities of the cell
emerge from interactions between different cell’s components through complex
webs. Moreover, it is expected that the large-scale network approach may lead
to new insights on various longstanding questions on life, such as robustness to
external perturbations, adaptation to external circumstances, and even hidden
underlying design principles of evolution.

In what follows, we discuss the last advances in the characterization of some
biological networks from two points of view: their structural organization and
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their functioning. The main point here is how to uncover the relationship
between the two sources of complexity intimately linked (dynamics and struc-
ture) as both play a key role in the functioning of the system. We stress here
that our main intention is to provide a brief overview of the current state in
the field, and that many works may be overlooked due to space constraints.
We invite the interested reader to follow the specialized literature.

7.1.1 Structure

In the second part of the Thesis we introduced a variety of types of networks
that have been analyzed in order to unveil their complex topologies. Among
these different network classes biological networks are of special interest since
they have emerged following a natural evolving process. A plenty of cellular
and molecular networks have been unraveled in the last several years. We here
refer to those that have been more used in subsequent studies or because they
are considered to be essential for the cell’s life.

The first of these complex biological networks is that formed by metabolic
reactions: the metabolic network. Jeong et al have considered the metabolic
reactions of 43 different organisms, representing the three domains of life, and
have constructed directed graphs whose nodes are the metabolites and edges
represent biochemical reactions [146]. A node receives an incoming edge when
the corresponding metabolite is produced, and receives an outgoing edge when
the metabolite is educed. Enzymes are not included in the graph. The total
number of connections (edges) of a node is called the degree of the node. If the
edges have a direction (incident to or going out from the node), the degree of a
node is divided in in-degree and out-degree, respectively. For all investigated
organisms, the resulting graphs for metabolic reactions exhibit scale-free prop-
erties for both incoming and outgoing degree distributions similarly to many
other real world networks.

The above-mentioned property was found universally, irrespective of me-
tabolic pathway databases and of the methods used to construct graphs from
biochemical reactions. For example, instead of assuming virtual intermediate
complexes, Wagner and Fell built up two networks (the metabolite and the
reaction networks) from the metabolic pathways of Escherichia coli |255]. The
metabolite network consists of nodes representing metabolites and bidirectional
links between educt and product of a metabolic reaction. On the other hand,
the reaction network is the network where the nodes correspond to metabolic
reactions and two nodes are linked when the two reactions share a metabolite.
In metabolite networks, scale-free properties are detected, while the reaction
network does not show power-law degree distributions. Small-world properties



216 Chapter 7. Activatory-Inhibitory interactions in Networks

and relatively high clustering (i.e, how probable it is that two nodes with a
common neighbor are also connected together) are found in both networks.
Other studies with different ways of obtaining graphs show almost identical
results [256 259].

Another class of well-studied cellular networks is that of protein-protein and
protein-gene interaction networks. This is due to the increasing availability
of data sets and new experimental techniques that allows a more detailed
study of the interactions at the cellular level. On the other hand, interactions
among proteins have a crucial role in several functional activities, such as
signal transduction. According to the demand of understanding the protein
interaction map, several high-throughput experiments have been performed.
They provide evidence of a partial interaction map between proteins. In the
graph representation, a node corresponds to a protein and two proteins are
linked when they physically interact. The least two-hybrid screen method has
been applied for revealing protein-protein interactions by Uetz et al [260] and
by Ito et al [261]. Similarly to metabolic networks, scale-free properties, high-
clustering and small-world properties have been found. Besides, the studies
performed have allowed to address other questions such as the robustness of
these networks against random and directed failures [262]. It should be noticed
that the databases used in the analysis show very small overlap, while the
individual networks obtained from each database show a very similar structure.
In particular, it has been argued that the biological functional organization and
the spatial cellular organization are correlated significantly with the topology of
the network, by comparing the connectivity structure with that of randomized
networks.

Finally, we note that networks constructed from gene expression data are
currently under exploration [263, 264]. For instance, Agrawal [264] have stud-
ied networks from gene expression of cancer data. By analyzing individual gene
expression level at different samples, networks in which the degree distribution
of the nodes shows a power-law behavior in the tails with an exponent 1 can be
constructed. Stuart et al have further shown that co-expressed gene networks
of humans, flies, worms, and yeast have scale-free properties [263].

In summary, biological networks seems to share many topological prop-
erties. What do these properties mean in a biological system? And what
basic principles in biology give rise to such universal features? Many steps
toward the answers to these questions have been certainly given in the last
several years. However, the majority of the issues addressed are based mainly
on analyzing the structure of these networks without taking into account their
dynamics, i.e., the fact that the structure correlates with the functioning of the
underlying system. For instance, from a topological point of view, it has been
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argued that the nodes with a high degree (the hubs, those contributing to the
tail of the degree distribution) are critical for the robustness of the system to
intentional removal of them. On the other hand, the hubs have been shown to
radically change the behaviour of the system in front of several dynamical pro-
cesses such as epidemic spreading [163, 216|. It is yet to see whether or not the
same results hold when nonlinear dynamics coexists with complex topological
structure. We next describe two promising approaches in this direction.

7.1.2 Dynamics

During the last several years a wealth of experimental data, obtained with
technological advances such as cDNA microarrays, have allowed the dynami-
cal characterization of several biological processes both on a genome-wide and
on a multi-gene scales and with fine time resolution. From a theoretical side,
compelling models on the dynamics governing metabolic and genetic processes
are hard to build as these biological phenomena are highly nonlinear and with
many degrees of freedom. However, scientists have certainly advanced towards
a comprehensive global understanding of, for instance, gene regulation through
genetic engineering that require a thorough understanding of the general prin-
ciples that can guide the design process. It is impossible here to provide an
exhaustive review of the subject. However, it is important to provide at least
some ideas about the research lines that relate the structure and the function
of biological systems.

Concepts such as operon, requlator gene and transcriptional repression were
first introduced in the literature by Jacob and Monod [265]. Their model has
served as the basis for more elaborated models as different regulatory mech-
anisms have been discovered [266]. Recent theoretical studies capitalize on
these kind of models in order to elucidate what are the system constituents,
their properties and how they interact in order to give rise to the collective be-
havior of the system. The final goal is to understand the relationship between
structure and function as determined by the biological environment. In this
sense, different gene circuit designs should be compared to determine which of
them confers selective advantage in an ecological context and thus one should
be able to advance what the functional consequences of different designs are.
This is usually done by exploring the parameter space and looking for perfor-
mance criteria such as the ability of a system to return to a steady state after
a perturbation (called stability) or its responsiveness, that can be measured as
the recovery time of the system after an environmental change (a change in an
independent variable).

The results obtained for elementary gene circuits certainly provide answers
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to intriguing questions about how gene circuits could be organized, but at the
same time pose new ones. With the recent advances in the characterization
of the structure of gene networks, it is clear that genome-wide approaches
will allow to discover new higher-order patterns. Therefore, more efforts in
modeling the dynamics of increasingly complex gene circuits are expected in
the near future. Some steps in this direction have been given.

The basic process of single gene expression is depicted in figure 7.1. The
chain reaction starts when a protein binds to a particular DNA region. The
binded protein is known as transcription factor and the set of DNA sites to
which the transcription factor is attached is called promoter gene. The binding
stage yields to the activation of a given gene manifested by the transcription
of the genetic information located at this gene into messenger RNA. Finally
the mRNA is translated into a protein at the ribosomes. The protein product
of this reaction chain can be either used as a transcription factor for starting
another reaction or modified for taking part or protein complexes like enzymes
involved in cellular physiology. Since the resulting protein is a direct product
of the activated gene one can say that a given gene regulates the activity of
another one when the product of the former act as the transcription factor
of the latter. In this case the regulation is seen produce an activating effect
but proteins products can as well act as repressors or inhibitors of other gene
activity. We will now focus in the modeling of these interaction dynamics
between different genes and neglect more sophisticated details about single
gene expression.

Boolean modeling of regulatory networks

The first attempt to describe the functioning of genetic regulatory networks was
performed by S.A. Kauffman [267]. This pioneering work settled the basis for
modeling the complex nature of dynamics and interactions between genes and
their products. In his work, each gene, ¢, and its product, I, were abstracted
as a node of a random network having a fixed number, k, of neighbors that
regulate its activity level, g;. This level of activation can be viewed as the
concentration of the transcribed mRNA and/or the protein I encoded. The
boolean character of the formulation done by Kauffman implies a qualitative
description of whether a gene is activated (g; = 1) or not (g; = 0). Besides,
time is considered as a discrete variable so that the dynamical behavior of the
gene ensemble is described by the temporal series of their activity levels. At
each time step the activity level of a single gene is updated considering the
state of its k neighbors

gi(t+7) = fi(gjl(t)"“’gjk(t)) . (71)
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Figure 7.1: Stages of the gene expression. The basic ingredients are the genetic seg-
ments in the DNA and proteins. At the first stage a specific protein binds to a part
of the DNA sequence called the promoter, the protein is known as the transcrip-
tion factor since it starts the transcription of the genetic information encoded at the
specific gene that the complex promoter + transcription factor regulates. After the
genetic information is transcribed into the messenger RNA polymerase it is subse-
quently translated into proteins at the ribosomes. The protein product that emerges
after this process can act either as another transcription factor for the expression of
other genes or as a repressor of other genes activity stopping the creation of their
protein products. Another possibility is that this protein product participates in the
physiological processes of the cell and form protein complexes as enzymes.

This is performed by means of booleans functions, f;, that make use of the
basic “AND”, “OR” and “NOT” logical functions so that the results can be
either 1 if the statement is true or 0 if it is false. The construction of each
boolean function depends on the particular interactions that a gene shares with
its regulators and has to be carefully analyzed with the help of biochemical
data. On the other hand, the work by Kauffman was performed from a general
point of view and considered a random assignment of the boolean functions
that governs the dynamical evolution of the gene’s activity. The main result of
the work is the existence of a phase transition on the number and length of the
dynamical attractors. In particular, for &k > 2 the number of cycles scales with
the number of genes, N, and its length scales exponentially with N. On the
other hand, for the case k = 2 these two quantities scale as v/ N. The above
findings are biologically relevant if one considers that different genetic dynamics
can be regarded as biologically differentiate cells. Taking into account that the
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cell diversity of a living organism scales approximately with the square root
of the genetic population Kauffman suggested that gene regulatory networks
should operate just on the border of the dynamically ordered region.

The above findings represented the starting point of a lot of research on
the so-called subject of “Kauffman networks” during the last 25 years. These
works mainly focus on the search of a full description of the dynamically differ-
ent regions as well as the characterization of the phase transition (recent work
on the matter can be found in [268 273]). On the other hand, “Kauffman net-
works” have served as a framework for performing a coarse-grained description
of real gene regulatory networks. The availability of real regulatory networks
inferred from DNA microarray data joined with the easy implementation and
management of the boolean dynamics provides a useful tool for understanding
the interplay between the topology and the function of biological networks.

The use of boolean dynamics to characterize real genetic regulatory net-
works has been recently applied to the case of the segment polarity genes in
the Drosophila Melanogaster [274]. In this case the whole map of interactions
between genes is known and Boolean dynamics is seen to reproduce the pat-
terns of gene expression that appear in the wild type. Besides, it has been
tested when mutations are present confirming the validity of the model. The
application of this method can help to determine the effects of new mutations
and constitute a test for the question of whether the topological features of
the interaction network or the kinetic details play the key role in the function-
ing of biological networks. The success of the use of Boolean modeling points
out that it is the former which is the relevant ingredient. Another recent ap-
plication of Boolean dynamics to a real gene circuit is found in [275] where
the yeast transcriptional network is considered. In this case the point of view
is drastically different because neither the nature of the interactions between
genes nor any dynamical state of the system is available. The starting point
is simply a set of connected genes and the authors apply a Boolean modeling
of the interactions for determining what set of (Boolean) interaction rules lead
to a stable dynamics of the whole system. The authors also study the effect of
rewiring links of the network and conclude that dynamical states on top of the
original network is more stable than on the perturbed ones. The above two
examples show how the coarse-grained Boolean modeling can help to analyze
the large amount of available experimental data and answer the question on
where the biological stability observed has its roots.

Finally, let us remark that the boolean modeling can be reformulated in
order to incorporate realistic features of real regulatory networks. Perhaps,
the most important ingredient is to reproduce the effects of noise (which is a
substantial characteristic of a biological system). This is usually incorporated
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on the form of a non synchronous update rule, assigning a time delay to each
variable of the Boolean functions, f;. Another interesting extension of the
formulation is considering multi-levels for the gene activity so that the model
incorporates some quantitative description on how much the gene is activated.

Continuous time modeling of dynamics

Now we turn our attention to the ingredients of the continuous time modeling
of genetic regulation. We will address three important issues on this matter,
namely: (i) the saturable character of the dynamics, (ii) the advances per-
formed when synthetic regulatory networks are used to understand the kinetic
of the processes and finally (7i) the application of the knowledge gained with
these predesigned networks when real ones are analyzed.

Saturable Dynamics.- The continuous time formulation of a gene response
to the activity of its regulating genes is made incorporating the saturable char-
acter. There is a wide variety of situations in which the system response to an
external action saturates. Perhaps the most familiar example of saturable be-
havior known to physicists is the adsorption of gas molecules on a solid surface:
At thermodynamical equilibrium, the fraction (coverage ratio) 6 of surface in-
terstitials occupied by adsorbed molecules depends on the gas pressure P as

[276)]
P

f=—
R(T)+ P’

where the temperature-dependent constant Py(T') is the pressure value at which

(7.2)

the coverage ratio reaches half of its possible maximal value § = 1. While for
small values of P, compared to Py(T"), 6 increases linearly with P, for values
of the pressure larger than Py(T") the coverage ratio becomes insensitive to
pressure variations. Saturable behaviours of this type [277] (and of a more
general form; see below) have been introduced by Drossel and McKane in [157]
for the modeling of interactions among species in ecological systems, where
(most notably) they effectively provide robustness to the limit-cycle behaviour
often observed in these systems [278, 279]. In the realm of Social Sciences,
saturated response functions have been also used to model some type of social
interactions like e.g. the effects of community investments in police pressure
and/or educational programs on the street-gang growth phenomena [279].

Biological reaction rates are often saturable; while at small concentrations
of a new chemical introduced in a cell, this responds sensitively, the response
should not keep growing indefinitely as the new chemical concentration grows.
The archetypal example of saturation in biological systems is the Michaelis-
Menten equation [280, 281| governing the concentration evolution of a product
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catalyzed from a substrate by an enzyme which binds to it. If x and y denote
the concentrations of product and substrate respectively, then the reaction rate
is given by

d_.il’_ Vinazy
dt — Ky +vy

where K, is called the Michaelis constant and V4 is the value at which the

(7.3)

rate saturates for high substrate concentrations. This saturation behaviour
can be understood from the usual chemical kinetics (law of mass-action) in
an intuitive way: when the enzyme molecules are mostly bound to substrate
molecules, adding more substrate cannot speed up the reaction [282]. If n,
instead of only one, substrate molecules bind to the enzyme, the reaction rate
takes a more general functional form of saturation, often called Hill equation

d_iL‘ o Vinazy"
dt — Ky +y"

showing a sudden increase of the reaction rate towards saturation around y =

(7.4)

K. The Hill parameter n often takes on non-integer values. Both Michaelis-
Menten and Hill equations are often used in models of biological reactions, even
when the explicit mechanisms generating them are unknown in many cases.

Synthetic genetic networks.- In cells, the proteins, RNA and DNA form a
complex network of interacting chemical reactions governing all cellular func-
tional activities like metabolism, response to stimuli, reproduction, ... While
the understanding of the structure of these networks is growing rapidly, the
current understanding of their dynamics is still rather limited. In this regard,
an interesting body of research is currently addressed to synthetic genetic net-
works, which offer an alternative approach aimed at providing a controlled test
bed for the detailed characterization of some isolated functions of natural gene
networks, and also pave the way to engineering of new cellular behaviour.

An example of synthetic gene regulatory network, termed the “repressila-
tor”, is becoming one of the best studied model systems of this kind. The
repressilator is a network of three genes, whose products (proteins) inhibit the
transcription of each other in a cyclic way; they were added to the bacterium
E. coli, so periodically inducing the synthesis of green fluorescent protein as a
readout of the network state [283]. The authors of the work first argue that
the represilator can show temporal fluctuations in the concentration of each
of its components, by analyzing a system of six ODE’s (which, in turn, were
obtained by a process of integration-out or coarse-grain away of the promoter
states involved in the regulation, and rescaling of the variables) modeling the
network. If p; (i = 1,2,3) denote the three repressor-protein concentrations (in
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Figure 7.2: Schematic representation of
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units of the Michaelis constant Kjs), and m; their corresponding mRNA con-
centrations (appropriately rescaled), the repressilator equations are (assuming

the symmetrical case in which all three repressors are identical except for their
DNA-binding specificities):

dmi

(07
di = —mi+m+ao (75)
dp;
e Ty 7.6
- B(ps —mi) (7.6)

where i = 1,2,3 and j = 3,1,2; ap (o + «ap) is the number of protein copies
produced from a given promoter type in the presence (absence) of saturating
amounts of repressor, [ is the ratio of the protein decay rate to the mRNA
decay rate, and time is rescaled in units of the mRNA lifetime. This system of
equations has a unique steady state which can be stable or unstable depending
on the parameter values. In the unstable region of parameter space, the three
protein concentrations fluctuate periodically. Experiments show temporal os-
cillations of fluorescence, which were checked to be due to the repressilator.
Though admittedly oversimplified, the model of ODE’s guided the experimen-
tal design, for it served to identify possible classes of dynamic behaviour and
to determine which experimental parameters should be adjusted in order to
obtain sustained oscillations.

Not surprisingly, the repressilator called attention from experts on (biolog-
ical) synchronization, for it offers good prospectives for further insights into
the nature of biological rythms, whose mechanisms remain to be understood.
In this respect, in reference [284| the authors propose a simple modular addi-
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tion (of two proteins) to the repressilator original design, which allows for a
mechanism of coupling between cells containing the repressilator networks.

Modules.- As seen in the previous subsection, even a very small gene net-
work, like the repressilator, requires some simplifying assumptions for an anal-
ysis of its dynamic behaviour in terms of ordinary differential equations. With
large networks involving thousands of regulatory genes, this approach would
require a huge number of differential equations and, what is even more prob-
lematic, an exploding number of dimensions of the parameter space (decay
rates, production rates, interaction strengths, etc. ). Thus an important issue
concerns the right level of description when constructing quantitative models
of large genetic networks [285].

In this regard, several works (e.g. [286-288|) have focused on the identifica-
tion of general building blocks (motifs) in genetic networks, showing robust or
“reliable” behaviour. These include small modules of a few genes, such as au-
toregulatory excitatory feedback loops, inhibitory feedback loops, feed-forward
loops and dual positive-feedback loops, which represent different kinds of ro-
bust switching elements, whose occurrence as subgraphs in real networks is
significantly higher than in their randomized versions. These works provide
support to discrete models in which genes are modeled as switch like dynamic
elements that are either “on” or “off”, of the Boolean type described in the
previous section, and point toward strong correlations between structural and
functional properties of genetic regulation networks.

The robustness of slightly larger modules, like the segment polarity genes
of the fruit fly Drosophila (a subgraph of the segment determination network,
responsible for the embryonic development of the insect body segments), has
been convincingly tested with a realistic dynamical model [289] supporting
the view that segmentation is modular, with each module autonomously ex-
pressing a characteristic intrinsic behaviour in response to transient stimuli.
A connectionist model for the segment determination system of Drosophila,
including cell-cell interaction via one-dimensional diffusion [290, 291| has been
thoroughly characterized (along with its continuum limit (PDE) equations
[292]). These generalized reaction-diffusion models inspired further work in
[157, 293, 294| which identified minimal gene networks associated to different
segmentation patterns; also, extensive computer simulation of randomly gen-
erated networks showed that combinations of spatial patterns can be mapped
into combinations of the basic modules.

The resistance of modules to variations (proxy for mutations of small effect)
in the kinetic constants and various parameters that govern its dynamical be-
haviour, may suggest that evolution could rearrange inputs to modules without
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changing their intrinsic behaviour, or as conjectured in [157, 293, 294], that
the target of selection would operate not only on single-gene level structures,
but also on the available structures in the high-dimensional parameter space
of the model equations.

In summary, it is a major challenge the discovery of how biological entities
interact to perform specific biological processes and tasks, as well as how their
functioning is so robust under variations of internal and external parameters.
Such an achievement is only possible by merging the new knowledge gained
from network analysis with nonlinear dynamics models relevant in biological
processes such as the genetic regulation. This is what is driving current theo-
retical efforts, in which new mathematical models and methods borrowed from
nonlinear dynamics are being studied on top of the real architecture of biolog-
ical networks. Besides, the confluent interest of several scientific disciplines in
the many aspects of the problem of Structure-Function correlations in systems
made up of discretely many nonlinearly interacting components (of which gene
regulatory networks are but a particular example), reccomends to pay some at-
tention to general abstract models. These models should be both conceptually
simple and universal in their perceptions.

In next section we will consider the essential ingredients of both topology
and dynamics of gene regulatory network, namely saturability of the interac-
tions and scale-free character of the patterns of interconnections among con-
stituents. As a result, we face a problem where nodes in a scale-free network
self-regulate their dynamics through either activatory or inhibitory interactions
in a fashion that resembles the regulation among genes in cells.

7.2 Regulatory dynamics in scale-free networks

The model that we analyze in this section tries to capture the general in-
gredients of the entangled topological and dynamical complexity of genetic
regulatory networks introduced in the previous section. For this we employ
a relevant kind of nonlinear dynamics: Activation/Inhibition (AI) competing
interactions with a “saturated response” rule for the rate of activation (see
figure 7.3) of Michaelis-Menten type (introduced previously in section 7.1.2).
Besides, the interacting units (genes) sit on a lattice which is both small-world
and scale-free. For this we use the Barabasi- Albert network (section 5.2.3).
We have to remark that neither real genetic networks are explored nor a de-
tailed description of the nonlinear A /I dynamics is incorporated. However,
this coarse-grained representation of genetic regulatory networks presents fea-
tures that are revealed when dynamics and topology from experimental data



226 Chapter 7. Activatory-Inhibitory interactions in Networks

are analyzed.

We will first present in detail the Al dynamics in section 7.2.1. Here, some
basic general features of the model are discussed, namely the network fragmen-
tation in subclusters (or islands) of collective dynamics, and the generic types
of asymptotic behaviours coexisting in the phase space of collective dynamics
(steady, periodic and chaotic states) as well as the observed bifurcations in
phase portrait upon parameter variations. These basic consequences of the Al
competition on the complex network are prevalent for a range of values of the
Al ratio as we will see below. Finally, the bifurcations found are explained in
terms of the Floquet analysis of the solutions.

Once the main dynamical regimes of the model are characterized we will
turn our attention on the statistical characterization of both the dynamical be-
haviours observed and the structural characterization of the dynamical islands
in section 7.2.2. We perform an extensive exploration of the parameter space,
employing different initial conditions and substrate network realizations, in
order to find the conditions for the existence of chaotic and periodic behav-
ior as well as to fully characterize the main topological characteristics of the
dynamical islands.

We will end this study in section 7.2.3 looking for those substructures of the
dynamical islands that are relevant for the dynamical evolution of the system.

7.2.1 The model: basic dynamical features

As stated above, we introduce here a model of Activatory/Inhibitory interac-
tions regulating the activity g;(t) (¢ = 1,..,N), of N constituents (e.g. genes,
agents, substrates), with IV generally being a large number. The real functions
of time g;(t) are each one attached to a node of a graph with adjacency matrix
Cij (N x N). Then, in terms of the dynamics, the matrix element is non-zero,
Ci; # 0, only if the rate of variation of the i-th node activity, g;(¢), depends
on the activity g; of the j-th node (interaction ¢ « j). Different realizations
of the Cj; matrix are constructed using the method of Barabasi and Albert
(section 5.2.3) for m = 3 ({(k) = 6) in order to have a scale-free network with
exponent v = 3 (P(k) ~ k™3).

The interaction (i < j) can be either activatory (excitatory) or inhibitory;
correspondingly we define the interaction matrix element W;; to be +1 or —1,
respectively (and Wj; = 0 whenever C;; = 0), and call p the fraction, among
non-zero elements, of negative signs (note that while Cj; is a symmetric matrix,
W;j is not in general). Moreover, the sign distribution of elements is taken
uniform in the set of (approx. (k)NN/2) links of the network realization.
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The dynamics of the nodes activity vector G(t) = {g;(¢t)} (with i =
1,...,N) that we consider is such that only in the presence of excitatory neigh-
bours activity could g; possibly be non null, otherwise g; decays to zero with
an exponential rate:

dG(t)

o = ~G(t) + aF [WG(t)], (7.7)

where F is a nonlinear vector function whose argument is the product of the
interaction matrix W and the activity vector G, and « (> 0) accounts for the
strength of the interaction. The function F is a saturated response function

(see figure 7.3), defined as:
) Z3
)= (o) o

where ®(x) is a function defined as

0 ifx <0
o(z) = { r ifx>0 (7.9)

The dynamics of the system defined as before is determined by only two
parameters, h and p. One controls the degree of nonlinearity and the other the
topological properties of the network, respectively. In our numerical studies
of the model we have fixed the value of the parameter a = 3, and varied the
parameters 0 < p < 1and 0 < h < 10. One can easily realize that the solutions
for non-negative initial conditions remain bounded for all ¢ > 0. Indeed, as
the nonlinear term in eq. (7.7) is bounded above by «, one obtains that ¢; < 0
whenever g; > a. Also, if g; = 0 then F;(WG) > 0, so that the activities
cannot become negative.
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Figure 7.4: Two examples of network fragmentation. The nodes of the networks are
classified in: (4) dynamical nodes (red), (ii) stationary nodes with nonzero activity
(blue), (i) stationary nodes with zero activity belonging to Dy @ D; (yellow) and

(iv) remaining nodes with zero activity (white). Note that the white central nodes in
(b) act as the frontier between the dynamical island and the steady nonzero activity
one.

The above dynamics can be regarded, e. g¢., as a generalization of the
simplified and coarse-grained genetic models, Random Boolean Networks, in-
troduced in section 7.1.2. Equation (7.7) incorporates the experimental obser-
vation of a continuous range of activity levels [294]. It is worth mentioning
that while continuous time linear models have been successful for the recon-
struction of the interaction networks from experimental data [295], nonlinear
models like eq. (7.7) are expected to be more appropriate for a quantitative
description of the dynamics.

The dynamics (7.7) of a two-agent (dimer) model has been considered in
reference [294], in the context of virus-cell interactions in bacteria and gen-
eral gene regulatory activity models, where a rich repertoire of behaviours,
like multi-stability (multiple attractors in phase space) was reported. In the
forthcoming paragraphs, we will report some remarkable general features of
the network dynamics.

Activation and Inhibition interplay: Fragmentation

A brief look at equation (7.7) easily reveals that for any value of the parameters
p and h the state of inactivity, G = 0, is always a solution. As a matter of fact,
for h =0, or h # 0 but p = 1, this is the unique asymptotic solution (global
attractor in the phase space) for all possible non-negative initial conditions.
However, for h # 0 and p # 1 other asymptotic solutions, with islands of
positive activity, generically coexist with the rest state. The term islands
denotes here subnetworks that are interconnected through nodes which have
evolved to null activity, so that their dynamics are effectively disconnected.
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The fragmentation of the network dynamics into disconnected islands is
a generic feature of Al interactions, as the following considerations suggest.
Let us call D the set of nodes whose activities, for a given initial condition
G(t = 0), asymptotically vanish. It is easy to see that, irrespective of the
initial condition, this set is generically non-empty.

Indeed, if a node 4 is such that W;; = —1 or 0 for all j, then its activity
gi(t) will tend to zero. Let us call Dy the set of these nodes, and note that
its measure (>, P(k)p"*) is a non-zero increasing function of p. Now, call Dy
the set of nodes [ such that their positive Wj; occur for j’s in Dy, and so on

Due to the small-world property, there are in fact very few relevant D,
(n = 0,1,...) sets. Its union D* = [JD, is easily seen to have a non-zero
measure which increases with p.

The nodes of D* are structurally (i.e. irrespective of initial conditions)
inactive. Depending on the initial condition, the set D may include other
nodes not contained in D*, namely those nodes that evolve to inactivity due
to the initial condition (dynamically, instead of structurally, inactive): See e.g.
the white nodes in figure 7.4, where we show two small networks of N = 50
nodes to allow a simple visualization of the sets D* and D. In other words,
the measure of D may in general be (much) larger than the measure of the
“structurally dead” nodes D*.

From the previous considerations, whether or not the set D percolates the
network realization, leaving out islands of disconnected activity, is an event
that clearly depends on both the parameter p and the initial conditions. But
also the discussion correctly suggests that fragmentation of the network into
subclusters with independent temporal evolution is a generic (non-zero mea-
sure) feature. Our numerics, which are extensive in the sense of (both, network
realizations and initial conditions) large sampling, convincingly corroborate
this assertion. Figures 7.5 and 7.6 show two islands of periodic and chaotic
activity, respectively, as well as the temporal evolution of g;(¢) for some of their
constituent’s nodes (see the next section for a more detailed discussion of the
figures).

Temporal fluctuations of asymptotic solutions

The dynamics of the system turns out to be very rich and, depending on
the values of p and h, three different asymptotic dynamical regimes are ob-
served, characterized by stationary, periodic and chaotic attractors. Here we
characterize these different dynamical regimes and the transitions between the
different states when h is varied. For this purpose we have performed extensive
computations following this scheme:
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Figure 7.5: Example of a cluster of 21 nodes displaying periodic dynamics. The

insets

show the dynamical patterns of each node (see text for the interpretation).

The maximum Lyapunov exponent is A = —0.00034 and the dynamical parameters
are h =4 and p = 0.7. The cluster is embedded in a substrate network of N = 50.

(1)

(42)

(i)
(iv)

For a given value of the parameters h and p and network realization the
initial values of g; are taken from a uniform distribution in the interval

(0, ).

First integration of the equations is performed using a Ath order Runge-
Kutta scheme. The total integration time is large compared with the
transient.

Check the dynamical state of the network.

Check the connectivity between the dynamical (if any) nodes in order to
obtain the dynamical islands.

In order to determine the state of the system we perform a second inte-
gration for computing the largest Lyapunov exponent A (See Appendix
B). If A > 5-1072 the dynamics is considered chaotic. If A < 5-1073 we
look at the frequency of the periodic motion.
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Figure 7.6: Example of a cluster of 19 nodes displaying chaotic dynamics. The insets
show the dynamical patterns of each node (see text for the interpretation). The
maximum Lyapunov exponent is A = 0.4716 and the dynamical parameters are h = 4
and p = 0.7. The cluster is embedded in a substrate network of N = 50.

(vi) Change adiabatically the value of h, K’ = h + 6h with |0h| < 1, and
repeat stages (14)-(v).

Following this procedure one can monitorize the evolution of the system as a
function of the nonlinear parameter h.

Steady states.- Let us first focus on the steady state solution to eq. (7.7).
As already noted above steady states of zero and non-zero (for h # 0 and
p # 1) activity can be found as asymptotic solutions. Let us first focus on
the transition between both steady states. This transition is just the genesis
(considering the evolution as the parameter h is increased) of the dynamical
islands presented above.

Depending on the specific network realization (i.e. the matrix Wjj), the
rest state can become unstable when the value of h is increased from zero.
This will occur for the value h = h at which the largest eigenvalue (among
those associated to eigenvectors such that all their components have the same
sign ') of the matrix —0;5 + ahW;; becomes positive. Then h is determined

!Note that F(z) has a jump discontinuity in first partial derivatives at the rest state.
Thus we consider the matrix of right-handed partial derivatives, and then pay only attention
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as 1/(aAmaz ), where Apqy is the largest eigenvalue of W;j, provided Az > 0
(no instability of the rest state will occur if A\jqp < 0). In figure 7.7 we show
the probability Pi.qns that the rest state become unstable for some value of h,
as a function of the parameter p. This probability has been estimated from
the computation of A\, for 10* different realizations of W;; for each value of
p. Though for most values of p the rest state remain stable at all values of
h in 75% (or more) of the realizations, it coexists in phase space with other
attractors, so that only a basin of initial conditions evolve to this state.

The rest state typically destabilizes through a transcritical bifurcation
[296], where an unstable branch of stationary solutions exchanges stability
with the rest branch (see figure 7.8.a. The computed largest Lyapunov ex-
ponent shows then a variation with A as in figure 7.8.b near h ~ 0.33: it
approaches zero (from negative values) at the bifurcation parameter value,
and then decreases indicating that now the attractor belongs to the new stable
stationary branch, in which the nodes of a cluster display non-zero constant
activity g;(t) = g; (let us say chemostasis regime). As shown in figure 7.8.a,
the activity of these nodes typically increases with h. Eventually, this state
becomes unstable for larger values of h, and evolves to a periodic state in which
the activities oscillate (figure 7.8.c) regularly in time.

Periodic states.- The presence of inhibitory interactions makes possible the
existence of instabilities in the fixed point chemostatic solutions of evolution eq.
(7.7). Using linear stability analysis techniques, these "typical" instabilities are
characterized as Hopf bifurcations (either direct or often inverse), where attrac-
tors of exactly periodic collective activities, g;(t) = g;(t+T), are born out from
the unstable fixed points. To illustrate the aspect of typical periodic fluctua-

to tangent space vectors which do not bring the system into the region of negative activities.
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Figure 7.8: (a) Dependence of the quantity g;[¢; = 0] (activity level when the its
first derivative is zero) of a single gene with the parameter h. This gene belongs to a
cluster which undergoes two bifurcations when increasing the value of h starting from
the rest state configuration of the whole network at h = 0. In the first bifurcation
(h ~ 0.345) a cluster of nodes in a stationary state with non-zero activity level merges.
When h =~ 0.976 the genes of this cluster end in a periodic attractor. The evolution
of the Largest Lyapunov exponent of the network as h is increased is plotted in (b)
showing the two bifurcations. (c) Periodic trajectory in the portion of the phase
space corresponding to the gene of figure (a), the value of h is 0.98. (d) Decay of the
activity level of the same gene to the stable fixed point for A = 0.97 (just before the
second bifurcation) when the initial condition of the network is the periodic solution
shown in (c).

tions we turn our attention to figure 7.5 where some examples of the temporal
activity g;(t) of different nodes inside an island of synchronized activity from
a representative system are represented. Note that the abundance of out of
phase oscillations of neighbours activity is a natural consequence of inhibitory
interactions: the growth of the activity of a gene j inhibiting gene ¢ (W;; = —1)
leads eventually to a null value of F;(WG(t)), thus to an exponential (free)
decaying of the activity of gene 4, until its activity is triggered again (due to
the decay of the activity of inhibitory genes and/or the increase of the excita-
tory genes activity). Horizontal lines in insets of figure 7.5 indicate the average
level g; of node activity. We see that in some of the island nodes the amplitude
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Figure 7.9: Probability that a node with periodic dynamics converges to an orbit of
angular frequency wpe, (in arbitrary units). The results are average over different
network realizations and at least 100 different initial conditions for a network of
N =100 nodes and p = 0.7. h has been fixed to 4.

of the oscillation is small compared to g; (see e.g. top rightmost and bottom
leftmost insets); while in others they are of comparable size, even to the point
that lowest levels of activity can reach a null value, before activity is triggered
again after inhibiting neighbors activity decreases enough. The inverse period
(frequency) w = 1/T of a periodic attractor changes with parameter and is
naturally dependent on each specific island realization. A sampling over differ-
ent initial conditions and network realizations allows to compute the frequency
distribution for a periodic state P(w). For this purpose we identify those real-
izations in which A\ < 5-1073. Then, we focus on the nodes for which dg/dt # 0.
Once identified, a vector T¢ = {t¢,¢5,... ¢} is constructed and stored for ev-
ery periodic dynamics g;. The t;’s stand for the times fulfilling the conditions
gi(th) = gi(th) = ... = g;(t}) and dg;(t})/dt = dg;(t})/dt) = ... = dgi(t})/dt
2. In this way, after verifying that t;- — t§—1 is constant, the period of the
corresponding ¢-orbit is given by this constant. As the free decay of a gene
activity, that occurs when its inhibitory inputs prevail over activatory ones,
has an associated time scale of order unity, one should expect values of this
order for the period of oscillations. This expectation is confirmed looking at
the probability that a periodic cycle has an angular frequency wper, P(wper)

2Since the integration is done at fixed time intervals, a further numerical check is imposed.
dg;(0)/d dg; dg; (0 d?g;(0)/dt?
Namely, |g;(t) — g:(0)] < 22 (2)/ t and | gdft) — gdi )| <49 (2)/ .
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shown in figure 7.9. As shown in this figure, it is very likely that the frequency
of the activity of a periodic island lies around wpe, = 1. It is also of interest
that P(wper) is not symmetric, but biased towards larger frequency values. It
is difficult to figure out an explanation to this behavior. It may probably has to
do with the spatial distribution of the nodes and the specific value of p which
controls the average number of input and output connections a node has.

Chaotic States.- When h is further increased one observes that these peri-
odic attractors, in turn, typically experience also period doubling instabilities,
and through the well-known universal scenario of (successive) period doubling
bifurcation cascade, the onset of chaotic attractors takes place in the phase
portrait of the network dynamics. To help visualization of the generic types
of asymptotic network dynamics, we represent in figure 7.10 the bifurcation
diagram for a typical attractor. At different values of the (Michaelis-Menten)
parameter h, and constant values of a = 3,p = 0.7, we plot the activity of
an individual node at the instant when its time derivative vanishes. Thus, a
single branch in the figure indicates stationary activity, two branches indicate
a periodic attractor, etc. We also plot in figure 7.10 the largest Lyapunov
exponent A\ on the attractor, so to allow discerning between chaotic (positive
A) and eventual regular quasiperiodic evolutions (A = 0). Figure 7.11 shows
the phase space diagrams for the activity of one node (belonging to a different
dynamical island) as h is increased. For small values of h, the gene is in a pe-
riodic cycle, which doubles its period successively until it reaches the chaotic
phase.

A similar bifurcation diagram for a different network realization is shown
in figure 7.12, where one can appreciate (see inset) a commonly found bi-
furcation (though it appears much less often than period doubling), namely
period tripling bifurcation. Its characterization will be made below in the next
subsection where the Floquet analysis of periodic attractors is presented.

A visualization of chaotic temporal fluctuations of the activities in a cluster
is shown in figure 7.6. Here again we see nodes (e.g. top left inset) where the
size of activity fluctuations is less than 1 per cent of the average level g;.
Most remarkable, there are nodes (like the one in bottom left inset) which
remain inactive most of the time intermittently experiencing spikes of short
duration activity. This amazing variability of individual node temporal activity
on the chaotic attractors is a generic feature of the network dynamics. The
existence of spike behaviour of individual nodes activity suggests correctly that
eventual variations of parameters like h may lead to permanent inactivity of
some particular nodes, so providing a straightaway decreasing of the dynamical
cluster size or, the other way around, the activation of inactive nodes in the
frontier.
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Figure 7.10: Example of bi-
furcation diagram (N = 60;
island size: 14; p = 0.8).
One can appreciate an inverse
Hopf bifurcation and several
(direct and inverse) period
doubling bifurcation cascades.
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Figure 7.11: Phase space of a node ending up in a chaotic state as the value of

h is increased. Successive period doublings starting from a periodic cycle can be
appreciated. The values of i (from (a) to (f)) are: 5.30, 5.50, 5.63, 5.65, 5.66, 5.68,
respectively. The parameters are set to p = 0.7 and N = 100.
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It is important to note that, for a fixed set of parameter values and a given
network realization, there are generally several different attractors coexisting
in the phase space portrait of the network dynamics, each one having its own
basin (of attraction) of initial conditions. Multi-stability appears as a generic
consequence of the excitatory/inhibitory interplay. Importantly also, there
can be very many unstable periodic trajectories (often entangled) flowing in
between basins of attractions. The excitatory/inhibitory competition is also
responsible for the appearance of temporally complex (positive Lyapunov ex-
ponent) aperiodic evolutions, associated to the bifurcation cascade scenario.
As we will show in section 7.2.2 the manifestation of fluctuating (either peri-
odic or chaotic) temporal behaviours takes importance when inhibitory links
predominate, though not too much, over excitatory ones.

Floquet analysis of the periodic attractors
As shown in the bifurcation diagrams of figures 7.10 and 7.12, periodic solutions

of the network dynamics often become unstable under variations of the model
parameters. In order to characterize these instabilities in a precise manner,
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one may perform the linear stability analysis of the periodic orbits (see, e.g.
[296]) near the bifurcation points.

For this we consider small perturbations of the dynamical variables, 0§(ty) =
{dgi(to)}, and compute their evolution over the period T of the periodic orbit.
The evolution of these small perturbations (vectors in tangent space) follows
the (linear) dynamics obtained by linearizing equation (7.7) around the peri-
odic orbit {g;(t)} = {g:(t + 1)}, i.e.,

dog(t
gt( ) _ 55+ a-AsF, (7.10)
where the matrix A is obtained as
O "k Wirgk]

= Wi (7.11)
Y RTIR Wiggk])?

and O[z] denotes the (Heaviside) step function. Note that the above equation

is only valid when the sum of the inputs (activatories and inhibitories) which

receives a node from its neighbours is nonzero. Hence, the Floquet analysis is

performed for each dynamical cluster found and not for the whole network.

As introduced in the first part of this thesis when discrete breather solutions
were studied the so-called Floquet (or monodromy) matrix F of the periodic
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solution {g;(t)} is defined as the linear operator in tangent space that maps
the initial perturbation at tg, dg(to), onto the perturbation at tog + T

53i(to + T) = Fog(to) (7.12)

The Floquet matrix F is obtained here by numerical integration of the
linearized eq. (7.10) over a period T for a basis of initial conditions in the
tangent space. The spectrum of eigenvalues of this matrix provides the infor-
mation on the linear stability of the periodic solution. Note that because F is
a real matrix, if a Floquet eigenvalue p is a complex number, then its complex
conjugate [ also belongs to the Floquet spectrum. Also, because solutions of
autonomous differential equations can be shifted in the time ¢ direction, their
Floquet matrix always has unity as an eigenvalue, say u' = 1, with associated
eigenvector {j;(to)}. The solution is linearly stable if all the other eigenvalues
p! = |7 exp(i¢’) are in the interior of the unit circle of the complex plane,
i.e. |p?] < 1for j # 1. A periodic solution becomes unstable when a Floquet
eigenvalue (or a pair of complex conjugate eigenvalues) crosses the unit circle.
The associated Floquet eigenvector indicates the direction in tangent space
where perturbations will grow exponentially away from the solution.

In figure 7.13.a we plot the Floquet spectrum of a periodic attractor at
a period doubling bifurcation. As seen in the figure, a Floquet eigenvalue
crosses the unit circle at —1. In figure 7.13.b we plot the Floquet spectrum of
the periodic attractor of figure 7.12 at h = 2.44, where the inset suggested that
a period tripling bifurcation may occur. We see a complex conjugate pair of
Floquet eigenvalues exiting the unit circle at angles § = +27/3. In general, for
generic irrational values of §/7 this type of bifurcation (called Naimark-Sacker
or generalized Hopf bifurcation) gives rise to a quasiperiodic attractor whose
trajectories fill densely a two-frequency torus. However, as a generic feature
of our model, the two frequencies of the new attractor are in a commensurate
ratio (2 : 3), so that the new stable trajectory has a period of 3T.

In terms of how often different types of bifurcation occur in the network
dynamics, as inferred from our (non-exhaustive, but significant at the scales
considered) sampling of initial conditions and network realizations, one may say
that period doubling cascades and, less often, commensurate Naimark-Sacker
bifurcations have been generically found by varying the Michaelis-Menten pa-
rameter h. But, besides the formal characterization of the dynamical instabil-
ities observed, the Floquet analysis allows also to give an answer on a more
general question, namely how temporal instabilities correlate with networking
connectivity characteristics. Are there characteristic features discernible in the
structure of instabilities? This point will be discussed further below in the next
subsection.
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7.2.2 Statistical characterization of island’s dynamics and
structure

As noted before, the dynamics of the system is determined by only two param-
eters, h and p. The behaviour of the system described by equation (7.7) on the
underlying network is very rich and one can have steady, periodic or chaotic
states as well as fragmentation. In this section, we analyze in more details the
system’s phase diagram as well as how the dynamical regimes couple to the
local structural properties of the underlying network and dynamical islands.

Density distribution functions of dynamical regimes

The previously reported existence of chaotic states have very interesting impli-
cations for the stability of the system under external perturbations or internal
variations of the working parameters and points to the central problem of ro-
bustness of biological networks studied by Kauffman for the design of Random
Boolean networks (see section ?7). For this reason it is important to comple-
ment the study of the dynamical regimes with the study of the phase diagram
in the (p, h)-space where chaos appears. The scheme of the computations per-
formed in order to characterize the phase diagram of the system dynamics is
slightly modified with respect to that used in the previous section:

(i) For a given value of the parameters h and p and network realization the
initial values of g; are taken from a uniform distribution in the interval

(0, @).

(74) First integration of the equations is performed using a 4t order Runge-
Kutta scheme. The total integration time is large compared with the
transient.

(743) Check the dynamical state of the network. If all the nodes are in a steady
state we try another initial configuration; if there are dynamical nodes
go to the next stage.

(7v) Check the connectivity between the dynamical nodes in order to obtain
the dynamical subnetworks (islands).

(v) Second integration for calculating the Largest Lyapunov exponent A. If
A > 5-1073 the dynamics is considered chaotic. If A < 5- 1072 we look
at the frequency of the periodic motion.

(vi) Repeat stages (i)-(v) for different initial conditions and realizations of
the network.
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Figure 7.14: (a) Probability, Pehaos (Pper), that the system evolves to a chaotic
(periodic) regime as a function of the probability of inhibitory interactions, p, for
h =4 and N = 300. (b) Phase diagram in the (p, h)-parameter space of the chaotic
dynamics of the system. Color code indicate the values of P.pq0s (N = 300).

In figure 7.14.a, we have represented the probability, P.pq0s, 0of ending up in
a chaotic regime as a function of p for a network of N = 300 nodes and h = 4.
This probability is given by the fraction of the total number of realizations
(typically 10% different initial conditions over different network realizations
for each value of p and h were used) in which at least one chaotic dynamics
is observed. The figure also shows the corresponding probability, P, for
periodic orbits. As figure 7.14.a clearly shows, there is a threshold value p = py,
beyond which the network dynamics is not robust under variations of the initial
values of the g;’s and constitutes the onset of the chaotic phase . For values
of p above py, ~ 0.25(5), two randomly chosen initial conditions can lead the
system to disparate asymptotic regimes. The value pf;f ~ 0.25(5) Besides, the
size of the system affects the value of P05, but the onset —and the end— of
the chaotic phase seems to be N independent (see figure 7.15).

Figures 7.14.a constitutes a quantitative illustration of how the prevalence
of fluctuating asymptotic regimes over chemo-stasis ones depends on the model
parameter p. The sum of both functions, Ppe,(p) + Pehaos(p), gives the prob-
ability that the asymptotic state shows temporal variations of the activity
vector (either regular or chaotic) as a function of p. These results give that
in the range of values 0.5 < p < 0.8 regimes of temporal fluctuations occur
more often than constant activity regimes. This measure is maximized by val-

3Note that there is a second threshold for p ~ 1 which avoids chaotic behaviour. This
is a consequence of the dynamics (7.7). Remind that in this region most of the interactions
are inhibitory and the dynamics of the genes die out due to the damping term in eq. (7.7).
Thus, the nontrivial threshold is the lower one.
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chaotic regime as a function of
the probability of inhibitory
interactions, p, for three net-
work sizes. The results shown
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ues around p ~ 2/3 and, quite naturally, it increases with the value of the
Michaelis-Menten parameter h, i.e. the slope at the origin of the saturated
response function (see figure 7.3). Note that even larger values of p means
overabundance of inhibitory interactions, which leads to the predominance of
the asymptotic rest state, while smaller values of p favour chemostatic equilib-
ria.

The quantities Pp.pq0s and py, depend on h. As we move to larger values
of h, the strength of the interactions increases and hence it is expected that
slight perturbations produce a behavior in which the fraction of nodes whose
dynamical patterns are easily disturbed grows. This is indeed the case, as
illustrated in figure 7.14.b. The color-coded figure shows that as h is increased,
the probability of having a chaotic phase grows, and that the onset of such
chaotic patterns shifts to smaller values of p. This drift of py, is however
bounded. For small enough values of p (even for very large h), most of the
elements activate each other (W;; = 1 for a large fraction of pairs ij and ji)
and hence the resulting dynamics is steady. In other words, the onset of chaotic
regimes is always located at a nonzero value of py, (the same applies to the
right (decaying) part of P.,(p), but in this case the activity falls down to zero).

Although the model and the underlying topology are very different, the
existence of a nonzero value of ps,, no matter the value of h, points to the
original suggestion by Kauffman (explained in section 7.1.2) that there is a rel-
evant (input) connectivity k. for the regulatory gene network of an organism
below which the dynamical behavior of the system is frozen and is not easily
changed by perturbations [267]. Around k., the behavior is neither chaotic
(not robust and then biologically not desiderable) nor frozen (biologically un-
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Figure 7.16: Onset of chaotic regime as a function of p for three different values of the
exponent of the degree distribution P(k) ~ k=7 (v = 3, 2.33 and 2.2). The results
correspond to a network of N = 300 and the nonlinear parameter is set to h = 4 and.

realistic), but exhibits a rich behavioral repertoire. The same picture applies
to pg, in our model. In this direction, the quantity Ppe,(p) — Pehaos(p) allows to
determine the regions in the parameter space where regular dynamics prevails
over chaos. As pointed above the range of p values where Ppe,(p) > Pehaos(p)
can be regarded as dynamically robust and then compatible with the operation
points for real biological networks.

We have also performed the computation of the phase diagram for the ex-
istence of chaotic dynamics for networks with different degree of heterogeneity.
For this purpose, we have varied the exponent v of the connectivity distribution
P(k) ~ k=7 to values lower than 3 using the so-called generalized Barabasi-
Albert model reported in [297|. These networks are even more heterogeneous
having a higher number of highly connected genes. These computations al-
low to gain information on the importance of highly connected genes on the
existence of chaotic behavior. The results shown in figure 7.16 manifest that
when 7 decreases the threshold value for displaying chaotic behavior pgp ()
slightly grows, giving a narrower chaotic region but, on the other hand, the
probability P, in the chaotic region takes higher values for the same values
of p as vy decreases. In table 7.1 we show the thresholds py, () and the values

I(~) given by X
16) = [ Pt (7.13)

that accounts for the strength of the chaotic behavior in the whole range of
the parameter p. When periodic behaviour is also considered one realizes
by looking (Figure) at the aforementioned substraction Ppe,(p) — Pep(p) that
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Figure 7.17: (a) Probability that a connected cluster of nodes displaying either chaotic
or periodic behavior has a given size (in number of nodes forming the cluster). (b)
Scaling of the mean cluster size with V. The parameters have been set to h = 4 and
p=0.7.

although the onset of chaotic behaviour py, is lower for the less heterogeneous
case 7 = 3 it corresponds to the more robust case as it presents the larger
region of periodic prevalence. These quantitative results have to be carefully
considered since it is clear that, as a matter of fact, regardless of the value of v
employed, the dynamical robustness of the system is mainly determined by the
topological properties given by p. We remark again that this conclusion is in
agreement with the findings when Random Boolean Networks are considered.

Dynamical island structure

We next focus on the topological characterization of islands of dynamical units.
For this we will take into account only the nodes belonging to those connected
components of the whole network which share common dynamical patterns,
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3 233 | 22
pn(y) | 025 032 | 0.38
I(y) | 01581 | 0.1962 | 02

Table 7.1: The table shows the values of the probability (of inhibitory interactions)
threshold, ps, for having chaotic behavior and the values of the integral 7.13 for the
three values of v = 3, 2.33 and 2.2.

the islands, and only those links that connect two dynamical nodes of the
same islands. That is we will not consider those links that connect island’s
nodes with the rest of the substrate network. In this sense, the islands can be
viewed as those modules introduced in section 7.1.2 that display independent
dynamics but are located nested in large network of interactions. We expect
to find differences between the topological features of the islands and those of
the scale-free substrate as a result of the nonlinear dynamics that defines the
islands.

We first analyze how the cluster size distribution of islands of nodes dis-
playing either periodic or chaotic activity scales with the system size. Figure
7.17.a represents the probability that an island has a given size for several
networks made up of a number of nodes ranging from 50 to 800. Clearly, the
size distribution shows an average value that changes as N grows. A closer
look at the figure (see figure 7.17.b) reveals that the mean cluster size scales
with NV and that about 17% of the nodes, in average, exhibits nonzero activity.
This confirms what we have discussed in section 7.2.1 about the measures of
the sets D* and D, namely, that the fragmentation of the network into islands
of independent dynamics appears as one of the most characteristic features of
the model.

As we stated above, it is interesting to elucidate how the topological proper-
ties of the islands correlate with those of the underlying (original) network. To
this end, we have further scrutinized the structure of the clusters and measured
two topological quantities of interest. Figure 7.18 shows the degree distribu-
tion of nodes belonging to dynamical islands for several system sizes. This
property can be regarded as a global one and indicates that within the islands,
the probability that a node has k links pointing to other nodes of the same
dynamical island also presents a slow decay with k£, though with a more pro-
nounced cut-off and a (slightly) different value for the exponent ~ than that
of the substrate network. More striking is the result depicted in figure 7.19,
where the average clustering coefficient (c) of the substrate (original) network
and of the islands is plotted as a function of N. While for the BA network
the clustering is vanishing as the network size grows, as reported in section
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Figure 7.18: Probability that a node belonging to a dynamical island interacts with
k other nodes of the island. Parameters were set to h =4 and p = 0.7.

5.2.3, it seems that for dynamical islands its value saturates. This is quite
interesting because, on the other hand, the value of the clustering coefficient
is very large and comparable to measures of real systems where the kind of
dynamics explored here applies, for instance, biological networks [298].

That is, the structure of dynamical islands correctly reproduces several of
the most important topological features observed in biological networks and not
captured by current network models. Namely, the heterogeneous distribution
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Figure 7.19: Average clustering coefficient {(c) as a function of the network size for the
BA original network and the dynamical cluster. Note that while (c) in the BA network
continuously decreases, for the dynamical island it saturates. See more details in the
text. The results have been obtained using h =4 and p = 0.7.
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of connections, a high average clustering and the independence of (c¢) with
respect to the system size. This result points to the conjecture that several
topological properties observed in systems driven by Al interactions where
nodes are themselves (nonlinear) dynamical units may be biassed by their own
dynamics. In other words, what we actually see is the result of the activity
showed up by a smaller “dynamical” network whose local topological properties
greatly differ from those of a larger substrate network that we don’t “see”
because many of its components are simply off. This, in fact, may be the case
of biological systems where structure and dynamics are indissoluble linked

298].

7.2.3 Structure inside dynamical islands

The above findings on new (dynamically) emergent characteristics of the is-
lands structure motivate the question of whether these clusters have an internal
organization or hierarchy among its constituents. It is widely known that when
one deals with problems where the network topology (scale-free) is the only
degree of complexity of the problem the answer to this question is usually
based on the presence of highly conected nodes (the hubs). This is the case
when linear evolution equations are studied on top of complex networks like
epidemic or rumour spreading, traffic and communication problems (chapter
6). However, our case is not so simple and the nonlinear excitatory/inhibitory
dynamics between the elements of the network plays a crucial role in deter-
mining which nodes are governing the evolution of the system. Moreover, the
high clustering found for the dynamical clusters points out that this leading
role is not played by isolated nodes but by small substructures inside the dy-
namical islands. This concept is not new, the problem of finding small relevant
substructures inside large networks, usually called “motifs” (see section 5.1.4),
has been studied in different ways in the field of biological networks.

It is indeed very revealing to pay attention to the networked structure of
the unstable manifold, which is given in the linear regime of small perturba-
tions by the Floquet unstable eigenvectors. For this purpose, we look at the
behaviour of the components of the dynamical islands when a bifurcation (ei-
ther period doubling or Naimark-Sacker type) occurs. In these critical points,
it is possible to get a deeper insight into what is going on in the dynamical
islands by looking at the Floquet eigenvector responsible for the bifurcation,
5;}* (to) = {0g; (to)}, corresponding to the Floquet eigenvalue which reaches the
unit circle. In particular, integrating equation (7.10) for the initial condition
55*(t0) we can compute the following vector

03 = (0 = [ [ totlar} (1.14)
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The components of this vector measure, for each node, the average (over a
period T of the old solution) distance of the new solution after the bifurcation
point from the old periodic solution. Note that a zero component of this
vector at a node k, means orthogonality of the single-site perturbations at
that node with respect to the unstable direction in tangent space. In other
words, by looking at the components of the vector (7.14) we can identify those
nodes that are more affected by the perturbation that leads the system to
instability. In figure 7.20 we show this quantity for several dynamical islands
(relatively small, but still representative) corresponding to values of h where a
bifurcation occurs. In particular, figures 7.20.c and 7.20.e corresponds to those
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islands whose Floquet spectra are given in figure 7.13, one 7.21.c corresponding
to a Naimark-Sacker bifurcation and the other 7.21.e to a period doubling
bifurcation.

As it can be seen from the figures, the vectors (5;*) have several null com-
ponents. The unstable perturbation 527*(150) that change the island’s attractor
at the critical point does not perturb the motion of these nodes. For the three
latter cases (corresponding to figures 7.20.c, 7.20.d and 7.20.e) there is a rep-
resentative group of nodes where this measure vanish. The structural profiles
reveal for these three cases (see the islands plotted in figure 7.21), apparently
irrespective of the type of instability, that the set S of nodes in the island
which are alien to instability (white regions), that is, the set of those nodes
j such that (0g;) = 0, is a non-zero measure set; it is sometimes even larger
than the complementary set (green area) Y = I — S of participating nodes
on the unstable eigenvector evolution during a period. We observe here that
the fragmentation tendency (see discussion on islands of disconnected dynam-
ics made above) operates also at the level of the tangent space, in the sense
that a binary partition of the island nodes is well defined at the bifurcation
(critical) point. Namely, the instability introduces a partition of the island
I =U @S into (a) the set U of nodes that do participate in the instability
evolution in the linear regime, and (b) the complementary set S, of nodes such
that single-node perturbations are orthogonal to the unstable linear manifold.
This drastic, generic fragmentation of the island of periodic activity at the
linear description level of the bifurcation, is also clearly the consequence of
the Al competition on the network of interactions, and we have not seen any
deviation from this observation in the computations performed (of which only
five cases are illustrated). In summary, one could say that inside the dynamical
islands there are compact substructures (and not single nodes) governing the
dynamical changes of the whole cluster of nodes.

The behavior described above suggest the following numerical experiment:
we have explored the responses of the different nodes to an external pertur-
bation when the system is in a periodic state near a bifurcation point. In
particular, we force a single node ¢ by adding an aditional term to eq. 7.7 of
the form

%t(t) = —G(t) + oF [WG(t)] + €; - [Asin (wt)] , (7.15)
where e; is a vector whose componets are {e;}; = d;;. The forcing frequency
is set to w = 27/T where T the period of the unperturbed system. Then we
compute, as a function of the forcing amplitude A, the evolution of the Floquet
eigenvalue p* responsible for the forthcoming bifurcation in the unperturbed
system. The effects of such a perturbation strongly depend on whether the
perturbed node belongs to the subset of those identified as leaders, i.e the
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Figure 7.21: In the left side of the figure the dynamical islands corresponding to figures
7.20.c, 7.20.d and 7.20.e are represented. The islands show the distribution (green
region) of the nodes with non null component of (6§*> in figure 7.20 respectively. In
the right side, the plots show the evolution of the Floquet eigenvalue p* (see text) as
a function of the forcing amplitude A applied to different nodes of the left dynamical
islands respectively. For all the islands the susbstrate network was of NV = 60 nodes
whith a fraction of 80% of inhibitory interactions (p = 0.8).
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ones with non null component in (5§*> (represented inside the green area in
figure 7.21). The results obtained for the dynamical islands plotted in figure
7.21 are shown in the right plots of the figure. When the nodes inside the
green area are perturbed the Floquet eigenvalue p* significantly deviate (either
increase or decrease, we have not been able to elucidate when a given change
is expected) from the values of the unperturbed system. On the other hand,
the perturbation of the nodes located outside the green region does not imply
any change to linear stability of the whole system. These results illustrate the
relevant role played by the substructures found above by the computation of

(69%).

7.3 Conclusions

In this chapter we have analyzed the interplay between complex topologies
and activatory-inhibitory interactions driven by a saturated response dynam-
ics of the Michaelis-Menten type. The dynamics of the system is very rich and
exhibits steady, periodic and chaotic regimes that in turn lead to the fragmen-
tation of the original substrate network into a smaller cluster of dynamically
active nodes. We have fully characterized these states by means of the Lya-
punov exponent and the Floquet analyses as well as the topological features
of active islands. The reach behavioral repertoire observed is thus a conse-
quence of the entangled complexity of the system temporal behavior and the
heterogeneous structure of the underlying network.

The emerging dynamics characterized in this work could plausible describe
at least two relevant scenarios in biological systems. On one hand, the dy-
namics expressed in eq. (7.7) has been proposed as a way to characterize the-
oretically the individual dynamics of gene expression [294]. In fact, eq. (7.7)
is the generalization of the successful Random Boolean models widely used to
model gene expression. In this context, two nodes at the ends of a link are
considered to be transcriptional units which include a regulatory gene. One of
these end-nodes can be thought of as being the source of an interaction (the
output of a transcriptional unit). The second node represents the target bind-
ing site and at the same time the input of a second transcriptional unit. By
studying simplified models as the one implemented here — the intrinsic com-
plexity of the problem does not allow for a complete and detailed description
of real gene dynamics —, one can infer the region of the parameter space (i.e.
(p, h)) that better describes gene networks. The latter seems possible due to
latest developments in microarray technologies, biocomputational tools, and
data collection software.

A second scenario where the results obtained apply is reaction kinetics in
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metabolic networks. In metabolic systems, a very rich behavioral repertoire is
well documented [210], as for instance, the oscillations observed in the concen-
tration of certain chemicals in biochemical reactions such as glycolysis. The
system of differential equations, Eqs. (7.7), represents one of the most basic
biochemical reactions, where substrates and enzymes are involved in a reaction
that produces a given product. In this context, there are several important
issues as how fast the equilibrium is reached, how the concentration of sub-
strates and enzymes compare, etc. Besides, it is known that in a large number
of situations, some of the enzymes involved show periodic increments in their
activity during division, and these reflect periodic changes in the rate of enzyme
synthesis. This is achieved by regulatory mechanisms that necessarily require
some kind of feedback control as that emerging in our model. The interest-
ing point here is that the real topological features of the underlying metabolic
network [146] have not been taken into account in studies performed so far.
As this work shows, they have important bearings in the correlation between
structure and the observed dynamics.

Finally, on more general theoretical grounds, we anticipate several features
of interest such as the fragmentation of the original network according to the
dynamical states of the nodes, multistability and different routes to chaotic
behavior within the same system. The first of these points is particularly rel-
evant since it may indicate that in networks of dynamical units, the topology
observed can be the result of a given network state hiding a larger substrate
whose topological properties are completely different at a local level. Of partic-
ular interest is also the result gathered in the last part of the work, namely, the
existence of an additional substructure inside dynamical islands determined by
the different responses of nodes to external perturbations. This points to the
central issue in many biological processes of what subset of nodes are the most
important in order to sustain (or break) the system’s robust functioning. As a
conclusion, the characterization of models where nonlinearity and spatial com-
plexity coexist yields new results missed when only one of these ingredients is
present and opens the path to a better comprehension of biological processes
and the dynamics of networks of nonlinear dynamical units.



Chapter 8

Synchronization on Complex
Networks

While I was in forced to stay in bed for a few days and made obser-
vations on my two clocks of the new workshop, I noticed a wonderful
effect that nobody could have thought of before. The two clocks, while
hanging [on the wall] side by side with a distance of one or two feet
between, kept in pace relative to each other with a precision so high
that the two pendulums always swung together, and mever varied.
While I admired it for some time, I finally found that this happened
due to a sort of sympathy: when I made the pendulums swing at dif-
ferent paces, I found that half an hour later, they always return to
synchronism and kept it constantly afterwards, as long as I let them

go.

Discovery of synchronization by Christian Huygens
(Extracted from a letter to his father, 26 February 1665) [299, 300].

The understanding of emergent collective phenomena in natural and social
systems has driven the interest of scientists from different disciplines during
decades. One example of these phenomena is the emergence of localized struc-
tures in extended nonlinear lattices like those studied in part I. Besides, the
study of synchronization of a set of interacting individuals or units occupies a
privileged position among these coherent phenomena because its ubiquity in
the natural world. In this chapter, we show how the emergence of local pat-
terns of synchronization behaves differently depending on the properties of the
underlying networked structure, driving the process towards a certain global
synchronization degree following different paths. The dependence of the dy-
namics on the coupling strength and on the topology is studied in this chapter
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in an effort to provide a new perspective and tools to understand this emergent
phenomena.

We will focus on the synchronization of coupled oscillators, in particular on
the paradigmatic Kuramoto model, because of its validity as an approximation
for a large number of nonlinear equations and its ubiquity in the nonlinear
literature. In section 8.1 we will review the main characteristics of this model
and briefly summarize the “state of the art” concerning synchronization in
complex networks. Sections 8.2, 8.3 and 8.4 are devoted to the study of the
relationship between network topology and synchronization dynamics. For
this we will consider a variety of networks whose topological properties (such
as clustering, average path length, degree distribution, etc...) can be tuned
and study how topological variations affect the emergence of the collective
synchronization.

8.1 The Kuramoto model

The concept of synchronization studied in this chapter refers to the state of a
macroscopic system of limit-cycle oscillators whose frequencies are locked to a
common value despite of the differences of their natural frequencies of individ-
ual oscillations. However, the very concept of synchronization of n dynamical
systems implies that there exist a smooth and invertible map that relate the
trajectories of any pair of these systems. Then, synchronization of any type of
dynamical behaviour, such as chaos [301], can be studied. Depending on the
characteristics of the maps that connect two given evolutions different types of
synchronization are considered such as complete synchronization [302], phase
synchronization [303], lag synchronization [304], etc... This rich repertoire
makes the general problem of synchronization an outstanding field for non-
linear physics. Besides, the synchronization of non-identical interacting units
occupies a privileged position among emergent collective phenomena because
of its various applications in interdisciplinary fields like Neuroscience, Ecology,
Earth Science, among others [300, 305 308].

Let us now focus on the problem of complete synchronization of an extended
set of limit-cycle oscillators where the Kuramoto model has been object of in-
tensive research during the last decades [309]. In 1967 Winfree [310] faced the
problem of synchronization with the following two simplifications: (%) the cou-
pling between the oscillators is weak and (#1) they are nearly identical (similar
natural frequencies). Subjected to these assumptions one can perform a time
scales separation. From one hand, at a fast time scale, the oscillators relax to
their natural limiting cycles so that they are described by the rotation angle
of their phases. At a slow time scale these phases evolve according to the
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weak interaction with their neighbours and the small differences between the
frequency of the oscillators. This approach allows to face the problem simi-
larly to a classical mean field model when one assumes that every oscillator
is coupled to the entire ensemble of oscillators and hence to the overall rithm
generated by the whole population. Winfree expressed the model by means of
the following general equations

N
Oi=wi+ | Y _X(0))] 2(6:) (i=1,..,N), (8.1)
j=1

where 6; is the phase of oscillator ¢, w; is its natural frequency, X (;) accounts
for the influence that a oscillator j makes over the rest of the elements and
finally Z(0;) denotes the response of the oscillator i to the overall coupling.
Winfree found that when the width of the natural frequency distribution g(w)
is large compared to the coupling strength the system behaves incoherently
and each oscillator evolves according to its natural frequency. On the other
hand, when the distribution gets narrower the incoherence persists up to a
threshold below which a small subset of oscillator gets into synchrony.

After the work of Winfree lots of works tried to understand the mecha-
nism of the synchronization transition. One of the most successful attempts to
understand it is due to Kuramoto [311, 312]. By means of perturbative meth-
ods Kuramoto proved that for any system of nearly identical weakly coupled
limit-cycle oscillators, the long time dynamics is expressed by equations for the
phase evolution of the form

Oi=w;+ Y Tij(0;—0;) (i=1,..,N), (8.2)

where the interaction functions I';; can be calculated as integrals containing
model-dependent terms. These functions can be composed of a (arbitrarily)
large number of Fourier harmonics, and besides, one has to provide them in-
cluding information about the coupling topology. Kuramoto analyzed a mean
field case corresponding to an uniform, all-to-all and sinusoidal coupling

Pij(ei — 9]) = %sin (QZ — 9]) s (8.3)

where the factor 1/N is incorporated in order to ensure a good behaviour of
the model in the thermodynamic limit, N — oco. Besides, he assumed that the
frequencies w; are distributed following a density distribution g(w) unimodal
and symmetric with respect to an average frequency Q, g(Q —w) = g(Q + w).
One can then take = 0 by changing to a rotating frame of frequency 2 so
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that the phases are redefined according to 6; — 6; + Qt, the distribution g(w)
is even and unimodal and the equations of motion are

9i:wi+ﬁzsm(9i—ej) (i=1,...,N). (8.4)

This is the so-called Kuramoto model. It is convenient to define the complex
order parameter in order to describe properly the synchronization transition

1 N
rexp (ip) = N Z exp (i6;) , (8.5)
j=1

where the modulus 7 measures the phase coherence and ¢(t) is the average
phase. For example, let us suppose that the oscillators dynamics is such that
the phases move grouped around the unit circle, then r ~ 1 and the system
behaves as a macroscopic oscillator. On the other hand, if phases fill densely
the unit circle then r ~ 0, and the oscillators behave incoherently and no
macroscopic rithm is observed. By multiplying eq. (8.5) by exp (—if;) we
obtain for the imaginary part: rsin(¢ —6;) = 1/N 3 _;sin(6; —6;), so that
one can write eq. (8.4) as

0; =w; + Krsin(¢—6;) (i=1,..,N), (8.6)

where it is easily realized the mean field character of the model. Each oscillator
interacts with the remaining ones through average quantities (r and ¢). Then,
the individual phases 6; are attracted to the average phase ¢ and the inten-
sity of this attraction is proportional to the overall coherence of the system
r. This establishes a positive feedback between coupling and coherence: the
more coherent the collective motion the larger is r and so is the tendency for
recruiting oscillators into the synchronized cluster.

The numerical integration of eq. (8.4) (using a Gaussian or similar dis-
tribution, with infinite tails, for g(w;)) show that for low enough values of K
the oscillators seem uncoupled, i.e for arbitrary initial conditions the phases
0; tend to distribute uniformly across the unit circle. Then r(¢) decays to val-
ues that fluctuate around zero (O(N~/?)). When K exceeds some threshold
value, K., the incoherent state becomes unstable and r(t) grows exponentially
up to a nearly constant value 1 > r > 0, showing the emergence of a small
cluster of synchronized oscillators (see figure 8.1).

8.1.1 Solution to the Kuramoto model

It is possible to obtain an analytical estimation of the critical point for the
synchronization transition. For this purpose Kuramoto looked for stationary
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Figure 8.1: Dynamical patterns of a set of N = 100 globally coupled oscillators.
A random set of initial conditions were considered lying on the unit circle, 6;(0) €
[—7, 7], and the natural frequencies are uniformly distributed between w; € [—0.5,0.5].
Starting from an uncoupled system K = 0 (r = 0.089) the coupling is adiabatically
increased letting the system reach the equilibrium for every value of K where r is
computed. For every pattern we have K = 0.2 (r = 0.109), K = 0.4 (r = 0.240), K =
0.6 (r = 0.648) and K = 1.0 (r = 0.962) where the system reaches the synchronized
state (note that the frequency of this synchronized state is seen to be wgyne ~ 27-1073,
i.e. nearly zero as the mean value for the natural frequency distribution considered).

solutions where 7(t) is constant and ¢(t) rotates uniformly around the unit
circle with frequency 2. Then it is possible to take a rotating frame of frequency
Q and fix the phases origin so that ¢ = 0. With these assumptions eq. (8.6)
take the form

0; = w; — Krsin6; (i=1,...,N). (8.7)

In the above expression it is clear that the oscillators are completely indepen-
dent, although their dynamics should be consistent with the prescribed values
of r and ¢. Equation (8.7) admits two solutions depending on the relative
size of the natural frequencies |w;| with respect to the prefactor Kr. Those
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oscillators such that |w;| < Kr evolve to a stable fixed point so that
w; = Krsinb; , (8.8)

with |6;] < 7/2 to ensure stability. These oscillators are called locked since their
phases evolve coherently following a well defined frequency €2 in the original
reference system. On the other hand if |w;| > Kr the corresponding oscillators
are drifting and rotate around the unit circle in a non-regular fashion. The
existence of these oscillators seems to contradict the assumptions of stationary
character of r(t) and the regular motion of ¢. However, it can be found certain
conditions so that the compatibility is fulfilled [311]. In particular, it is enough
to assume that the oscillators phase distribution is stationary in order to the
assure the stationary state conditions.

Now we compute the value of r. Taking into account that ¢ = 0 one
obtains 7 - exp(i¢) = r = 1/N 3, exp(if;) = (exp(if)). The latter average can
be decomposed into the following two contributions

r= <eXp(i0)>lock + <eXp(i9)>drift s (8.9)

from the locked and drifting oscillators. For the first average one obtains that
(exp(if))10ex = (€0s B, since for the locked solutions relation (8.8) holds and
hence the contributions for the oscillators with natural frequency w cancels
with the corresponding to those with —w due to the prescribed symmetry
g(w) = g(~w). Then,

Kr
(exp(if))oex = (€08 )00 = / cos [A(w)] g(w) dw , (8.10)
—Kr
where 6(w) is implicitly defined by eq. (8.8). Changing the variable w to 6
using eq. (8.8) in the above expression one finally obtains

w/2

(exp(i0))10ex = /_ B cos?(#) g(Krsinf) db . (8.11)

The contribution to r from the drifting oscillators, (exp(i€)) g, 1S seen to
vanish invoking symmetry arguments [311]| and hence the control parameter r
is equal to the right side of eq. (8.11)

w/2
r= KT/ cos?(#) g(Krsinf) db . (8.12)
—7/2

This equation has always r = 0 as a solution (which corresponds to the inco-
herent system). A second solution for r # 0 is possible if the following relation

holds /2
1=K cos?(0) g(Krsind) db . (8.13)
—7/2
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This will occur for K > K, so that the threshold value K. corresponds to the
critical point where coherence appears, r — 0. Then one finds

2

) (8.14)

c g
for the critical coupling. The behaviour of the system’s coherence near the
critical point r < 1 can be obtained expanding g(Krsin#) up to second order
yielding

D=

r o ( 7—7@’}(60)[(;1) (K —-K.)? (8.15)

where the mean field character of the model becomes evident.

8.1.2 Synchronization in complex networks

The Kuramoto mean-field approach to synchronization was a great break-
through for the understanding of the emergence of synchronization in large
populations of oscillators. However, we are aware that a large amount of real
systems do not show a homogeneous pattern of interconnections among their
parts. That is, the underlying structure is not compatible with the original
assumption of the Kuramoto model. Moreover, it is not even well described by
random patterns of interconnections in the vast majority of systems. There-
fore, the mean-field approach requires of several constraints that are not usu-
ally fulfilled in real systems like natural|262, 313, social [148| and technological
[143, 314] ones. The study of processes taking place on top of complex net-
works with scale-free character has led to reconsider classical results obtained
for regular lattices or random graphs due to the radical changes of the system’s
dynamics when the heterogeneity of complex networks can not be neglected. It
is then natural to investigate how synchronization phenomena in real systems
are affected by the complex topological patterns of interaction. This is not
an easy task, as one has to deal with two sources of complexity, the nonlinear
character of the dynamics and highly non trivial complex structures, which are
usually presented to us in an entangled way. In fact, in 1998 Watts and Stro-
gatz in an effort for understanding the synchronization of cricket chirps, which
show a high degree of coordination over long distances as though the insects
where “invisibly" connected, end up with a seminal paper about the small-
world effect that was the seed of the modern theory of complex networks [155].
Nevertheless, the understanding of the synchronization dynamics in complex
networks remains a challenge.

Let us focus again on the paradigmatic Kuramoto model. In order to
manage with the KM on top of complex topologies we reformulate eq. (8.4) to
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the form &

d_tz :wi—FZj:Ai]‘Ai]‘ sin(Gj —92) (Z = 1,...,N) , (8.16)
where w; stands for its natural frequency, A;; is the coupling strength between
pairs of connected oscillators and A;; is the connectivity matrix (A4;; = 1
if 7 is linked to 7 and 0 otherwise). The original Kuramoto model studied
above assumed mean-field interactions so that A;; = 1,Vi # j (all-to-all) and
Aij = K/N, Vi, j.

The first problem when dealing with the KM in complex networks is the
definition of the dynamics. In the seminal paper by Kuramoto [311], eq. (8.4),
the coupling term in the right hand side of eq. (8.16) is an intensive magni-
tude. The dependence on the number of oscillators N is avoided by choosing
Aij = % This prescription turns out to be essential for the analysis of the
system in the thermodynamic limit N — co. However, choosing A;; = % the
dynamics of the KM in a complex network becomes dependent on N. There-
fore, in the thermodynamic limit, the coupling term tends to zero except for
those nodes with a degree that scales with N !. A second prescription consists
of taking A;; = kﬁl (where k; is the degree of node i) so that A;; is a weighted
interaction factor that also makes intensive the right hand side of eq. (8.16).
This form has been used to solve the paradoz of heterogeneity that states that
the heterogeneity in the degree distribution, which often reduces the average
distance between nodes, may suppress synchronization in networks of oscilla-
tors coupled symmetrically with uniform coupling strength [316]. One should
consider this result carefully because it refers to the stability of the fully syn-
chronized state (see below) not to the whole evolution of synchronization in the
network. More important, the inclusion of weights in the interaction strongly
affects the original KM dynamics in complex networks because it imposes a
dynamic homogeneity that mask the topological heterogeneity of the network.
Finally, the prescription A;; = K [315, 317, 318], which may seem more appro-
priate, also presents some conceptual problems because the sum in the right
hand side of eq. (8.16) could eventually diverge in the thermodynamic limit if
synchronization is achieved.

To our understand, the most accurate interpretation of the KM dynamics in
complex networks should preserve the essential fact of treating the heterogene-
ity of the network independently of the interaction dynamics, and at the same
time, should remain calculable in the thermodynamic limit. Taking into ac-
count these factors, the interaction A;; in complex networks should be inversely

"Note that this is only possible in networks with power-law degree distributions, but with
a very small probability as P(k) ~ k77 with v > 0. In these cases, mean-field solutions
independent on N are recovered, with slight differences in the onset of synchronization of
all-to-all and scale-free networks [315].
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proportional to the largest degree of the system A;; = % = )\ keeping in

this way the original formulation of the KM valid in the thermodynamic limit
(in SF networks kpqz ~ Nl/(V_l)). In addition, the same order parameter, eq.
(8.5), can be used to describe the coherence of the synchronized state. Since
kmaz s constant for a given network, the physical meaning of this prescription
is a re-scaling of the time units involved in the dynamics. Note, however, that
for a proper comparison of the synchronizability of different complex networks,
the global and local measures of coherence should be represented according to
their respective time scales. Therefore, given two complex networks A and B
with kper = ka and ke = kp respectively, the comparison between observ-
ables must be done for the same effective coupling I]f—j = % = A. With this
formulation in mind eq. (8.16) reduces to
db;

— =Wt Azj:Aij sin(0; —60;) (i=1,..,N), (8.17)

independently of the specific topology of the network. This allow us to study
the dynamics of eq. (8.17) over different topologies in order to compare the
results and report properly the interplay between topology and dynamics for
what concerns to synchronization.

In recent years, scientists have addressed the problem of synchronization
on complex networks capitalizing on the Master Stability Function (MSF) for-
malism [319] which allows to study the stability of the fully synchronized state
[316, 320-326]. The MSF is simply the result of a linear stability analysis for
a completely synchronized system. Although we are not going to make use of
the MSF along the forthcoming sections, let us briefly summarize the basis of
this technique for the sake of completeness.

Consider a general system of N coupled dynamical systems for the n-
dimensional variables {x;} (i = 1,..., N) of the form

N
% =F(xi) + A LyH(x;) (i=1,..,N), (8.18)
j=1

where F : R" — R’ is the isolated n-dimensional dynamical system, A is the
coupling strength, L;; is the N x N Laplacian matrix fulfilling Zj L;j =0 and
H: R” — R"™ is an output function that accounts for the mutual influence of
the dynamical states of two coupled dynamical systems. The above equations
can be written in a more compact form

x=[Iy@F+X LoH|x), (8.19)

where Iy is the N x N identity matrix and ® is the direct product. The
evolution of a small perturbation around any solution of the above system
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will be governed by the linearized equations around the corresponding solution
from which one can compute the Floquet and Lyapunov exponents (see Ap-
pendix B). However, if the whole system displays synchronous dynamics one
has x; = x; Vi, j and it implies some simplifications about the linear stability
analysis. Since the Jacobians DF and DH that appear in the linearized equa-
tions are the same for every n-dimensional tangent subspace corresponding to
perturbations of single n — dimensional variables x; (i = 1,...,N) one can
effectively decouple the stability analysis of the N dynamical system. For this
purpose diagonalizing the N x N Laplacian matrix, and calling v; (i =1, ..., N)
its eigenvalues, one arrives to a set of N n-dimensional systems of equations

& =[DF + \y;DH]¢; (i=1,...,N) (8.20)

with the same functional form. The similarity of these n-dimensional systems
of equations, derived from the the symmetry of the synchronized solution, leads
to formulate the general problem of finding the maximum eigenvalue, A of the
generic equation

y = [DF + (a +ib)DH]y (i =1,...,N) (8.21)

as a function of @ and b. The above equation is the so-called Master Stability
Equation and the surface, A(a,b) generated by the solutions correspond to the
Master Stability Function. By means of this surface, that only depends on the
particular equations for the isolated dynamical systems and the form of the
coupling between them, one can compute the maximum Lyapunov exponents
for each Laplacian eigenvector «; (i = 1, ..., N), that would depend on the un-
derlying topology employed, and hence obtain the stability of the synchronized
state over the complex network structure.

While the MSF approach is useful to get a first insight into what is going
on in the system as far as the stability of the synchronized state is concerned,
it tells nothing about how synchronization is attained and whether or not the
system under study exhibits a critical point similar to the original KM. To
this end, one must rely on numerical calculations and explore the entire phase
diagram. Surprisingly, there are only a few works that have dealt with the
study of the whole synchronization dynamics in specific scenarios [317, 327—
329| as compared with those where the MSF is used, given that the onset of
synchronization is reacher in its behavioral repertoire than the state of complete
synchronization. In the following sections we will study this point using the KM
model on top of different substrate topologies in order to get insight about the
role of the structural properties on the route towards complete synchronization.
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8.2 Synchronization in local scale-free networks

In this section, we take a further step in the detailed characterization of the
phase diagram and specifically, in the description of the dynamical behavior
at the onset of synchronization in SF networks. By performing a standard
finite size scaling analysis, we show that the local topology affects the critical
properties of the dynamics, though it is less pronounced that what one may
expect a priori. We capitalize on the network model reported in section 5.3
that keeps the power-law exponent fixed while varying the clustering coefficient
and the average path length. This model was already used in section 6.2.2 for
studying the role of the local topology when studying traffic dissemination.

Let us first review the main features of the model. Roughly speaking, the
model mimics the situation in which new nodes are attached to an existing
core or network but without having knowledge of the whole topology. The
model generates a one parameter family of networks labeled by p € [0, 1] that
measures the degree of knowledge that is applied when preferential attachment
is performed during the network growth. Then, the limit yx — 1 assumes global
knowledge an thus it recovers the BA network. On the other hand, p — 0
implies extremely local knowledge and the resulting networks while displaying
a scale-free structure (the exponent ~y of the power-law degree distribution is the
same, i.e. v = 3, regardless of the value of u) are very large (large values of (L))
and highly clustered compared to BA networks. Both magnitudes, clustering
coefficient (c) and average path length (L), increase as p decreases from 1 to 0
(see figures 7.4 and ??7). Remind that the larger variations correspond to the
clustering coefficient (a factor greater than 4 as compared to a factor close to 2
for (L)) and that it is the first property that deviates from the BA limit while
(L) holds up close to similar values to that of the BA limit up to small values
of u, where (L) raises at a higher rate than (c).

We will consider the Kuramoto model (8.17) discussed in the last section
and employ the control parameter r introduced above to measure the degree
of synchronization as a function of the coupling strength A and the topology
parameter (.

In order to inspect how the dynamics of the NN oscillators depends on
the underlying topology, we have performed extensive numerical simulations
of the model. Starting from A = 0, we increase at small intervals its value.
The natural frequencies w; and the initial values of ; are randomly drawn
from a uniform distribution in the interval (—1/2,1/2) and (—m,7), respec-
tively. Then, we integrate the equations of motion eq. (8.17) using a 4" order
Runge-Kutta method over a sufficiently large period of time to ensure that the
system reaches the stationary state, where the order parameter r is computed.
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Figure 8.2: Order parameter r as a function of A for different values of p as indicated.
The network parameters are N = 1000 and (k) = 6.

The procedure is repeated gradually increasing A for every network realization
labeled by p. All the results are averaged over at least 100 realizations.

The results for r versus the control parameter A are shown in figure 8.2 for
several networks characterized by different values of p. For all values of p, when
the coupling is increased from small values, the incoherent solution prevails
and macroscopic synchronization is not attained. This behavior persists until
a certain critical value A.(p) is crossed. At this point some elements lock their
relative phase and synchronized clusters of nodes appear. This constitutes
the onset of synchronization. Beyond this value, the population of oscillators
splits into a partially synchronized state contributing to r and a group of
nodes whose natural frequencies are too spread as to be part of the coherent
pack. Finally, after further increasing the value of A, more and more nodes get
entrained around the mean phase and the system settles down in a completely
synchronized state where r = 1.

A comparison between the results for different values of p (and thus dif-
ferent (c) and (L) values) indicate several interesting features of the synchro-
nization process. First, it is remarkable that when the clustering coefficient
increases, the system reaches complete synchronization at higher values of the
coupling. This result agrees with the results reported in [328], where a different
network model able to generate topologies with a tunable clustering coefficient
was implemented.

At this point, one may ask whether the effects are only due to the influence



8.2. Synchronization in local scale-free networks 265

of {(c) or to the increase of the average path length (L) (note that the model
implemented in [328] does not explore this possibility). Unfortunately, the two
factors are generally linked together so they can not be considered separately.
However, a closer look at figures 7.4 and 7?7 reveals that there is a region
of the parameter p where the clustering coefficient grows while the average
shortest path length remains almost constant. This corresponds to the interval
0.4 < p < 1.0 approximately. Going back to figure 8.2, the behaviour of
r in this interval of p reveals that synchronization is almost unaffected. In
fact, the r(\) curves lie slightly above that corresponding to the BA limit.
Therefore, though the above comparison is not conclusive, it seems that the
delayed transition to complete synchronization is mainly due to the effect of
the increase in (L) at smaller values of y rather than to the increase in (c).
This conclusion is further supported by a direct comparison of the results in
figure 8.2 with those reported in [328], where the authors explored a region
with higher values of (c) (up to 0.7) and the profile of r()) is almost the same
as ours.

The second region of interest is the onset of synchronization. From figure
8.2, it is difficult to elucidate how the critical point for the BA limit compares
with those at values of p < 1. At first glance, it seems that A.(u) shifts
rightward as the parameter y is decreased below 1. However, a more detailed
analysis shows that it is indeed the contrary. To this end, we have performed
a finite size scaling analysis that allows to determine the critical points \.(u).
We assume a scaling relation of the form

r=N"of [Nﬁ(A - )\c)] , (8.22)

where f(z) is a universal scaling function bounded as * — +oo and « and
[ are critical exponents to be determined. The estimation of A. can then be
done by plotting N%r as a function of A and tuning « for several system sizes
N until the curves cross at a single point, the critical one.

The results of the FSS analysis are shown in figure 8.3 for different values
of u (from top to bottom and from left to right x = 0.05,0.15,0.50,0.60).
The insets show a blow-up around the critical points A.(u). Although the
differences in the critical points at different values of p are small, they are
certainly distinguishable. In fact, the higher the value of u, the higher the
critical point. That is, when the clustering coefficient and the average path
length grow with respect to the BA network, the onset of synchronization is
anticipated. Moreover, taking into account that the increase in (L) is likely to
inhibit synchronization, one may hypothesize that the effects of the clustering
coefficient prevail in this region of the parameter A. To check this hypothesis,
we have also included in figure 8.3 the analysis performed for p = 0.50 and pu =
0.60. As pointed out before, for these values, the differences can only arise from
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Figure 8.3: Finite size scaling analysis for several values of y. From top to bottom
and from left to right the values of p are: 0.05, 0.15, 0.50 and 0.60. In each panel, it is
represented the rescaled order parameter against the control parameter A\. The insets
are a zoom to the regions around the critical points A.(u). The data are averaged over
at least 100 realizations for each value of A\. The sizes of the networks, the critical
points A.(u) at which the onset of synchronization takes place, as well as the values of
the critical exponents « are those indicated in the plots. See the main text for more
details.

the variations of the clustering coefficient as the average path length remains
constant in this region of the parameter u. The critical points, although very
close to each other, are clearly different. Therefore, the main contribution to
the onset of synchronization at low values of A comes from the raising of the
clustering coefficient.

Rounding off, the results point to a nontrivial dependence between the
clustering coefficient and the average path length, and the synchronization
patterns of phase oscillators. Separately, the onset of synchronization seems to
be mainly determined by (c), promoting synchronization at low values of the
coupling strength with respect to networks not showing high levels of struc-
tural clustering. On the other hand, when the coupling is increased beyond the
critical point, the effect of (L) dominates and the phase diagram is smoothed
out (a sort of stretching), delaying the appearance of the fully synchronized
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state. These results confirm and complement those anticipated in [328]| and
show that general statements about synchronizability using the MSF are mis-
leading. Whether or not a system is more or less synchronizable than others
showing distinct structural properties is depends on the region of the phase
diagram in which the system operates.

With this first study we have shown that synchronizability of complex
networks is dependent on the effective coupling A among oscillators, and on
the properties of the underlying network: For small values of A, the incoherent
solution r = 0 first destabilizes as the clustering coefficient is higher, while the
coherent solution r = 1 is promoted when both the structural clustering and
the average path length are small.

8.3 Homogeneous versus heterogeneous topologies

The results obtained in the above section shed light about the influence of
the interactions topology on the route to synchronization. However, in this
study at least two parameters (clustering and average path length) vary along
the studied family of networks. This paired evolution, although yielding a in-
teresting interplay between the two topological parameters, made difficult to
distinguish what effects were due to one or other factors. The family of net-
works used in the present section are comparable in their clustering, average
distance and correlations so that the only difference relies on the degree dis-
tribution, ranging from a Poissonian type to a scale-free distribution. In this
sense, the obtained results are as far reaching as the highly acclaimed ones
obtained for percolation and epidemic spreading on top of homogeneous or
heterogeneous graphs, where the radical differences are rooted in the topology
of the underlying networks.

The main goal of this section is to scrutinize and compare the synchroniza-
tion patterns in Erdos-Reényi (ER) and scale-free (SF) networks. These kinds
of synchronization patterns have been observed in the all-to-all KM model for
broadly heterogeneous (in natural frequencies) populations of oscillators[330],
however, those reported in this section are shown to be intrinsically related to
the underlying topological structure and hence of importance for the structure-
function problem. For this purpose we make use of the model presented in
section 5.4 that allows a smooth interpolation between these two important
topologies. Besides, we introduce a new parameter for characterizing the syn-
chronization paths in order to unravel their differences. The results reveal that
the synchronizability of these networks does depend on the coupling between
units, and hence, that general statements about their synchronizability are
eventually misleading. Moreover, we show that even in the incoherent solu-
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tion, r = 0, the system is self-organizing towards synchronization. We will
analyze in detail how this self-organization is attained.

The first studies about the onset of synchronization in SF networks [317]
revealed some important differences from the behaviour observed from purely
random networks as ER graphs. The main difference relied on the great ten-
dency of SF networks to synchronizability, which is revealed by a non-zero but
very small critical value A\.. Besides, it was observed that at the synchronized
state, r = 1, hubs are extremely robust to perturbations since the recovery
time of a node as a function of its degree follows a power law with exponent
—1. These findings point out that the special architecture of SF networks en-
hances the synchronizability both at its onset and at the coherent regime. In
this sense, it is interesting to characterize the roots of this different behaviour
comparing it to that observed for ER graphs.

We first concentrate in global synchronization for the Kuramoto model
(8.17). For this we follow the evolution of the order parameter r, eq. (8.5),
as A increases, to capture the global coherence of the synchronization in net-
works. We will perform this analysis on the family of networks generated with
the model introduced in section 5.4. This model generates a one-parameter
family of networks labeled by « € [0, 1]. The parameter « measures the degree
of heterogeneity of the final networks so that o = 0 correspond to the hetero-
geneous BA network and o = 1 to homogeneous ER graphs. For intermediate
values of « one obtains networks that has been grown combining both prefer-
ential attachment and homogeneous random linking so that each mechanism is
chosen with probabilities (1 — a) and « respectively. It is worth stressing that
the growth mechanism preserves the total number of links, N;, and nodes, NV,
for a proper comparison between different values of . We will consider the
variant A of the model since with this formulation the interpolation in terms
of the degree distribution is seen to be smoother than in the second variant of
the model (see figure 5.18).

The curves r(A) for several network topologies ranging from ER to SF are
shown in figure 8.4. We have performed extensive numerical simulations of eq.
(8.17) for each network substrate starting from A = 0 and increasing it up to
A = 0.4 with A = 0.02. A large number (at least 500) of different network
realizations and initial conditions were considered for every value of X\ in order
to obtain an accurate phase diagram of the synchronization onset. As in the
previous section the natural frequencies w; and the initial values of 6; were
randomly drawn from a uniform distribution in the interval (—1/2,1/2) and
(—m,7), respectively.

Figure 8.4 reveals the differences in the critical behaviour as a function of
the substrate heterogeneity. The global coherence of the synchronized state,
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Figure 8.4: Global synchronization curves r()) for different network topologies labeled
by a (o = 0 corresponds to the BA limit and o = 1 to ER graphs). The network
sizes are N = 10% and (k) = 6 (N; = 3 - 10%).

represented by r, shows that the onset of synchronization first occurs for SF
networks. As the network substrate becomes more homogeneous the critical
point A, shifts to larger values and the system seems to be less synchronizable.
On the other hand, it is also clear that the route to complete synchroniza-
tion, r = 1, is faster for homogeneous networks. That is, when A > A.(«) the
rate growth of r grows with «. In order to inspect in more details the critical
parameters of the system dynamics we proceed as in the previous section by
following a finite size scaling procedure. This allows to determine with preci-
sion the curve A.(«) and study the critical behaviour near the synchronization
transition. A detailed analysis performed for both SF and ER topologies shows
that the critical value of the effective coupling, A., corresponds in scale-free
networks to A3F = 0.05(1), and in random networks to AP = 0.122(2), ac-
cordingly with figure 8.4. In both cases, the transition strongly recalls the
classical transition of the original KM [311] with a critical exponent near 0.5
(0.46(2) for the SF network [317]).

The differences between ER and SF topologies observed when looking at
global patterns of synchronization motivate a more detailed study of the syn-
chronization onset for both topologies. The original work by Kuramoto pointed
out that at the onset of synchronization small clusters of locked oscillators
emerge and that the recruitment of more oscillators into these clusters as the
coupling is increased makes larger the global coherence r of the system. Obvi-
ously the emergence of these clusters would depend on the underlying topology
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which drives the possible configurations that locked oscillators would eventu-
ally form. In order to inspect how this initial coherence is achieved we propose
a new order parameter, r,,. This parameter measures the local construction
of the synchronization patterns and allows for the exploration of how global
synchronization is achieved. Then we define

L[ -0,
Altlglooxt/tr e iWldt|, (8.23)

1
Tlink = 2—]\/vl Zz:gl;

being I'; the set of neighbours of node i. The parameter 7y, measures the
fraction of all possible links that are synchronized in the network. The aver-
aging time At should be taken large enough in order to obtain good measures
of the degree of coherence between each pair of physically connected nodes.
Besides, ryn is computed after the system relaxes at some large time £,.

In figure 8.5 we represent the evolution of both order parameters, r and
Tiink, as a function of the coupling strength A for both ER and SF networks.
The behaviour of 7y, shows a change in synchronizability between ER and
SF and provides additional information to that reported by r. Interestingly,
the nonzero values of ry,r for A < A, indicate the existence of some local
synchronization patterns even in the regime of global incoherence (r ~ 0).
Right at the onset of synchronization for the SF network, its rj;,; value deviates
from that of the ER recovering the known result about the synchronization
of SF networks for lower values of the coupling. In this region, while the
synchronization patterns continue to grow for the ER network at the same
rate, the formation of locally synchronized structures occurs at a faster rate
in the SF network. Finally, when the incoherent solution in the ER network
destabilizes, the growing in its synchronization pattern increases drastically
up to values of ry,, comparable to those obtained in SF networks and even
higher.

The results in terms of 7y, show again that statements about synchro-
nizability are dependent on the coupling strength value. Additionally, the
previous discussion suggests that synchronization is attained following two dif-
ferent paths that depend on the underlying topology. To shed new light on this
phenomenon, we have studied the characteristics of the synchronization pat-
terns along the evolution of 7y;,,. Following the usual picture synchronization
patterns are formed by pairs of oscillators, physically connected, whose phase
difference in the stationary state tends to zero. In order to determine which
pairs of nodes are truly synchronized we have to determine the coherence of
their dynamics. Note that eq.(8.23) is the average dynamical coherence be-
tween every pair of linked nodes and then the synchronization degree of every
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Mink

Figure 8.5: Evolution of (a), the KM order parameter defined in eq. (8.5), and (b)
the fraction of synchronized links 7y, eq. (8.23), as a function of A\. The curves
separate when the incoherent solution for SF networks destabilizes. The figure clearly
illustrates that the synchronizability of the networks does depend on the value of the
coupling strength. Both plots are represented for Erdos-Rényi (ER) and scale-free
(SF) networks as indicated. The size of the networks is N = 10% and their average

degree is (k) = 6. The exponent of the SF network is v = —3.

pair of connected oscillators can be written in terms of a symmetric matrix

1 [trtAt
D;; = Ai; | lim —/ 00Ol gy | (8.24)

At—o00 At tr

Then one has to analyze each matrix term D;; in order to label a link (4, j)
as synchronized or not. As introduced above, from the computation of 7,k
one determines the fraction of physical links that are synchronized so that one
would expect that 27, - IV; elements of the matrix D are D;; = 1, while
the remaining elements are D;; = 0. However, this is not the real situation
since the network dynamics is not well defined in terms of a fully synchro-
nized cluster and a set of completely incoherent oscillators. On the other hand
the worst scenario would be found if there were 2V, elements of matrix D so
that D;; = 7jink, implying that all the physically connected pairs are equally
synchronized and hence the parameter 7y, could not be interpreted as the
fraction of links that are dynamically coherent and no information about the
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Figure 8.6: Degree of synchroniza-
tion, D;; between pairs (i,7) of
connected nodes. These elements
of the matrix D are ordered from
largest rank;; = 1 to the lowest
rank;; = N;. The network is SF
with N = 10% and (k) = 6. The
two curves correspond to A = 0.05
(onset of synchrony) and A = 0.13
with 7y, >~ 0.25 and 0.82 respec-
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0.25

tively for these two particular re-

0 0.25 05 0.75 1 alizations. The thick regions of
rank the curves correspond to the links
N; chosen in order to reconstruct the

synchronized cluster.

topological patterns of synchronization could be extracted from matrix D. The
situation found is not as simple as the former possibility and not so dramatic
as the latter. In figure 8.6 the contributions D;; of the N; elements of matrix
D that corresponds to physical links are plotted ordered from the highest to
the lowest one. The two situations plotted correspond to the onset of synchro-
nization (A = 0.05) and when high global coherence (A = 0.13) is observed for
a SF network. As can be observed for the onset of synchronization, a subset
of nearly 20% of links displaying coherent dynamics with high degree of syn-
chronization, D;; > 0.8, is well separated from the behaviour of the remaining
links as the dramatic decrease of D;; reveals for the remaining 80% of links.
In this sense, it is clear that the dynamics of a 20% of the possible pairs can
be regarded as synchronized which is in agreement with the obtained value
Tink = 0.25 for A = 0.05 and hence supporting that although macroscopic
coherence is not observed (r ~ 0 at this point) the system is seen to walk
towards it. For the curve corresponding to A = 0.13 a plateau of nearly 75% of
links is observed, thus revealing the high degree of global coherence, r ~ 0.7,
at this point. As a conclusion, the shape of both curves allows to interpret
riink as the fraction of synchronized links and thus to obtain information about
synchronized patterns from D.

In order to determine exactly which pairs of nodes are regarded as synchro-
nized, matrix D is thus filtered using a threshold T such that the fraction of
synchronized pairs equals 7y;,%. In this way T is a moving threshold so that if
D;; > T oscillators 7 and j are considered synchronized. The value of T" de-
pends on the particular realization and is determined by means of an iterative
scheme starting from 7" = 1 and decreasing it with 67" = 0.01 one computes
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Figure 8.7: Size of largest synchronized connected component (GC) and number of
synchronized connected components (Nc¢), as a function of A (left) and 7y, (right)
for the different topologies considered. Small values of 7y, correspond to values of
A for which r =~ 0. Despite r being vanishing and hence no global synchronization
is yet attained, a significant number of clusters show up. This indicates that for any
A > 0 the system self-organizes towards macroscopic synchronization. The network
parameters are as in figure 8.5

the amount of links that fulfills the condition. Decreasing progressively the
value of T' more pairs of oscillators are chosen and the process is stopped when
the value of T is such that the fraction of chosen links is equal to the desired
value ryni previously computed from D. When the synchronized links are
identified the clusters of synchronized nodes are reconstructed. In figure 8.6
the chosen links according to the corresponding values of ry,x are those lying
in the thicker part of both curves.

In figure 8.7 we represent the number of synchronized clusters and the size
of the largest one (GC) as a function of A and 7y, for ER and SF networks.
The local information extracted from it unveils an astonishing and novel feature
of the synchronization process that can not be derived from figures 8.4 and
8.5, and that in some sense is counterintuitive. The emergence of clusters of
synchronized pairs of oscillators (links) in the networks shows that for values of
A< )\fF, i.e., still in the incoherent solution r = 0, both kind of networks have
developed a largest cluster of synchronized pairs of oscillators involving 50%
of the nodes of the network, and an equal number of smaller synchronization
clusters. From this point on, in the SF network the GC grows and the number
of smaller clusters goes down, whereas for the ER network the growth explodes.
These results indicate that although SF networks present more coherence in
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terms of r and 75,1, the microscopic evolution of the synchronization patterns
is faster in ER networks, being these networks far more locally synchronizable
than the heterogeneous ones.

The observed differences in the behaviour at a local scale are rooted in
the growth of the GC. It turns out that for the ER networks, many different
clusters of synchronized pairs of oscillators (note in figure 8.7 the large number
of clusters formed when a 15% of the links are synchronized) merge together
to form a GC when the effective coupling is increased. The coalescence of
many small clusters leads to a giant component of synchronized pairs that is
almost the size of the system once the incoherent state destabilizes. On the
other hand, this is not anymore the case for SF networks, where oscillators are
incorporated slowly to the GC practically one-by-one (forming new pairs) in
terms of A (or r;uk), but starting from a core made up of half the nodes of the
network. As a conclusion, while for ER network the collapse at A, of the small
clusters of synchronized nodes that have been grown when r = 0 is the root
of the fast increase of the global coherence, for SF the process is described as
a slow and progressive growth as the coupling is increased of an initial core of
synchronized nodes.

The above picture is confirmed in figure 8.8, where we have represented the
evolution of local synchronization patterns in ER and SF networks for several
values of A. It is clear that when r ~ 0 the two networks follow different
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Figure 8.8: Synchronized clusters for several values of A for the two different topologies
studied (ER and SF). These networks are made up of 100 nodes, in order to have a
sizeable picture of the system. The evolution of local synchronization patterns is
always agglomerative, however, it follows two different routes. In the ER case, the
growth of the GC proceeds by aggregation of small clusters of synchronized nodes,
while for the SF network the central core groups the smaller clusters around it.



8.3. Homogeneous versus heterogeneous topologies 275

1000
1F .
a=
a=
075 | o= 750 } ]
a= o o
o= 4 ER) 0=1.00 ——
- 05 O 500 F ( )(1=0.75 ———— T
0=0.50
0=0.25 -
0.25 250 | (SF) a=0.00 i
2F : , , . 0 . . :
0=1.00 150 | (ER) a=1.00 1
0=0.75 0=0.75
0.75 a=8.gg 0=0.50
0=0.25 - 0=0.25
= 4=0.00 ------ S 100 (SF) 0=0.00 - 1
= 05
0.25 50 | |
Y: . . . ; 0 . ) .
0 0.05 0.1 0.15 0.2 0 02 04 06 08 1
A Tlink

Figure 8.9: (Left) Evolution of the control parameters r and ry,; as a function of
the coupling strength for networks generated with the model introduced in section ()
corresponding to « = 0.0, 0.25, 0.5, 0.75 and 1.0. (Right) Evolution of the number of
synchronized clusters N, and the synchronized giant component size GC' as a function
of rynk for the same topologies. The network parameters are the same as in figure
8.5.

paths toward synchronization as can be observed for A = 0.05 where for the
ER network three clusters of synchronized nodes of similar size appear while
for the SF network a unique large cluster is present. The coalescence of the
synchronized patterns for the ER is clear at A = 0.07 ? and corresponds to
the emergence of the global coherence of the system. On the other hand, for
the SF network the unique cluster suffers a smooth growth by adding new
synchronized nodes to the giant cluster.

This study about the patterns of self-organization towards synchroniza-
tion reveals that the quantitative difference about the macroscopic behaviour,
shown by the computation of the evolution of the global coherence r for ER
and SF networks, has its roots on a qualitatively different route at the micro-
scopic level of description. The use of the new parameter ry;,, which involves
the computation of the degree of coherence between each pair of linked nodes
is a useful tool for describing such differences.

We have repeated analogous computations using those networks that inter-
polate between ER and SF topologies. As expected the behaviour of relevant

*Note that the size of the network is relatively small (N = 100) and thus the critical point
is shifted to lower values (AFT ~ 0.07 in this case) than that found using a FSS analysis.
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magnitudes such as 7,5, the number of synchronized clusters and the size
of the giant synchronized cluster lies between the two limiting cases studied
above. In figure 8.9 we have plotted the evolution of these magnitudes for these
interpolating network topologies labeled with a. The results suggest that the
degree of heterogeneity of the network is the key ingredient to explain the two
different routes observed.

The technique developed for extracting the synchronization patterns allows
the analysis of the topological features of such clusters of nodes. Considering
as we did in last chapter 7 the emergent clusters of synchronized nodes and
links, we can compute the average measures of relevant quantities such as
the clustering coefficient or the degree distribution, and see how these mag-
nitudes evolve from the uncoupled limit, where no synchronization occurs, to
the coherent regime where the synchronized network coincides with the un-
derlying substrate. It is then relevant to explore the regions where the onset
of synchronization takes place and characterize topologically these emergent
synchronized clusters.

In figure 8.10 the evolution of the clustering coefficient, (c), of the giant
synchronized cluster is plotted as a function of A for the topologies correspond-
ing to SF to ER networks. The results are illustrative, for these topologies the
clustering decreases as the coupling is increased or, in other words, as the gi-
ant component grows by the addition of new synchronized nodes. However,
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Figure 8.10: Evolution of the clustering coefficient of the giant synchronized cluster,
(c), as a function of A for ER and SF network topologies (a = 0, and 1). Network
parameters are those used in figure 8.5.
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the effects of the two different routes to complete synchronization observed for
ER and SF are well appreciated from the results. For SF networks there is a
smooth decrease of the clustering coefficient and the effects of the emergence
of global coherence for A > A\3F = 0.05(1) are not dramatic in what refers to
the behaviour of (¢). That is, it takes too long in terms of A to arrive to values
of the clustering similar to those of the substrate network. On the other hand,
for ER graphs the slow decay rate observed for A < A¥# = 0.122(2) when no
macroscopic coherence is observed is interrupted by a sudden jump near their
critical value. In fact, for A > A, the clustering of the synchronized cluster is
similar to that found for the substrate network. This effect becomes clear if
one has in mind the coalescence of small clusters, which happens around the
critical point for ER graphs. In fact, taking into account the giant synchro-
nized component on ER for A < )\fR, implies to consider one of the several
disjoint synchronized clusters of similar size that are in this region. Then, when
these clusters collapse into a much larger one the topological features change
dramatically as observed from the evolution of the clustering coefficient. This
is not anymore the case in SF where the topological characteristics of the gi-
ant component change smoothly as new nodes are dynamically attached to the
component. The remaining curves corresponding to the interpolating networks
connect these two different behaviours.

All the results reported above point out that the ultimate reason behind the
two different routes to complete synchronization is the heterogeneous character
of the SF network and the role played by the hubs. The natural cohesion that
hubs provide to SF network prevents the existence of independent macroscopic
clusters of synchrony as occurs for ER networks. It is then interesting to study
how these hubs participate in the formation of the final synchronized state. For
this, we first study the evolution with A of the composition of the synchronized
cluster in terms of the degree of its components. In figure 8.11, we have plotted
the probability that a node with degree k belongs to the giant synchronized
cluster as a function of its degree k£ and the coupling A for the SF network.
This probability turns out to be an increasing function of k for every value of
the coupling A. Hence one can state that the more connected a node is, the
more likely it takes part in the cluster of synchronized links. In particular,
the results confirm the hypothesis made above that the hubs participate from
the very beginning on the formation of the synchronized cluster. Recently
[331], Zhou and Kurths have reported the study of hierarchical organization
in complex networks, using the MSF and a mean-field approach in the weak
coupling limit. Our results thus substantiate and generalize those about the
role of hubs in the synchronization process presented in [331].

The above characterization of the synchronized cluster in terms of the de-
gree of its component should be completed studying their effective degree, k;;.



278 Chapter 8. Synchronization on Complex Networks

2 1
0.8
(®)) @)
g 04 %
0.2

0.5

0 0.025 0.050.075 0.1
A

Figure 8.11: The plot shows the correlation between the likelihood that a node belongs
to the GC of pairs of synchronized oscillators and its degree k as a function of the
coupling strength A. This probability, PGC(k)7 is color-coded as indicated in the right
panel. The figure convincingly demonstrates that highly connected nodes are those
that recruit poorly connected nodes as the GC grows. The network is SF and its
parameters are those used in figure 8.5.
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Figure 8.12: The plot shows the fraction of links that a node with degree k£ belonging
to the synchronized cluster shares with other nodes of the same synchronized cluster.
This fraction k;,:/k is plotted as a function of k& and A. The figure shows how the
hubs progressively incorporate their neighbours to the synchronized component as A
grows. The network is SF with parameters as those used in figure 8.5.
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The effective degree of a synchronized node is the number of links it shares
with other nodes belonging to the same synchronized cluster. Obviously, at
the complete synchronized regime a node with degree k will have k;,y = k.
We have plotted in figure 8.12 the quantity k,/k (the fraction of links that
a node has with synchronized neighbours) as a function of A\ and the degree
k of the nodes. The results reveal that although hubs are the first to take
part of the synchronized cluster, their neighbours are progressively incorpo-
rated to the cluster as A grows. Besides, if a node with small k is synchronized
the probability that its neighbours are also synchronized grows very fast with
A which is an effect of the network topology (this nodes in the BA network
are physically connected to hubs with high probability). These results further
support the statement about the essential role played by hubs in the path to
synchronization in SF networks.

The results of this section clearly show that synchronizability of complex
networks is dependent on the effective coupling A among oscillators. For small
values of X\, SF networks outperform ER topologies, but the tendency is re-
verted for intermediate to large values of the coupling. On the other hand, the
detailed analysis of evolution of patterns of synchronization showed that there
are two radically different mechanisms to attain synchronization. In the pres-
ence of hubs, a giant component of synchronized pairs of oscillators forms and
grows by recruiting nodes linked to them. On the contrary, in homogeneous
structures, many small clusters first appear and then group together through a
sharp merging process. These results are in the same direction of those found
for percolation and epidemic spreading (see section 6.1.2) on top of homoge-
neous or heterogeneous graphs, where the radical differences of the system’s
dynamics are found depending on the heterogeneity of the underlying networks,
demonstrating that the same behavior may hold for nonlinear dynamical sys-
tems coupled to complex structures. More importantly, the fact that the route
to complete synchronization is radically different in homogeneous and hetero-
geneous networks, raises the question of its motivation in nature and shed
light on the structure-function interplay. Besides, the results open new paths
to clarify how synchronization is attained in complex topologies and give new
tools to analyze this ubiquitous phenomenon.

8.4 Synchronization in structured networks

In the light of the results of the above section we have extended the study
beyond unstructured networks to structured or modular networks. This is a
limiting situation in which the local structure may greatly affect dynamics,
irrespective of whether or not we deal with homogeneous or heterogeneous
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networks and then they constitute a perfect framework for testing the new
order parameter ry;,, introduced in the last section.

Many complex networks in nature are modular, i.e. composed of certain
subgraphs with differentiated internal and external connectivity that form com-
munities (see section 5.1.4). The use of modular networks where a proper
comparison in synchronizability can be performed (same number of nodes and
links) restricts us to the consideration of synthetic structured networks. Then
we make use of a common benchmark of random network with community
structure, first proposed by Newman[332] considering one hierarchical level
and later extended to two hierarchical levels|329].

The modular network structure we build is as follows: in a set of N nodes,
we prescribe n compartments that will represent our first community organiza-
tional level, and m compartments, each one embedding four different compart-
ments of the first level, that define the second organizational level of the net-
work. The internal degree of nodes at the first level z;,, and the internal degree
of nodes at the second level z;,,, keep an average degree zj,, + Zin, + zZout = (k)
so that these networks are strictly homogeneous in the sense of the degree
distribution , P(k) = 6(k — (k)). Networks with two hierarchical levels are
labeled as zjp, - Zin,, €.8. a network with i-j means ¢ links with the nodes
of its first hierarchical community level (more internal), j links with the rest
of communities that form the second hierarchical level (more external) and
((k) — i — j) links with any community of the rest of the network.

Synchronization processes on top of modular networks of this type has been
recently studied as a mechanism for community detection [329|. Starting from
a set of homogeneous (in terms of the natural frequencies) Kuramoto oscilla-
tors with different initial conditions the system evolves after a transient of time
to the synchronized state. It has been shown that the community structure is
progressively unveiled at the same time the system’s dynamics evolve toward
the coherent state and the synchronization is attained. In particular, the nodes
belonging to the first community level are the first to get synchronized, subse-
quently the second level nodes achieve the frequency entrainment and finally
the whole system shows global synchronization.

Here we adopt a different perspective since we will consider as previously
a set of non-identical Kuramoto oscillators with random assignment of natural
frequencies and hence the final degree of system’s synchronization will depend
on the strength of the coupling. It is then interesting to study how the de-
gree of synchronization evolves as a function of A and whether the coherence
between nodes is progressively distributed following the hierarchy imposed by
the underlying topology. For this, we make use of the order parameters r, eq.
(8.5), and 7k, €q (8.23), to characterize the synchronization transition on two
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Nink

Figure 8.13: Global and local synchronization in modular networks. Evolution of (a),
r and (b), runk as a function of A for structured modular networks. The networks
are synthetically built with an a priori community structure. The network size is
256 nodes and the number of links is 4608. We prescribe 16 compartments that will
represent, our first community organizational level, and four compartments each one
embedding four different compartments of the above first level, that define the second
organizational level of the network. Each node has 18 links distributed between its
first community level, the second, and the whole network at random. The network 13-
4 has 13 internal connections in its first hierarchical level, 4 external connections in its
second hierarchical level, and 1 connection with any other community in the network.
The generation of the 15-2 structure is equivalent. The curves show that although
13-4 has always a better global synchronization, 15-2 has better local synchronization
as shown by 7nk-

slightly different modular networks with two well defined hierarchical levels,
13 —4 and 15 — 2, being this difference the cohesion of the internal community
core, 13 links out of 15 possible neighbors or 15 links (i.e., all-to-all) at the most
internal level. Both networks have N = 256 and (k) = 18. Figure 8.13 show
the results for both kinds of networks revealing that the path towards syn-
chronization as a function of the interaction is again affected by the structure.
They also show that the information provided by 7, is essential to unveil the
synchronization process. While the global synchronization parameter r is re-
flecting that the 13 —4 structure globally synchronizes always better, ;5 tells
us again about the local synchronization. It shows that local synchronization
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Figure 8.14: Synchronization patterns in a 15 — 2 modular network. We represent
the degree of synchronization between pairs of connected nodes for several values
of the coupling A in a 15 — 2 modular network (with two organizational levels) of
N = 256 nodes. The color code denotes the value of the averaged (over different
initial conditions) filtered matrix (D;;) € [0,1]. The values of the coupling are (from
left to right and top to bottom) A = 0.0110, 0.0210, 0.0275, 0.0305, 0.0360, 0.0440 and
0.210 (corresponding to full synchronization). The pictures show that the order of
synchronization is given by the organizational levels. The first community level is the
first one to get synchronized, subsequently, second level nodes attain synchronization
for a larger value of A and finally the full synchronized state is reached when outer
links have (D;;) = 1.
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is indeed favored in the 15 — 2 structure since ry,; is larger for this topology
for small values of A where the system is locally forming synchronized clusters.
This result, not captured by the macroscopic indicator r, is expected since the
internal cohesion of communities at the first hierarchical level is larger for the
15-2 than for the 13-4. The evolution of 7y, shows that when the coupling A
is increased the number of links synchronized in the 13 — 4 network becomes
larger than in the 15 — 2 structure revealing that complete synchronization is
then favoured by the presence of more external links connecting the first level

communities.

The inspection of the synchronization path in modular networks can be
easily visualized by the representation of the filtered matrix D. It implies to
reassign the values of matrix D so that D;; = 1 if D;; > T D;; = 0 otherwise.
Plotting this filtered matrix for different values of the coupling A one can
easily determine which links are the first to synchronize since the form of the
adjacency matrix A (that includes all the physical links between nodes) is
also easy to interpret because of its nested structure. Figure 8.14 shows how
the community structure determines the internal organization of the system in
the route towards full synchronization for the 15 — 2 network. For this study
we have computed the value of the filtered matrix D for a number of initial
conditions and then took its average value so that (D;;) € [0, 1] accounts for the
synchronization strength of the network link (7, 7). The results point out that
link synchronization depends on the organizational level they belong to. Those
connecting nodes belonging to the same first level community are the fastest
(in terms of the coupling strength \) to reach full synchronization. For larger
values of A\ full synchronization is attained progressively for the subsequent
organizational levels. Then, one can conclude that the inner the link is the
faster it gets synchronized in agreement with previous studies reported above

[329].

As a conclusion, the framework of structured networks has provided a useful
benchmark for testing the validity of the new parameter ry,, and the infor-
mation obtained from the computation of matrix D. The results obtained by
means of these quantities allow to conclude that for modular networks syn-
chronization is first locally attained at the most internal level of organization
and, as the coupling is increased, it progressively evolve toward outer shells of
the network. Besides, we have obtained evidences that a high cohesion at the
first level communities produce a high degree of local synchronization although
it delays the global coherent state.
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8.5 Conclusions

In this chapter we have explored several issues about synchronization in com-
plex networks of Kuramoto phase oscillators. Our main concern has been the
study of the synchronization patterns that emerge as the coupling between
non-identical oscillators increases. As in the previous chapter, nonlinear dy-
namics on top of complex networks lead to the formation of activity patterns.
These dynamical patterns (synchronized clusters here) are the byproduct of
the dynamical and structural complexity of the problem.

First, in section 8.2 we have focused on scale-free networks. In this section
we have explored the macroscopic behaviour of synchronization when both
clustering and average path length are continuously varied making use of the
network model defined in section 5.3. The results show that the onset of syn-
chronization is favoured as the clustering coefficient grows but, on the other
hand, as the average path length increases the path toward full synchroniza-
tion becomes larger. Section 8.3 accounts for the main concern of this third
part of the Thesis, the analysis of the emergence of dynamical patterns. For
this purpose we compute the degree of synchronization between each pair of
connected oscillators. This technique allows to reconstruct the synchroniza-
tion clusters from the dynamical data. We have studied how the underlying
topology (ranging from homogeneous to heterogeneous structures) affects the
evolution of synchronization with the help of the network model introduced
in section 5.4. The results reveal that the route towards full synchronization
depends strongly on whether one deals with homogeneous or heterogenous
topologies. In particular, it has been shown that the synchronization cluster
in heterogeneous networks grows from a unique core formed by those highly
connected nodes (hubs) whereas for homogeneous networks several synchro-
nization clusters of similar size can coexist. In the latter case, a coalescence
of these clusters is observed in the synchronization path which is macroscopi-
cally manifested by the sudden growth of global coherence typically observed
for Erdos-Rényi networks. The main result of this section is that systems are
seen to organize towards synchronization even when no macroscopic signal of
global coherence is observed. The difference between these two observed orga-
nizational behaviours influences the eventual onset of synchronization. Finally,
in section 8.4, we have applied the new technique for unveiling the local syn-
chronization patterns to the analysis of the emergence of synchronization in
structured networks. In this case, the technique allows to observe how syn-
chronization is progressively attained from the most internal communities until
coherence of the whole network shows up.
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Conclusions

We want to conclude with a brief summary of the most relevant results
obtained along the three parts of this Thesis. We want to stress here their
relevance as well as some prospective research that arises in the light of these
results.

In the first part we have studied the issue of intrinsic localization (dis-
crete breathers) in nonlinear Schrédinger anharmonic lattices (described by
the Salerno model). The major achievement of these studies is the computa-
tion of exact mobile localized modes. For these computations, it was important
to develop a generalized continuation method, that can be thought of, as the
natural extension of those employed for computing standard (pinned) discrete
breathers. The generalized continuation method allows to obtain, in a highly
systematic way, families of mobile, oscillating and vortical discrete breathers
(as well as pinned ones).

The problem on the existence of mobile discrete breathers has been exten-
sively discussed after the theory for pinned localized modes was successfully
developed. The use of collective variable methods and numerical simulations
of perturbed pinned solutions lacks the precision required to obtain general
arguments about the possibility of having mobile localized states in nonlinear
lattices. However, the computation of mobile discrete breathers in this Thesis
is neither unbiased (i.e. based on a priori ansatzes) neither suffers from low
numerical accuracy. On the contrary, our continuation procedure computes
mobile discrete breather solutions as exact fixed points solutions of a map and,
therefore, the unique requirement is that the Jacobian of the map is invertible
so that the iterative method converges to the desired solution.

Concerning mobile breathers, our results point out that, except for inte-
grable and other exceptional (e.g. vanishing Peierls-Nabarro barrier) situa-
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tions, mobile localized states in nonlinear Schrodinger lattices are described
by a localized part (the core) and an asymptotically extended background
composed of plane waves. We have obtained numerical evidences of the im-
portance of this extended background in the core mobility. In particular, we
have shown how the Peierls-Nabarro barriers that a mobile breather experi-
ences periodically in its motion across the lattice are surpassed with the help
of the energy balance core-background. In this sense, we have observed that
the higher is the Peierls-Nabarro barrier, the higher is the energy flux between
core and background and the higher is the amplitude of the extended back-
ground. These observations reveal the essential role of the background in core
mobility pointing out that collective variables approaches are incomplete when
considering only those degrees of freedom relative to the core.

The study of the whole Salerno lattice, both in its one- and two-dimensional
versions, has provided a detailed account of the existence and properties of
discrete breather solutions and, at the same time, it has proved the versatility
of the continuation method.

Several questions remain open after these studies. In particular, it would
be desirable to perform a deep analysis on the mobility of two-dimensional
discrete breathers and more exotic solutions like trains of discrete breathers or
vortical states. It would be also interesting to apply the continuation methods
to other important nonlinear lattices such as Klein-Gordon or Peyrard-Bishop-
Dauxois models. Finally, it is also interesting to develop a collective variable
theory accounting for the relevant ingredients of the mobile solutions found.

In the second part we have studied the structure of complex networks and
the performance of propagation dynamics on top of them. Several results have
been obtained for each of these two issues.

We have first presented two models of network construction that provide
two network families where only a few topological characteristic vary signifi-
cantly among the members of these families. The purpose of these models is to
provide a useful tool for analyzing the role that these changing structural prop-
erties have on the performance of different network dynamics. In fact, these
models have been used for this purpose along the Thesis. Whereas one model
preserves the scale-free character of the degree distribution while the clustering
coefficient and average characteristic path length are varied, the second one al-
lows the degree distribution to interpolate between the scale-free and Poisson
distributions while other magnitudes remain comparable. This latter model
would be very useful to shed new light on the roots of the different phenomena
found when dealing with homogeneous and heterogeneous topologies.

The studies on the propagation dynamics on networks have been focused
on two important dynamics, namely, the SIR model for epidemic spreading
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and the analysis of coarse-grained information routing models. The main ob-
jective of these two studies is to analyze the efficiency of different routing and
immunization algorithms depending on the substrate topology.

For the studies performed on epidemic spreading the main results concern
the development of a new immunization method based on the d-covering prob-
lem. We have implemented an heuristic method for finding the nearly smallest
subset of network’s elements that should be covered so that every node in the
network has at least one covered node at a distance less than or equal to d.
The results show that, depending on the degree-degree correlations of the net-
work, the obtained solution is very different. Besides we have shown that the
obtained solution of the d-covering problem, when thought of as immune nodes
to a SIR epidemics, yields a very efficient algorithm compared to those already
existing in the literature. The efficiency of the d-covering subset of immune
nodes also depends strongly on the correlations of the network when a SIR-like
epidemics is studied.

The study of information routing dynamics also yields interesting results.
In particular, the main result concerns the study of a congestion-aware strategy
for the routing of information packets across the network. The use of shortest-
path strategies in scale-free networks lead to a fast congestion of highly con-
nected nodes and hence to the development of jamming for low levels of injected
information. We have obtained a more robust routing policy making use of an
effective distance that takes into account the congestion level of the network
at the local scale. However, the shift of the onset of jamming is achieved at the
expenses of a sudden growth of the congestion levels at the jammed phase. We
have explained the microscopic origins of this first order like phase transition
as a consequence of the effective fragmentation of the network. This fragmen-
tation is due to the formation of dynamic walls composed of those nodes that
do not allow to receive data packets from their neighbors, due to their high
level of local congestion.

We have seen in this second part several examples on the relation of topo-
logical characteristics like the clustering coefficient, the average path length and
the degree-degree correlations on the development of two simple model dynam-
ics of importance for scale-free networks. Besides, the modeled algorithms for
immunization and data routing have been designed for a nearly optimal de-
ployment when applied on top of highly heterogeneous networks. The nature
of the simple dynamics studied here and their application to human-made real
systems allows our models to be reliable in these kind of networks. This is not
anymore the case of real biological networks where both topology and (nonlin-
ear) dynamics are imposed to the system. This extreme has been analyzed in
the third part of the Thesis.
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The third part of this thesis is devoted to the study of nonlinear dynamics
on top of complex networks. It is thought of as the confluence of the above
two parts because it applies the tools obtained from the studies on nonlin-
ear localization in homogeneous lattices and the analysis of complex networks
structure. Along with the results obtained in this part, the mixed use of these
tools constitutes a, somewhat, novel feature since the study of nonlinear com-
plex networks is still in its infancy.

We have studied two different nonlinear systems: a Michaelis-Menten reg-
ulatory dynamics (where activatory and inhibitory terms compete) and the
paradigmatic Kuramoto model of coupled phase oscillators. In these two prob-
lems, related to diverse natural systems, the main purpose is to unveil the
relation between the networked structure of the systems and the function they
fulfill. The search for this “Structure-Function” connection is based on the
assumption that the evolution of the real networks is the result of a kind of op-
timization for the performance of their function. Then, a first step is to analyze
coarse-grained synthetic systems modeled by relevant nonlinear dynamics.

The study of activatory-inhibitory regulation, modeled by means of a gen-
eral Michaelis-Menten dynamics between the network nodes, allows to ap-
proach the problem of gene-gene regulation. In this sense, some important
results are related to the experimental observations of this kind of systems.
The first important result concerns the fragmentation of the network into in-
dependent dynamical clusters while the rest of the network remains at the
rest (zero activity) state. The dynamics of these dynamical islands show a
very rich dynamical behavior: steady, periodic and chaotic states. When these
emergent dynamical clusters of self-sustained non-zero activity are considered
as networks defined by its nodes and the links among them, new topological
features, different from those of the underlying network, are obtained. In this
regard, the most important finding is a clustering coefficient for the dynami-
cal islands much higher than that of the substrate network (a Barabasi-Albert
scale-free network). A second important result is obtained when looking at
the observed bifurcations. Periodic clusters display either period doubling or
tripling bifurcations on their route to chaos. Analyzing the shape of the Flo-
quet eigenvectors associated to these bifurcations it is possible to determine
which nodes are responsible for the transition from the old (period 1) attractor
to the new (period 2 or 3) one. This method allows us to observe that, dif-
ferently from other processes on networks, nodes’ substructures and not single
nodes are responsible for the evolution of the dynamical clusters.

The second objective of this third part is the study of the synchronization
paths in networks of Kuramoto phase oscillators. This study is performed on a
variety of networked substrates, namely, the two networks families introduced
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in the first part of the Thesis and structured networks. For this purpose, we
have introduced a new order parameter that allows to unveil the local patterns
of the synchronized clusters that emerge as the coupling strength is increased.
In this sense, the main result is obtained when comparing the synchronization
paths in homogeneous and heterogeneous networks. The results point out that
the emergence of the giant synchronized cluster for Erdos-Rényi networks is the
result of the coalescence of multiple small synchronized clusters. This simul-
taneous clusters’ collapse is thus produced in a narrow region for the coupling
parameter so that the degree of global synchronization is rapidly increased
from zero near the synchronization onset. On the other hand, for scale-free
networks the process is described by a gradual growth of the giant synchroniza-
tion cluster. This synchronization cluster, organized around the central hubs
of the networks, grows by incorporating more and more synchronized nodes
as the coupling is increased. As a result, the onset of global synchroniza-
tion occurs earlier (in terms of the coupling strength) than in the Erdés-Rényi
case. However, the global coherence in scale-free networks grows, far from the
synchronization onset, at a much slower rate than in the case of Erdés-Rényi
graphs due to the (one-by-one) additive growth for the synchronized cluster.

These two works constitute interesting examples on the interplay between
Function and Structure. In the first study it is clear that nonlinear dynamics
shows up an emergent structure with new topological characteristics. For the
second work it is shown that, depending on the underlying structure, radically
different patterns of synchronization are obtained. Therefore, the importance
of tackling the combined study of both structural complexity and nonlinear
dynamics is clear, since a separate analysis would be incomplete. The mutual
influence observed thus prevent from going from one to the other or vice versa.
The continuation of the presented work would be carried following different
directions. Perhaps, the most ambitious direction is to make one step further
into the analysis of real networks. For example, the availability of gene expres-
sion data (although one must be careful and selective with the large amount of
experimental data sets) motivates the study of real gene regulatory networks in
order to apply the tools and results found in this part. At the same time, other
kind of relevant nonlinear dynamics, like models of neural activity (Hopfield,
integrate and fire, etc...), could be also studied by means of similar techniques
in order to obtain more examples on the interplay of structure and dynamics.

The results presented in this Thesis are intended to analyze and understand
several phenomena displayed when two essential ingredients of complexity are
present (both separated and combined). It would take still a long time before
the understanding of simple dynamics and models allows to go one step farther
and attack the unification of these two ingredients in order to have a framework
within which one can solve the “Structure-Function” problem. In this sense, the
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present work provides some examples and tools about how the problem could
be first tackled. As all research work that does not suffice to fully unravel the
features of a given problem, our work also motivates further studies on this
interesting question that we intend to pursue in the years to come.



Appendices

We want to add two appendices about the computation and stability char-
acterization of periodic orbits since these solutions have extensively appeared
throughout this Thesis. Although for particular types of periodic solutions and
dynamical systems, the results reported here can be further extended we have
tried to briefly summarize the essential features about these two issues.

A Computation of Periodic Orbits

The computation of periodic solutions to a set of N coupled nonlinear dif-
ferential equations
or ..,
where ¥ are the variables of the system and 5denote the parameters of the
particular equations, can be formulated as a problem of finding the solution of
a system of N nonlinear equations, with N variables z; (i = 1,...,N) and a set

of m parameters & (i = 1,...,m), of the form

— —

G(7;¢)=0. (A.2)

As we introduced in section 2.2, let us consider a periodic solution a_:'g as a fixed
point solution of a N-dimensional map M

My™ =gt (A.3)

where the map M can be constructed using the z-evolution operator (z is
usually time or space) given by equations (A.1) over a (time or space) period
T when we are looking for z-periodic solutions

M=T-

o (A4)

or a combination of an index (lattice) displacement and a z-evolution operators
when looking for combined periodicities as in (p, ¢)-resonant states for time and
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lattice displacement, eq. (2.24),
_ p74
M=L TE,T . (A.5)

Given the particular definition of the map M, the desired periodic solution
will satisfy eq. (A.2) in the form

G(TE) =MTr—T=0. (A.6)

One is typically interested in a particular solution corresponding to a special
choice of the parameters Ebut, on the other hand, the only available solution
corresponds to a simplified version of the system corresponding to 50. In these
cases the solution can be found by means of a homotopy procedure [296]: given
a known solution, fgo,
:1_7’5, is computed via the computation of intermediate solutions to a chain of
equations with parameters, £0 — €1 — .. — £n7l 5 &n = £ The

to some special choice of parameters, £ Y, the solution,

latter path in parameter space is conveniently used so that every intermediate
solution can be found. There are several methods used for solving each step in
the chain of equations and nearly all of them make use of the solution found for
the latter system as the ansatz for the analytical or numerical methods used
at each step.

The homotopy strategy is based on the implicit function theorem that
assures the existence of an unique solution ¥z, , so that G(fgn;gn) = 0, when
there exist a solution Zz,_, (é(fgn,l;én—l) = 0) and 5" belongs to an open

set centered at E"—l. The conditions that must be fulfilled are:

—

(i) G(#;€) is continuous on an open set centered at (&=, ,,&"1).

=

(ii) The Jacobian determinant of G(Z;€) evaluated at

null,

3Gi(f; )

Det { |:DfG( *gn,l;fn—l)] ']} = Det B
J

)

In order to satisfy the local convergence conditions of the theorem, the homo-
topic computation must be carried by dividing the path toward the desired
solution into as much intermediate steps as necessary. In this way, the solution
for fgn would not differ very much to that for fgn,l so that expressing the
new solution as _)En = _’gn,l + A one would write

—

G@pns + Ki€™) = 0= ClFzn1:€") + DiG(Tz,iiE€MA+ ..., (ASB)
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Figure A.1: Schematic representation of the iterative process of homotopic continua-
tion.

neglecting those higher order terms in A. From the above expression one
can obtain the difference A between the old and the desired solution by just
computing the inverse of the Jacobian matrix DzG

A= —[DsG(Fe, ;€M) 7 Gl(Tp, 1567 (A.9)

Due to the error at the truncation in Taylor expansion (A.8), one must iterate
this procedure until the desired convergence (bounded by machine precision)

is reached,

é(fgn,gn)‘ < €. For this purpose, one uses as the new trial

solution the one obtained by the last computation of A. Calling g‘g’n the
trial function used at the i'" stage of the iterative computation of solution
Ten and A the obtained solution of eq. (A.9) at this stage, a schematic
picture of the whole process for computing fgn from the initial ansatz Zz,_;
(the solution of the before equation in the homotopy chain) is reflected in
figure A.1. The convenience of using the above iterative process relies on its
quadratic convergence but, on the other hand, one must posses a good ansatz
for the initial trial function (since no global convergence is assured) and hence
a homotopic continuation to the desired solution is required.

For the particular situation when one is interested in the computation of
purely z-periodic solutions (such as discrete breathers for the case of time
periodic solutions), the equation to solve would be written as

G (a?’g(zo); 5) = Tey <:1?5—(z0)> — %) =0, (A.10)
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where zg stands for the z-origin of integration. Therefore, eq. A.9 will take
the form

R= DTy (Ferr ()] 2} @ (Feraaoki€™). (A1)

where the matrix Dz7g, (Z(20)) is computed integrating from zp to zp + h
the equations that are obtained by deriving eq. (A.1l) respect to the initial
conditions, Z(zp),

Oxy(2) 0z;(20) N

lﬁDngz (a‘;’(zo))] () al O[Fg (f(z))L Oz (2)
0z y a azaxj(zo) N

k=1

N
oxy,
_ . (4. D1 (7 ] . (A2
;Alkax]’(%) [A e (Fz))] ;o (A12)
with the initial condition DfTEZO (Z(z0)) = Z, i.e. integrating the linearized
equations around the solution, :E’E(z)

The matrix Dngh (:i’{(zo)) provides a map between an initial perturbation

of the solution, 5?55(20), and its evolution up to zg + h,

-

Oz (20 + ) = [fogh (fg(zo)ﬂ 0z (20) - (A.13)

For a z-periodic solution the elements of matrix A in eq. (A.12) are z-periodic
functions with the same period T" and hence

DiTg o (720)) = [DsTer (7d20))]" (A.14)

with ¢ integer. This implies that it is enough to integrate the evolution
of the linearized equations over a period T and obtain Dfl]—gT (fg(zo)) for
characterizing the time evolution of the perturbations after an integer num-
ber of periods. For a time periodic solution the so-called Floquet matrix,
F = DngT <a§'§~(t0)>, contains all the information about the linear stability of

a periodic solution (we will discuss it later in Appendix B).

As the implicit function theorem states, the key point for being able to
compute the solutions to eq. (A.10), is that the Jacobian is invertible so that
eq. (A.11) can be solved. In the particular case of time periodic solutions this
implies that the eigenvalues of the Floquet matrix, F, must be different from
+1. In other words, if the spectra of the Floquet matrix contains perturbations
that are also time periodic with the same period of the solution, T, their
associated eigenvalue will be +1 and therefore we could not solve eq. (A.11).
The existence of such perturbations causes the degeneracy of the linear problem
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since given any solution of period T one can construct another one by adding
any combination of such perturbations and therefore the solution is not unique.

Although the existence of degeneracies depends on the particular dynam-
ical system, when we are dealing with autonomous dynamical systems, such
as eq. (A.l), there always exist one Floquet eigenvalue +1. The associated
eigenvector is related with the time translation invariance of the solutions,
53;5(15) = i’g(t), and acts translating the instant solution across its path in the
phase space. However, the non invertibility of the Jacobian does not prevent
us from implementing the continuation scheme. The common way used to
solve this problem is to restrict the rank of the Jacobian matrix to a subspace
orthogonal to its kernel. This restriction does not influence the efficency of the
method since the kernel vectors correspond to directions in tangent space that
convert the solution into itself.

There exist several ways for restricting the Jacobian rank that depend on
the particular properties of the periodic solution. For example, in the case of
time-reversible orbits, i.e. those which are invariant under the transformation
R(7,7,t) — (¢, —p, —t) (where ¢ and § denote the two sets of canonically con-
jugated variables of the system), one can fix the time origin without loss of
generality setting p = 0 [81]. With this restriction we prevent from perturba-
tions inside the same periodic manifold and, as a plus, we have reduced the
degrees of freedom to the half, N/2. However, this tricky method does not al-
low to compute other kind of periodical orbits which are not time-reversible (as
mobile discrete breathers) and the use of other methods such as the Singular
Value Decomposition [82, 83] is required.

B Linear Stability of Periodic Orbits

Before analysing the stability analysis for periodic solutions let us briefly fo-
cus on the stability characterization of general orbits of dynamical systems.
The linear system of equations defined in (A.12) defines the most general tool
for characterizing the stability of dynamical systems solutions: the Lyapunov
exponents which are the eigenvalues, {y;} (7 = 1,...,N), of matrix A that
define the system of linear differential equations for the evolution of linear per-
turbations. In particular, the general definition of Lyapunov exponents can
be expressed in terms of the eigenvalues of matrix Dng . <£’$—(t0)) (which for

period T solutions and t = T is the Floquet operator), {\;(t)}, as

1

t—o0



296 Chapter . Appendices

Figure B.1: Schematic representation of the
rescaling procedure for the computation of
the largest Lyapunov exponent pi.

Although there are several techniques for computing Lyapunov exponents, it
is somehow a hard task since it implies large integration times in order to get
accurate values independent of the time origin choice. However, one is most
of the times interested in the value of the largest Lyapunov exponent (say f1)
which is the easiest to calculate due to the tendency of any perturbation to
grow towards the direction associated to the largest Lyapunov exponent (see
[296, 333]). The largest Lyapunov exponent, 1, tell us whether the solution
repeals nearby orbits (perturbations), gy > 0, and thus the solution is regarded
as chaotic. In the case of stable periodic orbits of autonomous dynamical
systems the maximum Lyapunov exponent is always 0, this corresponds to the
Floquet eigenvalue +1 associated to the time translational invariance. The
largest Lyapunov exponent can be expressed as

o1 = lim + In DTz, (7etto)) Bilto)|
e 1 ‘5?5 g(to)(

This expression, which makes uses of the ratio of separation of an initial per-

(B.2)

turbation cﬁg(to) after large times, turns out to be helpful for computing ;.
The computational method consists in making a perturbation of the solution
with a tangent vector of arbitrary direction and modulus |d|, and follow the
evolution of the perturbed orbit for a time interval, h. Then, the distance,
|d1| between the original and the perturbed orbits is measured. At the same
time h, the perturbed solution is varied by preserving its direction but being
rescaled to |d|. This process is iterated for a number of times (see figure B.1) so
that a set of distances {|d;|} with (i = 1,...,n) is collected. Finally, averaging
these measures one obtains the largest Lyapunov exponent

1~ |di]
= — In— . B.
= ;:1 B (B.3)
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As stated above, this method turns out to be helpful since the contribution
of the largest Lyapunov exponent to the dynamics of the perturbed orbits
dominates for large times.

Turning our attention to periodic orbits it is then convenient to look at
the properties of the Floquet matrix. An unstable periodic orbit is manifested
by the presence of Floquet eigenvalues with |;| > 1, which implies that the
modulus of the perturbations of the fixed point solution of map (A.4) (the
periodic orbit) along the eigenvector associated to this eigenvalue will grow at
a rate |\;|.

Since the Floquet matrix, F, is real the Floquet eigenvalues come in pairs
(M\i,A;). For Hamiltonian systems, one can say a little bit more about the
structure of the Floquet spectra. In particular, when the nonlinear evolution
is Hamiltonian, so that we have an even set of dynamical variables, N = 2n

(#=(q.,p)"), and

0 In><8H oH oM OH

t
T =(7,p) = T ey Ty oy e =J-Vz B4

the map defined by the Floquet operator () is symplectic, i.e. given an orthog-
onal and skew-symmetric matrix such as J in (), F obeys the relation

FIFt=7. (B.5)

From this property it can be shown that if A is an eigenvalue of F so is 1/\
by proving that the characteristic polynomial, p(\), of F is reflexive (i.e. the
coefficients a; of degree i in \ satisfy a; = ay—_; with i =0, ..., N)

P = det (F — \T) = det (TFT" ~ AT) = det ((F7!)" = AT) =

= det (F71 = \Z) = det (F)det (F' = \I) = det (T — \F) =
= (=A)Ndet (F=2"'T) = (W)Vp(A 7). (B.6)

Therefore, for Hamiltonian dynamical systems the Floquet eigenvalues for a
periodic orbit come in quadruplets (A, X,1/X,1/X). This result implies that
the Floquet multipliers of a stable periodic solution will lie on the unit circle
of the complex plane so that, these solutions are marginally stable since any
perturbed solution will not decay into the original one, i.e. the cycle is not an
attractor of surrounding trajectories. Besides, this result implies that in order
to a pair (or a single if it is at +1 or —1) of Floquet eigenvalues leave the unit
circle it is necessary that they (it) collide with another pair.

By computing the periodic solutions for a chain of equations corresponding
to different parameters £ one can study how the stability of the periodic solu-
tion changes across the continuation path. In this regard, stability changes of
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the periodic solution can occur for certain values EC manifested by the existence
of Floquet eigenvalues leaving the unit circle. There are several mechanisms
of loosing stability and one can identify which type of bifurcation occurs (dif-
ferenced by the new stable solutions that emerge when the original periodic
orbit loss its stability) at EC by looking how the associated Floquet eigenvalue,
Aj, leaves the unit circle. One can distinguish three types of bifurcations cor-
responding to:

(a) Aj =1,
(b) Im (X;) #0,
(C) )‘j = —1.

These three types of bifurcations are schematically plotted in figure B.2.
In the first one (figure B.2.a) a Floquet eigenvalue leaves the unit circle at
+1 and therefore the perturbation responsible for this instability, 5?%2‘;(15), is
time periodic with the same period as the original solution. It is thus an har-
monic bifurcation or also called stationary bifurcation since the new solution,
fgc(t) +5_a‘:2*c(t), is also a fixed point of the original map (eq. (A.4)). The most
common scenario is depicted in figure B.2.a at bottom, where two new orbits of
identical period, T', emerge passed EC For this case a pitchfork (supercritical)
bifurcation has occurred. Pitchfork bifurcations are often associated with a
symmetry breaking since, after the bifurcation, the system dynamics can oc-
cupy either stable periodic orbit. This latter situation was reported in section
(3.1.3). Other possible scenarios are saddle-node and transcritical bifurcations.
In these two cases there are two solutions, one stable and another unstable,
meet at EC, while in the former situation no solutions are available after the
bifurcation point, for the latter there is an interchange of stability between the
two solutions.

Case (b) (see figure B.2.b) corresponds to an oscillatory or generalized Hopf
bifurcation or also a Naimark-Sacker bifurcation. In this case the frequency
of the new solution, Zg (t) + 5}2'; (t), can be incommensurable with the period
of the map if the angle where the Floquet eigenvalue) leaves the unit circle is
an irrational multiple of 27, § # p27/q with p an ¢ integers. In this case the
quasiperiodic movement of the emergent solution moves over a Torus defined
by the frequency of the Map (the frequency of the original solution) w = 27 /T
and the angle where the eigenvalue leaves the unit circle (the frequency of the
unstable perturbation) w* = 0/T. For the cases where these two frequencies
are commensurate the new orbit is periodic (see section 7.2.1).

Finally, case (c) (see figure B.2.c) constitutes the fingerprint of a period-
doubling bifurcation since the angle where the unstable Floquet eigenvalue is



B.0. B Linear Stability of Periodic Orbits 299

(a) (b) (c)
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Figure B.2: Schematic plot of the three types of bifurcations and their corresponding
Floquet behaviour (the upper plot correspond to a Hamiltonian System and the one
below for a non-Hamiltonian one). The lowest plots are the representation of the
unstable (dashed and red) original orbit and the stable (solid and blue) emergent
solution after the bifurcation.

o %

located at @ = 7 and, therefore, the period of the unstable eigenvector, 5mgc(t),

will be T* = 27 /w = 27T /6 = 2T. Therefore, the new solution Tz, (t)—i—é?vz;(t),

will be periodic with period 27" (see section 7.2.1).

The Floquet analysis of the periodic solutions is threfore useful for iden-
tifying the nature of the bifurcations found. Besides, the inspection of the
eigenvectors associated with the Floquet eigenvalues that leave the unit circle
help us to investigate how the unstable solution evolves.
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