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Chapter 1Complex Systems?The greatest 
hallenge today, not just in 
ell biology and e
ologybut in all of s
ien
e, is the a

urate and 
omplete des
ription of
omplex systems. S
ientist have broken down many kinds of sys-tems. They think they know most of the elements and for
es. Thenext task is to reassemble them, at least in mathemati
al modelsthat 
apture the key properties of the entire ensembles.Edward O. Wilson [1℄.This thesis 
overs the analysis of two fundamental ingredients for the
orre
t modeling of real ma
ros
opi
 systems: Nonlinearity and Stru
turalComplexity. The study of systems where these ingredients are present is sys-temati
ally related to the �eld of �Physi
s of Complex Systems�. It is not easyhowever to �nd a formal de�nition of what a 
omplex system is and most bookson the matter submit the reader from the very beginning to some illustrativeexamples of 
omplex phenomena rather than establishing the general prin
iplesand 
hara
teristi
s of a 
omplex system.The standard 
lassi�
ation of the wide range of studied natural systemsinto physi
al �elds is mainly based on the energy range involved for theirdes
ription, namely, (ranging from higher to lower energy) parti
le physi
s;nu
lear physi
s; mole
ular atomi
 and opti
al physi
s; soft and 
ondensed mat-ter. With this 
lassi�
ation in mind the question about what �eld the Physi
sof Complex System belongs to naturally arises. However, 
omplex systemsare 
ommon to a number of physi
al dis
iplines belonging to di�erent �energyranges� so it is di�
ult to pla
e them into a single physi
al 
ompartment. Inaddition, one 
an �nd lots of examples of systems 
alled �
omplex� outside thesetraditional bran
hes of physi
s in 
hemistry, biology, e
ology, and so
ial and



2 Chapter 1. Complex Systems?e
onomi
al s
ien
es. Then, rather than be
oming a parti
ular physi
al �eld,the physi
s of 
omplex systems has emerged as an interdis
iplinary subje
t.What are the unifying 
hara
teristi
s of 
omplexity in the phenomena studiedby su
h a diverse bran
h of s
ienti�
 dis
iplines? One 
an state that the �nger-print of a 
omplex system is re�e
ted by the display of organization withouta 
entral organizing prin
iple. This 
olle
tive organizational behaviour is notusually explained by de
omposing a 
omplex system into its parts and analyz-ing their isolated properties. In this sense, the Physi
s of Complex Systemsis a new way for analyzing systems where 
omplex phenomena are displayedrather than a new physi
al �eld.One of the �rst attempts to show the need of a Physi
s of Complex Systemsis due to Philip W. Anderson in his 
elebrated arti
le �More is di�erent� [2℄.In this arti
le, Anderson tells about the 
on
ept of broken symmetry re�e
tedwhen one moves from a small system to a ma
ros
opi
 one. In this transitionit may happen that some symmetries of the single systems, that determinetheir physi
al behaviour, are lost when embedded in a bulk of many systemsand unexpe
ted phenomena o

ur (Emergen
e). In this latter situation theknowledge of the physi
al laws governing ea
h single building blo
k is in many
ases not enough to explain the 
olle
tive behaviour of the big system.Emergentism versus Redu
tionismThis new way of thinking in physi
s is strongly related with the Emergen-tism philosophy. The advent of Emergentism philosophy 
onstituted a pun
hat the old-fashioned Redu
tionist movement that led the theory of s
ien
e forde
ades and, in parti
ular, the way of physi
s during the XIX 
entury and the�rst half of the last 
entury.Emergentism states that the observed phenomena are 
lassi�ed into di�er-ent levels of des
ription and that ea
h one of these levels is independent in thesense that ea
h has its own laws. The emergen
e of su
h levels is the resultof the in
rease of the problem's 
omplexity. On the other hand, redu
tionistsassume the unity of s
ien
e so that a hierar
hi
al organization is establishedamong dis
iplines:
• Chemistry is based on Physi
s.
• Fundamental Biology is based on Chemistry.
• Psy
hology is based on Biology.
• So
iology is based on Psy
hology.



3
• Politi
al s
ien
e and Anthropology are both based on So
iology.Whereas the �rst two of these redu
tions were 
ommonly a

epted, it was notthe 
ase for the last ones yielding a big 
ontroversy. For example, aspe
tsof evolutionary psy
hology and so
io-biology are reje
ted by those who 
laimthat 
omplex systems are inherently irredu
ible. On the 
ontrary, strong re-du
tionists 
laim that the behavioural s
ien
es should be
ome truly s
ienti�
dis
iplines by being based on geneti
 biology arguments. Examples of thislong-standing 
ontroversy 
an be found in several s
ienti�
 forums. Perhaps,the most fruitful ones, in the sense of the number of rationales on the sub-je
t, are found in the 
ontext of life s
ien
es: the mind-body problem, theexplanation of Darwinian evolution theory, et
...As the theory of s
ien
e evolved, the Redu
tionism-Emergentism 
ontro-versy progressively a�e
ted ea
h stage of the above 
hain of redu
tions, arrivingup to the very �rst level. In fa
t, it was Karl Popper, one of the godfathers ofthe modern theory of s
ien
e, who stated that Chemistry was not redu
ible toPhysi
s [3℄.The big 
ontroversy arrives to Physi
s under the term �Complex Systems�questioning the possibility of explaining every physi
al system only in terms ofthe properties of its 
onstituents (Constru
tionist hypothesis). As mentionedabove, a great deal of physi
al systems is said to display 
omplex behaviour, i.e.they display some new phenomena that 
annot be predi
ted by only looking attheir parts. This impossibility goes beyond the limitations related to the largeamount of elements that are involved; there are 
ases where the properties ofthe isolated elements seem to be violated by the physi
al des
ription of thema
ros
opi
 behaviour. The 
on
ept of symmetry breaking is thus 
entral fora proper (in physi
al terms) de�nition of what is 
alled emergent phenomenain Physi
s. The aforementioned arti
le by P. W. Anderson [2℄ introdu
ed thisnew 
on
ept in �one of the early manifestos for this in�nitely quiet revolution�leading the new way of looking at physi
al phenomena. Let us review the mostsalient examples of the so-
alled 
omplex behaviour.Symmetry breaking arguments have been re
ursively invoked to explainunexpe
ted experimental dis
overies in the �eld of 
ondensed matter physi
s.The most representative examples are super
ondu
tivity, super�uidity, liquid
rystals and antiferromagnetism. The physi
al explanation of ea
h of these 
ol-le
tive phenomena has 
ontributed to the growth of 
on
eptually new frame-works in many-body physi
s. It was Landau [4, 5℄ the �rst to formulate phasetransitions as pro
esses where symmetry redu
tions o

urred. This point ofview allowed him, after the theoreti
al explanation of ferromagnetism, to pre-di
t antiferromagnetism [6, 7℄ by generalizing the idea of spin rotation sym-metry breaking. Subsequently, ideas on gauge symmetry breaking led to the



4 Chapter 1. Complex Systems?explanation of super�uidity [8, 9℄ and super
ondu
tivity [10℄. Anderson [2℄thus 
laimed that symmetry breaking in many-body systems is a generalizedphenomenon yielding di�erent emergent 
olle
tive behaviours depending onthe parti
ular type of broken symmetry. Therefore, it seems reasonable that,sin
e the prin
iples that govern the behaviour of a ma
ros
opi
 system of par-ti
les appear de�ned by the whole system, these phenomena should be studiedseparately to those found for more elementary levels of des
ription.The su

ess of the holisti
 des
ription of simple (in terms of the knowledgeof the governing physi
al laws) systems where 
olle
tive behaviour shows up,paved the way for the sear
h of new 
on
eptual s
hemes to explain other emer-gent phenomena at higher 
omplexity levels. This sear
h was 
arried out by thestudy of mathemati
al models that a

ount for di�erent emergent behaviourssu
h as the appearan
e of dynami
ally 
oherent states, spontaneous lo
aliza-tion or pattern formation in extended systems. A se
ond set of motivatingphenomena is revealed by the observation of self-similar (fra
tal) patterns innatural systems, that is viewed as the emergen
e of self-organization behaviour.These examples are di�erent forms of the dynami
al or spatio-temporal orderthat appears in seemingly di�erent systems of a large number of intera
tingelements in nature.The breakthroughs in the des
ription of the �rst 
lass of phenomena is
losely related to the advan
es in the studies of nonlinear dynami
al systems.From the very �rst soliton theory [11℄ in 
ontinuous nonlinear systems andthe dis
overy of lo
alized states in nonlinear 
hains [12℄, we have seen that
oherent stru
tures emerge from large s
ale nonlinear models, possess their ownentity (parti
le-like behaviour, well-de�ned life times, 
hara
teristi
 intera
tionpatterns, et
...). In fa
t, no matter the 
omplexity of the underlying equations,spatial or temporal 
oherent stru
tures are many times des
ribed with the helpof a low dimensional phase spa
e.The 
on
ept of self-organized 
riti
ality, introdu
ed by Per Bak, KurtWiessenfeld and Chao Tang [13, 14℄, 
onstitutes one of the best explanationof nature 
omplexity and, perhaps, it represents one of the major 
on
eptuala
hievements of the physi
s of 
omplexity. Self-organized 
riti
ality tries to
apture the essential ingredients to explain the 
riti
al-like behaviour (man-ifested by observations of fra
tal stru
ture and power-laws) of many naturalsystems without a 
entral 
ontroller unit. The original idea was to des
ribe thedynami
s of sandpiles, a

ounting for the avalan
hes that may happen whengrains are progressively in
orporated, by means of a simple 
ellular automa-ton model. The su

ess of this simple model was seized to relate the modelto a variety of phenomena where 
riti
ality was already observed, like earth-quakes, forest �res, epidemi
s and, indeed, evolution theory (relating it to the



5the theory of pun
tuated-equilibrium [15℄).Reading again Anderson in [16℄ (written nearly 20 years after his treatise on
omplexity) and reviewing the most relevant examples of 
omplex behaviourup to now, it is evident that emergen
e is progressively being a

epted as ane
essary ingredient to fa
e all the new phenomena that has appeared in thelast de
ades under the name of Complexity. A number of s
ienti�
 institutesand groups are nowadays 
ontributing to the growth of 
omplexity physi
swhi
h is still in its infan
y. Centers with a long history ta
kling 
omplexitysu
h as the �Sante Fe Institute�, the �Max Plank Institute for Physi
s of Com-plex Systems� at Dresden, the �Complex Systems group and the Center forNonlinear Studies� at Los Alamos, the �New England Complex Systems Insti-tute� at Boston, et
... and those of mu
h re
ent 
reation like our �Instituteof Bio
omputation and Physi
s of Complex Systems� at Zaragoza are a
tively
ontributing to this growth.In summary, the physi
s of 
omplex systems tries to explain emergent phe-nomena without losing the sight of the whole system (unlike the fully redu
-tionist way of doing, whi
h destroys the systemi
 level). It is then importantto keep in mind that, although physi
al systems have a 
lear hierar
hi
al or-dering (nobody doubts that a system is 
omposed by its parts) �ea
h level 
anrequire a whole new 
on
eptual stru
ture� [2℄ (at least for our limited way ofthinking), making thus impossible bridging the gaps by the systemati
 use ofa bottom-up approa
hes.What are the essential ingredients of a Complex System?All the examples listed above are labeled as 
omplex phenomena due to theimpossibility to explain them by studying in isolation the parts of the systemswhere they o

ur. The behaviour of these systems is thus intrinsi
ally newwith respe
t to the properties of the single elements of the system.It is 
lear that a 
omplex system is 
omposed of a large number of ele-ments. However, a big ensemble of building blo
ks is not enough by itself toguarantee the emergen
e of unexpe
ted phenomena su
h as those des
ribedabove (long range 
orrelations from short-range intera
tions, lo
alization inextended systems, self-organization and adaptability, et
...). Then, it is im-portant to distinguish the attribute 
omplex from 
ompli
ated. Airplanes,
omputers or swiss 
lo
ks are examples of 
ompli
ated systems made up of alarge number of pie
es. They all 
onform a dire
ted 
ause-e�e
t 
hain so thatthe malfun
tioning of a single pie
e stops the whole system. They are alsodesigned by an external agent (humans) for a unique fun
tion.



6 Chapter 1. Complex Systems?What are then the key ingredients of a system for the observation of 
om-plex phenomena? Before being tempted to answer this question, it 
omes thedoubt about whether it is reasonable to expe
t 
omplex systems to have awell de�ned number of 
hara
teristi
 properties. Unavoidably, our mind tendsnaturally to overuse 
lassi�
ation, whi
h is the natural (hardwired) way ofthinking we manage for everyday's life. However, the holisti
 roots of emer-gent phenomena makes it intrinsi
ally di�
ult to have well de�ned boundariesbetween what is a real 
omplex system and what is not. (In fa
t, we have upto now de�ned a 
omplex system by their behavioural rather than stru
turalproperties.) On the other hand, the number of 
omplex phenomena observednumeri
ally and experimentally gives us some hints for unveiling some re
ur-rent stru
tural ingredients. Let us brie�y summarize the most relevant ones:
• Nonlinearity: It is 
lear that only a few natural systems 
an be de-s
ribed by means of linear relations. The need for a nonlinear modelingof the intera
tions is 
learly seen by the nonlinear response of many realsystems to perturbations. In fa
t, nonlinearity also appears when �rstprin
iples equations are obtained for very simple systems.
• Non regular stru
ture of the intera
tions: The network of inter-a
tions is of utmost importan
e. It is revealed a high diversity in theamount of 
onne
tions that a single element of the system has with 
om-bination of short-range and long-range links. In addition, loops are veryusual in real systems.
• Surroundings do matter: Many 
omplex systems are open. They mayshare a balan
e between dissipated energy and in
oming energy �ux withthe surroundings in order to a
hieve dynami
al stability.Although neither 
omplete nor pre
ise (they 
an be presented alone or all to-gether), the properties listed above are shared by a number of systems where
omplex phenomena is observed. Evidently, natural 
omplex systems, likee.g. a protein, in
orporate all these 
omplexity levels, but, on the other hand,syntheti
 models in
orporating only one of them are able to reprodu
e the rel-evant phenomena. It is seen that one of these ingredients in syntheti
 models,spe
ially in the 
ase of nonlinear systems with many degrees of freedom, 
anlead the system towards 
omplexity. It is also worth stressing that, as wellas the di�
ulties for explaining 
omplex phenomena, all the above propertiesin
orporate additional mathemati
al and 
omputational di�
ulties.Despite the e�orts for unveiling the attributes of a 
omplex system, thequestion about what are the essential ingredients that generate 
omplexityremains open, spe
ially when it is 
lear that a variety of dynami
al me
hanisms
an produ
e self-similar stru
tures.



7Our �Complex Systems�The asso
iation of several ingredients of 
omplexity in syntheti
 modelsis even more interesting than the study of systems where only one sour
e of
omplexity exists. One would expe
t the observation of new emergent phe-nomena, di�erent from those related to any of the sour
es of 
omplexity. Thisexpe
tation motivates our studies in this Thesis. In parti
ular, we will fo
uson extended systems of intera
ting elements where two sour
es of 
omplexityare present, namely, nonlinearity and/or stru
tural 
omplexity.As explained above, the emergen
e of 
oherent stru
tures in extended non-linear systems has been studied sin
e de
ades. Our 
on
ern in this Thesis isto dedi
ate a �rst part to the study of lo
alization in nonlinear homogeneouslatti
es. In parti
ular, we will address the study of lo
alized states in one andtwo-dimensional nonlinear S
hödinger latti
es. These states, usually termedintrinsi
 lo
alized modes or dis
rete breathers are time periodi
, spatially lo
al-ized and are seen as ubiquitous solutions to a number of homogeneous nonlinearlatti
es (for it the attribute �intrinsi
� in their denomination). Besides, nonlin-ear S
hödinger latti
es are seen as paradigmati
 equations of importan
e forseveral bran
hes of physi
s like Bose-Einstein 
ondensates or nonlinear opti
s.In this �rst part we will be spe
ially interested in the mobility of su
h 
oherentstru
tures. The main di�eren
e with 
lassi
al solitons in 
ontinuum equationsrelies in the absen
e of 
ontinuum spa
e translational symmetry, that makesthe �nding of su
h solutions non trivial. Besides, we will study other types of
oherent states, like dis
rete vorti
es or os
illating dis
rete breathers, in orderto have a 
omplete des
ription of the behaviour of lo
alized solutions in thisimportant 
lass of latti
es.The se
ond part of this Thesis will 
on
ern the study of 
omplex networks,i.e. extended systems of intera
ting elements where the patterns of 
onne
-tions between them is random. The study of this 
lass of systems has beentraditionally as
ribed to graph theory. However, the re
ent dis
overies on theself-similar 
hara
ter of the stru
ture of 
onne
tions in many real (so
ial, bi-ologi
al, te
hnologi
al, et
...) systems have led to a burst in the a
tivity ofthe so-
alled physi
s of 
omplex networks. There is a lot of important 
on-sequen
es of the s
ale-free behaviour of real networks, like robustness underrandom perturbations, the �small-world� e�e
t, absen
e of threshold for epi-demi
s spreading and a 
omplete new behaviour for most dynami
al pro
essesthat take pla
e on top of them. The self-similar patterns of 
onne
tions andits ubiquity in nature lead to the 
on
lusion that a large amount of systemsshare the same self-organizational prin
iples. However, the question about theme
hanism that drives the evolution of networks to these 
ommon stru
turalpatterns is still unsolved. We will fo
us on both the modeling of network



8 Chapter 1. Complex Systems?growth and the study of several simple dynami
s of interest in human-made(te
hnologi
al) s
ale-free networks.The study of 
omplex network stru
ture and the analysis of simple dynam-i
s on top of s
ale free graphs try to unveil the improvements that a hetero-geneous pattern of 
onne
tions provides to the deployment of the network'sfun
tion. However, these two elements, fun
tion (dynami
s) and stru
ture, aremany times presented to us entangled. That is, the growth and time evolu-tion of the network of intera
tions (that determines its s
ale-free feature) isperformed at the same time the system develops its fun
tion. Therefore, thestru
ture is the result of a kind of sele
tive pro
ess that drives to the moste�
ient ar
hite
ture. In this 
ase, the study of how network grows is similarto the problem of �nding those network ar
hite
tures that are the most e�-
ient for its fun
tioning. Besides, most of the dynami
s of real systems areseen to be nonlinear and, therefore, the analysis of systems of elements withboth nonlinear and random intera
tions 
omes as ne
essary. Our main pur-pose in the third part of the Thesis is to analyze two systems of this kind and,therefore, approa
h to the problem on the Stru
ture-Fun
tion relation. We willanalyze this relation in two biologi
ally relevant systems, namely, a s
ale-freenetwork with a
tivatory-inhibitory (Mi
haelis-Menten type) intera
tions andthe Kuramoto model of phase os
illators on top of di�erent network ar
hite
-tures. In these two studies we do not pretend to �nd the de�nite answer tothe Stru
ture-Fun
tion problem, but to dis
uss new tools and dis
over newphenomena that 
ould lead to a better understanding of this relation.The studies on this Thesis are thus separated in three parts depending onthe sour
es of 
omplexity involved in their des
ription: nonlinearity (Part I),stru
tural 
omplexity (Part II) and (�nally Part III) both. Along this thesiswe will fa
e problems asso
iated to the emergen
e of 
oherent stru
tures, self-similar stru
tural patterns and �nally self-organization of dynami
al patterns.Therefore, the 
on
ept of emergen
e will be the re
urrent idea behind ourstudies.



Part IIntrinsi
 lo
alization innonlinear S
hrödinger latti
es





Presentation of Part I
In this �rst part of the Thesis we will analyze the phenomenon of intrinsi
lo
alization in nonlinear latti
es. In parti
ular, we will fo
us on the study ofintrinsi
 lo
alized states solutions to nonlinear S
hrödinger latti
es. Let us�rst motivate this study by reviewing the birth and growth of the physi
s ofintrinsi
 lo
alized modes.Lo
alized states in 
ondensed matter physi
s has been usually as
ribedto the presen
e of inhomogeneities or disorder that, due to the breaking ofthe dis
rete translational symmetry of the system, lead to the observation ofphonon modes whi
h are lo
alized around these inhomogeneities or to the so-
alled Anderson lo
alization[17℄. This 
on
eption of lo
alization in dis
retesystems has been re
ently extended with the dis
overy [18, 19℄ of the so-
alledintrinsi
 lo
alization in 
ompletely homogeneous periodi
 stru
tures. The termintrinsi
 lo
alization refers to the possibility of having spatially lo
alized andtime periodi
 ex
itations due to the presen
e of both dis
reteness and strongnonlinearity in homogeneous latti
es. These two ingredients, dis
reteness andnonlinearity, are seen as the essential ingredients for the observation of intrinsi
lo
alized modes.Intrinsi
 lo
alized modes were also termed as dis
rete breathers in the lit-erature. These two names re�e
t, as reported in [20℄, the 
onvergen
e of twodi�erent ways of interpreting this kind of solutions. On one hand, the viewof intrinsi
 lo
alization in latti
es as a result of the presen
e of nonlinearityinstead of impurities, and on the other hand, as a result of the stabilizationof the lo
alized periodi
 os
illation due to dis
reteness, that avoids the de
ayof the ex
itation into radiation. The former interpretation led to term thesesolutions as intrinsi
 lo
alized modes pointing out that lo
alization of the peri-odi
 state is a result of the self-trapping e�e
ts 
aused by the nonlinear termsin 
ontrast to the lo
alization around extrinsi
 defe
ts or impurities in linearlatti
es. The latter point of view tries to resemble these states to that parti
-ular soliton solution (
alled breather due to its time periodi
ity) obtained forthe 
ontinuous sine-Gordon system [21℄. The �nding of this breathing solutionto the sine-Gordon model remained as a very ex
eptional feature for 
ontin-uous models related to its integrable 
hara
ter. While physi
ists 
on
ernedwith 
ontinuous models tried to reprodu
e these solutions in other 
ontinu-ous models they realized that the dis
retization performed for the numeri
alsimulations provided an apparent robustness to lo
alized breathing solutions.These observations 
onstituted the hint for the existen
e of dis
rete breathersas true solutions of nonlinear latti
es.



12 The above two approa
hes to intrinsi
 lo
alization in nonlinear latti
es (onegoing from linear to nonlinear dis
rete systems and the se
ond from 
ontinu-ous to dis
rete nonlinear models) �nally 
onverged to 
on
lude that intrinsi
lo
alized modes or dis
rete breathers should be generi
 solutions to nonlinearextended latti
es. The heuristi
 explanation argued was that in nonlinear lat-ti
es the plane wave spe
tra are bounded due to dis
reteness, thus making pos-sible the absen
e of multi-harmoni
 resonan
es of the exa
t dis
rete breathersolution with extended modes. Therefore, the 
ombination of nonlinearity anddis
reteness is su�
ient for the physi
al existen
e of dis
rete breathers result-ing in its generality and broad interest. This extreme was further supportedby the development of the theory for the existen
e of intrinsi
 lo
alized modesin nonlinear dis
rete systems [22℄ and nowadays the study of nonlinear lat-ti
es have be
ome the subje
t of a 
onsiderable multidis
iplinary interest. Thebroad range of appli
ations in physi
s subdis
iplines 
overs �elds as diverse asbiophysi
s (myelinated nerve �bers [23℄, DNA [24, 25℄, biopolymer 
hains [26℄),nonlinear opti
al devi
es (photoni
 
rystals [27℄ and waveguides [28, 29℄), andJosephson e�e
t [30℄ (super
ondu
ting devi
es [31, 32℄, Bose-Einstein 
onden-sates [33�35℄), among others [36�38℄. From a theoreti
al perspe
tive nonlinearlatti
es have been progressively re
ognized not as mere dis
retizations (un-avoidable for numeri
al 
omputations) of nonlinear 
ontinuous �eld equations,but as a target of interest in their own right, due to the distin
tive featuresasso
iated with dis
reteness, whose relevan
e to experimental features havebeen largely established.Though many of the properties of dis
rete breathers are today well 
hara
-terized1, several questions remain unsolved and their most promising appli
a-tions are yet to be developed. From the theoreti
al point of view, the questionon their mobility has been a 
onstant sour
e of 
ontroversy. The heuristi
 ar-guments tell about the impossibility of having moving lo
alized stru
tures inlatti
es due to the radiative losses unavoidably asso
iated to the translationalmotion of the lo
alized pulse in generi
 systems. Our main 
on
ern in thispart will be to analyze this problem for nonlinear S
hrödinger latti
es whereimportant appli
ations are found.The purpose of this �rst part of the Thesis is to 
hara
terize these mobilesolutions along with the well known pinned ones and, besides, more exoti
types of lo
alized stru
tures (like bound states of intrinsi
 lo
alized modes,os
illating dis
rete breathers, pulsons, or dis
rete vorti
es) by a systemati
study of their existen
e, stability and dynami
s. For these purposes, we havedivided this part into three 
hapters. First, in 
hapter 2, we will brie�y presentthe nonlinear S
hrödinger latti
e equations and the essential te
hniques to be1Interesting reviews and tutorials on the subje
t are found in [20, 39�43℄.



13employed in the following 
hapters. Se
ondly, in 
hapter 3, we will analyze theone-dimensional 
ase, where we will mainly fo
us on the mobility of lo
alizedstru
tures and its physi
al interpretation. In this 
hapter, we will also analyzea new type of pinned solutions, termed 
uspons, that arise when 
ompeting(self-fo
using and self-defo
using) nonlinearities 
ome into play. Finally, thetwo-dimensional version of the model equations is studied in 
hapter 4. Here,besides generi
 two-dimensional solutions like dis
rete vorti
es, two importantissues are of importan
e, namely: (i) the quasi-
ollapse instability of dis
retebreathers (that turns lo
alized solutions into pulsoni
 stru
tures), and (ii) theextension of the one-dimensional mobile solutions to their two-dimensional
ounterparts.The dis
ussion of the results in 
hapters 3 and 4 tries to unify di�erentapproa
hes to and studies of the problem in order to provide a 
oherent enoughpi
ture about the behaviour of dis
rete breathers in nonlinear S
hrödingerlatti
es. We hope that the results shown would provide a path for studyingsimilar problems in other interesting models.





Chapter 2Dis
rete Breathers andNonlinear S
h�rodinger latti
esI was observing the motion of a boat whi
h was rapidly drawn along a narrow 
hannelby a pair of horses, when the boat suddenly stopped but not so the mass of water inthe 
hannel whi
h it had put in motion; it a

umulated round the prow of the vesselin a state of violent agitation, then suddenly leaving it behind, rolled forward withgreat velo
ity, assuming the form of a large solitary elevation, a round, smooth andwell-de�ned heap of water, whi
h 
ontinued its 
ourse along the 
hannel apparentlywithout 
hange of form or diminution of speed. I followed it on a horseba
k, andovertook it still rolling on at a rate of some eight or nine miles an hour, preservingits original �gure some thirty feet long and a foot to a foot and a half in height.Observation of a solitary wave formationin 1834 by John S
ott Russel [44℄.Dis
rete breathers, also 
alled intrinsi
 lo
alized modes, are ubiquitous so-lutions {Φn(t)}, with n = −∞,...,0,...,∞, to extended anharmoni
 latti
es.These states are time periodi
, with a well de�ned frequen
y ωb, solutionswhere the energy is 
on�ned on a few number of sites. A general form of thissolutions 
an be expressed as
Φn(t) = f(n− x0) exp (iωbt) , (2.1)with f(n − x0) ∼ exp [−Γ|n− x0|] when n → ±∞. The parameter x0 is thelo
alization 
enter and Γ (> 0) a

ounts for the de
ay rate and hen
e quanti�esthe degree of energy lo
alization.The �rst observations of energy lo
alization in anharmoni
 latti
es wherea

identally found by E. Fermi, J.R. Pasta, S.M. Ulam and M. Tsingou [12℄ in
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rete Breathers and Nonlinear S
hrödinger latti
es1955. This �little dis
overy� were followed by the burst of nonlinear s
ien
e ledby theoreti
al advan
es in soliton theory or integrable systems. The growthof 
omputer pro
essing power turned again the view to nonlinear latti
es and,after the theoreti
al work of A.J. Sievers, S. Takeno and K. Kisoda [18, 19℄ in1988 dis
overing a new lo
alized mode for pure anharmoni
 latti
es, several nu-meri
al observations of these kind of solutions were reported by several authorsfor di�erent nonlinear latti
es [45�48℄. It is worth mentioning that the observa-tion of these lo
alized states was found to be generi
 of homogeneous nonlinearlatti
es and therefore di�erent from that due to presen
e of Anderson modesas a 
onsequen
e of the existen
e of any inhomogeneity (defe
t or impurity) ofthe harmoni
 latti
e. Observations of genuine dis
rete breather solutions weremainly based on the numeri
al simulations of the nonlinear dynami
s.The question on their existen
e as true solutions of the nonlinear latti
eremained unsolved until R.S. Ma
kay and S. Aubry [22℄ established the the-orem for the existen
e of dis
rete breather solutions. This theorem is basedon the 
on
ept of anti-integrability (developed by S. Aubry for studying theFrenkel-Kontorova model [49, 50℄) or, applied to general latti
es, the anti
on-tinuum limit. This 
on
ept refers to the limiting 
ase when there is no 
ouplingbetween adja
ent sites of the latti
e so that the system is 
omposed of a setof independent os
illators whose dynami
s is governed by their 
orrespondingon-site potentials. Then, 
onsidering the state where a single os
illator evolvesfollowing an orbit of frequen
y ωb while the remaining sites are in the reststate one 
an ask whether this state of energy 
on�nement would remain whenthe 
oupling between sites is adiabati
ally in
orporated. The 
ontinuability ofdis
rete breathers from the un
oupled limit implies two 
onditions
• Non-resonan
e 
ondition: The os
illation frequen
y and its harmoni
smust rely outside the phonon band of the latti
e at the rest state

nωb 6= ω(q) ∀q ∈ [−π/2, π/2] (n = 1, 2, ...) (2.2)
• Anharmoni
ity 
ondition: The on-site potentials governing the dynami
sof the isolated sites must be nonlinear so that the frequen
ies, ωb, of theirorbits ful�lls ∂ωb/∂I 6= 0, where I is the a
tion.The proof of the existen
e theorem is based on the impli
it fun
tion theoremand provides a pra
ti
al way for 
onstru
ting lo
alized solutions of the type(2.1).After the rigorous formulation of the existen
e 
onditions of dis
rete breathersseveral questions arised. From one hand, its stability and robustness in noisyenvironments has been studied in detail [51℄ sin
e their experimental observa-tion and potential appli
ations to real systems implies relative large life times.



2.1. The Salerno Model 17Another hot topi
 is the issue of their mobility. Taking into a

ount the gen-eral form (2.1) of a pinned dis
rete breather one would expe
t their mobile
ounterparts to have the form
Φn(t) = f(n− vb − x0) exp (iωbt) , (2.3)with f(n− vb − x0) ∼ exp [Γ|n− vbt− x0|] when n→ ±∞. The possibility oftransferring energy pa
kets a
ross latti
es opens the door to a wide range ofappli
ations in nonlinear opti
s, solid state and soft matter physi
s. However,sin
e the 
ontinuous translational invarian
e is broken due to dis
reteness, the
omputation of pinned dis
rete breathers of the form (2.1) does not guaran-tee the su

ess in 
onstru
ting mobile lo
alized states like (2.3) by means ofa 
hange of the referen
e system. Di�erent approa
hes have been used forstudying this problem ranging from the �ki
king� method [52�55℄ (where astati
 solution is perturbed with the so-
alled pinning or marginal mode in or-der to make it move) to analyti
al approximations were 
ontinuous variables(
olle
tive 
oordinates) a

ounting for the lo
alization 
enter are introdu
ed[56�60℄. Our approa
h to this problem tries to generalize the method of 
on-tinuation for pinned breathers to obtain mobile solutions. For this purpose westart with make use of the 
on
ept of (p, q) resonant states that will allow usto unify the problem of �nding both mobile and pinned dis
rete breathers.In this 
hapter we introdu
e the set of nonlinear S
hrödinger equationsthat we study along the two forth
oming 
hapters as well as to summarize thebasi
 de�nitions and te
hniques used for 
hara
terizing breather solutions tothese equations. We will start in se
tion 2.1 des
ribing the Salerno model [61℄whi
h provides a two-parametri
 family of nonlinear S
hrödinger latti
es. Inse
tion 2.2 we address the de�nition of the 
on
ept of (p, q) resonant solutionsto whi
h general dis
rete breather solutions belong. Finally, in se
tion2.3 thebasi
 te
hnique to obtain and 
hara
terize dis
rete breathers are summarized.2.1 The Salerno ModelThe 
ontinuous nonlinear S
hrödidinger equation (NLS) 
onstitutes a key toolfor a number of �elds as diverse as the study of Bose-Einstein 
ondensates(where the mean �eld approximation is of the NLS-type, the Gross-Pittaevskiiequation), the study of nonlinear (Kerr type) opti
al �bers, mole
ular 
hains(where Davydov solitons are studied), et
... Besides, the NLS equation isspe
ially interesting for nonlinear physi
s sin
e it appears when 
onsideringthe lowest order of nonlinearity for any dynami
al equation on a dispersivemedium where energy is 
onserved. The most general form of this equation isiΦ̇(x, t) = −▽2Φ(x, t)− γ|Φ(x, t)|2Φ(x, t) , (2.4)
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rete Breathers and Nonlinear S
hrödinger latti
eswhere Φ(x, t) is a 
omplex �eld whi
h, in the 
ontext of Bose-Einstein 
on-densates, a

ounts for the ma
ros
opi
 wave-fun
tion of the 
ondensate. Theparameter γ a

ounts of the 
ompeten
e between the dispersive (Lapla
ianterm) and the nonlinear parts. This 
ubi
 nonlinear equation posses the sin-gular property of being integrable. The integrability was probed by means ofthe Inverse S
attering Method (ISM) te
hnique [11, 62, 63℄ in [64℄ providing afamily of nonlinear waves.The Dis
rete Nonlinear S
hrödinger equationThe physi
al relevan
e of the NLS equation along with its integrable 
hara
termake it one of the most studied models by nonlinear physi
ists during thelast de
ades. Besides, dis
retizations of this equation are also of great interest.The natural the dis
retization of eq. (2.4) yields the so-
alled standard dis
retenonlinear S
hrödinger equation (DNLS) [23℄,iΦ̇n = −C(Φn+1 + Φn−1)− γ|Φn|2Φn , (2.5)where Φn is now a 
omplex variable, the parameter C amounts the nearestneighbor 
oupling, and γ is the strength of the nonlinearity. The above dis-
retization does not 
onserve the integrability of the 
ontinuous model (2.4)although the wide appli
ability to physi
al �elds is preserved. In parti
ular,the DNLS equation is parti
ularly relevant for
• Dynami
al des
ription of Bose-Einstein 
ondensates trapped in a periodi
potential well (opti
al trap) [33�35, 65�68℄.
• Pulse dynami
s in nonlinear waveguide arrays [28, 29, 69�72℄.
• Adiabati
 approximation of the Holstein polaron [23℄.
• Ex
itation dynami
s in biopolymers latti
es [26℄.The dynami
s governed by the DNLS equation (2.5) is derived from the Hamil-tonian

H = −C
∑

n

(ΦnΦn+1 + ΦnΦn+1)−
γ

2

∑

n

|Φn|4 , (2.6)where Φn denotes the 
omplex 
onjugate of Φn. Both variables, Φn and Φn,are 
anoni
ally 
onjugated with the usual Poisson stru
ture
{U, V } =

∑

n

[

U

Φn

V

Φn

− V

Φn

U

Φn

]

. (2.7)



2.1. The Salerno Model 19Beside, the DNLS equation has a se
ond integral of the dynami
s, namely thenorm,
N =

∑

n

|Φn|2 , (2.8)that in the 
ontext of Bose-Einstein 
ondensates a

ounts for the total numberof bosons whereas for waveguides arrays it is the total power of the beam.The Ablowitz-Ladik equationAnother important dis
retization of the 
ontinuous NLS equation is the so-
alled Ablowitz-Ladik equation (AL). Although this latti
e is not so physi
allyrelevant as the usual dis
retization, DNLS equation (2.5), the AL model pre-serves the integrability of its 
ontinuous 
ounterpart (2.4). In fa
t, the ALmodel is an extremely ex
eptional example of an integrable nonlinear latti
ethat was dis
overed by M.J. Ablowitz and J.F. Ladik in 1976 [73, 74℄ by meansof the ISM in its dis
rete version [75, 76℄. The AL model reads as followsiΦ̇n = −(Φn+1 + Φn−1)
[

C +
γ

2
|Φn|2

]

, (2.9)where again Φn(t) is a 
omplex probability amplitude, the parameter C amountsthe nearest neighbor 
oupling, and γ is the strength of the nonlinearity. Thenonlinear term in the AL equation is of the intersite type and hen
e di�erswith its 
ounterpart in the DNLS model whi
h is an onsite nonlinearity.The AL model (2.9) has a deformed Poisson stru
ture de�ned by
{U, V } =

∑

n

[

U

Φn

V

Φn

− V

Φn

U

Φn

]

(

1 +
γ

2
|Φn|2

)

, (2.10)and the 
onserved Hamiltonian is
H = −C

∑

n

(ΦnΦn+1 + ΦnΦn+1) . (2.11)The integrability of the AL equation results in an in�nite number of 
onservedquantities. Along with the Hamiltonian the two 
onserved magnitudes of lowestorder in {Φn} are
N =

2

γ

∑

n

ln(1 +
γ

2
|Φn|2) , (2.12)

P = i∑
n

(ΦnΦn+1 − ΦnΦn+1) , (2.13)whi
h are the norm and the momentum respe
tively.



20 Chapter 2. Dis
rete Breathers and Nonlinear S
hrödinger latti
esThe integrable AL equation possesses a two-parameter family of exa
tbreather solutions of the form
Φn(t) =

√

2

γ
sinh β se
h[β(n− x0(t))]×

exp [i(α(n − x0(t)) + Ω(t))] . (2.14)As 
an be observed the solutions possess the 
ontinuous spatial symmetry
x0 → x0 + ǫ and hen
e analyti
 mobile breather solutions with a similar formto eq. (2.3) are available for this ex
eptional latti
e. The two parameters ofthis breather family 
an be 
hosen to be the breather frequen
y ωb and velo
ity
vb,

vb = ẋ0 =
2 sinh β sin α

β
(2.15)

ωb = Ω̇ = 2 cosh β cos α + αvb , (2.16)where −π ≤ α ≤ π and 0 < β <∞. The AL moving breather (instantaneous)pro�le interpolates between the rest state Φn = 0 of the latti
e (at n → ±∞)in an exponentially lo
alized region around x0(t), while traveling with velo
ity
vb.The Salerno modelIn the above two equations, DNLS (2.5) and AL (2.9), the self-fo
ussing e�e
tof lo
al nonlinearity balan
ed by the opposite e�e
t of the dispersive 
ouplingmakes possible the existen
e of lo
alized periodi
 solutions (breathers) of thedis
rete �eld, where the pro�le of |Φn| de
ays exponentially away from thelo
alization 
enter:

Φn(t) = |Φn| exp[iωb(t))] . (2.17)In the un
oupled limit C → 0 of the DNLS equation, also known as the anti-integrable or anti-
ontinuous limit, dis
rete breathers 
an be easily 
onstru
tedby sele
ting a periodi
 os
illation Φn0(t) of frequen
y ωb = γ|Φn0 |2 at site n0and Φn = 0 for n 6= n0. These solutions 
an be uniquely 
ontinued (we will seethe pro
edure below) to nonzero values of the 
oupling C, and 
onstitute theone-parameter family of immobile on-site breathers of the DNLS equation.Unfortunately, the 
ontinuation from the un
oupled limit does not providesolutions where the lo
alization 
enter moves along the latti
e with velo
ity vb(as for the AL 
ase), i.e, mobile dis
rete breathers. On the other hand, the
onne
tion between the integrable (though physi
ally limited) AL equation



2.1. The Salerno Model 21and the physi
ally relevant (though nonintegrable) DNLS equation is providedby the model originally introdu
ed by M. Salerno in [77℄,iΦ̇n = −(Φn+1 + Φn−1)
[

C + µ|Φn|2
]

− 2νΦn|Φn|2 . (2.18)The above latti
e provides a Hamiltonian interpolation between the stan-dard DNLS equation (2.5), for µ = 0 and ν = γ/2, and the integrable ALlatti
e (2.9) when µ = γ/2 and ν = 0. In the following we will set the value of
γ = 2. The Hamiltonian of the Salerno equation is given by

H = − C
∑

n

(ΦnΦn+1 + ΦnΦn+1)− 2
ν

µ

∑

n

|Φn|2

+ 2
ν

µ2

∑

n

ln(1 + µ|Φn|2) , (2.19)whi
h 
ontains the AL and DNLS Hamiltonian for the above limits. ThePoisson stru
ture of the Salerno model takes the form
{U, V } =

∑

n

[

U

Φn

V

Φn

− V

Φn

U

Φn

]

(

1 + µ|Φn|2
)

, (2.20)whi
h, for µ 6= 0, takes the same fun
tional form as that of the Ablowitz-Ladikequation, eq. (2.10), and in the limit µ = 0 it be
omes the standard Poissonstru
ture a

ording to that of the DNLS limit, eq. (2.7). In addition to theHamiltonian, this equation possesses, for any value of the parameters µ and ν,the following 
onserved norm
N =

1

µ

∑

n

ln(1 + µ|Φn|2) . (2.21)While the SM was originally introdu
ed in a rather abstra
t 
ontext, it hasre
ently found dire
t physi
al realization, as an asymptoti
 form of the Gross-Pitaevskii equation des
ribing a Bose-Einstein 
ondensate of bosoni
 atomswith magneti
 momentum trapped in a deep opti
al latti
e [78℄. In that 
ase,the onsite nonlinearity is generated, as usual, by 
ollisions between atoms,while the intersite nonlinear terms a

ount for the long-range dipole-dipoleintera
tions. This latter intera
tion may be attra
tive (µ > 0) or repulsive(µ < 0), if the external magneti
 �eld polarizes the atomi
 momentum alongthe latti
e or perpendi
ular to it, respe
tively.The 
ontinuation of the family (both pinned and mobile) dis
rete breathersfrom the AL integrable limit allows numeri
al observations of the interplaybetween the integrable term, weighted by the parameter µ, and the noninte-grability, weighted by ν. We will inspe
t the e�e
ts that the 
ombination ofthese two nonlinearities, with both similar and opposite signs, has on dis
retebreathers dynami
s.



22 Chapter 2. Dis
rete Breathers and Nonlinear S
hrödinger latti
es2.2 Dis
rete spa
e-time symmetries: (p, q) resonantstatesIn order to unify the problem of �nding pinned and mobile dis
rete breathers bymeans of 
ontinuation methods we start de�ning the 
on
ept of (p, q) resonantstates. Suppose that a frequen
y ωb = 2π/Tb is given, we will say that asolution Φ = {Φn(t)} is (p, q) resonant with respe
t to the referen
e frequen
y
ωb, if the following 
ondition holds, for all n and t:

Φn(t) = Φn+p(t + qTb) . (2.22)After q Tb-periods, these solutions repeat the same pro�le but displa
edby p latti
e sites. In more te
hni
al terms, these (p, q) resonant solutions are�xed points Φ of the operator
LpT q = M (2.23)

(M−I) Φ = 0 , (2.24)where L and T are, respe
tively, the latti
e translation and the Tb-time evolu-tion operator
L{Φn(t)} = {Φn+1(t)} (2.25)
T {Φn(t)} = {Φn(t + Tb)} . (2.26)We now 
onsider some examples of (p, q) resonant solutions with respe
tto the frequen
y ωb; the �rst example is simply provided by the family of planewave solutions of eq. (2.18):
Φn(t) = A exp[i(kn− ωt)] . (2.27)It is easily seen, by inserting (2.27) in eq. (2.18), that the values of ω, k and

|A| de�ne a surfa
e in the three-dimensional spa
e, the nonlinear dispersionrelation surfa
e ω(k,A) (see �gure 2.1):
ω = −2[1 + µ|A|2] cos k − 2ν|A|2 . (2.28)Note that due to the nonlinear 
hara
ter of the eq. (2.18), the frequen
y ωdepends on both wave number k and amplitude |A| of the plane wave.One 
an easily determine those plane waves that are (p, q) resonant withrespe
t to ωb: the eq. (2.22) imposes the following 
ondition on ω and k

ω

ωb
=

1

q

( p

2π
k −m

)

, (2.29)
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e-time symmetries: (p, q) resonant states 23where m is any arbitrary integer. These planes in the 3-d spa
e (ω, |A|, k)interse
t the dispersion relation surfa
e at (in general) several one-parameterfamilies (bran
hes) kj(|A|), in the �rst Brillouin zone (−π ≤ k ≤ π).If we are not interested in unreasonably large (and not interesting) ampli-tude values |A| of the plane waves, the number of bran
hes is �nite: one 
ansee that for �xed values of all the parameters (p, q, ωb, ν, µ), there is a �nitenumber of bran
hes in the limit |A| → 0; there is also a well de�ned (parameterdependent) threshold value of the amplitude at whi
h a pair of new bran
hes(tangent bifur
ation) appear (i.e. these plane waves 
an only resonate with ωbfor amplitudes above some threshold value).Thus, by a suitable bounding of the amplitude, for ea
h 
ouple (p, q) one�nds a �nite number, s, of bran
hes of (p, q) resonant plane waves. (Note alsothat this number diverges when p/q tends to an irrational).A di�erent, and highly nontrivial, example of (p, q) resonant solutions isprovided by the solitary waves (2.14) of the AL latti
e. From eq. (2.16) it is
lear that the 
hoi
e 2πvb/ωb = p/q sele
ts a (p, q) resonant solitary wave withrespe
t to the frequen
y ωb, i.e. a breather solution where the two time s
alesinvolved, given by its frequen
y ωb and velo
ity vb, are 
ommensurate. Theset of velo
ity values of resonant AL breathers is dense and any AL movingbreather is a limit of some sequen
e of resonant ones. Note also that immobilebreathers are (0, 1) resonant with respe
t to the frequen
y ωb.In the integrable limit, the plane waves and the AL breathers are bothexa
t independent solutions. Integrability makes possible that the initial lo-
alization of energy is maintained with time evolution, without de
aying awayby ex
iting radiation. It is a well established result that (even far away fromthis integrable limit) immobile dis
rete breathers remain exa
t solutions of thelatti
e dynami
s. Our 
on
ern in the next se
tions is the question of moving
 0
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ω Figure 2.1: Plot of the nonlineardispersion relation surfa
e of non-linear plane waves, eq. (2.28), asa fun
tion of the amplitude A andthe wave number k of the planewave. The values of µ and ν are�xed to 0.5.
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rete Breathers and Nonlinear S
hrödinger latti
esdis
rete breathers away from integrability in eq. (2.18). In order to studythem, we will fo
us on (p, q) resonant solutions. The motivating of this re-stri
tion 
omes from its a

essibility to numeri
s. First we will motivate thenumeri
al (Newton) method that allow us to study these solutions with anadequately high pre
ision.2.3 Dis
rete Breathers numeri
sWe introdu
e here the numeri
al te
hniques that we have used. As a whole,one 
ould refer to them as the (SVD-) regularized Newton method. They donot 
onstitute a novel method in "dis
rete Breather numeri
s", as they havebeen already used, e.g. in [79℄ to re�ne moving breathers of Klein-Gordonlatti
es obtained by other numeri
al means (see, by 
ontrast, [80℄). From themethodologi
al side, what is novel here is the systemati
 use of them in theinvestigation of the family of moving S
hrödinger breathers reported below in3.1.To some extent, the presentation here is self-
ontained but for further de-tails on these te
hniques we refer to the Appendi
es and the proposed bib-liography. First, in 2.2 we introdu
e the notion of (p, q) resonant solution,providing some illustrative examples. The (SVD) regularized Newton algo-rithm is presented in 2.3.1, and �nally in 2.3.2 we brie�y explain the basi
s ofFloquet stability analysis.2.3.1 Newton 
ontinuationA well-known numeri
al pro
edure to obtain exa
t periodi
 solutions of nonlin-ear latti
es is the Newton 
ontinuation [22, 53, 79, 81℄. The di�erent pra
ti
alimplementations of this pro
edure work very su

essfully when, for example,one obtains numeri
ally exa
t immobile dis
rete breathers of eq. (2.18), fromthe un
oupled limit µ = 0 and C = 0, where exa
t periodi
 dis
rete breathersare trivially 
onstru
ted.The iteration of the Newton operator T 
onverges rapidly to its �xed point(i.e. the solution to be 
omputed) provided the starting point, Φ̂0, is 
loseenough, and the solution of the following system of linear equations is a well-posed problem:
(DT − 1)(Φn − Φn+1) = [T − I]Φn , (2.30)where DT is the Ja
obian matrix of the Newton operator, and Φn (the n-thiteration solution of (2.30)) 
onverges quadrati
ally to the �xed point solution.By adiabati
 
hange of a model parameter, one 
onstru
ts a uniquely 
ontinued
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s 25exa
t �xed point solution for ea
h parameter value, using ea
h time, as startingpoint of the Newton iteration, the solution previously 
omputed.The matrix (DT − 1) must be invertible, in order to uniquely 
ompute
Φn+1. Degenera
ies asso
iated with the +1 eigenvalues of DT , if any, haveto be removed in order to obtain a unique �xed point solution. When 
ontin-uing immobile (time periodi
) dis
rete breathers of eq. (2.18), a 
onvenientpres
ription is 
ommonly used, namely to restri
t the operator a
tion to thesubspa
e of time-reversible solutions (see Appendix A and [53, 81℄). This pro-vides a pra
ti
al way of removing degenera
ies, allowing unique 
ontinuationof immobile dis
rete breathers.However, for the 
ontinuation of general (p, q) resonant solutions (of whi
hperiodi
 solutions are only the parti
ular 
ase p = 0 and q = 1), one has to use
M = LpT q as the Newton operator. One has also to deal with the degenera
iesof M, and imposing time-reversibility 
ould, in this 
ase, be too restri
tive,sin
e in general (p, q) resonant solutions are not time-reversible.A well-known solution to the problem of removing degenera
ies when no
lear restri
tions are available, is provided by the so-
alled singular value de-
omposition (SVD) [53, 79, 82, 83℄ of the matrix (DLpT q − 1) :

(DLpT q − 1) = J = PV Q , (2.31)where P , V and Q are 2N×2N square matri
es. P and Q are orthogonal matri-
es and V is diagonal (vjδij) with possibly null (zero) elements, 
alled singularvalues, asso
iated with the null spa
e of J (the subspa
e that is mapped to zero
Jx = 0). The 
olumns of P whose same-numbered elements vj are nonzeroare an orthonormal set of basis ve
tors that span the range of J (the subspa
erea
hed by this matrix). The rows of Q whose same-numbered elements vj arezero are an orthonormal basis for the null spa
e of J . One 
an numeri
ally usethis SVD de
omposition, 
he
king the (numeri
al) ve
tors spanning the nullspa
e to identify degenera
ies, and using at iteration steps the pseudoinversematrix

Q∗V̂ −1P ∗ , (2.32)where V̂ −1 is diagonal with elements 1/vj for vj 6= 0 and 0 for vj = 0.The 
onvergen
e 
riterion for the �xed point solution is that
∑

j

∣

∣

∣

(

[T − I]Φn+1
)

j

∣

∣

∣
< N · 10−16 , (2.33)where N is the size of the latti
e, i.e. the solutions obtained along the twoforth
oming 
hapters 
an be regarded as exa
t up to ma
hine pre
ision. As ajudi
ious test of our numeri
al 
odes, we have used both pro
edures (redu
tion



26 Chapter 2. Dis
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hrödinger latti
esto time-reversible subspa
e and SVD de
omposition) to obtain immobile dis-
rete breathers (for whi
h both methods are valid) of the Salerno model. Bothagree, up to the highest possible a

ura
y, from the un
oupled limit up to theA-L limit (and vi
eversa).2.3.2 Floquet stability analysisA very useful out
ome of the numeri
al Newton method of 
omputing solutionsof eq. (2.18) is the Ja
obian matrix of the Newton operator, usually 
alled theFloquet matrix F . This matrix is the linear operator asso
iated with the linearstability problem (see Appendix B and [84℄) of the �xed point solution.Indeed, the Ja
obian F of the Newton operatorM
F = DM (2.34)maps ve
tors in the tangent spa
e of the solution (small initial perturbations

~ǫ(0) of the �xed point solution) into their TM-evolved ve
tors, i.e. ~ǫ(TM),after a period ofM. That is:
~ǫ(TM) = F~ǫ(0) , (2.35)The Floquet matrix of a Hamiltonian system is real and symple
ti
, sothe Floquet eigenvalues λ 
ome in quadruplets, λ, 1/λ, λ̄, 1/λ̄. The ne
essary
ondition for the stability of the solution is that all the eigenvalues lie on theunit 
ir
le of the 
omplex plane, |λ| = 1.To illustrate the Floquet analysis of (p, q) resonant solutions of the NLSlatti
e (2.18), we now obtain the Floquet spe
trum of modulational instabilitiesof a (p, q) resonant plane wave,

Φn(t) = A exp i(kn− ωt) . (2.36)One has to investigate the evolution of small perturbations, in both ampli-tude and phase, of the plane wave
Φn(t) = (A + In) exp i(kn − ωt + ϕn) , (2.37)where we assume that the perturbation parameters are small 
ompared withthose of the plane wave solution. Introdu
ing expression (2.37) in (2.18) and
onsidering the following form for the perturbations {In, ϕn}:

In(t) = I exp i(Qn− Ωt)

ϕn(t) = ϕ exp i(Qn−Ωt) (2.38)
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Figure 2.2: Plot of the modulus of the unstable Floquet eigenvalues |λ| (
orrespondingto the positive values of ℑ(Ω) in eqs. (2.44) and (2.45)), versus the Floquet angle,
θFloq. Both quantities are 
onveniently normalized to the period of the map TM. Theamplitude of the ex
ursion of |λ| and the range of values of θFloq for whi
h |λ| > 1grow as the amplitude A of the plane wave is in
reased. The parameters in eq. (2.18)are µ = ν = 0.5 and the wave number of the plane wave is k = 0.5.we obtain the dispersion relation for the perturbation parameter Ω:

[Ω− 2(1 + µA2) sin k sin Q]2 = 16(1 + µA2)×
sin2 Q/2 cos k[(1 + µA2) sin2 Q/2 cos k

− µA2 cos k − νA2], (2.39)as obtained in [85, 86℄. From the above expression one derives the values of
Ω(A,Q, k; ν, µ) for the modulational perturbations. When the parameter Ωhas a nonzero imaginary part, i.e. the right-hand side of (2.39) is negative,the plane wave (A, k) be
omes unstable under the 
orresponding modulational(Q) perturbation, whose amplitude will grow exponentially fast in the linearregime (tangent spa
e).Modulational perturbations (2.38) 
orrespond to eigenve
tors {In, ϕn} ofthe Floquet matrix:

In(t + TM) = exp(−iΩTM)In(t) (2.40)
ϕn(t + TM) = exp(−iΩTM)ϕn(t) (2.41)with asso
iated Floquet eigenvalues exp(−iΩTM). The real part of Ω gives the
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ℜ(λ)Figure 2.3: Plot of the Floquet spe
tra of a plane wave with modulational instabil-ity (
ir
les) and the theoreti
al predi
tion (lines) for the distribution of the Floqueteigenvalues in the 
omplex plane given by eqs. (2.44) and (2.45). The amplitudeand wave number of the plane wave are A = 0.1 and k = 0.1 · 2π; the nonintegrableparameter value is ν = 0.1 and the latti
e size is of 400 sites.angle in the 
omplex plane,
θF loq = −ℜ(Ω)TM , (2.42)while the imaginary part ℑ(Ω) gives the modulus of the Floquet eigenvalue,
|λ| = exp(ℑ(Ω)TM) , (2.43)thus providing the information about the linear stability of the solution.The distribution of angles and moduli in the Floquet spe
trum of the mod-ulational instability 
an be obtained from eq. (2.39) by taking the real andimaginary parts of Ω:

ℜ(Ω) = 2(1 + µA2) sin k sin Q (2.44)
ℑ(Ω)2 = −16(1 + µA2) sin2 Q/2 cos k ×

× [(1 + µA2) sin2 Q/2 cos k

− µA2 cos k − νA2] . (2.45)In �gure 2.2 we represent the modulus of the unstable eigenvalues as afun
tion of the Floquet angle for the spe
trum of a (p, q) resonant plane
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s 29wave, taken as an example to visualize the non-point-like 
hara
ter of theinstability in the Floquet spe
trum in the thermodynami
 limit. Note thatthere is no plane wave harmoni
 instability (θF loq = 0) due to this me
hanismof modulational instabilities.A numeri
al 
omputation of the Floquet spe
trum of a plane wave (witharbitrary wave number) of a latti
e of N = 400 sites, with periodi
 bound-ary 
onditions is shown in the 
omplex plane representation of �gure 2.3.The instability globes, at angles symmetri
ally pla
ed around zero in this �g-ure, ni
ely �t the theoreti
al (thermodynami
 limit) values obtained from eqs.(2.44) and (2.45).





Chapter 3Dis
rete Breathers inone-dimensional NonlinearS
hrödinger latti
esA one-dimensional dynami
al system of 64 parti
les with for
esbetween neighbors 
ontaining nonlinear terms has been studied onthe Los Alamos 
omputer MANIAC I (...) The results show verylittle, if any, tenden
y toward equipartition of energy among thedegrees of freedom.First insights on intrinsi
 lo
alization by E. Fermi, J.R. Pasta,S.M. Ulam and M. Tsingou in 1955 (Extra
ted from [12℄).In this 
hapter we report on the most salient �ndings on dis
rete breathersolutions to the Salerno model (2.18). The generalized 
ontinuation s
hemebased on the (p, q) resonan
e 
ondition allows to �nd both pinned and mobiledis
rete breathers 
ontinuing those analyti
al solutions found for the integrableAblowitz-Ladik equation.In the light of the obtained results we 
an distinguish two regions of theSalerno model. First, the so-
alled standard Salerno model where µ > 0. Inthis 
ase pinned dis
rete breathers are feasible states of the dynami
s andtheir 
hara
terization for the interesting DNLS limit [87, 88℄ and the SM[58, 59, 89, 90℄ has been deeply studied. Then, our primary 
on
ern in this re-gion is the issue of dis
rete breather mobility. The main numeri
al fa
ts aboutmobile dis
rete breathers are shown in se
tion 3.1. The numeri
al solutions arefound to be (up to numeri
al pre
ision) the superposition of a traveling expo-nentially lo
alized os
illation (the 
ore), and an extended ba
kground, whi
h is a
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rete Breathers in 1D Nonlinear S
hrödinger latti
eslinear superposition of �nite amplitude nonlinear plane waves. Then, 
ontraryto the exa
t immobile breather solution (spa
e-homo
lini
 and time-periodi
orbit), whi
h asymptoti
ally 
onne
ts the rest state (va
uum or ground state)of the latti
e with itself, ea
h exa
t mobile lo
alized solution is instead homo-
lini
 to a spe
i�
 latti
e state of extended radiation. In other words, exa
tstationary mobility of dis
rete breathers requires an extended ex
ited state ofthe latti
e. In se
tion 3.2 we analyze the numeri
al results in the light of 
olle
-tive variable theories, 
orrelating them with the main theoreti
al predi
tionsof this su

essful (however in
omplete) physi
al perspe
tive. In parti
ular, theexisten
e of Peierls-Nabarro barriers to translational 
ore motion is 
on�rmed,and its subtle relation to the ba
kground amplitude is dis
ussed. We presentalso numeri
al 
on�rmation of the existen
e of another type of lo
alized states:exa
t os
illating an
hored breathers. Along with the dis
ussion in this se
tion,a physi
al interpretation of the role of the intera
tion ba
kground-
ore in theenergy balan
e emerges, paving the way to a satisfa
tory integration of theresults into a 
olle
tive variable theory.The se
ond region of interest is the Salerno model with 
ompeting nonlin-earities (µ < 0) that we study in se
tion 3.3. In this 
ase the Salerno Model
ombines onsite self-fo
using and intersite self-defo
using 
ubi
 terms, whi
hturns to be physi
ally meaningful for des
ribing a Bose-Einstein 
ondensateof dipolar atoms trapped in a strong periodi
 potential. The analyti
al re-sults using the 
ontinuum approximation predi
ts a threshold value µc < 0 sothat for µ < µc pinned dis
rete breather solutions do not exist. On the otherhand, the numeri
al 
ontinuation of exa
t dis
rete breathers shows that thepinned breather family 
ontinues beyond this threshold in the form of a novelsolution: 
uspon states. In-phase and out-of-phase bound states of dis
retebreathers are also 
onstru
ted in order to shed light on the new transitionfound. This results makes the Salerno model with 
ompeting nonlinearitiesalso interesting for what 
on
erns pinned dis
rete breathers. Mobile dis
retebreathers are �nally studied in this region revealing the same results as in thestandard Salerno model: they are 
omposed of a moving 
ore and an extendedba
kground.3.1 Dis
rete breathers in the standard SalernomodelThe 
omputation of (p, q) resonant dis
rete breathers in the standard Salernolatti
e (µ > 0) is performed following the path ν + µ = 1 (see Figure 3.1)from the AL integrable latti
e (ν = 0, µ = 1) to the standard DNLS equation(ν = 1, µ = 0). The 
hoi
e of the path does not a�e
t the generality of the
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Ablowitz−Ladik
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Figure 3.1: Two di�erent pathsto rea
h the DNLS limit in the(C, ν, µ) spa
e. The standardSalerno path, ν+µ = 1, is used for
ontinuing the AL (p, q) resonantbreathers to the DNLS limit. The
ontinuation from the anti
ontin-uum limit 
an be used only for im-mobile ((0, 1) resonant) breathers.results sin
e for every solution for the nonlinear parameters (ν, µ) one 
aneasily obtain the 
orresponding one for other set (ν ′ , µ
′

= µν
′

/ν) by means ofthe res
aling Φ
′

n(t) =
√

ν ′/ν Φn(t).We have 
omputed pinned dis
rete breathers ((0, 1) resonant solutions) tothe DNLS equation (2.5) by (i) 
ontinuing those analyti
al pinned solutions ofthe AL latti
e (α = 0) following the Salerno path and (ii) starting from theanti
ontinuum limit C = 0 of the DNLS equation and 
hanging the 
oupling C.These two approa
hes yields the same solutions when 
ompared at the DNLSlimit. However, the 
ontinuation from the un
oupled limit does not o�er thepossibility of 
ontinuing a se
ond family of pinned, (0, 1) resonant, dis
retebreathers present at the AL limit: Looking at eq. (2.15) one realize that for(α = π) a set of pinned solutions with phase di�eren
e betweeen adja
ent sitesequal to π and ωb < 0 is also available. This type of pinned solutions areusually termed staggered dis
rete breathers and, as we will see below, theirbehaviour in the standard Salerno model is far from trivial. One 
an studythis new type of pinned solutions by 
onsidering the 
ase ν < 0 for standard(unstaggered) pinned breathers, 
orresponding to α = 0 in the AL latti
e,sin
e the 
hange ν
′

= −ν, t
′

= −t 
orresponds to a staggering transformationof the solution Φ
′

n = (−1)nΦn. Then, the study of (p, q) resonant solutionsalong the path µ − ν = 1 of the standard Salerno model (µ > 0) is also ofinterest. The Salerno 
ontinuation of standard pinned breathers also providesfurther 
on�rmation of an important and well-known theoreti
al result. Atthe integrable AL latti
e, one-site and two-site immobile breathers are buttwo parti
ular 
hoi
es of the 
ontinuous one-parameter (x0, the lo
alization
enter) family of immobile solitary waves, i.e. 
onstant x0(t) = n or n + 1/2respe
tively, in eq. (2.14). The well-known result, 
on�rmed by our numeri
s,is that away from the AL limit only these (one-site and two-site) immobile
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Figure 3.2: (Bottom) Convergen
e of the two solutions found at the DNLS limit(ν = 1, µ = 0) when one is obtained by 
ontinuation from the AL (ν = 0, µ = 1)following the Salerno path (Top-left) and the other by adiabati
ally in
reasing the
oupling C from the anti
ontinuum limit of the DNLS equation (Top-right). Thefrequen
y of the solutions is set to ωb = 4.3.dis
rete breathers persist under adiabati
 
ontinuation. No immobile breather
entered in between exists. For positive values of the parameter ν, the one-siteimmobile one has a lower value of energy H, and it is a linearly stable solution,while the energy of the two-site breather is higher and it is linearly unstable.The relative situation is reversed for negative values of ν. This result 
anbe interpreted as the emergen
e of a (Peierls-Nabarro) potential fun
tion ofthe breather 
enter x0, whi
h destroys the 
ontinuous degenera
y of immobilebreathers, leaving only two of them per latti
e unit, namely those lo
alizedat maxima and minima of the Peierls potential. This interpretation, whi
h is
aptured in the theoreti
al framework of 
olle
tive variable approa
hes, turnsout to play a 
entral role in building up the physi
al interpretation of thenumeri
al results on mobile dis
rete S
hrödinger breathers as we will see inse
tion 3.2.As introdu
ed previously the translational motion of dis
rete breathers in-trodu
es a new time s
ale (the inverse velo
ity) so generi
ally a moving breather
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ites resonan
es with plane wave band spe
tra. This fa
t poses no problem tothe persisten
e of lo
alization when the latti
e dynami
s is governed by powerbalan
e (for
ed and damped latti
es [91�93℄): the emitted power is exa
tly
ompensated by the input from the homogeneous external for
e �eld, duringstationary breather motion. However, for generi
 (nonintegrable) Hamiltonianlatti
es one would expe
t that the radiative losses would tend to delo
alize en-ergy and some energy 
ompensating me
hanism is needed in order to sustainexa
t stationary states of breather translational motion. From the (parti
le)perspe
tive of 
olle
tive variables theory it is well known that the lo
alizedbreather experien
es a periodi
 Peierls-Nabarro potential fun
tion of its posi-tion, so that the motion of the lo
alized �eld os
illation over this lands
apeshould be expe
ted to indu
e the emission of radiation at the expense of transla-tional (and/or internal) breather kineti
 energy, whi
h thus would unavoidablyde
ay on time.In this se
tion, we fo
us on the numeri
al results on mobile dis
rete S
hrö-dinger breathers in the NLS latti
e (2.18). These numeri
s are 
omputed usingthe tools explained in the previous 
hapter. The Newton �xed point 
ontinua-tion requires a good initial guess (meaning that the starting initial 
onditionshave to be in a small neighborhood of the �xed point). Very 
lose to ν = 0,the AL solitary traveling waves (exa
t solutions at ν = 0) provide good start-ing points. After 
onvergen
e to the �xed point, we in
rease adiabati
ally thevalue of the parameter (∆ν = 10−3), and start iteration from the previous�xed point.An important step in the numeri
al method used here, is obtaining a basisfor the subspa
e of (tangent spa
e) ve
tors with Floquet eigenvalue +1. Theseare asso
iated to those degenera
ies (symmetries) that one has to eliminatein order to regularize the linear system at ea
h (Newton) iteration step whennumeri
ally 
onverging to the �xed point solution.Away from the AL limit, it is known (as reported e.g. in [94℄) that only two
onserved quantities remain generi
ally as dynami
al invariants, the Hamilto-nian (2.19) and the norm (2.21). They are respe
tively asso
iated to the 
on-tinuous time translation and gauge (global phase rotation) invarian
e. Usingthe notation ui = ℜ(Φi) and vi = ℑ(Φi), one easily obtains that
δui(t) = u̇i(t)

δvi(t) = v̇i(t) , (3.1)is the perturbation asso
iated with time translational invarian
e, while
δui(t) = vi(t)

δvi(t) = −ui(t) , (3.2)
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hrödinger latti
esis the one with gauge invarian
e. These are, 
onsequently, Floquet eigenve
torswith asso
iated eigenvalue +1, and we 
an easily 
he
k that they 
oin
ide withthe (two) basis ve
tors provided generi
ally (i.e. ex
ept at spe
ial bifur
ationvalues of the parameter, see below in 3.1.3) by the numeri
al Singular ValueDe
omposition (2.32) explained in the previous 
hapter.In subse
tion 3.1.1 we summarize our �ndings on the generi
 stru
ture ofmobile S
hrödinger dis
rete breathers. For this, as explained earlier, we haveexplored parti
ular values for the integers (p, q) and performed 
ontinuationof (p, q) resonant AL traveling waves. The variation of the main stru
tural
hara
teristi
s of the �xed points along the 
ontinuation parameter ν is exam-ined in detail in 3.1.2, for both signs of this parameter. Of parti
ular interestare the observed drasti
 
hanges in the stru
ture for ν ≃ −0.3 and ν ≃ −0.39.Then, in 3.1.3, we show the main 
on
lusions on the stability analysis of themobile S
hrödinger dis
rete breathers, in a se
tor of the breather parameterspa
e.3.1.1 The stru
ture of the solutionIn �gure 3.3 we plot the spatial pro�le of a (1, 1) mobile S
hrödinger dis
retebreather for nonintegrability parameter value ν = 1.0, and ωb = 2.678.A qui
k inspe
tion of this �gure provides a �rst glan
e of the general stru
-ture of the 
omputed (p, q) resonant solutions: The �xed point Φ̂ is the super-position of an (exponentially) lo
alized os
illation (the 
ore) moving on top ofan extended ba
kground.
Φ̂ = Φ̂ 
ore + Φ̂ba
kg . (3.3)In other terms, far away from the 
ore lo
alization site n0, the solution doesnot tend to the rest state Φ̂n = 0, but to an extended ex
ited state of thelatti
e , i.e. for |n− n0| ≫ 1

Φ̂n(t) = (Φ̂ba
kg)n(t) 6= 0 . (3.4)One easily realizes (for example, 
onsider a site very far from n0) that theba
kground has to be itself (p, q) resonant. This 
an be qui
kly 
he
ked in ournumeri
s: Indeed, the power spe
trum,
S(ω) =

∣

∣

∣

∣

∫ ∞

−∞
ℜ[Φ̂n(t)] exp(iωt)dt

∣

∣

∣

∣

2

, (3.5)at a site n far from n0 reveals a �nite number of s peaks ωj, j = 0, ..., s − 1;one 
an 
he
k that ea
h ωj numeri
ally �ts to a bran
h of (p, q) resonant plane
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Figure 3.3: Instantaneous pro�le of a (1, 1) resonant breather with ωb = 2.678 and
vb = 0.426; the nonintegrable parameter is ν = 1.0 (standard DNLS equation). (a)Real part, (b) imaginary part, (
) modulus and (d) phase. The resonant 
onditionfor the harmoni
 
omposition of the ba
kground gives the 
ontribution of three planewaves. The existen
e of these plane waves is revealed by the modulation of theextended tail in the modulus pro�le (
).waves (see eq. (2.27)); this provides a set of amplitudes Aj , and �nally one
on�rms that the superposition of the (Aj, ωj) plane waves �ts the numeri
alsolution Φ̂n(t).While immobile dis
rete breathers 
an be des
ribed as a sort of homo
lini
(and time periodi
) 
onne
tion on the rest state, the mobile lo
alized 
ore in-stead 
onne
ts a spe
i�
 linear superposition of low amplitude nonlinear planewaves. One 
ould say that the lo
alized 
ore needs for its motion to "surf over"a spe
i�
 extended state of radiation (see �gure 3.4):

(Φ̂ba
kg)n(t) =

s−1
∑

j=0

Aj exp i(kn− ωjt) . (3.6)We note that among the members of the (s-parameter) 
ontinuous familyof (p, q) resonant plane waves (see Se
tion I), the �xed point solution 
ontainsonly a parti
ular member (Aj , ωj) from ea
h bran
h (see �gure 3.5.a). This
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hrödinger latti
essele
tion varies smoothly with the (adiabati
) 
ontinuation parameter ν. Inparti
ular, the amplitude modulus |Aj | sele
ted in
reases smoothly from itszero value at the integrable limit (ν = 0), for both signs of ν.If the bare 
ore of a �xed point solution (i.e. after subtra
tion of the ba
k-ground) is taken as initial 
ondition for a dire
t numeri
al integration of theequations of motion, one observes radiative losses, along with the 
orrespond-ing 
hanges in shape, velo
ity, et
. of the lo
alized moving 
ore. The motionof the bare lo
alized 
ore (not anymore a solution) ex
ites extended states ofthe latti
e. Thus, regarding the exa
t �xed point solution, one 
ould say thatradiative losses of the running 
ore are exa
tly 
an
eled out when the lo
alized
ore runs, with spe
i�
 velo
ity, on top of the spe
i�
 linear 
ombination of(Aj , ωj) resonant plane waves (3.6).A 
omplementary numeri
al observation is the following: Taking as initial
ondition for a dire
t integration of the equations of motion (2.18), a superpo-sition of an immobile dis
rete breather and the ba
kground of a (p, q) resonantmobile breather, it evolves into a moving dis
rete breather, with approximatevelo
ity vb = (pωb)/(2πq). One thus would say that the ba
kground promotesbreather translational motion with adequate velo
ity. In the next se
tion 3.1.2,a 
onne
tion between ba
kground 
hara
teristi
s and the parti
le perspe
tive(i.e. the Peierls-Nabarro barrier of 
olle
tive variable theories), will be estab-lished in order to further illuminate the physi
al des
ription of dis
rete breathermobility.Whatever physi
al perspe
tive one may prefer, the numeri
al fa
t is thatthe generi
 stru
ture of the �xed point solution is given by the superposition(3.3). Not too far from ν ≃ 0, where the amplitudes Aj of the �xed pointba
kground have small values, one 
an 
arefully 
he
k that if the bare 
ore is
|Φn|
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Figure 3.4: Time evolution of
|Φn|2 pro�le of a mobile dis
reteS
hrödinger breather. The fre-quen
y of the solution is ωb =

5.050 and the velo
ity is vb =

0.804. Note that the ba
kgroundis 
omposed by a single planewave with amplitude A. Thenonintegrable parameter of eq.(2.18) is ν = 0.2.
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Figure 3.5: (a) Plot of the graphi
al solving of the resonant 
ondition (in the Aj → 0limit) for a (1, 2) resonant breather with ωb = 2.384 and vb = 0.189. (b) PowerSpe
trum S(ω) of the ba
kground of this solution at ν = 1.0. From (a) eq. (2.29)gives the 
ontribution of seven plane waves (j = 0, ..., 6) but only �ve (j = 0, ..., 4) ofthem are visible due to the di�eren
e of orders of magnitude between the amplitudes
|Aj |. The agreement between the resonant 
ondition equation (for the �tted value of
Aj) and the frequen
ies observed in S(ω) is up to ma
hine a

ura
y.given as a starting guess for Newton iteration, this 
onverges well to the exa
t
omplete solution (
ore + ba
kground), by developing the spe
i�
 sele
tion of
Aj amplitudes. This 
on�rms the robustness of the numeri
s.Though previous observations of nonde
aying tails of numeri
ally a

u-rate mobile dis
rete breathers in Klein-Gordon latti
es [53℄ and/or (solitary)traveling waves [95℄ in self-fo
using equations had been reported (see also theinteresting dis
ussions on this issue in [80℄ and [96℄), no systemati
 study onthose tails and their role is available. However we 
learly see that they arean essential part of the exa
t solution. As argued in the introdu
tory se
tion,the translational motion of a dis
rete breather introdu
es a new time s
ale. Ina nonintegrable 
ontext, this fa
t unavoidably implies resonan
es with planewave band spe
tra, and an exa
t self-sustained moving DB solution 
ould onlyexist on top of a developed resonant ba
kground. This seems to have been(with a few exemptions) not fully appre
iated in most of 
urrent literatureon mobile breathers, where the ba
kground is most often either ignored ordeliberately suppressed.A notable feature of the plane wave 
ontent of the ba
kground Φ̂ba
kg isthat the amplitude modulus |Aj| in (3.6) di�er by orders of magnitude, i.e.
|A1| ≫ |A2| ≫ |A3|..., so that only a few frequen
ies are dominant for mostpra
ti
al purposes (see �gure 3.5.b). In other words, the extended ba
kgroundasso
iated to a spatially lo
alized moving 
ore is, in turn, strongly lo
alized inthe re
ipro
al (k-spa
e) latti
e. The possible relevan
e of this observation isfurther dis
ussed below in the 
on
luding se
tion.
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Figure 3.6: Ba
kground amplitude versus ν for three di�erent (1/1) resonant breatherswith frequen
ies: (a) ωb = 5.65, (b) ωb = 4.91, (
) ωb = 4.34. Note the two di�erentbehaviours: for positive values of ν |Φbackg|2 is a monotonous in
reasing fun
tion of
ν while for the negative part it shows smooth rises and falls.3.1.2 The ba
kground amplitudeIn order to 
hara
terize the spe
i�
 features of the nonintegrable motion of dis-
rete breathers, we fo
us here on the (perhaps) most remarkable among thosefeatures: the ba
kground amplitude of the uniquely 
ontinued �xed point. Howdoes it evolve along the 
ontinuation path in parameter spa
e?For positive values of ν we have followed the line in parameter spa
e (�gure3.1) µ + ν = 1 (see equation (2.18)), while for negative values, we took thepath µ − ν = 1. Note that taking this latter path is similar to studyingstaggered breathers in the former one due to the staggering transformationreported above. We do not expe
t other paths to make important di�eren
es.As stated earlier, near ν ≃ 0, the amplitude grows from its zero value (at theintegrable limit) for both signs of this parameter, for it is a nonintegrable e�e
t.However, for larger values of nonintegrability |ν| the ba
kground amplitudeevolution shows some important di�eren
es for the two signs of ν.In �gure 3.6 we plot the ba
kground amplitude (modulus) of the (1, 1)resonant �xed point, versus the 
ontinuation parameter ν, for three di�erentvalues of the breather frequen
y ωb. For ν > 0, one observes that the amplitudesteadily in
reases with ν before 
ontinuation stops (i.e. Newton iteration 
easesto 
onverge beyond a 
ertain maximum ν value). Note that the amplitudegrows faster for higher values of the frequen
y, and that the 
ontinuation stops(
orrespondingly) at a smaller value of ν. This may suggest that the failureof �xed point 
ontinuation is related to a somewhat ex
essive growth of the
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kground amplitude, an issue that will be dis
ussed later.For ν < 0, after an initial growth the ba
kground amplitude de
reases downto almost negligible values around ν ≃ −0.3, then grows and again de
reases
lose to zero at ν ≃ −0.39, and so on, in progressively narrower intervals withlarger peak amplitude, until 
ontinuation stops. Most noti
eable is the fa
tthat the intervals neither depend on the breather frequen
y ωb nor on thebreather velo
ity vb. Why do ba
kground amplitudes de
ay so dramati
ally atthose regions in parameter spa
e? An important hint is presented in the nextse
tion, where the Floquet stability analysis of immobile dis
rete breatherswill show a 
oin
ident situation of mirror-symmetry breaking (and its absen
efor positive ν values). For other values of p and q that we have numeri
allyinvestigated, the same features of the ba
kground amplitude variation as shownin �gure 3.6 are qualitatively reprodu
ed.3.1.3 Floquet analysisOn the basis of the general arguments given in [84, 97℄, the Floquet spe
traof immobile DB in the thermodynami
 limit, N → ∞, 
onsists of two 
om-ponents: the (
ontinuous) Floquet spe
trum of the asymptoti
 state of thesolution (rest state), and a dis
rete part asso
iated with spatially lo
alizedeigenve
tors. The 
ontinuous part is 
omposed by small amplitude (linear)plane waves, the so-
alled phonons. However, for mobile DB the asymptoti
state of a (p, q) resonant �xed point solution is a superposition of plane waves,the ba
kground Φ̂ba
kg. From this, one should expe
t the Floquet spe
trumof a (p, q) resonant DB being 
omposed of two 
omponents: the dis
rete (spa-tially lo
alized eigenve
tors) and a 
ontinuous part asso
iated with the linearstability of the ba
kground plane waves. The 
ontinuous part of the Floquetspe
trum should re�e
t the same results of the modulational instability analy-sis of se
tion 2.3.2. In parti
ular, this means that any modulational instabilitya plane wave may su�er will be also an instability of a �xed point solutionwhose ba
kground 
ontains this plane wave. In the future we will refer toany instability of the 
ontinuous part of the Floquet spe
trum as ba
kgroundinstability. Any instability from the dis
rete part is a 
ore instability.First we fo
us on 
ore instabilities. For this we turn attention to the 
on-tinuation of mobile (p, q) resonant breathers. Figure 3.7 shows in the ν − ωbplane (dotted line), the values νmax(ωb) where the numeri
al 
ontinuationsstop due to non 
onvergen
e of Newton iteration for p = 1, q = 1 and ν > 0.As it was remarked above, the 
ontinuation stop is asso
iated with the rapidin
rease of the ba
kground amplitude shown in �gure 3.5. Only low frequen
ybreathers, for whi
h the ba
kground amplitude in
reases more slowly, 
an be
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Figure 3.7: Continuation diagram of (1, 1) resonant breathers as a fun
tion of thefrequen
y ωb. The end of the numeri
al 
ontinuation, νmax(ωb), is represented bythe line with dots. The region where mobile breathers su�er from 
ore instabilities islimited by the shaded area.numeri
ally 
ontinued all the way to the standard DNLS equation. The linearstability analysis of (p, q) resonant breathers yields a well de�ned region inthe ν − ωb diagram where 
ore instabilities appear. There is an island insidethe 
ontinuation region of �gure 3.7, where the Floquet spe
tra 
ontain a realeigenvalue λ > 1. We observe the evolution of this Floquet eigenvalue (andits 
omplex 
onjugate) as the parameter ν is in
reased in �gure 3.8.a, for a (1,1) breather of frequen
y ωb = 2.678. Here the angle (θF loq) in the 
omplexplane is plotted versus ν. The interval of 
onstant zero angle 
orresponds tothe se
tion (
onstant ωb) of the instability island in �gure 3.7.Along the whole 
ontinuation path, the pro�le of the 
orresponding unsta-ble eigenve
tor is lo
alized. An example of this pro�le inside the instabilityisland is shown in �gures 3.8.b and 3.8.
, where one observes that the lo
alizedinstability shows a de
aying ba
kground along the dire
tion opposite to themotion. The de
ay rate in
reases as the modulus of the eigenvalue grows andde
reases again when λ returns to the unit 
ir
le. On the other hand, the sta-ble Floquet eigenve
tor asso
iated with 1/λ shows a wing de
aying along themirror symmetri
 dire
tion. The dire
t integration of the equation of motionreveals that the unstable solution experien
es a pinning after a transient ofregular motion with velo
ity vb = p/(qTb). After the solution pins at site n, its
ore 
enter os
illates around this site. The trapping of the unstable MB 
ouldbe interpreted as a result of the energy losses that the growth of the linearlyunstable perturbation indu
es on the solution.Returning to the instability island shown in the diagram of �gure 3.7, some�nal observations are worth summarizing: (i) there is a range of frequen
ies



3.1. DB's in the standard Salerno Model 43(a)
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5

θ F
lo

q

ν(b)
-0.5

-0.25

 0

 0.25

 0  20  40  60  80  100  120

ℜ(ε unst)

(
)
 0

 0.25

 0.5

 0  20  40  60  80  100  120

site

ℑ(ε unst)

Figure 3.8: (a) Floquet angle evolution of the spe
tra of a (1, 1) resonant breatherwith ωb = 2.678. The thi
k traje
tory 
orresponds to the lo
alized eigenve
tor thatbe
omes unstable (θFloq = 0 interval). Instantaneous pro�le of the real (b) andimaginary (
) part of the Floquet unstable eigenve
tor of a (1, 1) breather with ωb =

3.207 and ν = 0.26. The de
aying tails along the dire
tion opposite to the motionreveals the energy loss that the unstable eigenve
tor 
auses to the solution.where mobile breathers of the standard DNLS equation (ν = 1) su�er from thisinstability; (ii) very high frequen
y breathers do not experien
e this instability(in the short range where they 
an be 
ontinued); (iii) very low frequen
ybreathers are stable all the way up to ν = 1.We turn now to ba
kground instabilities. On
e we know the plane wave
ontent (k0, k1,..) of a (p/q)-resonant �xed point, we 
an know whether the
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Figure 3.9: Modulational instability existen
e diagram for a plane wave with wavenumber k0 ∈ [−π/2, 0]. This diagram �xes the region where mobile dis
rete breatherswith a ba
kground 
omposed of only one plane wave do not su�er from ba
kgroundinstability.solution is subje
t to MI or not and, if it is unstable, what are the harmfulperturbations (Q). This problem is not so simple be
ause we 
annot know apriori the plane wave 
ontent if we do not have the amplitudes of ea
h one(2.29). However, we 
an derive a ne
essary 
ondition for not having MI if we
onsider that, from (2.29), the ba
kground is always 
omposed of at least oneplane wave (m = 0) with k0 between [−π/2, 0]. From this we 
an simplifythe analysis of the ba
kground stability to the k0 plane wave stability as ane
essary 
ondition for the MB stability. For this we 
al
ulate, for ea
h ν and
k, the value of the right-hand side of (2.39) for all the range of Q ( [−π, π] )and A. If this value is always positive the plane wave with this k0 is free frommodulational instabilities at this point of the model (2.18) with parameter ν.From this extensive exploration we obtain, see �gure 3.9, the region in the
k − ν plane where MI is present.In the range of ν between [−1,−0.5] there is no modulational instabilityfor single plane waves of any value of k between [−π/2, 0], and in parti
ularfor k0. However, this does not guarantee that moving breathers are free fromthese instabilities in this region, unless the ba
kground has only one planewave (as is sometimes the 
ase). On the 
ontrary, in the region ν > 0 anymoving breather su�ers su
h instabilities. The transition area in the region
ν ∈ [−0.5, 0] presents MI depending on whi
h k0 we have. For the range whereno plane-wave with k between [−π/2, 0] is subje
t to MI we 
an assure thatif there is only one 
ontribution, k0, to the ba
kground the 
orresponding MBsolution is stable. For example, this is the 
ase for (1/1) resonant breathers if
ωb > 4 and for (1/2) resonant breathers if ωb > 8.46. The Floquet spe
tra of
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Figure 3.11: Graphi
al representation of the two �rst symmetry breaking bifur
ationsfor ν < 0. The quantity ξ in the verti
al axes of both �gures is de�ned, referredto the one-site breather, as the di�eren
e between the modulus |Φ| of the two sitesadja
ent to the maximum (|Φmax|), i.e. ξ ∼ |Φmax−1| − |Φmax+1|. For the one-siteDB ξ = 0 and for the two-site DB ξ = 1, for this ξ is 
onveniently normalized with thethe di�eren
e between Φmax and Φmax±1. The 
ontinuous lines represent the regionswhere the stati
 solutions are linearly stable while the dis
ontinuous ones representthe unstable regions. The modulus pro�le of the three immobile 
oexisting solutionsare plotted in the 
entral insets for ωb = 6.215 and ν = −0.3012.a moving breather satisfying these requirements is plotted in �gure 3.10.
.After the analysis of both types of instabilities eventually experien
ed bymoving S
hrödinger breathers, we �nally report on a most relevant numeri
alfa
t revealed by the Floquet analysis of the family of standard immobile dis-
rete breathers for ν < 0 (or, similarly, the family of staggered immobile dis
retebreathers for ν > 0). Near ν ≃ −0.3 an immobile two-site DB experien
es amirror symmetry-breaking (pit
hfork) bifur
ation be
oming linearly unstable.When approa
hing the bifur
ation point, two 
onjugate Floquet eigenvaluesqui
kly approa
h +1, where they meet, and then separate along the real axis.The eigenve
tor asso
iated to the unstable λ > 1 Floquet eigenvalue is lo
al-ized and odd-symmetri
, and is termed the symmetry-breaking or depinningmode φdep. We re
all here that the ba
kground of an immobile breather isthe rest state Φ̂ = 0, whose 
ontinuous spe
trum 
onsists of small amplitude(linear) plane waves. The depinning mode, on the other hand, is a lo
alized
ore instability of the immobile breather, favoring a translation of the 
ore
enter. For a smaller value of ν ≃ −0.39 there is another symmetry-breakingbifur
ation where the two-site breather be
omes stable, again inter
hangingthe stable 
hara
ter with the one-site. The 
orresponding bifur
ation diagramfor these two symmetry breaking transitions is plotted in �gure 3.11.
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le perspe
tive on DB's 47In the �rst symmetry breaking bifur
ation, two unstable mirror-asymmetri
immobile breathers emerge from the bifur
ation point, progressively evolvetoward the (stable) two-site breather, and �nally 
ollide in a new pit
hforkbifur
ation from where a unstable two-site breather emerges. The net resultis an inversion of stability between one-site and two-site immobile breathers.Around the narrow interval of ν values where these two bifur
ations o

ur,the energies of the three types of breathers involved (one-site, two-site, andasymmetri
) have very small di�eren
es. From a parti
le perspe
tive, thisshould make the breather motion easier. It is pre
isely in this same narrowinterval where (see 3.1.2) we observe that the ba
kground amplitude of movingbreathers be
omes negligible. This is not a 
oin
iden
e as we will argue in 3.2.3.2 Parti
le perspe
tive on dis
rete breathersThe appealing framework and su

ess of 
olle
tive variable approa
hes (see e.g.[56�60, 98℄) to the problem of nonintegrable motion of dis
rete breathers relieson the �delity of a parti
le-like des
ription of these �eld ex
itations that theyprovide. In these approa
hes, the e�e
tive dynami
s of only a few degrees offreedom (e.g. the lo
alization 
enter, and the spatial width of the state, et
...insome instan
es [65, 68℄) repla
es the whole des
ription of the moving lo
alizedstate.Though unable to a

ount for all the nonintegrable features, perturbative
olle
tive variable theories of NLS latti
es provide a sensible physi
al 
har-a
terization of important features of the nonintegrable mobility of lo
alizedsolutions, like the emergen
e [99℄ of a Peierls-Nabarro barrier to motion. Herewe summarize the main results of this parti
le-like des
ription and 
omparethem with the behaviour of numeri
ally exa
t (p, q) resonant moving breathers.Our goal is twofold: to a
quire a 
orre
t physi
al understanding of the numer-i
al fa
ts, and then to make an assessment of validity and intrinsi
 limitationsof 
olle
tive variable approa
hes.3.2.1 Colle
tive variables theory.A presentation of the parti
le perspe
tive on moving S
hrödinger breathersnear the AL integrable limit 
an be found in [58, 59℄ (see also [56, 57, 60, 98℄),where the interested reader will �nd the relevant formal aspe
ts of the theory.Using the integrable solitary wave (2.14) as an ansatz for the movingbreather solution in the perturbed AL latti
e, ν 6= 0 and small in (2.18),one 
onsiders the parameters α, β, x0 and Ω as dynami
al variables (variation
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rete Breathers in 1D Nonlinear S
hrödinger latti
esof 
onstants). The time evolution of these parameters in the perturbed latti
eis governed by:
ẋ0 = 2 sin α

sinh β

β
(3.7)

Ω̇ = 2 cos α cosh β + αẋ0 + g(β) (3.8)
β̇ = 0 (3.9)
α̇ = −ν

∞
∑

s=0

8π3 sinh2 β

β3 sinh(π2s/β)
sin(2πsx0) (3.10)where

g(β) = 2ν

[

2 sinh β cosh β

β
− sinh2 β

β
− 1

]

+ ν
∞
∑

s=1

4π2 cos(2πsx0)×
[

sinh2 β cosh(π2s/β)π2s

β4 sinh2(π2s/β)
− 2 sinh2 β

β3 sinh(π2s/β)
+

2 sinh β cosh β

β2 sinh(π2s/β)

]

. (3.11)These relations 
an be viewed as the Euler-Lagrange equations of the 
ol-le
tive variable Lagrangian obtained in [58, 59℄. The variation of the breatherparameters give the evolution of solution (2.14) for the perturbed AL equation.Furthermore, one 
an regard eqs. (3.7) and (3.10), as the Hamilton equationsfor the 
anoni
al 
onjugate variables x0 and α of the following e�e
tive Hamil-tonian:
Heff = Teff +Veff = −2 cos α

sinhβ

β
−ν

∞
∑

s=1

4π2 sinh2 β

β3 sinh(π2s/β)
cos(2πsx0) . (3.12)This e�e
tive Hamiltonian di
tates the dynami
s of the position of thesolitary wave. Note that the (
olle
tive) variable β is an invariant of motion,so it enters as a parameter into the e�e
tive Hamiltonian, and that the time-average value of Ω̇ (the parameter ωb of the integrable solitary wave, now afun
tion of time) is an in
reasing fun
tion of this parameter β. The e�e
tivepotential Veff a
ts as a barrier to the displa
ement motion (x0 variations) andis naturally related to the Peierls-Nabarro potential. The amplitude of thisbarrier is an in
reasing fun
tion of both the nonintegrability parameter |ν| and

β. The equilibrium points (representing immobile breathers) of this potentialare x0 = n and n ± 1/2 with n an integer. For α = 0, the former are stable(
enters) one-site breathers, while the latter are unstable (saddle) two-sitebreathers; for the 
ase α = π (staggered breathers) the stability is reversed.A remarkable further 
onsequen
e is the following [57℄: there are no pertur-bative traveling wave solutions, for values of ν larger than 
ertain 
riti
al value
νcr(β). In parti
ular, for β > βc ≃ 3.6862 , one 
annot 
ontinue AL mobile
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x0Figure 3.12: Colle
tive variable (α, x0) phase portrait transition for a value of β =

3.0. (a) Shows the phase portrait for ν = 0.2 (< νcr), there are x0-unboundedtraje
tories (mobile breathers) 
oexisting with bounded ones (os
illating breathers).When ν = 1.0 (> νcr) (b) we only have x0-bounded traje
tories: there are no mobilesolutions.breathers (i.e. νcr = 0 (see also important remarks in [60℄). This 
onsequen
e
ould be also (qualitatively) expe
ted for a 
lass of nonintegrable S
hrödingerlatti
es (for some quali�ed perturbations of the integrable limit) with on-sitenonlinearity. One expe
ts also that latti
es with purely inter-site (FPU-like)nonlinearity do not show this kind of transition.In �gure 3.12 we plot typi
al phase portraits at both sides of νcr. �gure3.12.a shows the dynami
s for ν smaller than the threshold value (given by β):there are open traje
tories in x0 
orresponding to mobile breathers and 
losedorbits between the separatrix manifolds 
orresponding to breathers whi
h os
il-late around the equilibrium position of Veff . �gure 3.12.b is the phase portraitafter the transition: there are no longer mobile solutions and (besides the os-
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hrödinger latti
es
illating breathers) there are instead open traje
tories in α. The transitionpoint, for a given β, o

urs when traje
tories with rotating α appear, andmoving breathers disappear as the e�e
t of separatrix line rearrangement onthe 
ylinder (x0, α(modulo2π)) phase portrait.Note that the existen
e of os
illating breathers is a 
onsequen
e of theexisten
e of a Peierls-Nabarro potential. These breather solutions do not per-turbatively 
ontinue from the integrable limit. In 3.2.3 we will investigate themand provide further numeri
al 
on�rmation of the existen
e of these genuinelynonperturbative solutions, predi
ted by the 
olle
tive variables theory.3.2.2 Energy balan
e governs mobility.In order to 
orrelate 
olle
tive variable predi
tions with the numeri
al resultspresented in se
tion 3.3.3 one should �rst realize that our dire
t numeri
alapproa
h 
omputes breathers with �xed values of ωb and vb and that theseparameters are not tied to any spe
i�
 ansatz. In parti
ular, the 
onne
tionof these two parameters with the 
olle
tive variables is given by eq. (2.16) inthe integrable limit. For the perturbed (near-integrable) latti
e, ωb and vb areidenti�ed as the time averages of Ω̇ and ẋ0, respe
tively.The Peierls-Nabarro (PN for short) barrier is naturally identi�ed as theenergy di�eren
e (given by the Hamiltonian (2.19)) between the two immobilebreathers of the same frequen
y ωb, one 
entered at a site n and the other(two-site) at a bond n± 1/2 :
EPN (ν, ωb) = H(ν, ωb, n)−H(ν, ωb, n±

1

2
) (3.13)In the integrable AL limit this barrier is zero due to the degenera
y (
ontinuoustranslation invarian
e) of the breather family solution, but for ν 6= 0 thisinvarian
e is broken and only these two isolated solutions persist. The energydi�eren
e of the two pinned solutions is thus viewed as the minimal extra�kineti
 energy � of 
enter of mass translation that a mobile breather mustin
orporate for over
oming the barriers to its motion.We have studied the behaviour of the PN barrier in the Salerno model by
ontinuing immobile breathers, both 
entered at a site and at a bond, while
omputing their energy di�eren
e. The 
omputations of the barrier are madefor a grid of values of ωb. �gure 3.13 shows the �equipotential� lines of the PNbarrier in the (ν, ωb) plane. The results show di�erent behaviours dependingon the sign of ν:

• ν < 0.- Here one observes the e�e
ts of the symmetry-breaking bifur-
ations 
as
ade des
ribed in 3.1.3. The su

essive stability inversions
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Figure 3.13: Density Plot of the absolute value of the Peierls Nabarro barrier, |EPN |,as a fun
tion of ωb and ν. For positive values of ν, |EPN | is a monotonous in
reasingfun
tion of ν and ω. For negative values the plot reveals the os
illating behaviour of
|EPN | as a fun
tion of ν (for a given value of ωb).between site and bond 
entered breathers involve a substantial de
reaseof the Peierls barrier. The appearan
e of asymmetri
 solutions in thesebifur
ations introdu
es a new energy and, 
orrespondingly, the Peierlsbarrier is 
omputed as the maximum energy di�eren
e between the threepinned solutions: the two symmetri
 (site and bond 
entered) and theasymmetri
 breather.
• ν > 0.- In this 
ase the behaviour of the Peierls barrier follows qualita-tively the 
olle
tive variable predi
tions on the e�e
tive potential expe-rien
ed by the parti
le. The in
reasing 
hara
ter, with ν and ωb, of thenumeri
al barrier is qualitatively the same as that predi
ted from Veff(as a fun
tion of ν and β) by the theory.
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rete Breathers in 1D Nonlinear S
hrödinger latti
esThe PN barrier of (ωb) immobile breathers and the ba
kground amplitudeof (ωb, vb = pωb
2πq ) mobile breathers are in fa
t strongly 
orrelated. This 
orre-lation is obtained 
onsidering the fun
tions |EPN |(ν) and |Φ̂backg|2(ν). Bothfun
tions are plotted for a �xed value of ωb = 4.34 in �gure 3.14.a. Thebehaviour of |EPN |(ν) for negative ν (revealing the 
as
ade of bifur
ationsexplained before in 3.1.3) is 
losely followed by |Φ̂backg|2(ν) with the 
orre-sponding sequen
e of growths and de
ays. The strong 
orrelation holds alsofor positive values of ν, where numeri
al PN barrier data are available for alarger interval of ν values (due to the absen
e of the symmetry-breaking 
as-
ade of bifur
ations). Indeed, the 
orrelation is so strong that one is temptedto view the PN barrier and the ba
kground amplitude as 
omplementary as-pe
ts of a single phenomenon: the breaking of the 
ontinuous translationalinvarian
e, and the asso
iated la
k of 
ore momentum 
onservation. Indeed,the ba
kground amplitude of moving breathers is a monotone in
reasing fun
-tion of the PN barrier of pinned breathers of the same frequen
y, as shown in�gure 3.14.b, where |Φ̂backg|2(|EPN |) is plotted.However, we also observe 
learly in �gure 3.14.a that, when the 
ontinua-tion end is approa
hed, the rate of growth of |Φ̂backg|2(ν) in
reases dramati
ally(the 
on
avity of the 
urve in log s
ale turns upwards), while the PN barrierdoes not in
rease mu
h faster than before. This is re�e
ted in �gure 3.14.b,where the slope approa
hes verti
ality, indi
ating that, in this range of EPNvalues, the ba
kground grows rapidly.This numeri
al observation suggests taking a 
loser look at the pre
isein�uen
e of the ba
kground amplitude on the 
ore energy variations asso
iatedwith the existen
e of PN barriers. To this end, we use the 
onservation of theHamiltonian (2.19) and insert this equation into the form (3.3) of the (p, q)resonant �xed point. The energy of the solution 
an be de
omposed in thefollowing terms:

H[Φ̂] = H[Φ̂core] +H[Φ̂backg] +Hint , (3.14)where Hint is the intera
tion energy, i.e. the 
rossed terms of Φ̂core and Φ̂backg.Let us now 
onsider the simplest 
ase in whi
h the ba
kground has a singleresonant plane wave. Along with the total energy, also the energy of the planewave is a 
onstant in time so that
∂H[Φ̂core]

∂t
= −∂Hint

∂t
. (3.15)In other words, the variations of the 
ore energy during the motion are exa
tly
ompensated by those of the intera
tion term.If one takes, as an ansatz for Φ̂core, the AL solution, one formally obtainsfor Hcore ≡ H[Φ̂core] the 
olle
tive variables Hamiltonian (3.12). But note that
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PNFigure 3.14: Peierls Nabarro barrier |EPN | from immobile breather with ωb = 4.34and ba
kground square amplitude |Φbackg |2 for a (1, 1) resonant breather of the samefrequen
y (vb = 0.691). In (a) we show both quantities in semi-log s
ale as fun
tionsof ν, illustrating the strong 
orrelation between them for both signs of ν. Figure (b)shows for positive values of ν, the nonlinear relation between |Φ̂backg |2 and |EPN |.Note the sudden in
rease of the slope 
lose to the end of numeri
al 
ontinuation.here it would not anymore be a 
onstant of motion, due to the intera
tion withthe ba
kground. Instead, we dire
tly 
ompute numeri
ally the evolution of the
ore energy Hcore, whi
h in turn determines Hint up to an additive 
onstant.For this we take a �xed point solution with a single plane wave in itsba
kground, and then subtra
t o� the plane wave to obtain Φ̂core, from where
Hcore(t) is 
omputed. In �gure 3.15 we have plotted the evolution of the 
oreenergy as a fun
tion of the lo
alization position (
enter) of the breather 
ore.The lo
alization 
enter of a latti
e fun
tion Φn is de�ned using the 
onserved
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x0Figure 3.15: Plot ofHcore of a (1, 1) resonant breather as a fun
tion of the lo
alization
enter x0 for di�erent values of ν. The parameter of the solution are ωb = 5.056 and
vb = 0.805. The values of ν are 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.25 and 0.2512(end of the 
ontinuation), the amplitude of the os
illation of Hint grows with ν.(The minimum value of Hint has been set to zero in order to 
ompare the di�erentfun
tions.)norm (2.21):

x0 =

∑

n n ln(1 + µ|Φn|2)
µN . (3.16)As expe
ted, the 
ore has extra
ted the maximum available from the intera
-tion energy (with the ba
kground) when the 
ore passes at n±1/2 (maxima ofthe PN barrier) and has returned it to the intera
tion term when at n (minimaof the PN barrier).Another interesting feature of these numeri
ally obtained fun
tions is seenfrom the variations in the form of the os
illation of Hcore as the nonintegrableparameter ν is in
reased. At the same time, as the energy di�eren
e between

n and n±1/2 in
reases the modulus of the derivative ∂Hcore/∂x0 in the neigh-borhood of x0 = n also in
reases. These variations be
ome faster when theend of the 
ontinuation is approa
hed, rea
hing a 
uspidal point for the last
ν rea
hed. The ba
kground amplitude is in
luded in Hint, and of 
ourse in
∂Hint/∂t; the dramati
 variation of it at the end of the 
ontinuation 
ould beinterpreted in terms of this derivative variation in x0 = n.
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le perspe
tive on DB's 553.2.3 Os
illating breathersThe emergen
e of the Peierls barrier and the behaviour of the ba
kgroundamplitude illustrate the physi
al interpretation of this ba
kground as a (p/q)-resonant energy support to over
ome the barrier to motion. We now 
on�rmthis statement sear
hing for another kind of solution: os
illating breathers.These solutions are predi
ted by 
olle
tive 
oordinates approa
hes and are a
onsequen
e of the loss of translational invarian
e out of the integrable limit.Following the above interpretation of the ba
kground role one 
an imagine
ertain solutions with a ba
kground amplitude not high enough for surpassingthe Peierls barrier and allowing travel along the latti
e. In terms of a wellde�ned potential, 
onsidering the parti
le perspe
tive, the 
enter of these lo-
alized solutions would be os
illating between (n− 1/2) and (n + 1/2) for theunstaggered ones or between n and (n± 1) for the staggered ones.From our perspe
tive, the os
illating breathers are solutions with two fre-quen
ies: the internal one of the breather (ωb) and the one 
orresponding tothe os
illatory motion (ωosc). On
e again, we have a problem dealing with twotime s
ales and 
onsequently we have to impose that the two frequen
ies are
ommensurate pωb = qωosc. The �xed point problem is now asso
iated withthe map:
TqTb

Φn(t) = Φn(t) (3.17)We 
annot, however, develop the Newton iteration s
heme in a similar wayas for mobile breathers. There is no longer any family of os
illating breathersproviding a good start point for the 
ontinuation (they are intrinsi
 solutions ofthe nonintegrable regime be
ause they appear as the Peierls barrier emerges).The way to obtain a good ansantz (as Cretegny and Aubry already used to�nd mobile breathers in Klein-Gordon latti
es [53℄) is to perform a small per-turbation of the stati
 solution (pinned at a site n) with the depinning internalmode:
Φansantz

n = Φstatic
n (ωb) + ǫδφdep

n (3.18)The dynami
s of the perturbed solution for small enough values of ǫ shows theos
illating behaviour expe
ted and for large enough values of ǫ the breatherstarts to move. Obviously in both 
ases the motion �nishes after a transientdue to radiation (they are not exa
t solutions). Tuning the parameter ǫ wesear
h for those os
illatory transients whose ωosc is resonant with the breatherfrequen
y ωb. The transient is mu
h more stable when the nonintegrable pa-rameter ν is very small, 
lose to the AL limit. We �rst sear
h here for a goodinitial guess for the method and then obtain the exa
t solution of the map(3.17). On
e the exa
t solution is obtained for a small ν, we 
an perform the
ontinuation to higher values in the same way as we did for mobile solutions.In �gure 3.16.a we show the evolution of the amplitude of os
illation as ν is
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(b)Figure 3.16: (a) Evolution of the lo
alization 
enter x0 of an exa
t (1/18)-os
illatingbreather for di�erent values of ν: 0.05, 0.06,.., 0.18. The internal frequen
y is ωb =

3.086. The amplitude of the os
illation of x0 in
reases with ν revealing the nonlinear
hara
ter of the motion for the highest values of ν. (b) Density plot of the timeevolution of |Φ̂n|2 for the above os
illating breather.
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reased from 0.05 to 0.18. The amplitude of the os
illation is representedby the phase portrait of the lo
alization 
enter of the breather de�ned as in(3.16). The 
ontinuation re�e
ts that the amplitude of the os
illation, for a�xed value of ωosc, grows with ν. In �gure 3.16.b the density plot of |Φ̂n|2 isshown as a fun
tion of time, revealing the os
illating pattern of the solution.The existen
e of exa
t os
illating breathers is a 
onsequen
e of the exis-ten
e of a Peierls barrier. The stru
ture of these solutions reveals the existen
eof a ba
kground (resonant with the map) whose amplitude grows as ν (and
onsequently the amplitude of os
illation) is in
reased. This is the pi
ture weexpe
ted from the role played by the intera
tion ba
kground-
ore in the energybalan
e during motion. The monotonous growing behaviour of the ba
kgroundversus the os
illation amplitude, strongly suggests that if the amplitude of theformer is in
reased the solution will be able to translate steadily. This has been
he
ked by dire
t numeri
al integration, be
ause no exa
t solutions 
onne
t-ing the os
illating with the mobile ones 
an be obtained due to the di�erentmaps employed to obtain both types of solutions. However, the existen
e of aba
kground in the exa
t os
illating breather solutions and its behaviour withthe amplitude of the breather os
illations are fully 
onsistent with the inter-pretation of the results obtained for the mobile solutions.3.2.4 Validity and limitations of parti
le perspe
tiveThe most basi
 result of the perturbative 
olle
tive variable theories away fromthe integrable regime is the existen
e of a Peierls-Nabarro potential fun
tion ofthe 
ore (
olle
tive variable) 
enter. It expresses (in parti
le-like terms) thatthe breather position is no longer indi�erent be
ause the 
ontinuous transla-tional invarian
e has been broken. From this also naturally 
omes the existen
eof os
illating breathers. We have seen how our numeri
s fully 
on�rm the qual-itative validity of these predi
tions.A further predi
tion 
on
erns the phase portrait's transition studied in[57℄. Despite the fa
t that our end of 
ontinuation is 
orrelated with theequipotential lines pro�le of the numeri
al PN barriers, and the phase portraittransition is also related to their sudden growth, no 
lear 
onne
tion (betweentransition and end of 
ontinuation) 
an be established. The end of 
ontinuationis itself sensibly interpreted as a numeri
al 
onsequen
e of the sudden in
reasesof the amplitude ba
kground, and does not imply ne

esarily the existen
e ofany global phase portrait transition.However, in some respe
ts the perturbative 
olle
tive variable theory is
learly in
omplete: For example, it is unable to predi
t the observed lo
alized(
ore) instability bifur
ation and the observed symmetry breaking transitions
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rete Breathers in 1D Nonlinear S
hrödinger latti
esfor ν < 0. These bifur
ations 
ould easily appear in a theory with (at least) twovariables (a dimer) experien
ing the Peierls-Nabarro potential, whi
h woulddemand an improved perturbative ansatz. This improved ansatz must 
oin
idein the integrable limit with the AL solution. One 
an use the numeri
al resultsto guide the 
onstru
tion of su
h an improved ansatz. In this respe
t, thefollowing observation may be relevant. The parameter β of the AL solutiondetermines both the amplitude and the width of the lo
alized pulse. However,our numeri
al estimates of these breather 
hara
teristi
s for immobile breathersshow 
learly that, for �xed value of ωb, the breather width is independent of
ν, while the amplitude varies with it. In other words, away from integrability,width and amplitude of the (immobile) breather are no longer a single 
olle
tivevariable.Beyond any other limitation of the perturbative 
olle
tive variable theory,the ba
kground (an indispensable part of the exa
t solution) is absent in theperturbative ansatz, and it 
annot appear later in that 
ontext. A 
ompletetheory of (nonlinear S
hrödinger) breather motion should somehow in
orporatethe ba
kground in the ansatz itself. If 
orre
t, it should then predi
t that theba
kground amplitude grows from zero with the nonintegrability parameter ν,and (ideally) so on with all the numeri
ally observed behaviours. One possibleway to develop the analyti
al approa
h 
ould be to use the method presentedin [100℄. In this s
heme, eq. (3.15) may play an important role, for it providesthe energy balan
e governing the translational motion of the breather 
ore. Inother words, our results show that the 
ore energy is not an invariant of motionand this requires the existen
e of a �nely tuned ba
kground whose nonlinearintera
tion with the 
ore 
ompensate the 
ore energy variations.3.3 Dis
rete breathers in the Salerno model with 
om-peting nonlinearitiesIn the above se
tions we have mainly fo
used on the study of mobile dis
retebreathers. In fa
t, the 
hara
terization of usual (non-staggered) pinned dis
retebreathers along the standard (µ > 0 Salerno path was already 
onsidered inprevious works [58, 59, 89, 90℄ 
on
luding that eq. (2.18) gives rise to pinneddis
rete breathers at all values of the DNLS parameter ν, and all positivevalues of the AL 
oe�
ient, µ. As already mentioned above if ν is negativeone 
an make it positive by means of the staggering transformation, and hen
estudy those staggered pinned dis
rete breather along the SM with ν > 0 (andhen
e �nding the symmetry breaking bifur
ation reported in se
tion 3.1.3).However, the sign of µ 
annot be altered. In parti
ular, the proper AL model(ν = 0) with µ < 0 does not give rise to lo
alized solutions. The latter
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ir
umstan
e suggests 
onsidering soliton dynami
s in the SM with µ < 0, i.e.,with 
ompeting nonlinearities, whi
h is the subje
t of the present se
tion 1.In order to study the SM with 
ompeting nonlinearities, it is ne
essary torede�ne the 
onserved norm (2.21) and Hamiltonian (2.19) by
N =

1

µ

∑

n

ln
(
∣

∣1 + µ|Φn|2
∣

∣

)

, (3.19)
H =

∑

n

[

−
(

ΦnΦ∗
n+1 + Φn+1Φ

∗
n

)

− 2
ν

µ
|Φn|2

+ 2
ν

µ2
ln
(∣

∣1 + µ|Φn|2
∣

∣

) ]

. (3.20)Whereas the Poisson stru
ture of the standard Salerno model (eq. 2.20) re-mains valid. The above rede�nitions of the norm (3.19) and Hamiltonian (3.20)are introdu
ed in order to remain valid when [1 + µ|Φn|2
] takes negative valuesat some sites, due to the use of µ < 0.In this se
tion we will study the existen
e and 
hara
terization of bothpinned and mobile dis
rete breathers when these two 
ompeting (on-site self-fo
using and inter-site self-defo
using) nonlinearities 
oexist in the Salernomodel. In 3.3.1 a 
ontinuum approximation (CA) of the Salerno model is usedin order to investigate the behaviour of the dis
rete breathers when µ < 0in an analyti
al form. It is found that, although they might exist in a semi-in�nite band of frequen
ies (as o

urs for the above studied 
ase µ > 0), theya
tually o

upy a �nite band, with an solution (peakon) at the edge of theband. After this 
al
ulations a family of dis
rete breathers is 
onstru
ted for

µ < 0 in se
tion 3.3.2 by means of a 
ontinuation of these pinned solutionsfrom the standard DNLS limit (µ = 0) where they are easily obtained. The
ontinuation results show that they form a family of regular pinned dis
retebreathers, in
luding a peakon-like one, similar to what was found in the CA,but dis
rete breathers extend beyond the peakon in the form of a novel solutiontermed 
uspon that we will 
hara
terize in this part. In se
tion 3.3.2, the pinnedbreather stability is explored by means of both standard Floquet analysis anddire
t simulations, with the 
on
lusion that only a small part of the familyis unstable. Two-breathers bound states are reported in 3.3.2, where it isdemonstrated that stability ex
hange between in-phase and out-of-phase stateso

urs at a point where the bound breathers are peakons. For what 
on
ernsto mobile breathers we show in se
tion 3.3.3 that they 
an be 
ontinued up toa 
riti
al strength of the inter-site self-defo
using nonlinearity.1Remind that the SM with µ < 0 is also physi
ally relevant for it des
ribes the repulsive
ase for the long-range dipole-dipole intera
tions in a Bose-Einstein 
ondensate of bosoni
atoms with magneti
 momentum trapped in a deep opti
al latti
e as introdu
ed in se
tion2.1.



60 Chapter 3. Dis
rete Breathers in 1D Nonlinear S
hrödinger latti
es3.3.1 Continuum limitTo introdu
e the 
ontinuum approximation (CA) in eq. (2.18), we de�ne
Φ(x, t) ≡ e2itΨ(x, t), and expand Ψn±1 ≈ Ψ ± Ψx + (1/2)Ψxx, where Ψ isnow treated as a fun
tion of the 
ontinuous 
oordinate x, whi
h 
oin
ides with
n when it takes integer values. After that, the 
ontinuum 
ounterpart of eq.(2.18) is derived,

iΨt = −2 (1− |µ|) |Ψ|2 Ψ−
(

1− |µ| |Ψ|2
)

Ψxx , (3.21)where we have set ν = +1 and µ < 0, in order to inspe
t the interesting region.Equation (3.21 ) 
onserves the norm and Hamiltonian, whi
h are straightfor-ward 
ounterparts of expressions (3.19) and (3.20),
Ncont =

1

µ

∫ +∞

−∞
dx ln

(∣

∣1− |µ||Ψ|2
∣

∣

)

, (3.22)
Hcont =

∫ +∞

−∞

[

|Ψx|2 + 2

(

1

|µ| − 1

)

|Ψ|2 +
2

µ2
ln
(
∣

∣1− |µ||Ψ|2
∣

∣

)

](3.23)Lo
alized solutions to eq. (3.21) are sought as Ψ(x, t) = U(x)eiωt, with a realfun
tion U(x), this solutions are usually referred to as envelope solitons in the
ontinuum 
ontext [101℄. The lo
alized envelope U(x) obeys the equation
d2U

dx2
=

ω − 2 (1− |µ|) U2

1− |µ|U2
U, (3.24)whi
h may give rise to solitons, provided that ω > 0 and |µ| < 1. The absen
eof soliton solutions for |µ| > 1 implies that if the intersite self-defo
using,a

ounted for by µ < 0, is stronger than the onsite self-fo
using, the self-trapping of solitons is impossible in the CA. Equation (3.24) 
an be 
ast in theform

U ′′
xx

(|µ|−1 − 1)
= −W ′(U) , (3.25)where the e�e
tive potential W (U) is

W = −1

2
U2 − 1− Ω

2|µ| ln
(

1− |µ|U2
)

, with Ω ≡ |µ|ω
1− |µ| ; (3.26)the expansion of the potential (3.26) for U2 → 0 yields

W ≈
[

−ΩU2 + |µ| (1− Ω)U4
]

2
. (3.27)This form of the equation shows that solitons exist in a �nite band of frequen-
ies, 0 < Ω < 1, rather than in the entire semi-in�nite band, Ω > 0, where
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ompeting nonlinearities 61the linearization of equation (3.24) produ
es exponentially de
aying solutionsthat 
ould serve as the solitons' tails. The redu
tion of the semi-in�nite bandto a �nite one is typi
al for soliton families in models with 
ompeting nonlin-earities, su
h as the 
ubi
-quinti
 NLS equation [102℄. Further, it follows fromthe divergen
e of potential (3.26) at U2 = 1/|µ| that the solitons's amplitude
A, whi
h is a monotonously in
reasing fun
tion of Ω, is smaller than 1/

√

|µ|for 0 < Ω < 1, and A = 1/
√

|µ| at Ω = 1.Solitons 
an be found in an expli
it form near the edges of the existen
eband: at small ω (i.e., small Ω),
U(x) ≈

√

ω (1− |µ|)sech
(√

2ωx
)

, (3.28)while pre
isely at the opposite edge of the band, Ω = 1, the exa
t solution isa peakon,
Upeakon(x) =

(

1/
√

|µ|
)

exp
(

−
√

(1/|µ|)− 1|x|
)

. (3.29)In other words, at a given frequen
y ω, the peakon solution is found at
|µ| = |µp| ≡ 1/ (1 + ω) . (3.30)Note that norm (2.21) of the peakon is

Npeakon = π2/[6
√

|µ|(1 − |µ|)] , (3.31)and its energy is also �nite. Close to this point, i.e., for 0 < 1 − Ω ≪ 1,the solution is di�erent from the limiting form (3.29) in a narrow interval
|x| .

√

|µ|/ (1− |µ|)(1− Ω), where the peak is smoothed.Finally let us remark that the CA based on eq. (3.21) is valid if the intrinsi
s
ale of all 
ontinuum solutions, that may be estimated through the 
urvatureof the soliton's pro�le at x = 0 as l ∼ 1/
√

|U ′′
xx/U |, is large, l ≫ 1 (re
all thelatti
e spa
ing is 1 in the present notation). A

ording to eq. (3.29), the latter
ondition implies (1/|µ|)− 1≪ 1 (i.e., stri
tly speaking, the CA applies in the
ase when the 
ompeting nonlinearities in the SM nearly 
an
el ea
h other).It is relevant to note that, in the standard version of the SM (previouslystudied in se
tions 3.1 and 3.2), with µ > 0, the CA presented here give riseto pinned envelope solitons in the entire semi-in�nite band, ω > 0 and then
onsistent with the exa
t solutions obtained for the dis
rete model in the abovese
tions and earlier works [58, 59, 89, 90℄.3.3.2 Pinned dis
rete breathersIn order to �nd exa
t pinned ((0, 1) resonant) dis
rete breather solutions ina numeri
al form, we look for solutions to eq. (2.18) whi
h are lo
alized and
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rete Breathers in 1D Nonlinear S
hrödinger latti
estime periodi
 with frequen
y ωb = 2π/Tb (that is related to ω in the 
ontinuumequation (3.21) by ωb ≡ ω − 2). Pinned solutions are widely known for theDNLS limit (µ = 0) sin
e they 
an be obtained both 
ontinuing the analyti
alAL pinned beathers along the standard SM (as previously done in se
tions 3.1and 3.2) and by the 
ontinuation from the anti
ontinuum limit, C = 0, of theDNLS equation (2.5). It is then possible to make a numeri
al 
ontinuationof su
h solutions for µ < 0 by adiabati
 
hanges of the model parameter µand su

essive appli
ations of the shooting methods in order to obtain thenumeri
ally exa
t pinned dis
rete breather for a given frequen
y ωb and µ.In general all the pinned solutions were 
omputed starting from the DNLSlimit, µ = 0, and in
reasing |µ| at a �xed value of ωb. The 
ontinuations wereperformed using an in
rement δ(|µ|) = 10−2 at ea
h step, or smaller if highera

ura
y was needed.As shown in the previous se
tion, the breather family in the 
ontinuumequation (3.21) ends with the peakon solution (3.29). To 
ompare the numeri-
ally determined shape of the dis
rete breathers with the feasible peakon limit,we �tted the breathers' tails to the asymptoti
 form
|Φn| = A exp [−Γ (|n− n0|)] , (3.32)with 
onstant A, Γ, and n0, whi
h follows from the linearized equation (2.18)for large |n|. This pro
edure yielded the de
ay rate, Γ = Γ(µ, ωb), amplitude,

A = A(µ, ωb) (and the 
enter's position n0), as fun
tions of parameters µ and
ωb of the pinned breather family. On
e A(µ, ωb) and n0 were found, we de�ned
γ(µ, ωb) ≡ A− |Φn0 | to measure a deviation of the true dis
rete soliton from a
onje
tured peakon shape obtained by formal extension of the tail inward.In �gure 3.17.a we show the evolution of γ produ
ed by several 
ontinua-tions of the dis
rete breather solutions (at di�erent frequen
ies ωb). We de�ne
µp(ωb) as a value of µ at whi
h an exa
t dis
rete peakon of internal frequen
y
ωb is found, that we realize as vanishing of γ (µ, ωb) at µ = µp. In �gure3.17.b we plot the evolution of the breather's amplitude as the 
ontinuation isperformed. It is observed that the amplitude in
reases with |µ|, rea
hing thepredi
ted value, 1/

√

|µ|, at the exa
t peakon solution.A noteworthy result, evident from �gure 3.17, is the persisten
e of dis
retebreathers beyond the peakon limit (whi
h means 
ontinuability of the solutionsto γ < 0). The apparent interse
tion of di�erent 
urves at one point in �gure3.17.a is a spurious feature (see the inset in the �gure): an a

urate 
onsid-eration shows that the 
urves a
tually interse
t at 
lose but di�erent points.In 
ontrast, the interse
tion of the 
urves in �gure 3.17.b indeed happens at asingle point, whi
h 
orresponds to dis
rete breathers taking the peakon shape.Figure 3.18 displays typi
al examples of the numeri
ally found dis
rete
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Figure 3.17: (a) The mismat
h with the peakon shape, γ , as a fun
tion of |µ|, fordis
rete breathers found at di�erent frequen
ies ωb. (Note in the inset that there isno 
ommon interse
tion of all the 
urves). (b) The breather's amplitude vs. |µ|. Theaxes are res
aled to show that the amplitude of the peakon solutions (attained at
|µ| = |µp|) are equal to 1/

√

|µ|, as predi
ted by the 
ontinuum approximation.breathers. It demonstrates that the solutions 
orresponding to γ < 0 are
uspons, with a super-exponential shape, that do not exist in the 
ontinuumequation (3.21). The dis
rete 
hara
ter of the SM with the 
ompeting nonlin-earities allows this new type of solution, as happens with the quasi-
ollapsingstates in the standard DNLS equation in two dimensions (see next 
hapter).Cuspon solutions 
ontinue into the region of |µ| > 1, where the CA yields nobreathers, but, due to the sharp 
hange of the solution with the in
rease of |µ|,�nding numeri
al solutions at larger values of |µ| be
omes in
reasingly more
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Figure 3.18: Generi
 examples of three di�erent types of dis
rete breathers of fre-quen
y ωb = 2.091: a quasi-
ontinuous sech-like solution at |µ| = 0.3, an exa
tpeakon at |µ| = 0.956, and a 
uspon at |µ| = 2.64.
|µ|=0.884
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Figure 3.19: (a) The value of |µp|, at whi
h the soliton assumes the peakon shape:the predi
tion of the 
ontinuum approximation, equation (3.30) (solid 
urve), andnumeri
al results for dis
rete breathers (dots). The small region where the pinneddis
rete breathers are found to be unstable (for that purpose, the verti
al axis shows
|µ|, rather than |µp|) is also shown. The inset displays the relative di�eren
e betweenthe numeri
ally found values of |µp| and the predi
ted ones, |µCL

p |, provided by the
ontinuum approximation. (b) Zoom of the area in the (ωb, |µp|) plane where theinstability island is lo
ated. (
) Norm of the dis
rete breathers vs. their frequen
yfor |µ| = 0.884.di�
ult.
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ompeting nonlinearities 65In �gure 3.19.a we 
ompare the line of the existen
e of the peakons in the
ontinuum limit, and the a
tual lo
ation of dis
rete peakons. It is seen thatthe agreement between the CA and numeri
al �ndings is good for smaller |ωb|(in this 
ase, the dis
rete breathers are broad), while at larger |ωb| the dis
retebreathers are narrow, hen
e the agreement with the CA deteriorates.Floquet analysisPerforming the linear stability analyses of pinned breathers it is found thatthese solutions are linearly stable along the whole µ-
ontinuation, ex
ept for arelatively small region, as shown in �gure 3.20.a. The entire instability islandin the (ωb, |µ|) plane is displayed in �gure 3.19.b. The instability displayedis revealed by a Floquet multiplier leaving the unit 
ir
le at +1 (harmoni
bifur
ation). The eigenve
tor asso
iated to this multiplier show a lo
alizedpro�le around the pinned solution. Note, in parti
ular, that the peakon and
uspon solutions are stable. The stability of the dis
rete breathers was also
he
ked by dire
t simulations of perturbed (along the unstable dire
tion givenby the Floquet eigenve
tor whose Floquet multiplier is λ > 1) solutions, usingthe full equation (2.18). The results of these simulations 
orroborated the
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Figure 3.20: (a) The absolutevalue of the Floquet multipliers,
{|λ|}, for the linearization of per-turbations around dis
rete soli-tons, is shown vs. |µ|, at sev-eral �xed values of the frequen
y(whi
h are 
hosen so as to makethe instability intervals well sepa-rated). (b) A robust pulson gen-erated from an unstable breatherat |µ| = 0.922.
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Figure 3.21: The norm of the dis
rete breathers vs. the frequen
y, for |µ| = 0.884.predi
tions of the linear stability analysis.Dire
t simulations of the evolution of perturbed unstable breathers, a typ-i
al example of whi
h is displayed in �gure 3.20.b, show that, after a transientstage, a lo
alized pulson (showing simultaneous width and amplitude os
illa-tions) is formed. The pulsons are (quasi-)periodi
 in time, and persist indef-initely. This behaviour resembles that found in the ordinary two-dimensionalDNLS equation in quasi-
ollapsing states that will be des
ribed in next 
hap-ter.A ne
essary stability 
ondition for soliton families in models of the NLStype may be provided by the Vakhitov-Kolokolov (VK) 
riterion [103℄: if thenorm N of the breather is known as a fun
tion of its frequen
y ωb, the breathers
an be stable against small perturbations with real eigenvalues, provided that
dN/dωb < 0. Although the appli
ability of the VK 
riterion to the presentmodel has not been proven (and 
ounter-examples are known, when solutionspredi
ted by the 
riterion to be unstable are a
tually stable [104℄), it is rel-evant to test the 
riterion here, numeri
ally 
omputing N (ωb) a

ording toeq. (3.19). The result is that the VK 
riterion pre
isely explains the stabilityand instability of the dis
rete breathers, ex
ept for the 
uspons (see below), asshown in �gure 3.19.
.A noteworthy feature of the N (ωb) dependen
e is a divergen
e of the totalnorm due to the in�nite 
ontribution of the 
entral site to expression (3.19)in the 
ase of the exa
t peakon solution, with |Φn0 |2 = 1/|µ|. An example ofthe N (ωb) dependen
e showing the divergen
e is plotted in �gure 3.21. As
on
erns the 
uspons, whose amplitude ex
eeds the 
riti
al value, 1/

√

|µ|, the
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ompeting nonlinearities 67norm (3.19) 
onverges for them, and features a positive slope (see �gure 3.21),
dN/dωb > 0. The VK 
riterion predi
ts instability in this 
ase; however, thedire
t 
omputation of the Floquet multipliers, as well as dire
t simulations,reveal no instability of the 
uspons. Thus, while the VK 
riterion is perfe
tly
orre
t for regular pinned breathers and peakons in the present model, it isirrelevant for 
uspons, 
f. the situation in [104℄.Bound states of breathers and their stabilityThe above �ndings on the 
hara
terization and stability of pinned dis
retebreathers suggest looking at the behaviour of more exoti
 (0, 1) resonant lo-
alized stru
tures. For this purpose, we have also explored bound states ofpinned dis
rete breathers solutions to the SM with 
ompeting nonlinearities.For this purpose, we performed numeri
al 
ontinuation in µ, starting with thewell known bound states of the standard DNLS equation (
onstru
ted by 
on-tinuation from the anti
ontinuum DNLS limit) at µ = 0. In that limit, twodi�erent types of bound states are known, in-phase and π-out-of-phase ones,whi
h are represented, respe
tively, by even and odd solutions. It is well knownthat only the states of the latter type are stable [105, 106℄.The numeri
al 
ontinuation of breather bound states was performed forpairs of identi
al dis
rete breathers of a given frequen
y ωb and di�erent dis-
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Figure 3.22: (a) Pro�les of typi
al in-phase (top) and out-of-phase (bottom) boundstates of two peakons, with di�erent distan
es between their 
enters, at ωb = 3.086and |µ| = |µp| = 0.645 . (b) Absolute values of the Floquet multiplies that determinethe stability of three bound states, with the same �xed frequen
y, ωb = 3.086, anddi�erent separations between the breathers. The in-phase (top) and out-of-phase(bottom) bound states are stabilized and destabilized, respe
tively, at the point wherethe bound breathers are peakons, see panel (a). Unstable states are less unstable (withsmaller absolute values of the Floquet multipliers a

ounting for the instability) if thedistan
e between the breathers is larger.
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estan
es between them. The 
ontinuation of in- and out-of-phase bound statesgives bound states of peakons, see �gure. 3.22.a. The latter solution is found atexa
tly the same value, µ = µp(ωb), whi
h gives rise to the single peakon. Wehave also examined the linear stability for the 
omputed solutions. A remark-able feature of the bound states observed with in
rease of |µ| is the stabilityinter
hange between the in-phase and out-of-phase states, as shown in �gure3.22.b. This stability inter
hange o

urs pre
isely at µ = µp(ωb), regardless ofthe separation between the bound breathers.3.3.3 Moving dis
rete breathersIn order to 
omplete the full pi
ture on the 
hara
terization of dis
rete breathersolutions in the SM with 
ompeting nonlinearities we turn our attention to mo-bile breathers. We have pro
eeded in the same way as for the standard SMand used the generi
 method for the 
ontinuation of (p, q) resonant solutions.In order to explore the behaviour of these solutions we have numeri
ally 
on-tinued them from the DNLS limit where, in turn, they were earlier obtainedin previous se
tions2. Among those mobile solutions we have 
hosen for the
ontinuation into the SM with 
ompeting nonlinearities only those that werelinearly stable at the DNLS limit.As in the standard SM when ν 6= 0 the obtained states are 
omposedof a traveling lo
alized 
ore and an extended ba
kground, Φn = (Φn)core +

(Φn)bckg, see �gure 3.23 whi
h is a superposition of nonlinear plane waveswhose amplitude is related to the height of the 
orresponding Peierls-Nabarrobarrier.The important result obtained along the 
ontinuation by the SM with µ < 0is that the mobile breathers 
an only be 
ontinued up to a 
ertain 
riti
al value,
µ = µc(ωb), 
lose to, but smaller in absolute value than, µp(ωb) at whi
h thepinned dis
rete breather be
omes a peakon. The Floquet stability analysisreveals that the extended ba
kground of the mobile breathers is subje
ted tomodulational instability. (However, this is too weak to manifest itself in thesimulations and it is only noti
eable by looking at the Floquet spe
tra whenthe amplitude of the ba
kground is very high). On the the other hand we donot observe any lo
alized eigenve
tor with eigenvalue |λ| > 1 and thus the 
oreis not a�e
ted by any unstable perturbation. The stability of mobile solutionsis 
orroborated when simulations of the dynami
s are performed, allowing forinteresting numeri
al experiments (see below). The ba
kground amplitude is2Remind that only a subset of those mobile solutions (those with small enough frequen
y)
ontinued from the AL limit (µ = 1, ν = 0) remains along the whole standard SM path(µ > 0) to the DNLS (µ = 0, ν = 1). Then, only those states that 
ould be obtained at theDNLS limit are, in prin
iple, 
ontinuable into the SM with 
ompeting nonlinearities (µ < 0).
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Figure 3.23: The real and imaginary parts of the latti
e wave �eld in a moving dis
retebreather, for ωb = 2.24 and µ = −0.7.
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Figure 3.25: The time evolution of the realpart of the latti
e wave �eld in a mobilestate. Initially, a moving soliton is 
reated
orresponding to |µ| = 0.8 and ωb = −2.24.Then, µ jumps instantaneously to µ′ = µ+

δµ. After the jump, followed by emission ofsome transient radiation, the moving 
orebe
omes broader and starts to move faster.In (a) |µ′| = 0.84, and in (b) |µ′| = 0.89.
a growing fun
tion of |µ| having a very sharp in
rease when |µ| approa
hes
µ = µc(ωb), see �gure 3.24.a. This behaviour of the ba
kground amplitudesuggests that the PN barrier also grows with |µ| and be
omes very high nearthe 
riti
al point. To 
he
k this expe
tation, we have 
omputed the heightof the PN barrier for the same frequen
ies ωb for whi
h the mobile breatherswere numeri
ally 
al
ulated, using the energy de�nition as in equation (3.20).Figure 3.24.b 
on�rms that the PN barrier dramati
ally in
reases when the
ontinuation approa
hes the 
riti
al point, µ = µc(ωb), although the PN barrierdiverges not exa
tly at this point, but rather at µ = µp(ωb), where the pinnedbreather assumes the peakon shape.The strong dependen
e of the PN barrier on µ suggests a numeri
al experi-ment to test the behaviour of mobile breathers when the latti
e's pinning for
esuddenly 
hanges. To this end, we took an initial mobile breather at values of
µ and ωb for whi
h the PN barrier is low. Then we monitored the evolution
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Figure 3.26: Contour plots showingthe evolution of the latti
e �eld |Φn|in three 
ases of 
ollisions betweenidenti
al breathers moving in oppo-site dire
tions. The breather's fre-quen
y is ωb = −2.11, and |µ| = 0.6(a), |µ| = 0.8 (b), and |µ| = 0.9 (
).of the moving solution following an instantaneous 
hange in the nonlinearity,
µ → µ + δµ ≡ µ′, whi
h makes the PN barrier essentially higher than expe-rien
ed by the original soliton. The numeri
al experiments are illustrated by�gure 3.25. We observe that the 
ore of the mobile breather does not be
omepinned due to the in
rease of the PN barrier, but rather a

ommodates itself,with some radiation loss, into a broader state with a smaller amplitude, so thatthe PN barrier, as experien
ed by the new state for µ = µ

′ , is low enough toallow the breather to remain mobile. Besides that, we observe an in
rement inthe 
ore's velo
ity, so that the larger the jump of the PN-barrier's height thefaster is the new moving state. The fa
t that the sudden in
rease of the PNbarrier does not prevent the motion of the breather solution reveals, on onehand, that the relation between PN barrier and mobility is far from trivial,and on the other hand, that mobility is quite a robust feature.Finally, we simulated 
ollisions between identi
al latti
e breathers movingin opposite dire
tions. The results show that the 
olliding breathers alwaysmerge into a single lo
alized state, whi
h subsequently features intrinsi
 pulsa-tions. If the PN barrier is low, the emerging pulse 
an itself move in a 
haoti
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hrödinger latti
esway, due to intera
tion with the latti
e phonon �eld (radiation) generated inthe 
ourse of the 
ollision. On the 
ontrary, for values of µ and ωb at whi
h theoriginal breathers experien
e a high PN barrier, the �nally generated singlesoliton is always strongly pinned.The most notable and generi
 feature of the 
ollision manifests itself inthe merger s
enario. When the 
ores of the mobile breathers 
ollide, suddendelo
alization is �rst observed, with transfer of energy from the 
ollision pointto adja
ent latti
e sites. Then, almost all the energy is 
olle
ted ba
k at the
ollision spot, and thus a single lo
alized state emerges. An example of the
ollision is shown in �gure 3.26. This s
enario was observed in all simulationsof the 
ollisions. The appearan
e of pulsons as the produ
t of soliton 
ollisions,as well as the fa
t that they also appear as asymptoti
 states of the evolutionof perturbed unstable breathers (see se
tion 3.3.2), shows the ubiquity of thistype of lo
alized ex
itations in the present model.3.4 Con
lusions and Prospe
tive RemarksIn this 
hapter we have studied numeri
ally several features about dis
retebreathers solutions to the one-dimensional Salerno latti
e (2.18). It is then
onvenient to summarize the results and obtain a global pi
ture of the work.A s
hemati
 pi
ture of the results obtained in this 
hapter 
an be found in�gure 3.27.Pinned Breathers.- This 
lass of solutions have been extensively studiedby earlier works for the standard Salerno model (µ > 0) with positive valuesof the nonintegrability parameter, ν. In this region we have 
on�rmed thatthe 
ontinued (along the SM path) breathers 
oin
ide in the DNLS limit withthose obtained by a 
ontinuation from the un
oupled (anti
ontinuum) limit ofthe latter equation. We have extended the 
omputation of numeri
ally exa
tpinned breathers in the standard SM (µ > 0) for negative values of ν. Inthis 
ase there exist narrow regions where the immobile breathers experien
emirror symmetry-breaking bifur
ations.The analysis of the pinned dis
rete system in the Salerno model with 
om-peting nonlinearities (µ < 0) yields a family of breathers, whi
h in
ludes apeakon as the 
ontinuum 
ounterpart predi
ts. However, the family 
ontinuesbeyond the peakon, in the form of spe
ial pinned dis
rete breathers termed
uspons. Stability analysis of the pinned breathers in the SM with 
ompetingnonlinearities reveals that only a small part of the soliton family is unstable;the evolution of the unstable breathers leads asymptoti
ally to pulsons, i.e.lo
alized solutions where the width os
illates. In this part of the SM bound
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al breathers were also investigated, revealing a stability ex-
hange: the in-phase and out-of-phase bound states, whi
h are unstable andstable, respe
tively, in the DNLS limit, ex
hange their stability 
hara
ter ex-a
tly at the point where the bound breathers are peakons.The 
omputation of pinned breathers both on-site and inter-site 
enteredhas served for 
omputing the Peierls-Nabarro barrier and thus provide a usefultool to analyze the results obtained for mobile breathers.Mobile breathers.- Using a regularized Newton method we have 
ontinuedthe family of mobile Ablowitz-Ladik dis
rete breathers into the nonintegrabledomain of model parameters. The 
ontinuation was then performed for a �negrid of frequen
ies belonging to the family of (p = 1, q = 1) resonant dis
retebreathers. We �nd that these solutions de
ay asymptoti
ally, in spa
e, to anex
ited latti
e extended state (the ba
kground), whose amplitude vanishes atthe integrable Ablowitz-Ladik limit. This 
omponent of the solution is unam-biguously found to be a linear 
ombination of nonlinear resonant plane waveswhose amplitudes de
ay typi
ally, in k-spa
e, exponentially. The exponen-tially lo
alized os
illation (the 
ore) of the amplitude probability rides overthis extended radiation state.̂
Φ = Φ̂ 
ore + Φ̂ba
kg (3.33)This expression de�nes the purely lo
alized 
omponent Φ̂
ore of the solution.The ba
kground is a �nite linear 
ombination of nonlinear plane waves,

(

Φ̂b
kg)n
(t) =

s
∑

j=1

Ajexp[i(kjn− ω(kj , Aj)t)] . (3.34)These plane waves are exa
t solutions of the Salerno model (2.18). The re-sults 
on
erning the 
hara
terization of the ba
kground 
an be summarized asfollows:(i) The set of �s� plane waves whi
h take part in the ba
kground of a
(p, q)−resonant dis
rete breather with internal frequen
y ωb is derivedby the simple sele
tion rule for the wave-numbers kj

ω(kj , Aj)

ωb
=

1

q

( p

2π
kj −m

)

, (3.35)i.e. only the plane waves whi
h are (p, q)-resonant with the internalperiod of the breather 
an be 
omponents of {Φb
kgn (t)}. The numberof solutions of (3.35) �xes �s�.(ii) The amplitudes {Aj} of the nonlinear plane waves di�er by orders ofmagnitude yielding a lo
alization in the k-spa
e.
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hrödinger latti
es(iii) There exist a strong positive 
orrelation between the amplitude of theba
kground and the strength of the Peierls-Nabarro barrier arising fromthe periodi
 latti
e. This 
orrelation is parti
ularly 
lear when symmetrybreaking transitions o

ur for the also studied 
ase of ν < 0 and µ > 0,and re�e
ts the link between non-integrability and the existen
e of theba
kground dressing of the mobile 
ore. Another interesting e�e
t isobtained for the SM with 
ompeting nonlinearities. In this 
ase the
ontinuation of mobile breathers of a given frequen
y stops near thedivergen
e of the Peierls-Nabarro barrier for pinned breathers with thesame frequen
y.(iv) Finally, the interpretation of the 
orrelation des
ribed in (iii) is reinfor
edfrom a study of the energy evolution of the mobile 
ore: There is anenergy balan
e brought by the ba
kground when the 
ore moves along thelatti
e. In parti
ular, it 
an be observed how the 
ore energy os
illatesperiodi
ally so that it takes the maximum energy value when the 
orevisits the inter-site 
on�guration. This extra energy periodi
ally obtainedby the 
ore is provided by the intera
tion ba
kground-
ore, with theenergy maximum 
learly related to the ba
kground amplitude.It is worth stressing that the most relevant predi
tions of perturbative 
ol-le
tive variable theory are 
on�rmed by our numeri
al results, whi
h show theexisten
e of Peierls-Nabarro barriers to breather translational motion. Further-more, the existen
e of exa
t os
illating breather solutions for the standard SMis numeri
ally 
on�rmed. They are found to 
ontain an extended ba
kgroundwhose amplitude is typi
ally mu
h smaller than for mobile breathers.The 
orrelation between the Peierls-Nabarro barrier EPN (
omputed fromimmobile breathers) and the amplitude ba
kground of moving breathers 
or-re
tly suggests that the ba
kground has a role in the energy balan
e requiredto over
ome the barriers to translational motion. The interpretation is alsofully 
onsistent with the observations on the ba
kground amplitude behaviourof spatially os
illating an
hored breathers in the standard SM. Currently usede�e
tive parti
le (
olle
tive variable) theories are thus seen as intrinsi
ally in-
omplete, be
ause 
ore energy is not an invariant of motion. Any sensibleimproved approa
h must adopt equation (3.33) as starting point for improvedperturbative ansatzes, and we hope that our work will stimulate further studiesalong these lines.Numeri
ally exa
t moving dis
rete breathers with an in�nitely extendedtail of small amplitude were already observed in some 
ases for Klein-Gordonlatti
es with Morse potential by Cretegny and Aubry [53℄, however no inves-tigation of the ba
kground of these exa
t solutions is reported, so they wereable to "..suggest that generally a stri
tly lo
alized breather 
annot propagate
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?Figure 3.27: S
hemati
 plot of dis
rete breather's existen
e diagram in the (ν, µ)-plane. For the standard Salerno model µ > 0 we have 
ontinued pinned breathersalong the path µ + ν = 1 for (ν > 0) from the Ablowitz-Ladik integrable latti
eto the DNLS limit. Mobile breathers 
an be 
ontinued all the way (from AL toDNLS eqs.) along this path provided their frequen
ies are small enough. For thestandard Salerno model with ν < 0 we have performed the 
ontinuation along the path
µ− ν = 1 �nding a symmetry breaking bifur
ation for pinned breathers at ν ≃ −0.3that prevents 
ontinuing both pinned and mobile solutions far beyond this pointand then ex
luding the possibility of rea
hing the DNLS equation with ν < 0. Thestaggering transformation between the two regions (ν > 0 and ν < 0) of the standardSalerno model implies that staggered breathers 
annot be 
ontinued to the DNLS limitwith ν > 0 be
ause of a symmetry breaking bifur
ation. For the Salerno model with
ompeting nonlinearities (µ < 0) we �nd a transition from smooth peaked pinnedbreathers to 
uspon states where the energy is hyperlo
alized around the breather
enter. Cuspon breathers appear as stable solutions of the dynami
s. Mobile breathersin the 
ompeting Salerno mobile 
annot be 
ontinued beyond this transition pointsin
e the Peierls-Nabarro energy diverges at this point. The staggering transformationimplies that these latter results applies for staggered breathers when µ < 0 and ν < 0.However, this region 
ould not be explored for typi
al breather states sin
e, on onehand, the purely AL latti
es with µ < 0 does not admit lo
alized states as solutions(preventing the 
ontinuation from ν > 0 and µ < 0 ) and, on the other hand, the
ontinuation from ν < 0 and µ < 0 stops near the symmetry breaking bifur
ation asreported above. Then, this region of the Salerno model with 
ompeting nonlinearitiesremains unexplored and apparently forbidden for our 
ontinuation methods.
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eswithout radiating energy". Our systemati
 study of the NLS latti
es allowsus to go further by showing that the extended ba
kground (here fully 
har-a
terized) plays an important and subtle role in the translational motion ofthe lo
alized 
ore. Indeed, it is an indispensable part of the exa
t solutionin the nonintegrable regime. Exa
t mobile lo
alization only exists over �nelytuned extended states of the nonlinear latti
e. Mobile "pure" (i.e. rest stateba
kground) lo
alization must be regarded as very ex
eptional [96℄.Before 
on
luding this 
hapter, it is worth 
ommenting on some of thedi�eren
es between the Newton 
ontinuation of �xed points that we use inthis 
hapter, and other important re
ent approa
hes to breather numeri
s.The work by Ablowitz et al [107℄ uses dis
rete Fourier analysis to obtain anonlinear nonlo
al integral equation, from where the " ... soliton is thus viewedas a �xed point of a nonlinear fun
tional" (si
) in the Fourier transformedspa
e of fun
tions. Following these authors, their results seem to di�er fromthose of early pioneering work [108℄ (nowadays textbook material [23℄) � inwhi
h a 
ontinuous traveling solitary waves were reported using Fourier seriesexpansions with �nite period L while assuming 
onvergen
e as L→∞ " (si
).Ablowitz et al term 
ontinuous a solution that 
an be de�ned o� the latti
epoints, whi
h they see as "ne
essary when dis
ussing traveling waves in latti
es"(si
), and disagree with some 
on
lusions reported in the earlier works.The ("orthodoxy matters") dis
ussion above helps us to 
larify how dif-ferently our numeri
al approa
hes "sees" the dis
rete S
hrödinger breatherproblem: The very 
on
ept of a variable de�ned o� the latti
e points is intrin-si
ally alien to our dis
rete approa
h, whi
h neither needs of it nor ex
ludesits eventual 
onsideration. In 
ontrast to those views (but not at all in logi
alopposition), we 
onsistently view the thermodynami
al limit (N →∞) in lat-ti
e spa
e, mu
h in the sense used e.g. by Serge Aubry in his 
elebrated workon the Frenkel-Kontorova ground state problem [49℄: The in�nite size limit isbuilt up from a subsequen
e of PBC (�nite) latti
es for whi
h the limit is wellde�ned. This will make the Fourier-transformed k-spa
e 
ontinuum.Closer to our approa
h in some respe
ts, though te
hni
ally di�erent inmany others, is the formal approa
h purposed re
ently by James and 
ollab-orators [109, 110℄. It is also worth mentioning that these results have beenreprodu
ed re
ently for other kind of solutions (dark breathers) [111℄ and have
onstituted [112℄ a �(negative) result� about the impossibility of 
onstru
ting�exponentially lo
alized fundamental (single-humped) moving dis
rete solitons�in the nonintegrable part of the Salerno model.There are, at very di�erent levels, several open questions to further re-sear
h. From a te
hni
al point of view, it is important to analyze 
arefullythe irrational limit p/q → σ, of the solutions. In parti
ular, in this limit the



3.4. Con
lusions and Prospe
tive Remarks 77number of resonant plane wave bran
hes tends to a 
ontinuum and one 
ould(or not) expe
t that exponential lo
alization in the re
ipro
al latti
e persistsin that limit. This 
an be addressed numeri
ally, though systemati
 investi-gations may require some e�orts in optimizing the time e�
ien
y of 
urrentnumeri
al s
hemes.An important issue regarding appli
ations is the phenomenology of multi-breather states. In parti
ular, studies on 
ollisions of a pair of breathers may�nd in this study of exa
t mobility a useful referen
e in order to deal with the
omplexities that emerge from the many time-length s
ales involved in thesephysi
ally relevant phenomena. Mu
h simpler multibreather states, e.g. train-like 
hains of (moderately) separated moving breathers 
ould also be investi-gated. Not least, the perspe
tive and results presented here may be of someinterest to studies of the e�e
ts of 
oupling to (nonthermal and/or thermal)radiation baths in the breather and multibreather states of nonlinear latti
es[51℄ and the pra
ti
al manipulation and patterning of lo
alized "hot spots" byexternal �elds [113℄.





Chapter 4Dis
rete Breathers intwo-dimensional NonlinearS
hrödinger latti
esGiven the ubiquity of su
h breathers in dis
rete nonlinear physi
al systems (whi
hexist on essentially all length s
ales), these nonlinear ex
itations are likely to beimportant in many physi
al phenomena, in
luding melting, fra
ture, and the bu
k-ling and folding of biopolymers. They may also prove useful in te
hnologies rangingfrom 'smart' materials with tunable 
olle
tive responses to light-indu
ed, all-opti
alswit
hes and networks. With the a
quisition of this new animal, the nonlinear 'zoo'has be
ome an altogether more interesting pla
e. David K. Campbell in [114℄.The study of two-dimensional nonlinear S
hrödinger latti
es has attra
tedmu
h attention [115, 116℄ in re
ent years due to the new phenomena emergingwhen the dimensionality of the latti
e is in
reased. Some examples of thesenew features are the existen
e of vortex-breathers [117℄ whi
h supports en-ergy �ux, the appearan
e of an energy threshold for the 
reation of dis
retebreathers [118�122℄ and the ubiquity of an instability (the quasi-
ollapse) ofsome dis
rete breather solutions leading to a highly lo
alized pulson state [123�128℄. These theoreti
al e�orts have their 
ounterpart in re
ent advan
es in the�eld of nonlinear opti
s. The studies of two-dimensional arrays of 
oupled non-linear waveguides allow the experimental observation of those e�e
ts studiedtheoreti
ally. Spe
ially relevant is the re
ent experimental breakthrough (theo-reti
ally designed in [129℄) by Fleisher et al [72, 130℄, where a two-dimensionalarray of nonlinear waveguides is indu
ed in a photosensitive material. This
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este
hnique provides a 
lear experimental veri�
ation of the two-dimensionaldis
rete breather existen
e in this system. In parti
ular, besides the observa-tion of standard dis
rete breathers, these works reported the �rst observationsof staggered dis
rete breathers.Our study in this 
hapter fo
us on the 
omputation of numeri
ally exa
tdis
rete breathers in two-dimensional anisotropi
 nonlinear S
hrödinger lat-ti
es, i.e. where the 
ouplings in the two spatial dire
tions are not ne
essarilyequal. The use of the shooting methods introdu
ed in se
tion 2.3.1, and rede-�ned here for the two-dimensional 
ase in se
tion 4.1, allow us to �nd thesesolutions and analyze their stru
tural and stability properties. Both pinnedand mobile dis
rete breathers are studied. In the latter 
ase we will study onlythe ones whose motion is along one axis of the latti
e. The analysis of the nu-meri
ally exa
t solutions help to shed light on some features of the propertiesand stability of lo
alized solutions reported in previous works.After introdu
ing in se
tion 4.1 the two-dimensional anisotropi
 Salernolatti
e and provide explanations on the implementation of the numeri
al pro-
edures used to study the dynami
s of 2D dis
rete breathers, we will fo
uson pinned ones. The analysis of the results on pinned dis
rete breathers foranisotropi
 nonlinear S
hrödinger latti
es is reported in se
tion 4.2 for boththe standard version of the SM (se
tion 4.2.1) and that with 
ompeting nonlin-earities (se
tion 4.2.2). In both studies we present the numeri
al 
omputationsof the �xed point norm, as a fun
tion of three parameters: breather frequen
y,transversal 
oupling, and nonlinearity (see below). They show, as anti
ipated,the so-
alled quasi-
ollapse transition. In these studies we present numeri
ally
omputed se
tors of the bifur
ation surfa
e and take a brief look at the nonlin-ear dynami
s on the unstable manifold, whose typi
al traje
tories have been
alled pulson states. Early numeri
al work on the 2D quasi-
ollapse phenom-ena in isotropi
 latti
es was reported in [127, 128℄ and [125℄. A three-year-olda

ount of the "state of knowledge" on 2D S
hrödinger latti
es 
an be foundin Se
tion six of [131℄. Interestingly, for the 
ase of 
ompeting nonlinearitiesa transition to 2D 
uspon states is also found. In this region of the Salernomodel we have also studied the existen
e and stability of in-phase and out-of-phase bound states of pinned breathers motivated by the results obtained inthe previous 
hapter for the 1D 
ase (se
tion 3.3.2).As introdu
ed above, a new 
lass of breathing solutions are possible inthe 2D model: dis
rete vorti
es [117℄. We investigate vortex breathers of twotypes, vortex 
rosses and vortex squares, in se
tion 4.3 (in the framework of theisotropi
 model). The analysis of their linear stability reveals parametri
 sta-bility regions (whi
h turn out to be rather narrow) for the vorti
es, and helpsto identify various bifur
ations (in
luding a generi
 Hamiltonian Hopf bifur-
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ation) responsible for their destabilization. Dire
t simulations demonstratethat the instability transforms the vorti
es into ordinary breathers in the 
aseof the standard Salerno model, and into vortex pulsons, that keep the vorti
altopology, in the most interesting 
ase of 
ompeting nonlinearities. Finally, wehave also introdu
ed bound states of vortex 
rosses and analyze their stability.Mobile solutions are �nally reported in se
tion 4.4. For this type of solu-tions we have fo
used on a single type of mobile breather, namely those movingalong the dire
tion of stronger latti
e 
oupling 
onstant. The stru
ture of ea
hof these mobile exa
t dis
rete breathers is that of a lo
alized moving 
ore su-perimposed on a spe
i�
 extended state of resonant small amplitude radiation,the ba
kground. An extensive Floquet stability analysis of this type of solu-tions is performed in two se
tors of the three-dimensional parameter spa
e,revealing the existen
e of two di�erent transitions. The tangent spa
e eigen-ve
tors asso
iated to ea
h of the transitions are presented, and the relation ofthe unstable manifold traje
tories to pulson states is analyzed afterwards.4.1 The Salerno model in two dimensionsMotivated by the results reported in the last 
hapter our aim here fo
us on ex-tending the 
ontinuation s
heme for 
al
ulating exa
t dis
rete breathers inhigher dimensional systems. In parti
ular we fo
us on the following two-dimensional nonlinear S
hrödinger latti
eiΦ̇nm = − [C1(Φn+1,m + Φn−1,m) + C2(Φn,m+1 + Φn,m−1)] (1 + µ|Φn,m|2)
− 2νΦn,m|Φn,m|2 (4.1)This latti
e 
an be viewed as the two-dimensional Salerno model. The two 
ou-pling parameters C1 and C2 provide a te
hni
al advantage for numeri
s (seebelow), but they are also introdu
ed for theoreti
al and experimental interest.The possibility of 
ontrolling the ratio between the two linear 
ouplings of thetwo transversal dire
tions has been studied in various works as a way of an-alyzing how the intrinsi
 2D phenomena (su
h as the quasi-
ollapse) emerge.In fa
t, for C1 << C2, µ = 0 and ν 6= 0 equation (4.1) des
ribes a set ofweakly 
oupled nonlinear waveguide arrays and 
an be 
onsidered as a 
ase of�intermediate dimensionality�. This extreme has been studied experimentallyin [132℄ and using perturbative methods in [133℄. On the other hand, thisequation in
orporates, as two parti
ular limits, the physi
ally relevant stan-dard two-dimensional DNLS equation (µ = 0, ν 6= 0) and the two-dimensional
ounterpart of the AL latti
e (µ > 0, ν = 0) whi
h is not integrable. The
ontinuation between these two limits provides a useful tool for studying theinterplay between the on-site and inter-site nonlinearities in the 2D 
ase. More-
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rete Breathers in 2D Nonlinear S
hrödinger latti
esover, the anisotropy (or freedom in the values of the 
oupling parameters C1and C2) allows to in
lude an integrable model among the members of the fam-ily of nonlinear latti
es des
ribed by eq. (4.1). That is, for ν = 0, Ci = 0and Cj 6= 0 one obtains a set of integrable AL 1D 
hains. In this sense, every2D model in
luded by eq. (4.1) is 
onne
ted with this integrable model whereanalyti
 dis
rete breathers are available.The SM (4.1) may �nd a straightforward physi
al appli
ation as a dis
retemodel for the BEC of dipolar atoms trapped in a deep two-dimensional opti
allatti
e [78℄; in that 
ase, as stated for the 1D Salerno model, assuming that astrong magneti
 �eld aligns the momenta parallel (perpendi
ular) to the latti
eplane, and the 
ondensate is strongly 
on�ned in the verti
al dire
tion, one willagain deal with the dipole-dipole attra
tion (repulsion), i.e. µ > 0 (µ < 0) ineq. (4.1).Similarly to the 1D version of the Salerno model eq. (4.1) has two dynam-i
al invariants, the Hamiltonian
H = − C1

∑

n,m

(

Φn,mΦn+1,m + Φn+1,mΦn,m

)

− C2

∑

n,m

(

Φn,mΦn,m+1 + Φn,m+1Φn,m

)

− 2ν

µ

∑

n,m

|Φn,m|2 +
2ν

µ2

∑

n,m

ln (∣∣1 + µ|Φn,m|2
∣

∣

)

, (4.2)and, due to the phase invarian
e of the equations of motion, the following norm(4.1)
N =

1

µ

∑

n,m

ln (∣∣1 + µ|Φn,m|2
∣

∣

)

. (4.3)Note that we have in
luded here the needed rede�nition in the logarithmi
terms of both quantities in order to manage with a 
orre
t des
ription of thedynami
al invariants within the Salerno model with 
ompeting nonlinearities.In the same manner as in the 1D 
ase we will fo
us on a spe
ial set of2D dis
rete breathers. For this, we have to generalize the de�nition (2.22)introdu
ed in se
tion 2.2 for a (p, q) resonant solution in the 1D model tothe 2D 
ase. In this 
ontext, dis
rete breathers solutions are 
hara
terized bythree time s
ales. Namely, one asso
iated with the internal os
illation ωb andthe other two derived from the translation of the lo
alization 
enter, i.e. itsvelo
ity ~vb = (vx, vy). The subset of 3-tuples (ωb,~vb) that ful�ll the (px, py, q)-resonan
e 
ondition
vx

2π

ωb
=

px

q
(4.4)

vy
2π

ωb
=

py

q
, (4.5)



4.1. The Salerno model in two dimensions 83(where px, py and q are integers) denote the breather solutions that 
an beobtained with our 
ontinuation method. These solutions are those that after qperiods of the internal frequen
y, Φ̂(t0 + qTb), translates px and py latti
e sitesin the x and y dire
tion of the square latti
e, respe
tively, i.e.
Φ̂n,m(t0) = Φ̂n+px,m+py(t0 + qTb) , (4.6)where, again, PBC are applied ΦNx+1,m = Φ1,m, Φ0,m = ΦNx,m, Φn,Ny+1 =

Φn,1 and Φn,0 = Φn,Ny (with Nx and Ny being the latti
e size in the x and
y dire
tion respe
tively). Consequently, a (px, py, q)-resonant state will be asolution of the following set of equations

F(px,py,q,ωb,ν,C1,C2)

[

{Φ̂n,m(t0)}
]

= L
py
y Lpx

x T q
(ωb,ν,C1,C2)

[

{Φ̂n,m(t0)}
]

=

= {Φ̂n,m(t)} , (4.7)where the operators Li are the latti
e translation in the i-dire
tion,
Lx[{Φn,m(t0)}] = {Φn+1,m(t0)} , (4.8)
Ly[{Φn,m(t0)}] = {Φn,m+1(t0)} . (4.9)Besides, T(ωb,ν,C1,C2) is the time evolution operator given by equation (4.1) overone period Tb = 2π/ωb,

T(ωb,ν,C1,C2)[{Φn,m(t0)}] = {Φn,m(t0 + Tb)} . (4.10)In order to illustrate the 2D time s
ales resonan
e let us to 
onsider theplane wave solutions of equation (4.1): Φn,m(t) = A exp[i(kxn + kym − ωt)].These solutions possess the following nonlinear dispersion relation
ω(~k,A) = 2(C1 cos kx + C2 cos ky)(1 + µA2)− 2νA2 . (4.11)Hen
e, we 
an obtain the subset of plane waves whi
h are (px, py, q)-resonantwith some time s
ale τ (i.e. after a time qτ they have translated px and pysites in the x and y dire
tion, respe
tively). Ea
h member of these subsets willbe labeled by the pair ~k =(kx, ky) and from the 
ondition (4.7) it follows thatthe 
orresponding set of values of ~k for ea
h family will satisfy the relation

ω(~k,A) =
1

qτ

(

~p · ~k − m

2π

)

, (4.12)where m is an integer and ~p =(px, py). In �gure 4.1 the 
orresponding valuesof ~k are represented for two resonan
es of type (px = 1, py = 0, q = 1) and
(px = 1, py = 1, q = 1).The method used for solving equation (4.7) for ea
h resonant 3-tuple (ωb,~vb)is the same as in the 1D 
ase, already des
ribed in se
tion 2.3.1. Then, the
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Figure 4.1: Wave numbers, ~k = (kx, ky), of the (1, 0, 1) (a) and (1, 1, 1) (b) resonantplane waves for m = 0 (see equation (4.12)). Di�erent values of C2, while C1 is �xed(C1 = 1), are shown. The referen
e time s
ale for the resonan
e is set to τ = 2.4315(ω = 2.584).impli
it fun
tion theorem assures that a �xed point solution of a map (4.7)given by ~ξ =(px, py, q, ωb, ν, C1, C2) 
an be obtained provided that (i) theJa
obian of the operator F~ξ[{Φn,m(t0)}] − I is invertible, and (ii) we know a�xed point of a map 
orresponding to an in�nitesimally 
lose set of parameters,
~ξ−δ~ξ = (px, py, q, ωb−δωb, ν−δν, C1−δC1, C2−δC2). As explained in se
tion2.3.1 the �rst demand 
an be satis�ed using a singular value de
omposition(SVD) of the Ja
obian in order to obtain the pseudo-inverse operator. On theother hand, when the se
ond 
ondition is ful�lled 
onvergen
e of the Newton-Raphson iterative s
heme is guaranteed. For this, we start with a su�
ientlygood trial solution, {Φ0

n,m(t0)} and solve the equation
{δΦ0

n,m(t0)} = −DF~ξ

[

{Φ0
n,m(t0)}

]−1 · F~ξ

[

{Φ0
n,m(t0)}

]

, (4.13)in order to obtain {Φ1
n,m(t0)} = {Φ0

n,m(t0)} + {δΦ0
n,m(t0)}. We iterate these
al
ulations to the desired 
onvergen
e, and then the solution, {Φ̂n,m(t0)}, isobtained. In our numeri
s this is the 
ase when

F~ξ

[

{Φi
n,m(t0)}

]

< N · 10−16 , (4.14)(where N is the total number of sites in the square latti
e) is ful�lled. On
ethe solution is found we use it as the following trial solution, {Φ0
n,m(t0)}, forsolving the map (4.7) 
orresponding to the next set of parameters ~ξ

′

= ~ξ + δ~ξ.There are two possible paths for developing the 
ontinuation method de-pending on the 
hoi
e of the starting point of the 
ontinuation. One possibilityis to start from the full anti-
ontinuum limit, C1 = C2 = 0, where a pinned
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rete breathers 85breather solution of frequen
y ωb is written as
Φ̂n,m(t) = δn,n0δm,m0

√

ωb

2ν
exp(iωbt) . (4.15)Starting from the above solution, we 
an perform the 
ontinuation in
reasingthe parameters C1 and C2 as usual, and so obtain the whole family of (px =

0, py = 0, q = 1) resonant dis
rete breathers. An alternative path starts fromthe one-dimensional limit, C2 = 0. The 
hoi
e of this se
ond limit (whi
himplies taking as the very initial trial solution of the 
ontinuation the wholeset of 1D solutions obtained in the previous 
hapter) is justi�ed when seekingmobile solutions. As stated above, this limit o�ers the possibility of studyingstrongly anisotropi
 latti
es as a 
ontrolled interpolating situation betweenone and two dimensions. On the other hand, employing this strategy we 
anonly obtain those solutions whi
h are (px = p, py = 0, q)-resonant, i.e. thetwo-dimensional 
ontinuation of those one-dimensional (p = px, q)-resonantdis
rete breathers. Hen
e, the solution from whi
h we start is
Φ̂n,m(t) = δm,m0Φ̂

1D
n (t) , (4.16)where Φ̂1D

n (t) is the 
orresponding (p = px, q)-resonant one-dimensional solu-tion.In what follows we will employ both 
ontinuation paths when we studythe 
ase of pinned breathers (se
tion 4.2), and we will show that the resultsobtained are the same when approa
hing the same limit (the standard two-dimensional DNLS).4.2 Pinned dis
rete breathersWe �rst fo
us on the 
hara
terization of pinned ((0, 0, 1)-resonant) dis
retebreathers for the standard Salerno model (with spe
ial attention to the DNLSequation) in se
tion 4.2.1 and for the SM with self-defo
using inter-site non-linearity in se
tion 4.2.2.4.2.1 Pinned dis
rete breathers in the standard SalernomodelAs we have dis
ussed, we 
an 
hoose two di�erent starting points for the 
ontin-uation of (0, 0, 1)-resonant �xed points (pinned breathers) of equation (4.7): (i)the full anti-
ontinuum (AC) limit (C1 = C2 = 0), or (ii) the (one-dimensional,1D) limit of un
oupled 
hains (C1 6= 0, C2 = 0), where they were obtained in
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hrödinger latti
esthe previous 
hapter from 
ontinuation along the standard 1D Salerno modelby in
reasing values of the parameter ν from the one-dimensional AL latti
e(2.9). As a test for our 
odes, we have 
he
ked that both paths arrive to thesame solution. In fa
t, unique 
ontinuations 
an pro
eed along any path onthe plane of parameters (C2, ν) that we have explored.Early works [123�125℄ on the isotropi
 two-dimensional standard DNLSequation analyzed the so-
alled quasi-
ollapse instability of pinned dis
retebreathers, i.e. the 
ondensation of all the energy into a few modes in dis-
rete nonlinear systems, whi
h 
orresponds to the onset of a singularity (wave
ollapse) [126℄ in multidimensional 
ontinuum models. Subsequent numeri-
al works [127℄ extended these studies to the isotropi
 2D Salerno latti
e andaddressed the question of how the instability is a�e
ted by the presen
e ofimpurity latti
e sites.As expe
ted, our results further 
orroborate the existen
e of quasi-
ollapseinstabilities in the anisotropi
 
ase: The phase diagram in parameter spa
e(ωb, C2, ν) 
onsists of two regions (stable and unstable) separated by thesurfa
e of transition. As we perform the 
ontinuation of breather solutionsa
ross the parameter spa
e we s
an the Floquet stability of the 
omputedsolution. In �gure 4.2 we present the two stability transition 
urves in theplane (ωb, C2, ν = 1), i.e. the fun
tion Cth
2 (ωb), 
orresponding to the twodi�erent 
ontinuation starts. The 
ontinuation from the AC limit is madethrough the path C1 = C2 and the one from the 1D limit is made at C1 = 1.The 
onvergen
e of the two paths at C2 = 1 is 
learly seen.The Vakhitov-Kolokolov 
riterion [103℄ for stability of the pinned dis
retebreather solution derived and used for the 2D DNLS in [124, 125℄,

(

∂N

∂ωb

)

C2,ν

> 0 , (4.17)is of a very general 
hara
ter and our numeri
s illustrate it 
learly. On the otherhand, the Floquet stability analysis dete
ts the dimensionality (and a basisin tangent spa
e) of the unstable linear manifold asso
iated with the quasi-
ollapse instability that these exa
t dis
rete breathers experien
e for someparameter values. We have 
omputed numeri
ally, for a �ne grid of ωb valuesand a 
oarser grid of C2 and ν, the fun
tion N(ωb, C2, ν), from whi
h we showsome se
tors in �gures 4.3 and 4.4.In �gure 4.3 we show the numeri
ally 
omputed norm (4.3) as a fun
tionof the breather frequen
y N(ωb), for three di�erent values of the transversal
oupling C2, and a �xed value of ν = 1 (anisotropi
 DNLS limit). We observethe existen
e of a minimum value, min N(ωb) = N th 6= 0, whi
h is thus seenas an ex
itation threshold for the 
reation of these solutions. The position of
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bFigure 4.2: Evolution of the threshold value of the 
oupling parameter, Cth
2 , asa fun
tion of the frequen
y, ωb, for two di�erent 
ontinuations starts. The valuesof Cth

2 limit the region where pinned dis
rete breathers are linearly stable (unstablefor C2 > Cth
2 ). The instability yields a hyper-lo
alized state (quasi-
ollapse). The
ontinuation from the fully un
oupled limit (C1 = C2 = 0) (�lled 
ir
les) is performedusing the path C1 = C2. For the 
ontinuation (bold 
ir
les) from the 1-dimensionallimit (C1 = 1, C2 = 0) the 
oupling in the new dire
tion C2 is progressively in
reased.the minimum ωth

b (C2), whi
h naturally in
reases with C2, separates the stableand unstable bran
hes of pinned breathers. Breathers 
orresponding to valuesof ωb where N(ωb) has a negative slope are unstable: This is shown in theinsets, where the Floquet spe
tra of two representative examples of pinneddis
rete S
hrödinger breathers are plotted in the 
omplex plane. Note thatthe high a

ura
y of the numeri
al solution allows an unpre
edented detailedFloquet analysis of the instability, paving the way to rigorous analyti
al 
har-a
terizations of the quasi-
ollapse unstable manifold. This is a one-dimensionalmanifold, as our numeri
al results unambiguously 
on�rm. Then, in the regimeof small time s
ales, the unstable manifold is fully 
hara
terized by a singleFloquet eigenve
tor.Figure 4.4 shows the (surfa
e) fun
tion N(ωb, ν) for the volume se
tor of
onstant C2(= 0.5). Most noti
eably, the 
riti
al (threshold) line of bifur
ationpoints ( ∂N
∂ωb

= 0), as seen in the inset, does not de�ne a monotone fun
tion
ωth

b (ν). In fa
t, in the whole interval of 0 ≤ ν ≤ 1 values, the range of values of
ωth

b is quite short, indi
ating the insensitivity of the gross features of the quasi-
ollapse transition to the value of ν. However, 
onsidering �ner details, onesees that the threshold 
urve ωth
b (ν) smoothly rea
hes its slightly larger valuesaround midway between the DNLS and the AL limits. In other words, in-termediate values of the interpolating (Salerno) parameter ν somewhat favour
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rete breather of frequen
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alization 
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ent sites (n = 10, m = 0) and (n = 11, m = 1).Ea
h amplitude is normalized to its initial value, so that it 
an be seen how thequasi-
ollapse instability is developed. The parameters of equation (4.1) are C1 = 1,
C2 = 0.5, ν = 1.0 (µ = 0) and the frequen
y of the pinned breather is ωb = 3.50.When the instability is fully developed, we analyze the �nal state by means of thePower Spe
trum S(ω) of the time evolution of ℜ [Φ10,0(t)] (the real part of lo
alization
enter). As 
an be observed in (b) the internal frequen
y of the breather (highestpeak in the spe
trum) shifts to a higher value (ω∗

b = 4.03) and the other peaks arelo
ated at the frequen
ies of the harmoni
s resulting from the 
ombination of theinternal frequen
y with the frequen
y (ωqc = 0.78) asso
iated with the amplitude
|Φn,m| os
illations shown in (a).the enhan
ement of the quasi-
ollapse unstable region. These 
on
lusions arein 
ontrast with the stated 
on
lusion (for isotropi
 latti
es) in [127℄ that theAblowitz-Ladik term in
reases the stability regime.When instability is allowed to develop beyond the �xed point tangent spa
einto the nonlinear realm of perturbations, the traje
tory obtained by dire
tintegration of the equations of motion invariably ends after a transient (of times
ale given by the real Floquet exponent larger than 1) in a lo
alized solutionwith 
omplex dynami
s, the pulson states, that we have already observed inthe one-dimensional Salerno model with 
ompeting nonlinearities for a narrowregion in the (µ, ωb)-plane (see se
tion 3.3.2). In the two-dimensional 
ontextthese states were 
hara
terized in [131℄ in the following terms "... where thepeak intensity |Φm,n|2 os
illates between the 
entral site and its four nearestneighbours (...) it is not known whether these pulson states represent truequasiperiodi
 solutions to the DNLS equation". What makes these traje
torieson the unstable nonlinear quasi-
ollapse manifold of mu
h pra
ti
al relevan
eand interest is their ubiquity: They appear as persistent lo
alized states inthe Hamiltonian dynami
al evolution from a wide variety of initial 
onditions.Their des
ription requires at least two frequen
ies, namely the internal (genuinebreather-like frequen
y) and the frequen
y of the os
illations of the breather
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eswidth around a mean width value, whi
h turns out to be less than the widthof the unstable exa
t dis
rete breather. Se
ond and outer shells of neighbours(in both latti
e axes) also parti
ipate in the width os
illations.Though a more detailed 
hara
terization of the pulson states would be re-quired, it is illustrative to 
onsider (�gure 4.5) the power spe
trum S(ω) (eq.3.5) of the �eld at the 
entral site of a typi
al traje
tory on the unstable nonlin-ear manifold of a quasi-
ollapsing pinned dis
rete breather. This shows peaksat the 
ombinations ω∗
b + jωqc (j = 0,±1,±2...), where ωqc is the frequen
yof the width os
illations 
hara
terizing the pulson state, while ω∗

b > ωb is afrequen
y higher than the (initial 
ondition) �xed point frequen
y ωb. The newfrequen
y ω∗
b turns out to be very 
lose to the breather frequen
y of the same(initial) norm on the stable bran
h. In other words, the instability drives ashift of breathing frequen
y towards the stable bran
h, while the ex
ess energyis transferred to the os
illatory motion of the observable width. This behav-ior seems to be the essen
e of the physi
al 
hara
terization of the nonlinearquasi-
ollapse manifold dynami
s.The numeri
al observation of a two-frequen
y power spe
trum for a typi
alpulson state points towards an eventual positive answer to the question (ontrue quasiperiodi
ity) arised in [131℄. This point serves to illustrate how thehigh a

ura
y of the �xed point numeri
al solution provides detailed 
lues onmany still unsolved (from a mathemati
al and physi
al point of view) questionson two-dimensional S
hrödinger lo
alization, whi
h are of prospe
tive experi-mental interest in nonlinear (photoni
, Josephson, ...) physi
s te
hnologies.4.2.2 Pinned dis
rete breathers in the Salerno model with
ompeting nonlinearitiesLet us now analyze the e�e
ts that 
ompeting on-site self-fo
using and inter-site self-defo
using nonlinearities have on pinned dis
rete breathers. For thispurpose we start from the above 
omputed pinned breather solutions for the2D DNLS equation, 
orresponding to µ = 0, and parameterized by the 
orre-sponding values of ωb, C1 and C2. In pati
ular we will keep �xed the value

C1 = 1 and let vary C2 = C. We will also keep �xed the value of ν = 1 (dueto the s
aling invarian
e of the model (4.1)). Then, our 
ontinuation seedsis a set of solutions at di�erent frequen
ies and several di�erent values of C,whi
h are subsequently 
ontinued in µ < 0. With these 
ontinuations we areable to 
onstru
t families of the breather solutions (labeled by their internalfrequen
y ωb) for di�erent values of µ and C. In this way, we s
anned thefamily of dis
rete breathers in the entire (C,µ < 0, ωb)-spa
e of the Salerno
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Figure 4.6: Intensity pro�les, |Φn,m|2, of two dis
rete breathers found for C = 1(isotropi
 
ase) and frequen
y ωb = 4.22: (a) µ = −0.2; (b) µ = −0.88. The lattersolution is a 
uspon, whi
h features stronger lo
alization at its 
enter than in the tails.model with 
ompeting nonlinearities1.As noted above, varying C from 0 to 1 allows one to observe the transitionfrom one- to two-dimensional latti
e and to study the strong anisotropi
 limit(C << 1). We will 
on
entrate on the existen
e of 2D 
uspons and their sta-bility. Let us remind that in the 1D 
ase, 
uspons exist for µ < 0, when theon-site and inter-site nonlinearities are 
ompeting (see se
tion 3.3.2). Thesesolutions present highly lo
alized pro�les, with the de
ay rate around the lo-
alization 
enter higher than in tails of the solutions. Another relevant result ofthe 1D 
ase is that small-frequen
y breathers are unstable in a narrow intervalof negative values of µ. The instability observed in the 1D 
ase transforms thedis
rete breather into a pulsoni
 state. We have seen in the previous se
tion4.2.1 that the standard Salerno model (and in parti
ular the 2D DNLS latti
e)features a similar unstable behavior for small-frequen
y breathers. It is theninteresting to �nd a link between the breather instability in the 2D standardSalerno model (4.1) with µ > 0 and the above-reported instability of breathersin the 1D Salerno model when µ < 0.First, we 
onsider the shape of solutions produ
ed by the 
ontinuation. Asexpe
ted, 
uspons appear when µ is negative and of su�
iently large absolutevalue. In �gure 4.6 we display dis
rete breathers found at C = 1 (in theisotropi
 latti
e) and ωb = 4.22, for two di�erent values of µ. As seen in �gure4.6.b, the 
uspon indeed features a higher spatial de
ay rate around its 
enter,
(n0,m0), than far from it.To 
hara
terize the transition from usual dis
rete breathers to the 
uspons,we �tted the de
aying tail of the breather along the verti
al and horizontaldire
tions on the latti
e, (n0,m → ±∞) and (n → ±∞,m0), to the expe
ted1Typi
ally, the di�eren
e between the breather frequen
ies used for ea
h C was δωb =

8 · 10−2 (whi
h is also the lowest frequen
y taken 
lose to the edge of the phonon band), andthe 
ontinuation step in µ was δµ = 2 · 10−2.
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Figure 4.7: Solid and dashed 
urves show, respe
tively, the 
riti
al values of the inter-site nonlinearity 
oe�
ient, µy and µx = 0, as a fun
tion of the breather's frequen
yfor several values of the anisotropy parameter C.
asymptoti
 forms, |Φ(asymp)

n0,m→±∞| = Ay exp(−Γy |m−m0|) and |Φ(asymp)
n→±∞,m0

| =

Ax exp(−Γx |n− n0|), respe
tively. On
e two pairs of parameters (Ax,Γx) and
(Ay,Γy) are found, one 
an determine whether the de
ay rate (lo
alizationdegree) around the breather's 
enter is higher or lower than in the tails, byde�ning two sharpness parameters (this is a similar de�nition to that adoptedin se
tion 3.3.2 for the 1D 
ase), γx ≡ Ax − |Φn0,m0|, and γy ≡ Ay − |Φn0,m0 |.Obviously, γx ≡ γy in the isotropi
 model (C = 1); however, γx and γy aredi�erent in anisotropi
 latti
es. We have 
omputed both quantities as the
ontinuation in µ was performed for ea
h breather at frequen
y ωb. For agiven pair of parameters C and ωb, it was found that, for higher (in parti
ular,less negative) values of µ, both γx and γy are positive, thus pointing out thatthe lo
alized states are ordinary dis
rete breathers (not 
uspons). De
reasing
µ, one �nds a 
riti
al value, µ = µy, at whi
h γy = 0, whi
h 
orrespondsto a peakon pro�le in the (verti
al) dire
tion of weak 
oupling, (n0,m). If µis further de
reased, we then have γy < 0, while γx is still positive (i.e., thebreather is a semi-
uspon), until the se
ond 
riti
al point is rea
hed, µ = µx <

µy, where γx = 0, and the breather assumes a peakon pro�le in the (horizontal)dire
tion of strong 
oupling, (n,m0). Finally, at µ < µx, both γx and γy arenegative, and the dis
rete breather is a 
uspon in both dire
tions. Figure 4.7shows the 
riti
al values, µx and µy, versus ωb for several �xed values of C.As noted above, µx = µy when C = 1, while for C = 0 (the 1D limit), only µxexists.
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omitant with the 
ontinuation of the breather solutions in µ, we examinedtheir linear stability. Performing the Floquet analysis for every 
omputedsolution, we have generated a full stability diagram in the (ωb, µ)-plane forseveral values of C (in
luding both positive and negative µ in order to link theunstable region of the 1D SM at µ < 0 and those found for the standard 2DSM). This is shown in �gure 4.8. At the isotropi
 
ase, C = 1, and for µ > 0we observe, as expe
ted from the results obtained in the previous se
tion, anunstable region 
orresponding to the low-frequen
y breathers. As previouslyreported, the development of this instability yields to the development of apulsoni
 state (similar to what was found in in the 1D version of the modelwhen µ < 0). On the other hand, for µ < 0, all 
uspons are found tobe linearly stable. This is a new result 
on
erning 2D nonlinear latti
es of theS
hrödinger type. Taking a 
lose look at the evolution of the stability diagramsas C de
reases, one 
an monitor a transition from the 2D isotropi
 model to its1D 
ounterpart. We thus observe (see 
ontour plots in �gure 4.8) that there isa subregion in the (ωb, µ) plane, for ea
h value of C, where the largest valuesof |λj| are mu
h higher than in the rest of the unstable region. This subregion
ontinuously deforms as C varies, and, as C → 0, it approa
hes the unstableregion found in the 1D Salerno model.We have also 
he
ked the validity of the Vakhitov-Kolokolov (VK) 
riterionfor the stability of breathers in the Salerno model with 
ompeting nonlineari-ties. For this we have 
omputed the norm of the solutions as per eq. (4.3), togenerate surfa
es N(ωb, µ) for several values of C. These surfa
es are plotted in�gure 4.8. In the �gure, we have also plotted 
urves at whi
h ∂N∂ωb 
hangessign, thus separating the predi
ted stable and unstable regions. Comparisonwith the rigorous results produ
ed by the Floquet analysis 
on�rms again thevalidity of the VK 
riterion for predi
ting the unstable region found for pinnedbreathers at µ < 0. A noteworthy feature of surfa
es N(ωb, µ) is the diver-gen
e when the breather's amplitude attains the value |Φn0,m0 |2 = 1/|µ|. Inthe 1D model (C = 0), this happens for an exa
t peakon solution, whereasfor C > 0 we observe that the divergen
e 
urve in the (ωb, µ) plane is lo
atedbelow the 
urve of µ = µy(ωb), i.e. it happens for 
uspon states. Examiningthe norm for 
uspons with the amplitude ex
eeding 1/
√

|µ|, we 
on
lude that
∂N∂ωb < 0 for all ωb in this region (after the divergen
e of the norm o

urs).Then, the VK 
riterion predi
ts that 
uspon breathers are unstable 
ontraryto the results of the Floquet analysis. Hen
e, the VK 
riterion does not applyto the 
uspons with |Φn0,m0| > 1/

√

|µ|. The stability of perturbed 
usponswas also 
on�rmed by dire
t simulations of the dynami
s (4.1) revealing notonly that they are linearly stable solutions but also high robust.
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Figure 4.8: Stability diagrams in the (µ, ωb) -plane 
orresponding to di�erent valuesof the anisotropy parameter C. Contour plots show maximum absolute values of theFloquet multipliers, max {|λj |}. Beside ea
h 
ontour plot, norm surfa
es, N(µ, ωb),are plotted for the 
orresponding values of C. Curves at whi
h the sign of slope
∂N/∂ωb 
hanges are plotted on top of the surfa
es. A

ording to the Vakhitov-Kolokolov 
riterion, these 
urves separate stability and instability regions.Bound states of dis
rete breathersIn addition to isolated pinned breathers, we have studied their bound stateswhen µ < 0. Two types, in-phase and π-out-of-phase, of pairs of identi
albreathers, with the same frequen
y ωb and di�erent distan
es between them,has been analyzed. For this purpose, we �rst 
ontinued these solutions, at µ =

0, from the anti-
ontinuum limit up to the 2D DNLS equation (C = ν = α =

1), and then de
reased the value of µ into the region of 
ompeting nonlinearities(µ < 0). At the same time, the linear stability analysis of these periodi
solutions was performed by the numeri
al 
omputation of their Floquet spe
tra.We have 
omputed two di�erent patterns of bound states of breathers. The�rst type 
onsists of two dis
rete breathers with their 
enters, (n
(j)
0 ,m

(j)
0 ), with

j = 1, 2, lying on the same latti
e axis (so that n
(1)
0 = n

(2)
0 or m

(1)
0 = m

(2)
0 ),
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Figure 4.9: The absolute value of the Floquet multipliers as a fun
tion of µ for in-phase (top) and out-of-phase (bottom) axis-aligned bound states of breathers with
ωb = 7 (C = 1). The �gure shows 
ases when the two breather 
enters are separatedby d = 3, 5 and 7. It 
an be observed that, irrespe
tive of the value of d, the stabilityinter
hange o

urs at µ = −0.3.whereas for the se
ond type of bound states the 
enters are related by n

(1)
0 =

n
(2)
0 ± d and m

(1)
0 = m

(2)
0 ∓ d, i.e. they are aligned along a diagonal of thelatti
e.In �gure 4.9 we show the absolute value of the Floquet multipliers as afun
tion of µ for in-phase and out-of-phase bound states, aligned along a latti
eaxis for the 
ase of ωb = 7.0, with three di�erent values of the distan
e betweenbreather 
enters in the pair. Results of similar 
omputations for the diagonal-aligned bound states with ωb = 8.0 are shown in �gure 4.10. As in the 1Dversion of the model (see se
tion3.3.2), for µ = 0 in-phase bound states arelinearly unstable (the more unstable the 
loser breathers are in the pair), whileout-of-phase pairs are stable. As observed in �gures 4.9 and 4.10, at µ = −0.3for the pattern of the �rst type (ωb = 7.0), and at µ = −0.25 for the se
ond one(ωb = 8.0), the in-phase bound states be
ome stable regardless of the distan
ebetween breathers. Simultaneously, out-of-phase states be
ome unstable, alsoregardless of the separation between breather 
enters.The same stability ex
hange between in- and out-of-phase states was ob-served in the 1D 
ase, where it o

urs at the value of µ at whi
h the dis-
rete breather solution is a peakon. However, here in the 2D 
ase the dis
retebreathers in the pair are 
uspons on both sides of the stability-ex
hange point.
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Figure 4.10: The same as in the previous �gure for in-phase (top) and out-of-phase(bottom) diagonal-aligned bound states of breathers with ωb = 8 (C = 1). Shown arethe results for the states with the separation between the breather 
enters d = 1, 2and 3. It 
an be observed that for all these states undergo the stability ex
hange at
µ = −0.25.Nevertheless, we �nd, for both types of the bound states, that the values of
µ at this point is exa
tly the same at whi
h the 
uspon's norm, N(ωb, µ), di-verges (see the previous subse
tion). In other words, the stability inter
hangebetween in- and out-of-phase bound states is asso
iated with the divergen
e ofthe breather norm N(ωb, µ), rather than to the appearan
e of a peakon (
on-trary to the 1D 
ase, where the emergen
e of a peakon and norm divergen
eo

ur simultaneously).As a 
on
lusion, although the divergen
e of the norm does not swit
h thestability of single pinned dis
rete breathers, it marks the stability border ofbound states of breathers, regardless of their size and orientation relative tothe latti
e.4.3 Dis
rete vortex breathersA natural generalization of the fundamental dis
rete breathers are dis
retevorti
es, whi
h are well-known solutions of the ordinary 2D DNLS model [117℄.A vortex is 
hara
terized by the phase 
ir
ulation around its 
enter, ∆θ, thatmust be a multiple of 2π. Hen
e they may be labeled by an integer number(vorti
ity, or topologi
al 
harge), S ≡ ∆θ/(2π).
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Figure 4.11: Two examples of fundamental (|S| = 1) dis
rete vorti
es. Pro�les of thereal part of the square vortex with M = 1 and vortex 
ross are shown in the top andbottom panels, respe
tively. Both solutions are found for µ = −0.4 and ωb = 7.0 (asnoted in the text, we �x C = 1 for the vortex solutions).In this se
tion, we 
onsider vorti
es only in the isotropi
 model (C = 1),with the purpose of analyzing their behaviour at both the standard SM (µ > 0)and at the SM with 
ompeting nonlinearities (µ < 0). In the framework ofthe 2D DNLS model, in�uen
e of the latti
e anisotropy on fundamental andvorti
al dis
rete breathers was studied in [134℄).We will 
onstru
t two types of vorti
es, on-site- and o�-site-
entered ones(alias vortex 
rosses and vortex squares), both with |S| = 1. Vortex squaresare 
hara
terized by the number of latti
e bonds, M , that ea
h side of thesquare 
omprises; in this se
tion, we only deal with M = 1. Two examples ofthese two spe
ies of the solutions are plotted in �gure 4.11.4.3.1 Vortex 
rossesIn order to 
onstru
t fundamental (|S| = 1) vortex 
rosses 
entered around thelatti
e site (n0,m0), we start with the anti
ontinuum (C1 = C2 = 0) DNLS(µ = 0) limit. The 
orresponding seed pattern in
ludes nonzero �elds
Φn0,m0+1 = −iΦn0+1,m0 = −Φn0,m0−1 = iΦn0−1,m0 =

√

ωb/2 . (4.18)
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Figure 4.12: (a) The absolute value of the Floquet multipliers as a fun
tion of µfor a vortex 
ross with ωb = 8. Two bifur
ations 
an be inferred from the Floquetdistributions in panels (
) and (d): a Hamiltonian Hopf bifur
ation at µ = 0.46, anda harmoni
 bifur
ation at µ = −0.3. A similar set of two bifur
ations is found atother frequen
ies. The entire stability diagram is displayed in panel (b), showing anarrow stability region. (As noted in the text, we �x C = 1 for the vortex solutions).Then, by adiabati
ally in
reasing the inter-site 
oupling (Newton 
ontinuationin C using C1 = C2 = C), we rea
h the isotropi
 DNLS model, and start the
ontinuation to positive values of the inter-site nonlinearity, µ. Performingthe 
ontinuation in C at µ = 0, we have found that, for low-frequen
y vortexsolutions, there is a 
riti
al value, Cc, that depends on frequen
y ωb, at whi
ha Hamiltonian Hopf bifur
ation (HHB) [135℄ o

urs and the vortex solutionturns unstable for C > Cc(ωb). This phenomenon was already reported inprevious works [117, 134℄.Higher-frequen
y vortex solutions, whi
h are stable in the DNLS equationin the 
onsidered range of parameters, undergo destabilization through a bi-fur
ation of the same type as a result of the 
ontinuation in µ, at C = 1. TheHamiltonian-Hopf 
hara
ter of the bifur
ation 
an be seen in �gure 4.12.
,whi
h shows the Floquet spe
trum after the bifur
ation: it is seen that aquadruplet of 
omplex eigenvalues λj exit the unit 
ir
le. After this (�rst)bifur
ation, further bifur
ations of the same type o

ur at in
reasing values of
µ, as observed in the right part of �gure 4.12.a. Similar to what was reportedin Ref. [117℄ for the DNLS model, in dire
t simulations unstable vortex 
rossesevolve into on-site-
entered fundamental dis
rete breathers (with S = 0) by
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rete vortex breathers 99transferring almost all the energy to one of the sites whi
h originally formedthe 
ross. The 
orresponding instability border (for C = 1) in the (µ, ωb)plane is depi
ted by the right 
urve of �gure 4.12.b.More interesting is the 
ase of µ < 0. In this regime, we have found thatfundamental vortex 
rosses experien
e another bifur
ation, with a quadrupletof Floquet eigenvalues leaving the unit 
ir
le at λ = +1 (the so-
alled har-moni
 bifur
ation). With the de
rease of µ, the 
orresponding two pairs ofthe eigenvalues move along the real axis in the opposite dire
tion, until ea
hpair breaks up, as shown in �gure 4.12.d. The unstable eigenve
tors, δΦ∗ and
δΦ∗∗, asso
iated with this bifur
ation are plotted in �gure 4.13.a and 4.13.b(in this notation, ∗ does not stand for 
omplex 
onjugation). The shape ofea
h eigenve
tor reveals strong lo
alization at two opposite sites of the vortex
ross, ea
h one separately breaking the spatial symmetry (2D isotropy) of theoriginal solution. Adding a small perturbation to the solution along one un-stable dire
tion 
auses os
illations of the amplitudes around the vortex 
enter,as shown in �gure 4.13.
. Su
h behaviour persists at longer times; in fa
t, thevortex pattern does not disappear but rather su�ers irregular modulations ofits lo
al amplitudes.This pi
ture of the instability development supplements the stability dia-gram for the fundamental vortex 
rosses, whi
h is displayed in �gure 4.12.b inthe (µ, ωb) plane (as noted above, for the isotropi
 model, with C = 1). Notethat the border of the instability whi
h transforms the vortex 
ross into itsos
illatory 
ounterpart (the left 
urve in the �gure) stays in the µ < 0 region,even for large frequen
ies. Therefore, unlike the HHB des
ribed above, thisinstability is dominated by the 
ompetition between the self-defo
using inter-site and self-fo
using on-site nonlinearities. A further insight into the natureof this bifur
ation is provided by the observation that it 
oin
ides exa
tly withthe divergen
e of norm N(ωb, µ) of the dis
rete breather (and of the vortex
ross solution), and thus it 
oin
ides with the stability inter
hange betweenin-phase and out-of-phase bound states analyzed above in se
tion 4.2.2.Regarding the vortex 
ross as made up of two (perpendi
ular) out-of-phase bound states of breathers (say, left-right and top-bottom), one wouldbe tempted to interpret the quadruplet of eigenvalues leaving the unit 
ir
leat +1 as the two pairs of eigenvalues that signal the simultaneous instabilityof both out-of-phase bound states. At least, this interpretation would explainthe fa
t that a quadruplet of eigenvalues simultaneously leave the unit 
ir
leat +1, and it is fully 
onsistent with the shape of the Floquet eigenve
tors in�gure 4.13. This interpretation suggests that the bifur
ation of vortex 
rosseso

urring in the left part of �gure 4.12.b is the same one experien
ed by out-of-phase bound pairs of breathers in �gure 4.9 (for separation d = 1). In any 
ase,
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Figure 4.13: (a) and (b) Intensity pro�les of the unstable Floquet eigenve
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δΦ∗∗, 
orresponding to the bifur
ation at µ = −0.3 (for C = 1) of the vortex 
rosswith ωb = 8, see �gure 4.11.d. (
) Time evolution of the latti
e �eld at sites aroundthe 
enter of the same unstable vortex solution. Pulsoni
 dynami
s of the amplitudesis observed, without de
ay of the vortex pattern.



4.3. Dis
rete vortex breathers 101a noteworthy numeri
al �nding is that these bifur
ations (of bound states andvortex 
rosses) not only 
oin
ide but are also 
hara
terized by the divergen
eof the breather norm.4.3.2 Vortex squaresWe have also studied the smallest (M = 1) vortex squares 
arrying S = 1vorti
ity. For this purpose, we have performed the 
ontinuation of the 
or-responding solution family, starting from a 
on�guration with nonzero 
om-ponents Φn0,m0 = −iΦn0,m0+1 = −Φn0+1,m0+1 = iΦn0+1,m0 =
√

ωb/2 in theanti
ontinuum limit, eq. (4.18). As in the 
ase of the vortex 
ross, we have�rst performed the 
ontinuation in the 
oupling 
onstant C to obtain the 
or-responding solutions for the DNLS model (C = 1, µ = 0). Again, for low-frequen
y vortex squares, we have observed an HHB at some 
riti
al value of
C. For high-frequen
y solutions, a bifur
ation of the same type is observedwhen the 
ontinuation is performed from the DNLS model to values µ > 0.In �gure 4.14.a, one 
an observe this bifur
ation for the vortex square with
ωb = 8. The 
orresponding HHB (see �gure 4.14.
) o

urs with a quadrupletof the Floquet eigenvalues leaving the unit 
ir
le. The behavior of the unstablesolution is the same as for the vortex 
ross, and, after a transient, a regularbreather with S = 0 emerges at one of 
orner sites of the former vortex square,while the �eld at three other 
orners nearly vanishes (i.e. the energy mainly
on
entrates at a single site of the initial vortex stru
ture).With the 
ontinuation of the vortex square to µ < 0, we have again (asin the 
ase of vortex 
rosses) found that the solutions su�er a destabilizingbifur
ation di�erent from that at µ > 0. However, the bifur
ation for µ < 0 (see�gure 4.14.d) is also di�erent from its 
ounterpart for the vortex 
ross (whi
hwas displayed above in �gure 4.12.d). At some value µ < 0, a quadrupletof Floquet multipliers leave the unit 
ir
le, to return to it at +1. After thisbrief ex
ursion, they immediately leave the unit 
ir
le again, and instabilitygrows with |µ|. Unlike its 
ounterpart for the vortex 
ross, this bifur
ationdoes not 
orrespond to the inter
hange of stability for the bound state ofbreathers analyzed in 4.2.2, whi
h a
tually o

urs at a lower value of µ, wherethe vortex square is already unstable. However, it is remarkable that pre
iselyat this value of µ the quadruplet of eigenvalues outside the unit 
ir
le meetinstantaneously at +1, so that the vortex square is marginally stable at thatpoint.Pro�les of unstable eigenve
tors, δΦ∗ and δΦ∗∗, are shown in �gure 4.15.aand 4.15.b. Ea
h one is lo
alized at two non-adja
ent 
orners of the plaquettewhere the vortex square is lo
ated. The dynami
s triggered by the original
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Figure 4.14: (a) The absolute value of the Floquet multipliers as a fun
tion of µ fora vortex square of minimum size (M = 1) with ωb = 8 (C = 1). Two bifur
ationsare revealed by Floquet distributions in panels (
) and (d). At µ = 0.14, we �nda Hamiltonian Hopf bifur
ation, whereas at µ = −0.04 a quadruplet of eigenvaluesleave the unit 
ir
le and start a short trip to +1, from where they leave the unit 
ir
leagain. The entire stability diagram is represented in panel (b), showing a narrowstability region.solution being perturbed by this δΦ∗ (or equivalently δΦ∗∗) is displayed in�gure 4.15.
. Again (as in the 
ase of the vortex 
ross), the vortex pattern isnot destroyed (in 
ontrast with the unstable behavior at µ > 0). Instead, thelatti
e �eld at the vortex-square sites develops a periodi
 pulsoni
 behavior,in whi
h at least two frequen
ies 
an be identi�ed. One of the frequen
iesa

ounts for periodi
 transfer of energy between four 
orners of the squarevortex, following the same path as the �ux 
urrent:
(n0,m0)→ (n0,m0 + 1)→ (n0 + 1,m0 + 1)→ (n0 + 1,m0)→ (n0,m0)→ ...(4.19)Another noteworthy feature of the dynami
s in this 
ase is that the totalamount of energy that is periodi
ally transferred between neighboring sitesvaries, also in a regular periodi
 fashion, thus giving rise to the se
ond fre-quen
y. Again (as happened for the vortex 
ross), the instability observed at
µ < 0 indu
es a pulsoni
 dynami
s of the latti
e amplitudes but, in the present
ase, the dynami
s is mu
h more regular. An intriguing numeri
al observationis that the value of µ at whi
h the quadruplet of eigenvalues meet at +1 (sothat the vortex-square solution momentarily be
omes marginally stable) o

urs
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Figure 4.15: (a) and (b) Intensity pro�les of the unstable Floquet eigenve
tors, δΦ∗and δΦ∗∗, 
orresponding to the bifur
ation, at µ = −0.04 (for C = 1), of the vortexsquare with ωb = 8, shown in �gure 4.13.d. (
) The time evolution of the latti
e �eldat the vortex-square's 
orners for the same unstable solution. The simulations revealperiodi
 evolution of the amplitudes with a 
lear sequen
e of energy transfer betweenthe adja
ent sites following the same pattern as the 
urrent �ux in the original vortexsolution.
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rete Breathers in 2D Nonlinear S
hrödinger latti
esexa
tly when the breather norm diverges.The entire stability diagram for the fundamental vortex squares is presentedin �gure 4.14.b. Again, we �nd a narrow stability region for low-frequen
yvortex squares that expands as the frequen
y in
reases.4.3.3 Bound states of dis
rete vortex 
rossesAs a �rst step towards the 
hara
terization of the stability of more 
omplex2D arrangements of vorti
es, we have studied two types of bound states ofvortex 
rosses, with the vortex 
enters aligned along a latti
e axis (say, the
x-dire
tion). In the two types of the bound state, the vorti
es have equalor opposite vorti
ities, see �gures 4.16.a and 4.16.b. Both types of solutionswere studied on the isotropi
 Salerno latti
e with 
ompeting nonlinearities(C = ν = 1 and µ < 0), and were numeri
ally obtained by the 
ontinuationat µ = 0 from the anti
ontinuum limit (C = 0), followed by the a se
ond
ontinuation in the dire
tion of negative inter-site nonlinearity µ. The Floquetspe
trum of the solution was also numeri
ally 
omputed along the 
ontinuationpath.At µ = 0, bound states of vorti
es with equal vorti
ities are stable, whilethose with opposite vorti
ities are unstable. To explain this numeri
al ob-servation, one has to realize that the right-most member of the breather setforming the left vortex, and its left-most 
ounterpart in the right vortex areout-of-phase (in-phase) in the former (latter) 
ase, see �gures 4.16.a and �g-ures 4.16.b. Then, the stability analysis of bound states of breathers reportedabove in se
tion 4.2.2 suggests that the stability of the bound states of vor-ti
es is a
tually dominated by the stability of the lo
al bound state of thetwo 
onstituent breathers (one from ea
h vortex) that are in the 
losest prox-imity. This analysis is further validated by 
omparison of unstable Floqueteigenvalues for the bound state of vorti
es with opposite vorti
ities and thosefor the bound state of in-phase breathers (for the 
orresponding values of thefrequen
y and separation between the 
enters).When µ de
reases, a destabilizing bifur
ation o

urs, as expe
ted, in theequal-vorti
ity bound state, pre
isely at the same value of µ where the simul-taneous instability of the vortex 
ross (in se
tion 4.3.1) and the out-of-phasebound state of ordinary breathers o

urs. By inspe
tion of the Floquet spe
-trum for the bound state of vorti
es, one 
an 
learly identify pairs of eigenvaluesasso
iated with ea
h of these instabilities that take pla
e simultaneously at thisbifur
ation point. It 
lear that the stability of bound states of dis
rete vortexand that of single vorti
es in the SM with µ < 0 is related to the behaviourfound for bound states of two pinned breather solutions. The de
omposition
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hemati
 representation of the in-phase (a) and out-of-phase (b)bound states of vorti
es with S = 1, in the limit of C = 0, ν = 1, µ = 0. Ve
tors standfor the instantaneous values of Φn,m in the 
omplex plane, with |Φn,m| =
√

ωb/2.These solutions are 
ontinued in C up to C = 1, and then 
ontinued in µ. Panel (
)shows the evolution of the Floquet multipliers as a fun
tion of µ when µ < 0. Theresults 
orrespond to ωb = 8 and the distan
e between the two vortex 
enters is setto be d = 5 (as seen in (a) and (b)).of any 
omplex solution in terms of this latter building blo
ks is 
learly ofimportan
e.
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rete Breathers in 2D Nonlinear S
hrödinger latti
es4.4 Mobile dis
rete breathersEarly and 
urrent attempts to explore straightaway dis
rete breather mobilityin isotropi
 2D S
hrödinger latti
es seem to agree that "ki
king" pro
eduresmeet huge di�
ulties in delivering good mobile solutions, 
ontrary to the nu-meri
al experien
es in 1D latti
es. We note here that the formal basis for thosemethods [52℄ takes advantage of the Floquet spe
tra analysis of exa
t pinnedbreathers, where the so-
alled depinning (symmetry-breaking) mode is identi-�ed. This allows, provided Peierls-Nabarro barriers are small enough, to obtainni
e numeri
al 1D mobile dis
rete breathers, by 
omputing traje
tories fromperturbations of the exa
t pinned breather along the tangent spa
e dire
tionspe
i�ed by the depinning eigenve
tor. The presen
e of symmetry-breakinginstabilities leading to ex
hange of stability between one-site and two-site 
en-tered pinned breathers [91℄ and the asso
iated lowering of the Peierls-Nabarrobarriers to breather displa
ements (as we observed for the 1D standard SMwhen ν < 0 in se
tion 3.1.3), hugely fa
ilitates the su

ess of these pro
edureswhen applied to (both Hamiltonian and dissipative) one-dimensional latti
es[92, 93℄.In 
ontrast, our "anisotropi
 latti
e" 
ontinuation approa
h takes advan-tage of the availability of exa
t 1D mobile solutions by monitoring the param-eter C2 of transversal 
oupling, and then does not rely on how easily one pro-motes 
lean mobility from pinned lo
alization. In this way we obtain a

uratenumeri
al (px, py = 0, q) �xed points, that is S
hrödinger dis
rete breathersmoving along the strong 
oupling dire
tion. We will leave open the questionfor arbitrary dire
tion of motion whi
h would imply more sophisti
ated (andpossibly more un
lean) methods of 
onstru
tion.In this se
tion we will fo
us on the behaviour of the 1D mobile breathersfound for the standard SM (then we set C1 = 1) when the 
oupling in thetransverse dire
tion (a

ounted by C2) is adiabati
ally in
orporated and hen
ethe dimensionality of the solution is in
reased.4.4.1 Stru
ture and stability of (1,0,1) �xed points.In �gure 4.17 we visualize the instantaneous real and imaginary 
omponentsof the 2D dis
rete �eld pro�le of a typi
al (1,0,1) S
hrödinger breather. Itsstru
ture 
an be seen as the natural extension to two-dimensional latti
es ofthe stru
ture of mobile S
hrödinger breathers analyzed in the previous 
hapter.The numeri
al solution is spatially asymptoti
 to a �nely tuned small-amplitudeextended (delo
alized) radiation state (Φb
kg)m,n
(t) when m,n → ∞. The
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rete breathers 107�xed point solution 
an be thus de
omposed as
Φm,n(t) = (Φ
ore)m,n(t) + (Φb
kg)m,n

(t) , (4.20)whi
h de�nes (Φ
ore)m,n(t), the spatially lo
alized 
omponent of the solution.It turns out that the spatially delo
alized 
omponent is a highly lo
alized statein the (
ontinuum, in the thermodynami
 limit) k-spa
e of waveve
tors. Morepre
isely, (Φb
kg)m,n
(t) is a �nite linear 
ombination of (1,0,1) -resonant non-linear (i.e. amplitude-dependent frequen
y ω) 2D planewaves. It 
an be saidthat, as might be expe
ted, 1D S
hrödinger breather mobility smoothly persistswhen (strong C1-
oupling) 1D 
hains are 
oupled transversally. Importantly,the numeri
al 
ontinuation for in
reasing values of the transversal 
oupling

C2 pro
eeds far from the weak 
oupling regime into where the genuine two-dimensional e�e
ts start to be manifest, as we will see below.Most noti
eable, the SVD-regularized Newton pro
edure invariably sele
tsthe values ky = ±π/2 for all values of C2 and ν, and thus the values of kx forthe 2D resonant planewave are independent of C2 (so it remains equal to the kvalues of the 1D (1, 1) �xed point for the un
oupled 
hain). The appearan
e ofan extended ba
kground modulation in the transversal dire
tion of ky = ±π/2appears naturally as the best 
hoi
e to take advantage of approximately 1Dbreather propagation along strong 
oupling dire
tion, for it keeps the valueof kx favoured by the strong 
oupling C1 value: Any other value of ky wouldentail a di�erent kx value. Note however that this provides only a plausibilityargument for the interpretation of the numeri
al observation (ky = ±π/2).The high a

ura
y of the 
omputed solutions allows a detailed analy-sis of many issues 
on
erning 2D S
hrödinger breather exa
t mobility alongthe strong 
oupling dire
tion. We will fo
us here on how the existen
e ofquasi-
ollapse instabilities of pinned S
hrödinger breathers, for in
reasing C2-
oupling values, in�uen
es the stability properties of moving (1, 0, 1) breathersin the standard SM. In other words, we sear
h here for genuine 2D e�e
ts onthese "strong-
oupling-dire
tion" (quasi-1D) moving breathers.We have performed an exhaustive exploration of two se
tors of the param-eter spa
e (C2, ωb, ν), 
orresponding to the breather frequen
y values ωb =

2.5843, and ωb = 2.712, by 
omputing the 
ontinued (1, 0, 1) �xed point alongthe standard Salerno model. These values of ωb were 
hosen low enough toallow the analysis of pinned breather quasi-
ollapse e�e
ts on mobility, whi
ho

urs at relatively low values of Cth
2 (ν) for these values of ω as seen in se
tion4.2.1 (see e.g. �gure 4.2 for the 
ase ν = 1, µ = 0).The Floquet analysis of the 
omputed solutions provides the stability dia-grams represented in �gures 4.18. Both show no qualitative di�eren
es: Thereare two regions in the (C2, ν) plane where the (1, 0, 1) mobile breather is lin-
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Figure 4.17: Real, (a) and (b), and imaginary, (
) and (d), of a mobile (1, 0, 1)-dis
rete breather of frequen
y ωb = 2.712. The parameters of equation (4.1) are
C1 = 1, C2 = 0.14 and ν = 0.95 (µ = 0.05). The insets in (a) and (
) show theba
kground far from the moving 
ore. It 
an be observed that the wavenumbers inthe transversal dire
tion are ky = ±π/2. (b) and (d) show the 
ontour plot for bothreal and imaginary parts.early unstable. The �gures are not "s
hemati
": Every point of the plane in a�ne grid of values of C2 and ν has been analyzed, i.e. the Floquet spe
trum ofthe 
omputed (1, 0, 1) �xed point is s
rutinized, as shown in �gures 4.18.b and4.18.d, where the modulus of the Floquet eigenvalues is shown as a fun
tion ofeither ν (�gure 4.18.b) or C2 (�gure 4.18.d).The �rst unstable region appears at low values of C2 and intermediate tohigh values of the Salerno parameter ν, i.e. it does not o

ur 
lose to theAL limit. This unstable region is also bounded above in the dire
tion of C2:The variation of the modulus of the unstable Floquet eigenvalue versus thetransversal 
oupling parameter C2 shows that the mobile breather be
omesstable again at larger values of C2, before the se
ond instability at even higher
oupling takes pla
e. An important observation is that the pinned dis
retebreather of the same frequen
y is linearly stable at the points in this unstable
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(c) (d)Figure 4.18: Stability diagram and evolution of the modulus of the Floquet eigenvaluesfor two (1, 0, 1)-dis
rete breather of frequen
ies ωb = 2.584 (a) and (b), and ωb =

2.712 (
) and (d) (C1 = 1). The stability diagram (a) and (
) show two regionswhere the mobile dis
rete breather be
omes unstable. For low values of the 
oupling
C2 there is a subset of values of ν where the breather su�ers from �ssion (see textand �gures (4.19.a) and (4.19.b). On the other hand for higher values of C2 there is ase
ond region (quasi independent of ν) where the unstable breather yields a travelingquasi-
ollapsing state (see text and �gures (4.19.
) and (4.19.d)). The evolution of themodulus of the Floquet eigenvalues along di�erent paths ν = 0.50 (b) and C2 = 0.17,
0.16, 0.02 (
) is shown.region for (1,0,1) mobile breathers. Thus this instability 
annot be as
ribed topinned quasi-
ollapse e�e
ts.The se
ond transition o

urs for values of C2 
lose to, but slightly higherthan, the values Cth

2 of the quasi-
ollapse of the pinned breather of the samefrequen
y. We had already seen in the previous se
tion that the quasi-
ollapsetransition Cth
2 (ν) is only very weakly dependent on the value of ν, and notethat the same is true for this mobile breather bifur
ation. These results suggestthat this se
ond transition is related to quasi-
ollapsing phenomena. Signi�-
antly, the stability of the (1, 0, 1) mobile breather persists for a small intervalof 
oupling values above the pinned breather quasi-
ollapse. This should beregarded as natural, for the mobile breather is a di�erent solution. Note in�gure 4.18.b that the modulus of the unstable Floquet eigenvalue, in the inte-
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hrödinger latti
esrior of the unstable region, rea
hes mu
h higher values than those typi
al forthe �rst type of instability, and de
reases for larger values of C2, before thebreather solution 
eases to exist and only plane wave solutions are obtainedby our numeri
al method. Note that this behaviour of the unstable Floqueteigenvalue also �ts well to the main features of the pinned quasi-
ollapse insta-bility strength, as des
ribed by the slope ∂N/∂ωb. From now on we will referto this instability of mobile breathers as the quasi-
ollapse instability.In the next se
tion we 
hara
terize both generi
 types of instability, bylooking at the details of the unstable manifold asso
iated with ea
h type. Aswe will see, pulson states turn out to play a role in the des
ription of typi
altraje
tories on the unstable nonlinear manifolds.4.4.2 Unstable manifold behaviour and ubiquity of pulsonstates.First, we analyze the quasi-
ollapse instability of (1, 0, 1) mobile breathers.The unstable linear subspa
e in the tangent spa
e of the �xed point is one-dimensional. The typi
al instantaneous pro�le of the (modulus) unstable Flo-quet eigenve
tor driving the instability is shown in �gure 4.19.d. It is an expo-nentially lo
alized 2D pro�le whi
h de
ays asymptoti
ally to zero as m,n→∞,i.e. it does not ex
ite radiation. These 
hara
teristi
s are shared by the quasi-
ollapse unstable eigenve
tor of the pinned breathers, whi
h further reinfor
ethe previous 
onsiderations leading us to 
onsider this instability as the mobile
ounterpart of the pinned quasi-
ollapse transition.In �gure 4.19.
 we have visualized the time evolution of the �eld modulus
ontour plot for a typi
al traje
tory on the unstable manifold. This is obtainedby dire
t numeri
al integration of the equations of motion, from an initial 
on-dition in whi
h a small perturbation along the quasi-
ollapse eigenve
tor hasbeen added to the unstable �xed point solution. One sees that the breathertranslational motion slows down, and the energy is transferred to width os
il-lations. These os
illations turn out to be more irregular, see �gure 4.20, thanthose observed in se
tion 4.2 when we inspe
ted typi
al traje
tories on theunstable nonlinear manifold of pinned breathers.The di�eren
e in the 
hara
ter of the width os
illations in both (pinnedand mobile) 
ases may be as
ribed to the presen
e of an extended ba
kground
omponent in the mobile breather solution, whi
h naturally enters into theenergy transfer taking pla
e during temporal evolution. The slowing downof the translational motion 
ontinues and eventually the breather pins into a
onvulsive pulson state surrounded by the remaining radiation.Now we pay attention to the �low C2� instability of (1, 0, 1) mobile breathers.
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Figure 4.19: Time evolution of two unstable solutions, (a) and (
), of frequen
y
omegab = 2.584 and the asso
iated unstable Floquet eigenve
tor, (b) and (d) re-spe
tively (C1 = 1). Figures (a) and (
) show the time evolution of the 
ontourlines 
orresponding to three di�erent values of |Φn,m|, in order to visualize the 4-dimensional fun
tions |Φn,m|(t). Figures (a) and (b) shows the �ssion of the breathersolution when perturbed along the unstable �M-shaped� Floquet eigenve
tor plottedin (b). It 
an be seen how a low amplitude pulse emerges and the mobile breather be-
omes pinned. After this transient this low amplitude pulse de
ays into radiation. Theparameter of equation (4.1) are C1 = 1, C2 = 0.08 and ν = 0.5 (µ = 0.5). In the 
aseof �gures (
) and (d) the parameters are the same ex
ept for C2 = 0.19. In this 
asethe solution is in the �quasi-
ollapse� unstable region shown in �gure (4.18.a). The�nal state when perturbed along the unstable eigenve
tor (d) is a traveling breatherwhose amplitude os
illates in the same fashion as that of the pinned quasi-
ollapsingbreathers, i.e the lo
alization 
enter os
illates out of phase with respe
t to all theother sites on the latti
e.The modulus pro�le of the unstable Floquet eigenve
tor that drives this insta-bility is M-shaped (bimodal), as shown in �gure 4.19.b, and is asymptoti
 toan extended planewave-like pro�le as m,n → ∞, i.e. it is not a purely lo
al-ized perturbation. It is indeed rather di�erent from the quasi-
ollapse unstableeigenve
tor analyzed above, whi
h is 
onsistent with the fa
t that the pinnedbreather of the same frequen
y is linearly stable in this region of parameterspa
e. As argued above, this instability is not related to quasi-
ollapse phe-nomena, and it does not appear in the region of small values of the Salernoparameter ν, 
lose to the AL limit.A typi
al traje
tory on the unstable manifold asso
iated with this insta-bility is shown in �gure 4.19.a, where we have plotted the time evolution of
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Figure 4.20: Time evolution of the maximum value of the modulus |Φn,m|(t) along the
entral (m = 0) 
hain and the adja
ent (m = 1) one for a mobile (1, 0, 1) breather withfrequen
y ωb = 2.584. This magnitude is normalized to the initial value |Φn,m|(t0).Figure(a) shows this evolution for an stable situation (C2 = 0.15, ν = 0.5). It 
anbe observed how the lo
alization 
enter (m = 0) and is neighbour in the transversaldire
tion (m = 1) follows two in-phase periodi
 traje
tories in their modulus dueto the Peierls-Nabarro barrier surpassed during the motion. In 
ontrast, �gure (b),shows the 
ase when the breather is unstable (C2 = 0.19, ν = 0.5). Here the quasi-
ollapse dynami
s is manifested while the lo
alization 
enter moves a
ross the latti
e.As 
an be observed, the os
illations of the two amplitudes are out of phase and theamplitudes of these os
illations are one order of magnitude higher than those of �gure(a).the �eld modulus 
ontour plot. We 
an see there that the mobile breatherpins qui
kly while a small pulse moving ba
kwards is eje
ted, whi
h spreadsand �nally mixes with the remaining delo
alized ba
kground. However someenergy is transferred to width os
illations of the pinned breather so that alsoin this 
ase we observe the formation of pulson states surrounded by the re-maining radiation. As the main di�eren
e of this behaviour, with respe
t tothe evolution observed on the quasi-
ollapse unstable manifold, is the eje
tionof the small moving pulse, we refer to this instability as �ssion.By in
reasing the strength of the initial perturbation along the dire
tionof the unstable eigenve
tor, one observes that the size of the eje
ted pulsein
reases. This observation is 
onsistent with the results reported in [127℄,where the evolution of initial moving Gaussian pulses in isotropi
 2D S
hrö-dinger latti
es was studied. These numeri
al experien
es lead the authors to
on
lude that "the 
hara
teristi
 feature of the dis
rete quasi-
ollapse of amoving pulse is the splitting of the initially moving broad pulse into a tra
k ofthe standing narrow stru
tures ..." (si
). However, we see from our study ofthe stability of exa
t moving dis
rete breathers that the �ssion and the quasi-
ollapse instabilities have di�erent origins and they appear in di�erent regionsof parameter spa
e. On the other hand, the ubiquitous phenomenon of widthos
illations of pinned lo
alized stru
tures (pulson states) 
annot be as
ribed
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ollapse. They also appear as the preferred way to allo
ate ex
ess of(lo
alization) energy in regions of parameter spa
e far from the quasi-
ollapseunstable region.4.5 Con
lusions and Prospe
tive RemarksWe have studied here the dynami
s of exa
t numeri
al dis
rete breathers(pinned, vorti
al and mobile ones) in a two-dimensional anisotropi
 nonlinearS
hrödinger latti
es. These solutions are 
omputed from a set of un
oupled1D 
hains into in
reasing non-zero values of the 
oupling in the transversaldire
tion in order to rea
h the 2D limit. It is 
onvenient review the mostsalient results in order to have a 
ompa
t pi
ture of the 2D behavior of dis-
rete breathers.Pinned breathers.- We have performed an extensive exploration in the pa-rameter spa
e (ωb, C2, ν) of breather frequen
y, transversal 
oupling andSalerno parameter, by 
omputing the Floquet spe
tra of the numeri
al so-lutions. Both the 1D solutions of the standard and the 
ompeting SM havebeen 
ontinued into the 2D regime in order to see the e�e
ts of the dimen-sional in
rement. In parti
ular we have found the link between the unstablebehaviour found for 
ertain breather frequen
ies in the 1D 
ompeting Salernomodel (whose pulsoni
 
hara
ter resembled those of the well known 2D unsta-ble solutions) and the quasi-
ollapse instability that appears for low frequen
ybreathers when the 
oupling in the transverse dire
tion is in
orporated. Fur-thermore, we have analyzed the dynami
s on the quasi-
ollapse unstable man-ifold, where the unstable breather experien
es a shift in frequen
y towards the(higher) value of the stable breather with the same norm. The ex
ess of en-ergy is 
oherently transferred to os
illations of the breather width, so that theresulting pulson state is 
hara
terized by two frequen
ies. We have also re
ov-ered the 2D 
ounterpart of the 1D 
uspons and peakons for the 2D SM with
ompeting nonlinearities. Again these hyperlo
alized states are stable Finally,the stability analysis of in-phase and out-of-phase bound states of breathers inthe isotropi
 latti
e reveals that there is a stability inter
hange between bothtypes of bound states, pre
isely at the same value of the intersite-nonlinearityparameter (µ) where the breather norm diverges as happened for the 1D model.Vortex breathers.- In addition to fundamental breathers, dis
rete vorti
esof two types, 
ross- and square-shaped ones, have also been 
onstru
ted, andtheir stability regions identi�ed. In dire
t simulations, unstable vorti
es inthe standard 2D Salerno model of the ordinary type transform into regularbreathers, while in the model with the 
ompeting nonlinearities the instabilityturns vorti
es into lo
alized vorti
al pulsons, without destroying their topo-
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eslogi
al 
hara
ter. It is then worth mentioning the ubiquity of this pulsoni
attra
tors of the dynami
s in the model. Regarding the stability of boundstates of vortex 
rosses, we have shown that it is determined by the stability ofthe lo
al bound state of two 
onstituent breathers (forming the two vorti
es)whi
h are in the 
losest proximity.Mobile breathers.- We have studied dis
rete breathers moving along thestrong 
oupling dire
tion for the standard 2D SM. These solutions are 
om-posed of an exponentially lo
alized 
ore on top of an extended ba
kgroundwhi
h is itself the �nite sum of a �nite set of nonlinear 2D plane waves. Thetime s
ales asso
iated with these plane waves are resonant with the 
ore inter-nal frequen
y as happens in the 1D 
ase. In parti
ular, the ba
kground 
hoosesa �nite set of plane waves from a 
ontinuous family of resonant solutions. TheFloquet analysis of these mobile dis
rete breathers reveals the existen
e of twodistin
t types of instability. One is the 
ounterpart, for mobile breathers, ofthe quasi-
ollapse experien
ed by pinned breathers. The other instability o
-
urs in a region of parameter spa
e where pinned breathers are linearly stable.The analysis of the dynami
s on the unstable manifold show that the ex
ess ofenergy is partly transferred to a small moving pulse, eje
ted from the 
enterof lo
alization, whi
h justi�es the designation of a �ssion instability. However,part of the energy ex
ess is also transferred to width os
illations. The ap-pearan
e of pulson states far from the quasi-
ollapse regime indi
ates that thetenden
y to allo
ate energy in the form of width os
illations is a general 2Dfeature, not ex
lusively asso
iated to quasi-
ollapse instabilities.We leave the question on mobility of 2D dis
rete breathers in an arbitrarylatti
e dire
tion. The results obtained here shed light about how this mobil-ity 
an be obtained. In fa
t, our experien
es show that mobility of pinnedbreathers 
an be indu
ed based on the existen
e of the extended ba
kgroundin the numeri
ally exa
t mobile solution. On the other hand, the results ob-tained here and the aforementioned future work may help to design and betterunderstand re
ent numeri
al experiments reported in [136℄, 
on
erning the in-tera
tion between high amplitude pinned breathers and mobile ones. Theseexperiments provides a possible way for routing and blo
king mobile dis
retebreathers via the intera
tion with the high amplitude pinned ones, resultingin a plausible implementation of logi
al fun
tions.
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Presentation of Part II
The se
ond part of the Thesis is devoted to the study of the stru
tureof 
omplex networks. Traditionally, physi
s has fo
used on systems where theunderlying topology of elements' intera
tions is des
ribed by regular latti
essu
h as those studied in the pre
eeding part. However, in the re
ent years,physi
ists have started to look to those systems where the intera
tions among
onstituents re�e
t the abstra
t relations between pairs of elements ratherthan being determined by the proximity in a physi
al spa
e. These relations
an be determined by the existen
e of monetary transa
tions between banks ine
onomi
 networks, or 
ooperative and friendship relations between individualsin so
ial networks, or assemblies of di�erent mole
ules working together todevelop 
ellular tasks in biologi
al networks, et
... From the highest to thelowest level of des
ription we �nd 
omplex networks of intera
tive elementsthat 
annot be des
ribed by regular patterns of 
onne
tions. The growinginterest in the 
hara
terization of the above systems has led to the emergen
eof the so-
alled network s
ien
e [137℄. Let us review the development of thisnew interdis
iplinary �eld.One 
an settle the �rst steps of network s
ien
e with the works on graphtheory [138, 139℄ in the middle of last 
entury. The most remarkable resultis the theoreti
al analysis of a random network by the mathemati
ians PaulErdös and Alfréd Rényi [140, 141℄. However, networks where intera
tionsamong elements are 
ompletely random are a 
oarse-grained approa
h to realnetworked systems, assuming a homogeneous disorder in what 
on
erns thepatterns of 
onne
tions. The burst in the study of 
omplex networks 
amewith the advent of the XXI 
entury along with the development of the Inter-net and the World Wide Web. This development has provided a large amountof data-sets for unveiling the relations established among industrial 
ompa-nies, institutions, s
ientists, et
... Besides, the explosion of human mobility(provided by the in
rease of a

essible infrastru
tures and transportation 
om-panies) and the boom of new tele
ommuni
ations tools (mobile phones, instantmessaging servi
es, et
...) has hugely fa
ilitated the stablishment of new agentnetworks with a high global 
hara
ter. These two ingredients, the emergen
eof new networked systems and the high a

essibility to data-sets des
ribingthem, 
onstituted an unpre
edented opportunity for s
ientist to analyse theirtopologi
al features.The analysis of real 
omplex networks revealed that seemingly di�erentsystems share a 
ommon property when looking to the distribution of thenumber of 
onne
tions that the elements of the networks have. It is found



118[142�154℄ that most of the networks present a power law fun
tional shape forthis statisti
al quantity and, therefore, they di�er from that a

ounted by PaulErdös and Alfréd Rényi, where all the elements present a similar number ofneighbours. Besides the surprising fa
t that real networks (a

ounting for manydi�erent types of intera
tions) share the s
ale-free 
hara
ter, understanding the(
ommon or not) origin of this internal organization has be
ome a 
hallengingquestion for many resear
hers.The above astonishing �ndings lead physi
ists to 
onstru
t simple modelsof network growth in order to reprodu
e the �universal� properties found forreal networks. In this sense, the models developed by Dun
an J. Watts andSteven H. Strogatz [155℄, and Albert-László Barabási and Réka Albert [145℄deserve spe
ial mention. Another dire
tion of resear
h has been fo
used by thesear
h for statisti
al measures of network topology in order to handle e�
ientlythe large amount of available data-sets and 
hara
terize those networks theyrepresent with a few meaningful indi
ators. The purpose of these two typesof studies di�er strongly from those of 
on
ern of traditional graph theory(where rigorous theorems of di�
ult real appli
ation are proved) and, at thesame time, are methodologi
ally far from the meti
ulous system 
hara
teriza-tion performed by biologists (who tend to overpay attention to single elementdetails to 
atalogue systems so that a unitary analysis of di�erent systemsbe
omes di�
ult). The statisti
al point of view and the unitary approa
h tothe problem of network 
hara
terization performed by physi
ists have 
learlytaken advantage over other dis
iplines under the name of statisti
al physi
sof 
omplex networks2. In 
hapter 5 we will brie�y review the most importanttools for 
hara
terizing network stru
ture and present two model of syntheti
network generation.The next step of network s
ien
e has been to look to network dynami
s.Most networks are not 
omposed of mere stati
 obje
ts but, on the 
ontrary,their elements develop a fun
tion. This fun
tion 
an be as simple as beingrouters for the transfer of entities among their elements, or as 
ompli
atedas being regulatory agents of some internal dynami
al pro
esses performed atea
h network node.It is important to di�eren
e two kind of studies to the problem of networkdynami
s. On one hand, given that real networks 
an be des
ribed by a set ofstatisti
al measures and that one 
an stablish subsets of networks whi
h arequalitatively similar in terms of these quantities, it is therefore interesting to�nd how to implement dynami
al pro
esses on top of the network in order totake advantage of these topologi
al 
hara
teristi
s. This sear
h for e�
ientalgorithms is not only motivated for pra
ti
al purposes but it is also interest-2Interesting reviews and tutorials on the subje
t are found in [156�163℄.



119ing for studying the interplay between dynami
s and the underlying networkedsubstrate. In this sense, the models developed for 
onstru
ting syntheti
 net-works are a useful ben
hmark for studying this interplay before applying theresults to real networks. This �rst kind of studies are therefore interesting fornetworks whose dynami
s 
an be modeled or modi�ed. This is the 
ase ofte
hnologi
al, logisti
 and 
ertain so
ial networks, e.g. information and trans-portation networks are sus
eptible targets of this kind of studies. In 
hapter 6we will deal with two related problems, namely the interplay between networkstru
ture and, �rst, the performan
e of immunization strategies aimed at stop-ping the spread of epidemi
s and, se
ond, the routing poli
ies for informationdynami
s.As we mentioned above there is a se
ond kind of studies on network dy-nami
s. Instead of varying the dynami
al properties assuming a �xed substratein this se
ond 
lass of studies both stru
ture and dynami
s are asummed to
o-evolve towards a stable state where system's performan
e is optimal. Wewill leave the dis
ussions on this interesting problem for part III and now letus fo
us on the study of the stru
ture of networks and its in�uen
e over thedynami
al performan
e.





Chapter 5Network Stru
ture andGeneration There may well be no useful parallel to be drawnbetween the way in whi
h 
omplexity appears in thesimplest 
ases of many-body theory and 
hemistryand the way it appears in the truly 
omplex 
ulturaland biologi
al ones, ex
ept perhaps to say that, ingeneral, the relationship between the system andits parts is intele
tually a one-way street.� Philip W. Anderson in More is Di�erent [2℄.
This 
hapter is devoted to the des
ription of the stru
ture of networks andthe modelling of their growth and evolution. We have seen in the pre
edingpages that a great amount of empiri
al data about the patterns of 
onne
tionsamong the 
onstituents of so
ial, te
hnologi
al, logisti
 and biologi
al networksis nowadays available. At this point several questions arise su
h as How sim-ilar real networks are? or Is there any 
ommon feature (regularity) betweennetworks with the same fun
tion? In order to answer (if possible) these kindof questions we have to de�ne some properties that would allow us to give aquantitative and qualitative des
ription of the ar
hite
ture of networks. Afterde�ning these magnitudes we will brie�y des
ribe some important models ofsyntheti
 networks that try to 
apture some of the ingredients observed whenanalysing the �native� ones. We will round o� the 
hapter with a deep analysisof two models of network design that will be employed along the forth
omingparts of this Thesis.



122 Chapter 5. Network Stru
ture and Generation5.1 Des
ribing Complex NetworksBefore de�ning the magnitudes employed for des
ribing the networks we give abrief a

ount of some formal de�nitions and notations inherited from 
lassi
algraph theory. Afterwards, we list and explain the most used quantities for
hara
terizing networks' stru
ture at lo
al, global and mesos
opi
 levels.5.1.1 Basi
 de�nitionsWe start with the formal de�nition of a network (or, in mathemati
als terms,a graph) G(V,E) as an ordered pair of set of sets: a non null set V of elements
alled nodes (or verti
es) and another set E of pairs (i, j), with i, j ∈ V , 
alledlinks (or edges, ar
s) that denote that nodes i and j are 
onne
ted. Normallyone imposes that i 6= j so that self-
onne
tions are avoided. We will denoteby N and L the 
ardinalities of the sets V and E respe
tively. Along withthis de�nition we 
an also 
onsider that the elements in E are ordered pairs
(i, j) 6= (j, i). In this 
ase we will talk of a dire
ted network (or digraph). Itis also very 
ommon to assign weigths (numbers) to the edges so that we havea weighted (or valued) network. The 
ardinality of V and E 
an tell us aboutthe nature of the graph. Taking into a

ount that the maximal 
ardinality of
E is ( N

2

) we will talk about a sparse network when L ≪ N2 and a dense onewhen L ∼ N2.A subgraph G′(V ′, E′) of G(V,E) is a graph su
h that V ′ ⊆ V and E′ ⊆ E.A subgraph is said to be maximal with respe
t to a given property if it 
annotbe extended by adding elements either to V
′ or E

′ without loosing its property.Aditionally, we say that a subgraph G′ is indu
ed by G if E
′ 
ontains all thepairs (i, j) ∈ E with i, j ∈ V

′ .The 
omplement of a graph G(V,E) is the graph G
′

(V ′, E′) (sometimesdenoted G) so that V = V
′ but whose edge set E

′ 
onsists of the edges notpresent in E. Then a graph G(V,E ∪ E
′

) will be a 
omplete graph, i.e. everynode will be 
onne
ted with the rest of the N − 1 nodes.In order to manage with a graph one usually label with natural numbersthe elements of V so that i = 1, ...,N . Di�erent assignation of labels to theelements of V yield isomorphi
 networks and the topologi
al properties are nota�e
ted. Formally, two graphs G1(V1, E1) and G2(V2, E2) are said isomorphi
when one 
an stablish a bije
tive relation φ : V1 → V2 that preserve the
onne
tions, i.e. if (i, j) ∈ E1 then (φ(i), φ(j)) ∈ E2.One 
an represent the graph with the so-
alled adja
en
y matrix A whoseelements are aij = 1 if (i, j) ∈ E and aij = 0 otherwise. This matrix will
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ribing Complex Networks 123be symmetri
 for undire
ted graphs but, in general, this is not the 
ase for di-graphs. In the 
ase of weighted networks one 
an repla
e the non zero elementsof A by the weights of the 
orresponding links in order to obtain a 
ompleterepresentation of the graph.The analysis of the adja
en
y matrix will give the topologi
al 
hara
teri-zation of the networks. At present, there is a large amount of di�erent mag-nitudes used for 
hara
terizing the networks ar
hite
ture. However, the morespe
i�
 �eld we study the more properties we will �nd for des
ribing these
omplex topologies. Then, we will only emphasize on those quantities whi
hare of general use and therefore will be used along the works des
ribed in thisThesis. We will divide the magnitudes depending on the s
ale involved fortheir de�nition. From our point of view this is a useful de�nition sin
e lo
al(mi
ros
opi
) or global (ma
ros
opi
) properties play a key role depending onthe kind of dynami
s pla
ed on top of the network.5.1.2 Single nodes propertiesLo
al MagnitudesWe will refer to lo
al quantities when one takes into a

ount a node i and itsneighbours, Γi. Obviously, the �rst lo
al property is the degree of a node i, ki,whi
h is the 
ardinal of the set Γi, i.e. the number of nodes whi
h i is linkedto or, in terms of the adja
en
y matrix
ki =

N
∑

j=1

aij . (5.1)If one is 
onsidering a dire
ted network one will talk about the �in-degre� of anode i, kini , and its �out degree�, kouti , whi
h are the number of in
oming andoutgoing links that a node shares with its neighbours. Again, we 
an obtainsu
h quantities from the adja
en
y matrix by
kini =

N
∑

j=1

aij and kouti =

N
∑

i=1

aij . (5.2)Another interesting lo
al measure is the so-
alled 
lustering 
oe�
ient ofa node whi
h measures the number of 
onne
tions among the neighbours ofa node, ei. This quantity is usually normalized to one by dividing by itsmaximum value ( ki

2

) so that it measures the probability that two neighbours
j and m of a node i (aij = aim = 1) are also linked to ea
h other (ajm = 1).



124 Chapter 5. Network Stru
ture and GenerationA formal expression of the 
lustering of a node i with ki neighbours is
ci =

2
∑N

j,m=1 aijaimajm

ki(ki − 1)
. (5.3)A third lo
al property arise when looking at the degree of the neighboursof a given node (here we assumme that this information is on the lo
al horizonof the nodes) so that we 
an de�ne the average nearest neighbours degree. We
an write this quantity as

knni =

∑N
j=1 aij

(

∑N
m=1 ajm

)

∑N
j=1 aij

. (5.4)Global MagnitudesNow we will de�ne two properties that are de�ned taken into a

ount pairsof nodes that are not ne
essarily linked and are then in�uen
ed by the topol-ogy of the whole graph. These measures are the 
loseness 
entrality and thebetweeness 
entrality. As we will see in se
tion 6.2 these two magnitudes willplay a key role when dealing with problems of propagation through networks.First of all we de�ne the distan
e between two elements of the network, dij ,as the length of the geodesi
 that goes from node i to j. In prin
iple, one 
anobserve more than one geodesi
 for a pair of nodes. One 
an then 
onstru
t thedistan
e matrix D so that the element Dij = dij . This matrix is symmetri
 inthe 
ase of undire
ted graphs but, in prin
iple, this is not the 
ase in dire
tedones. On
e we have 
onstru
ted D one 
an 
ompute the 
loseness 
entralityof a node, Di, as the inverse of the average distan
e between it and the rest ofthe nodes
Di =

N − 1
∑

j∈V i di,j
. (5.5)The purpose of measuring this property is to know whether a node holds a
entral or a peripheral position in the network.
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Figure 5.1: Two di�erent situ-ation in terms of the 
lusteringof the striped node. In the �rst
ase (left) 
lustering is 0 whilefor the se
ond example (right)the probability of �nding two
onne
ted neighbours raises to
2/7.



5.1. Des
ribing Complex Networks 125Closely related with the above magnitude but rather more sophisti
atedis the betweeness 
entrality of a node, bi. The betweeness tell us how manygeodesi
s between any pair of nodes (j,m) go through node i. Then, measuringthe betweenes of a node implies not only knowing D but the di�erent sequen
esof nodes (of minimal 
ardinality) we have to 
over for going from one node toanother. If we express by σj,m the number of geodesi
s for going from j to mwe 
an 
onstru
t a σj,m ×N matrix G(j,m) whose elements are either 1 or 0so that row k tell us the sequen
e of nodes that are 
ontained in geodesi
 k by
G(j,m)k,l = 1 if node l is part of the geodesi
 sequen
e and 0 if not. Then we
an express the betweenes of node i by

bi =
∑

{j,m∈V |j 6=m}

∑σj,m

k=1 G(j,m)k,i

σj,m
. (5.6)It is easy to realize that this magnitude will be important whenever there is a�ow of information a
ross the network sin
e it allows us to unveil whi
h nodeswill support the highest tra�
 levels.5.1.3 Network propertiesUp to now, we have de�ned quantities that only made referen
e to the prop-erties of single nodes. However we need a statisti
al 
hara
terization of thesemagnitudes in order to have a proper des
ription of the networks. These sta-tisti
al indi
ators will involve averages of the single-node quantities over thewhole set V of nodes. This implies that the validity of the information pro-vided by the statisti
s will be only justi�ed when the 
ardinality of V , is verylarge N → ∞. This assumption is not always ful�lled when looking at realnetworks, e.g. the largest studied network (the WWW) has 109 nodes whi
his orders of magnitude smaller than the number of parti
les of the systemsstudied by statisti
al and 
ondensed matter physi
s. However, the use of astatisti
al des
ription has turned out to be very 
onvenient when studyingnetworks and the existen
e of �nite size e�e
ts do not prevent physi
ist from
onsidering networks as ma
ros
opi
 obje
ts (although in terms of statisti
alme
hani
s they are mesos
opi
 ones).Degree DistributionThe degree distribution, P (k), gives the probability that a given node is 
on-ne
ted to k neighbours. The 
onstru
tion of P (k) is obviously easy when oneknows the 
onne
tivity ki of every node i and then one 
an 
ompute the num-ber of nodes with a given 
onne
tivity k, Nk = NP (k). With the degree
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10−1 10−1Figure 5.2: Degree distribution of the three real networks: Gnutella peer-to-peernetwork [164℄, the Internet network at the Autonomous Systems representation [165℄and at the Router level [166℄. The network sizes are N = 711, N = 11174 and
N = 228263 respe
tively.distribution one 
an measure the average degree of the nodes

〈k〉 =
∑

k

kP (k) . (5.7)Analogously, we 
an de�ne the in-degree and out-degree distribution of adire
ted graph, P in(kin) and P out(kout). In this 
ase we will obtain that
〈kin〉 = 〈kout〉 = 〈k〉/2. In order to obtain information of the �u
tuationson the degree distribution one 
an 
ompute the se
ond moments of P (k),

〈k2〉 =
∑

k

k2P (k) (5.8)The behaviour of 〈k2〉 turns out to be very important for studying dynami
alpro
ess as we will see in 
hapter 6.As mentioned above, the measurement of the degree distribution in realnetworks lead to an astonishing result. It was found that lots of networks sharea 
ommon pattern for the shape of P (k): a power law behaviour P (k) ∼ k−γ .This result is far from the expe
ted result when 
onsidering a fully randomgraph (one would expe
t to obtain a Poisson distribution as we will see below)and, as a plus, the form of a power law pointed out that there was a kind ofsef-organization in real networks. Power laws appear in the 
ontext of phasetransitions when a system goes from a disordered to an ordered phase. It is wellknown that at the transition the system posseses a self-similar 
hara
ter, thatis, no matter the re-s
aling we employ to analyse the system we will alwaysobserve that the system looks the same. This e�e
t is re�e
ted by a powerlaw sin
e it is the unique fun
tion that after 
hanging the s
ale remains withthe same fun
tional form: if k → ak then P (k) → a−γP (k). Be
ause of thisfeature this 
lass of networks are ususally termed �S
ale-free� networks in the



5.1. Des
ribing Complex Networks 127literature. In �gure 5.2 we show di�erent degree distributions observed whenanalysing real networks. We will analyse the emergen
e of su
h behaviour forthe degree distribution in se
tion 5.2.3. Let us remark here that the terms
ale-free 
ould be in prin
iple misleading be
ause the absen
e of a typi
als
ale in the degree distribution does not imply that we 
annot observe s
aleswhen looking at other topologi
al magnitudes.Degre-Degree CorrelationsThe knowledge of the degree distribution fully 
hara
terize the network topol-ogy when the statisti
al independen
e of the nodes is ful�lled. However thisis not the 
ase for many real networks. Then, it is 
onvenient to 
ompute the
onditional probability P (k
′ |k), i.e the probability that a node of degree k islinked to another one with degree k

′ . This probability satisfy
∑

k′

P (k
′ |k) = 1 (5.9)and

kP (k
′ |k)P (k) = k

′

P (k|k′

)P (k
′

) , (5.10)whi
h are the normalization and the detailed balan
e1 respe
tively. As westated above, for un
orrelated graphs P (k
′ |k) is given by the degree distribu-tion. From (5.9) and (5.10) we obtain in this 
ase P (k

′ |k) = k
′

P (k
′

)/〈k〉.In order to measure the behaviour of P (k
′ |k), it is 
onvenient to 
omputethe average degree of the neighbours of a node with 
onne
tivity k, knn(k).In general, the 
omputation of the matrix, Pk′ ,k = P (k

′ |k), yields very noisyresults sin
e the �nite size e�e
ts do not allow a proper statisti
al treatment.Then, we 
an 
ompute the fun
tion knn(k),
knn(k) =

∑

k′

k
′

P (k
′ |k) , (5.11)by simply 
omputing the average neigbours degree,knni introdu
ed in se
tion5.1.2 and averaging in every subset of nodes with identi
al degree

knn(k) =

∑

{i∈V | ki=k} knni

kP (k)
. (5.12)When degree 
orrelations are absent eq. (5.12) yields knn(k) = 〈k2〉/〈k〉and thus knn(k) does not depend on k. As noted above this is not the 
ase1This equation is 
onstru
ted by introdu
ing the probability of �nding a link 
onne
tingtwo nodes with degree k and k

′ , P (k, k
′

) = 2kP (k)P (k
′

|k)/〈k〉, and imposing its simmetryproperty P (k, k
′

) = P (k
′

, k).
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Figure 5.3: Degree-degree 
orrelationsof some of the real networks usedin this thesis. (a) Average 
on-ne
tivity of a vertex with degree k,
knn(k), for the Gnutella peer-to-peernetwork [164℄ and the Internet (at theAutonomous System level, AS [165℄)graphs. These networks display disas-sortative degree 
orrelations between
onne
ted verti
es, where two neigh-boring verti
es likely have dissimilardegrees. (b) knn(k) for the Inter-net (at the Router level [166℄) graph.This network displays assortative de-gree 
orrelations between 
onne
tedverti
es, where 
onne
ted verti
es tendto have similar degrees. The 
ontinu-ous lines are the best �ts to the powerlaw knn(k) = Akν .of real growing networks and one 
an usually �nd that knn(k) ∼ kν . When

knn(k) is a in
reasing (de
reasing) fun
tion of k, ν > 0 (ν < 0), we say that thenetwork is assortative (dissasortative). The assortativity denote the tenden
yof nodes of similar degree to 
onne
t with ea
h other while in dissasortativenetworks higly 
onne
ted nodes tend to be surrounded by low degree ones.There is a 
lear di�eren
e in the behaviour of knn(k) depending on the type ofthe network. In parti
ular, it has been observed that so
ial network tend tobe assortative while the rest ones (like te
hnologi
al and biologi
al networks)show dissasortative trends. In �gure 5.3 we show the analysis for knn(k) ontwo real networks.Average Shortest Path LengthWe 
an 
ondense the information of the distan
e matrix D by 
omputing themean of all the geodesi
 lengths between the nodes of the network. This givesthe average shortest path length, L

L =
1

N(N − 1)

∑

{i,j∈V |i6=j}

dij . (5.13)Along with L we 
an de�ne the diameter of a network as the maximum valueof the distan
es between nodes, D = max {dij | i, j ∈ V }. The analysis of thisquantity tells us whether the graph is 
omposed by one or several 
omponents.
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� Figure 5.4: An example of a tree-like graph with 
oordination num-ber 2.We term a 
omponent of a graph as a subset of nodes V

′ ⊆ V so that thedistan
e between any node i ∈ V
′ and the rest of nodes j ∈ V \ V

′ divergeswhile the distan
e with the nodes j ∈ V
′ remains �nite. Obviously both L and

D will diverge if the graph is partitioned in two or more 
omponents. In realgraphs this situation is 
ommonly found and one usually restri
t the analysis ofthe network to the 
omponent with maximal 
ardinality whi
h is the so-
alled�giant 
omponent�.Formaly, a network whose L grows logaritmi
ally with the number of nodes,
L ∼ log N , or even slower, is 
alled a �small-world�. This term 
omes from thefamous experiment by Milgram in the 60's [167℄. This experiment 
onsisted inasking a group of people to deliver some do
uments to a person 
hara
terizedby his name, pla
e of residen
e and his pro�esion. Then people were asked tosend the do
uments to those of their a
quaintan
es that they think of being
loser (either physi
ally or so
ially a

ording to the initial parameters given)to the �nal re
ipient. The results pointed out that every pair of people in theworld are in average 
onne
ted by only 6 steps in the global network of so
iala
quaintan
es. This results is broadly known as the �six degrees of separation�.Other experiments performed using the e-mail networks [168℄ 
on�rmed thesmall-world 
hara
ter of the global so
iety.From the mathemati
al point of view the small-world e�e
t is nothingbut the out
ome of an exponential in
rease of the nodes with the distan
efrom a 
entral element. A simple proof of the small-world phenomena 
an beperformed using one of the simplest networked stru
ture: a tree-like graph. Atree-like graph (see �gure 5.4) is 
omposed of a hierar
hi
al stru
ture whereevery node is 
onne
ted to d des
endants and its an
estor (d is usually termed
oordination number). In this 
ase the number of nodes whi
h are in the ishell (or generation) from a given node is Ni = di. Then, the whole set ofnodes are N = dL so that the average path length of the network is given by
L = log N/ log d so that L remains small even for large tree-like graphs.



130 Chapter 5. Network Stru
ture and GenerationClusteringIn se
tion 5.1.2 we introdu
ed the 
on
ept of the 
lustering 
oe�
ient of anode, ci. One 
an measure the average 
lustering 
oe�
ient of the nodes of anetwork, c, and 
onsider it as a measure of the density of small loops of length
3 in the network. Then, c will tell us how similar is our network to a tree-likenetworked stru
ture (see �gure 5.4) (if c→ 1 one 
an say that the network is farfrom being a tree graph). This measure was introdu
ed by Watts and Strogatz[155℄ but there are, however, another possible formulation for measuring thedensity of short 
ir
uits in a network that is 
alled transitiviy, T . Trasitivityis de�ned by

T =
3× 
ard [{(i, j,m) | (i, j), (i,m), (j,m) ∈ E}]
ard [{(i, j,m) | (i, j), (i,m) ∈ E}] . (5.14)While 
lustering was introdu
ed re
ently in the physi
al literature the 
on-
ept of transitivity was largely employed mainly by so
iologist. These twomagnitudes turn out to be meaningfull when looking at networks of di�erent�elds. It is well known that so
ial networks of a
quaintan
es present a high
lustering denoting the fa
t that two friends of a person are very likely toknow ea
h other. That is the 
ase of s
ienti�
 
oautorship networks [148, 169℄.On the other hand, te
hnologi
al networks like peer-to-peer networks [170℄ orpower grids [155℄ are very poor in length 3 loops sin
e they are redundant inwhat refers to resour
es supply.The existen
e of a high 
lustering together with the small-world 
haraterlead to very e�
ient 
ommuni
ation stru
tures. This is be
ause the in
reaseof networks' 
lustering leads to a growth of the number of geodesi
s betweenthe pairs of nodes.5.1.4 Looking at Networks Mesos
aleThe statisti
al des
ription of the networks 
onsidered above 
an be extendedby looking at the kind of internal organization of subsets of nodes (if there isany). This implies that neither single nodes nor the whole ensemble of verti
esare studied, but groups of them whose 
ardinals may vary a lot depending onthe kind of network we deal with. The s
ale involved in su
h studies neither
an be 
alled �mi
ro� nor �ma
ro� and thus we term it the network mesos
ale.Two 
on
epts are 
entral in this pi
ture of the networks: 
ommunities andmotifs.



5.1. Des
ribing Complex Networks 131CommunitiesThe 
on
ept of 
ommunity2 has to do with the existen
e a 
ohesive subsetof nodes. This 
ohesion is a
hieved by the existen
e of large number of linksamong the members of this subset 
ompared to the typi
al number of linksthat they share with the rest of the network. More formally we 
an say that,given a graph G(U, V ) a 
ommunity is a subgraph G′(U ′, V ′) so that L′ .
ard {i ∈ U ′ | (i, j) ∈ V, j ∈ U}. Obviously, we need a quantitative des
riptionon how 
ohesive a subset of nodes is in order to de
ide whether or not theyform a 
ommunity.Several ways for quantifying 
ommunity stru
tures have been proposed.However we 
an distinguish to kinds of de�nitions depending of the 
onditionsimposed. The �rst type imposes 
ertain 
onstrains to the number of linkswithin the members of the 
ommunity. In this sense, the strongest de�nitionstates that a 
ommunity is a subgraph G′(U ′, V ′) so that if i, j ∈ U ′ then
(i, j) ∈ V ′), i.e. all pairs of 
ommunity members are linked to ea
h other.This de�nition is too restri
tive and then far from being useful. In fa
t, themaximal subgraph G′(U ′, V ′) that ful�lls the above requirement is termed a
lique. One 
an relax the 
onditions and 
onsidering that 
ommunities as then-
lique of the graph. N-
liques are maximal subgraphs in whi
h the largestgeodesi
 distan
e between any two nodes is no greater than n. Other way forrelaxing the former 
ondition is to redu
e the number of other nodes in thesubgraph to whi
h ea
h node must be 
onne
ted, the 
on
ept of k-plex is thenapplied. A k-plex is a maximal subgraph 
ontaining n nodes, in whi
h ea
hnode is adja
ent to no fewer than n− k nodes in the subgraph.The above de�nitions have to do only with the links within the elements ofthe subgraphs and there is no mention to the ratio between these inner-linksand those going to the rest of the network. From our point of view this kindof arguments have to be in
orporated to our 
riterion in order to get 
loser tothe 
ohesive pi
ture. Then, we have to look to 
ommunities as groups of nodeswithin whi
h 
onne
tions are dense, and between whi
h 
onne
tions are sparseror, more formally, we 
an say that, given a graph G(U, V ) a 
ommunity is asubgraph G′(U ′, V ′) so that L′ . 
ard {i ∈ U ′ | (i, j) ∈ V, j ∈ U}. An exampleof this 
onsideration is plotted in �gure 5.5.a. There are several de�nitionswith this philosophy (see [171℄). One de�nition is the following: G′(U ′, V ′) isa 
ommunity if the sum of all degrees within G′ is larger than the sum of alldegrees toward the rest of the graph [172℄.2The �rst network des
ription in terms of 
ommunities appear in the 
ontext of so
ials
ien
e [171℄
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(a) (b)Figure 5.5: (a) S
hemati
 pi
ture of a set of 4 
ommunities (surrounded by dashed
ir
les). The density of inner-links between nodes of the same 
ommunity is mu
hlarger than that of the links with members of the rest of the network. (b) The 7possible 4-nodes motifs.MotifsWe de�ne a motif M as a pattern of inter
onne
tions so that its o

urren
ein a graph is signi�
antly higher than in randomized versions of the graph,i.e. graphs with the same number of nodes, links and degree distributionas the original one, but where the links are distributed at random. Moreformally, M is usually 
onsidered as a n-node 
onne
ted graph whi
h is asubgraph of G. An example of all the possible 4-node 
onne
ted graphs isillustrated in �gure 5.5.b. The 
on
ept of motifs (originally introdu
ed byUri Alon and 
oworkers [173�177℄) was employed for studying the �nding ofre
urrent patterns of inter
onne
tions between a small number of nodes inbiologi
al and other networks.In order to obtain a quantitative des
ription for the appearan
e of thesigni�
ant motifs in a graph G, one makes use of mat
hing algorithms for
ounting the total number of o

urren
es of ea
h n-node subgraph M in theoriginal graph and in the randomized ones. Then, one 
an de�ne the statisti
alsigni�
an
e of a given motif M by some s
ore fun
tion, like the so-
alled Z-s
ore [174, 176℄
ZM =

nM − 〈nrand
M 〉

σrand
nM

, (5.15)where nM and nrand
M are the number of times the subgraph M appears in Gand in its randomized 
ounterpart repe
tively. σrand

nM
is the standard deviationof the number of appearan
es in the randomized network ensemble.



5.2. Overview of network generation models 1335.2 Overview of network generation modelsIn this se
tion we brie�y a

ount for several important network models. Nowa-days there is a huge number of ways for generating 
omplex networks that tryto 
apture the properties of real graphs. Many of them are variations of themodels we present below sin
e they represent seminal works on the matter.For a 
omplete review on 
urrents trends in network modeling we refer thereader to [156, 158, 159, 163℄.5.2.1 Random graphsWe 
all random graphs to those network where the links between nodes arerandomly distributed3. In their seminal work in the subje
t, Erdös and Rényi[140℄ (ER for short) proposed a method for the 
onstru
tion of random graphswith N nodes and L links: Starting from N isolated nodes, pairs of randomly
hosen nodes are linked avoiding self and multiple 
onne
tions. This pro
ess isstoped when L links have been stablished. A single graph obtained using theabove re
ipe is one of the ( „

N
2

«

L

) possible equiprobable realizations. Theset of all these possible realizations is 
alled the set of uniform random graphswith N nodes and L links, GER
N,L. In a random graph the probability that twogiven nodes are linked is L/
(

N
2

).Another possible strategy for 
onstru
ting random graphs is to sampleevery pair of nodes and with probability 0 < p < 1 link them. This pro
edurede�nes a di�erent set 
alled random binomial graphs, GER
N,p, that 
ontains graphswith di�erent number of total links L being

pL(1− p)

“

N
2

”

−L (5.16)the probability that a graph belonging to GER
N,p has L links. Then the averagenumber of links of a graphs in this set is p
(

N
2

).The two sets (uniform and binomial) of random graphs are tightly relatedto the 
anoni
al and grand 
anoni
al ensembles of the equilibrium statisti
alme
hani
s when one looks at the number of edges as the number of parti
lesin the system. Both ensembles 
onverge to the same set in the thermodynami
limit N → ∞ when approa
hed keeping 〈k〉 �xed (wi
h is equivalent to �x
2L/N and p(N − 1) in the uniform and the binomial sets repe
tively).3In fa
t, all the network models analysed in this 
hapter are stri
tly random in the sense ofthe me
hanism adopted for their 
onstru
tion. However, the term random graph is overusedin the literature for 
alling Erdös-Rényi networks.



134 Chapter 5. Network Stru
ture and GenerationThe stru
tural properties of the ER graphs vary as a fun
tion of p, showinga dramati
 
hange at the 
riti
al probability pc = 1/N that 
orresponds to
〈k〉 = 1. In parti
ular:
• If p < pc, the size of the giant 
omponent of the graph is of the order

O(ln N) graph and there is no graph 
omponent with more than oneloop.
• If p = pc, the size of the giant 
omponent goes with O(N2/3).
• If p > pc, the graph has a giant 
omponent with a number of loops thats
ales as O(N) and there is no other graph 
omponent with more than

O(ln N) elements neither with more than one loop.This transition (
hara
terized by Erdös and Rényi in [141℄) is strongly relatedwith the per
olation transition studied in the theory of 
riti
al phenomena[178℄.In ER graphs the probability that a node has k neighbours follows thebinomial distribution
P (k) =

(

N − 1

k

)

pk(1− p)N−1−k , (5.17)that for 〈k〉 �xed and N →∞ tends to the Poisson distribution
P (k) =

〈k〉k
k!

exp (−〈k〉) . (5.18)Erdös and Rényi graphs are un
orrelated sin
e the links are laun
hed atrandom independently of the degree of the nodes. As a 
onsequen
e, P (k
′ |k)and knn(k) are independent of k. Con
erning to the 
onne
tivity properties ofan ER graph, when p > ln N/N nearly all the generated graphs are 
omposedof one single 
omponent and the average path length takes values around 〈k〉 =

ln N/ ln (pN) = ln N/〈k〉 be
ause lo
ally the ER topology is viewed as a treelike stru
ture where a single node has 〈k〉 neighbours, 〈k〉2 nodes at distan
e
2,... Finally, sin
e p is the probability of two nodes sharing a link there willbe pk(k − 1)/2 links among the neighbours of a node of degree k so thatthe 
lustering 
oe�
ient goes as c = p = 〈k〉/N , and then it vanishes in thethermodynami
 limit.5.2.2 Small-world networksIn 1998 Watts and Strogats (WS) proposed a method of graph 
onstrution thatallows to obtain networks with a high 
lustering 
oe�
ient and small average
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0 10.05 p

Figure 5.6: Three kind of networks obtained used the Watts-Strogatz method startingfrom a regular one-diemnsional network where every node is linked to its 4 nearestneighbours. For p = 0 we obtain the regular network. For small values of p ≪ 1 wehave �Small World� networks from the small amount of reassigned links. Finally, for
p = 1 random networks are obtained.path leghth [155℄. We have seen that ER graphs present a small value of Land that c vanishes when N →∞. On the other hand, a regular network with
onne
tions to �rst, se
ond, third,... next nearest neighbours presents a highvalue of the 
lustering 
oe�
ient joined with large values of L. In some sense,the WS model interpolates smoothly between these two topologies.The WS pro
edure starts from a ring (see �gure 5.6) where every node issymmetri
ally linked to its 2m next nearest nodes so that there is L = mNlinks. Then, every link is 
onsidered and with probability p it is substitutedby another link that 
onne
ts one of the original nodes with a new one 
hosenat random. Note that for p = 0 we maintain the original regular topologywhereas for p = 1 an ER random graph is generated. In �gure 5.7 it is shownhow for a range of p values the WS model generates networks with both thesmall world property (due to short
uts added when p 6= 0) and high 
lustering
oe�
ient (inherited from the regular topology), two 
hara
teristi
s shared bya number of real networks. This result reveals that the 
lustering 
oe�
ientis very robust under link reasignation whereas L rapidly de
reases when a fewshort
uts are in
orporated.Analyti
al 
al
ulations on the transition observed in the WS model arefound in [179�182℄. It has been shown that the appearan
e of the small world
hara
ter as p in
reases is not a phase transition but a 
rossover phenomenon.The 
hara
teristi
 length satisfy the s
aling relation L(N, p) = Nf(Np) where

f(x) ∼
{

c if x≪ 1
ln x
x if x≫ 1

(5.19)



136 Chapter 5. Network Stru
ture and GenerationBesides, in [181℄ the authors found the analyti
al expressions for the 
lusteringand the degree distribution as a fun
tion of the 
ontrol parameter p

c(p) =
3(m− 1)

2(2m − 1)
(1− p)3 (5.20)

P (k; p) =

min(k−m,m)
∑

i=0

(

m

i

)

(1− p)ipm−i (pm)k−m−i

(k −m− i)!
exp(−pm) ,(5.21)the last equation (5.21) is valid provided k ≥ m otherwise P (k < m; p) = 0.The WS model was later modi�ed by Newman and Watts in order to solvethe possible formation of dis
onne
ted graphs of the network as short
uts werein
orporated. Then, they proposed to add new links between randomly 
hosennodes instead of making the rewiring pro
ess [183℄. They 
onsidered everynode and with probaibility p a link was stablished with any other node of thenetwork so that the average number of short
uts added is pN .5.2.3 S
ale-Free networksThere are a large number of models that reprodu
e the power law fun
tionalform for the degree distribution. However, we will fo
us here on those modelsthat in
orporates the growing 
hara
ter present in real networks, where theamount of nodes grows with time, to the formulation of the model. Thesemodels usually 
onsist of an initial small subset of nodes to whi
h new nodesare sequentially in
orporated by laun
hing new links over those nodes thatalready take part of the network (see �gure 5.8). In parti
ular, the work byBarabási and Albert (BA) in 1999 [145℄ suposed an important breakthroughto the problem of �nding the roots of the SF behaviour of real networks andhad the growing pro
ess as a key ingredient of their formulation.The BA models works starting from an initial 
ore of m0 isolated nodes.Figure 5.7: Evolu
ion of the 
lus-tering 
oe�
ient and the averageshortest path length as a fun
tionof p. Note that near p = 4 · 10−3the 
lustering remains 
omparableto the values of the regular net-work whereas L has de
reased sig-ni�
atively.



5.2. Overview of network generation models 137At ea
h time step a new node is in
orporated to the network by laun
hing
m ≤ m0 links over the already existing ones so that the network 
ore growslinearly in time. The probability that one of the 
ore nodes, i, re
eives a linkfrom the new node is proportional to its degree, ki,

Πpa
i =

ki
∑N(t)

j=1 kj

, (5.22)where N(t) is the number of nodes that form the network 
ore at time t,
N(t) = m0 + t − 1. Besides, the total number of links at time t evolvesas L(t) = mt. The above rule for node sele
tion was termed preferentialatta
hment and favours that a node with more links than others will in
reaseits 
onne
tivity at a higher rate (this is usually referred to as ri
her gets ri
her).Obviously, the soonest a node is in
orporated to the network 
ore the most
onne
ted it will be at larger times.The solution of the BA model was found by the same authors by means ofa mean �eld approximation4 [145, 187℄. In this formulation the 
onne
tivityof a node i, ki, is 
onsidered as a real 
ontinuous and time-derivable variable.Considering that new nodes are uniformly in
orporated in time and that theyatta
h m new links, we 
an write the evolution equation of ki as

∂ki

∂t
= mΠpa

i (ki) = m
ki

∑N(t)
j=1 kj

=
ki

2t
, (5.23)with the initial 
ondition ki(ti) = m, and ti being the time when node i wasadded to the network 
ore. The solution to eq. (5.23) is

ki(t) = m

(

t

ti

)1/2

. (5.24)4Other solutions to this important model have been found solving the rate equation forthe 
onne
tivity distribution [184�186℄.
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hemati
 representation of thegrwoth pro
ess. At ea
h time steps a newnode is in
orporated to the network 
orelinking to m = 3 nodes that already belongto the 
ore.
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P
(k

)

k

k−3 Figure 5.9: Degree distribution,
P (k), for a BA network with N =
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In order to obtain the degree distribution we �rst take the 
umulative distri-bution, P (ki < k). From (5.24) one obtains

P (ki < k) = P

(

ti ≥
m2

k2
t

)

. (5.25)Finally, sin
e the adition of new nodes is performed uniformly, the probabilityof �nding at time t a node that was in
orporated to the network at time ti is
P (ti; t) = 1/(m0 + t). Then, the above probability (5.25) 
an be written as

P (ki < k) = 1− m2t

k2(m0 + t)
, (5.26)so that the degree distribution yiels

P (k) =
∂P (ki < k)

∂k
=

2m2t

m0 + t
k−3 . (5.27)Taking the limit when t → ∞ we obtain the power law P (k) = 2m2k−3 withthe exponent γ = 3. In �gure 5.9 we show the numeri
al results for the degreedistribution when the BA is implemented.Analyti
al 
al
ulations a

ounting for other magnitudes have been per-formed. For example in [188℄ the authors showed that the shortest path lengthis smaller than that observed for ER graphs. In parti
ular L ∼ log N/ log (log N).Besides, the 
lustering 
oe�
ient in BA networks vanishes in the thermody-nami
 limit as happened for ER graphs. However, although the 
lusteringde
ay is seen to be slower, c ∼ N−3/4, than in the 
ase of ER networks, itrepresents a major weakness of the BA model.Variations of the preferential atta
hment rule (5.22) has been broadly stud-ied after the BA model appeared. These variations try to obtain more �exiblemodels in order to grow networks with other 
hara
teristi
s similar to those
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al knowledge 139found in real network for whi
h the BA fails to reprodu
e (existen
e of high
lustering, the presen
e of degree 
orelations, the variety of exponents foundfor the ower law distribution, et
 ...) while keeping the SF 
hara
ter indu
ed bythe preferential atta
hment. Some examples of these variations 
an be foundin [186, 189�199℄.5.3 Global versus lo
al knowledgeIn this se
tion, we revisit one of the main assumptions of the Barabási-Albertmodel: the preferential atta
hment rule. We study a model in whi
h the PArule is applied to a neighborhood of newly 
reated nodes and thus no globalknowledge of the network is assumed. We numeri
ally show that global prop-erties of the BA model su
h as the 
onne
tivity distribution and the aver-age shortest path length are quite robust when there is some degree of lo
alknowledge. In 
ontrast, other properties su
h as the 
lustering 
oe�
ient anddegree-degree 
orrelations di�er and approa
h the values measured for real-world networks.As explained in Se
. 5.2.3 the �rst s
ale-free network model, introdu
ed byBarabási and Albert, postulated that there are two fundamental ingredientsof many real networks [145, 187℄: their growing 
hara
ter and the preferentialatta
hment (PA) rule. The preferential atta
hment rule 
onsiders that theprobability that an old node links to newly added nodes is proportional to itsdegree k (see eq. 5.22). However, the BA model assumes that one knows the
onne
tivity of all nodes when a new node links to the network. This is 
learlyan unrealisti
 assumption. This drawba
k of the model 
onstru
tion has notpassed unnoti
ed and many models have been introdu
ed to produ
e s
ale-freenetworks and to test whether or not the basi
 assumptions of the BA re
ipeare ne
essary 
onditions to build up these networks [156, 158℄. There are somemodels in whi
h the PA rule is limited to a neighborhood due to geographi

onstraints [200℄, or where its linear 
hara
ter is investigated [201℄.In the model de
ribed here, we adopt a di�erent perspe
tive. Our aim isto test to what extend the global 
hara
ter of the PA rule in the original BAmodel is important. We introdu
e a model in whi
h the PA is applied only toa neighborhood of the newly added node depending on the value of a variablewhi
h measures the a�nity between di�erent nodes. By going down from theBA limit of the model to the the limit where all nodes are distin
t, we test towhat extend the global knowledge of ea
h node's 
onne
tivity is fundamental toget a s
ale-free graph. Through numeri
al simulations we �nd that in a widerange of the model parameters, average quantities su
h as the 
onne
tivitydistribution and the shortest path length are not a�e
ted by the use of lo
al
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ture and Generationknowledge of the network whereas other properties like the 
lustering 
oe�
ientare more sensitive to lo
al details.5.3.1 The modelThe model is de�ned in two layers. The �rst dis
riminates among all the nodesby assigning to ea
h node at the moment of its 
reation a parameter ai whi
hmeasures how 
lose or distin
t a given node is from the rest of the elementsthat 
ompose the network. Then, we apply the preferential atta
hment rulein the neighborhood de�ned by nodes with 
ommon a�nities. Spe
i�
ally, thenetwork is 
onstru
ted by repeated iteration of the following rules:(i) Start from a small 
ore of nodes, mo, linked together. Assign to ea
h ofthese mo nodes a random a�nity ai taken from a probability distribution,
P (a). In what follows, we will use for simpli
ity a form for P (a) uniformlydistributed between (0, 1).(ii) At ea
h time step, a new node j with a random a�nity aj is introdu
edand linked to m nodes already present in the network a

ording to therules spe
i�ed below.(iii) Sear
h through all nodes of the network verifying whether or not the
ondition ai − µ ≤ aj ≤ ai + µ is ful�lled, where µ is a parameter that
ontrols the a�nity toleran
e of the nodes. The nodes that satisfy thea�nity 
ondition are grouped in a set A as potential 
andidates to gainnew links.(iv) Apply the preferential atta
hment rule to the set A 5, i.e., when 
hoosingthe nodes to whi
h the new vertex links, we impose that the probabilitythat vertex i 
onne
ts to the new node depends on its 
onne
tivity su
hthat

Π(ki) =
ki

∑

s∈A ks
. (5.28)(v) Finally, repeat steps (ii)-(iv) t times su
h that the �nal size of the networkis N = mo + t.It is worth mentioning that the in
lusion of the a�nity parameter a is not amere artifa
t. Indeed, most real systems are formed by non-identi
al elementsand thus it is natural to assume that although a given node 
ould have a5In 
ase that the number of elements in the set A is smaller than m we just add a linkto all nodes in A without applying the PA rule.
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al knowledge 141large 
onne
tivity a newly 
reated element will not link to that node be
ausethey have very little in 
ommon. This feature is 
learly manifested in so
ialnetworks like the WWW −where individuals bookmark di�erent web pagesa

ordingly to their �a�nity�− or the s
ientist 
itation network [142℄. In thisway, it is very unlikely to �nd a 
itation in a 
ondensed matter paper referringto a paper wrote by a psy
hologist. Additionally, the same argument 
an betranslated to biologi
al networks su
h as predator-prey webs or protein-proteinintera
tion networks.Obviously, when µ is large enough as to dilute the �rst layer of the model,we re
over the BA model. The problem then 
onsists of determining to whatextend the lo
al preferential atta
hment will give the same results, or in otherwords, does the knowledge of the entire network substantially 
ontribute tothe properties observed in the BA networks?5.3.2 Network propertiesWe have performed extensive numeri
al simulations of the model des
ribed inthe pre
eding se
tion. In all 
ases, the numeri
al results have been obtainedafter averaging over at least 500 iterations varying the system size from 103 upto 1.2×104 nodes. We �rst generate the BA network by setting the parameter
µ to its maximum value su
h that the preferential atta
hment applies to theentire set of nodes and then tune µ in order to systemati
ally redu
e its valueand therefore the size of the set A to whi
h the se
ond 
hoi
e eq. (5.28) isapplied.Figure 5.10 shows the number of nodes with 
onne
tivity k for several val-ues of µ. It turns out that irrespe
tive of the range to whi
h the preferentialatta
hment is applied the stationary probability of having a node with 
on-ne
tivity k is the same as for the BA model, namely, Pk ∼ k−γ with γ ≈ 3.This result 
ould be intuitively understood by noting that although the rulesfor the network generation has been 
hanged at a lo
al level, from a globalperspe
tive the average properties should not 
hange radi
ally. To realize thispoint, think of the network as being made up of di�erent small 
omponents, asgiven by the a�nity 
onstraint, ea
h of whi
h is 
onstru
ted following the BAalgorithm. It is then 
lear that for large system sizes, ea
h graph will followthe power law distribution Pk ∼ k−3 and so will be for the entire network.The above argument applies only to average global properties, but there isnothing that guarantees a priori that the 
omponents of the network will linktogether in su
h a way that other properties will not be a�e
ted. This is the
ase of the average shortest path length L. As already introdu
ed, 
omplexnetworks show the noti
eable property, known as small-world property, that the
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Figure 5.10: Number of nodes with 
onne
tivity k for di�erent values of µ. The sizeof the network is N = 104 nodes and mo = m = 3. The power-law distribution hasan exponent equal to 3. Note that the BA limit 
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es rising the value of L(µ)is observed. See the text for further details.



5.3. Global versus lo
al knowledge 143
(a) Pajek (b) Pajek

(
) Pajek (d) PajekFigure 5.12: Graph representations of four networks produ
ed with di�erent valuesof µ. The values of µ 
orrespond to (a) µ = 1, (b) µ = 0.2, (
) µ = 0.1, (d) µ = 0.04.Ea
h network is made up of N = 500 nodes.average path length in
reases at most with the logarithm of its size. We expe
tthat for high values of µ the network is 
omposed by a unique giant 
omponentand no fragmentation arises. When the range to whi
h the a�nity 
riterionis applied de
reases, the network will gradually loose its 
ompa
tness and willstret
h approa
hing a one-dimensional stru
ture with some small 
omponents.Further redu
tion of µ provokes the break down of the network in many isolated
lusters.Figures 5.11 and 5.12 substantiate this pi
ture. Figure 5.11 representsthe ratio between the average path length obtained for di�erent values of µand that of the BA network, for several system sizes. As µ restri
ts the PArange, the network undergoes a transition 
hara
terized by a growth of L(µ) aneventually be
omes fragmented giving rise to an in�nite shortest path length.We note here that although the results shown in the �gure have been obtainedfor a uniform distribution of a�nity values ai, the qualitative behavior doesnot 
hange for other probability distributions and only the value at whi
h thetransition is observed slightly shifts to the right. The shape of the networkas the parameter µ is varied 
an be observed in �gure 5.12, where we haverepresented how the network looks like for the limiting values of µ. It is 
learthat when the PA range redu
es too mu
h the stru
ture of the network radi
ally
hanges while keeping the same degree distribution.We now fo
us our attention on other properties with a lo
al 
hara
ter. Thisis the 
ase of the 
lustering 
oe�
ient of a node ci. The 
lustering 
oe�
ientis of lo
al 
hara
ter as it gives the probability that two nodes with a 
ommon
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Figure 5.13: (a) Average 
lustering 
oe�
ient ck of nodes with degree k for �vedi�erent values of the parameter µ. Note that as µ de
reases, the 
lustering 
oe�
ientdeparts from the BA limit (µ = 1). (b) The average 
lustering c as a fun
tion of µ
on�rms this result. The parameters used for the generation of the networks are asof �gure 5.10.neighbor are also linked together. Thus, it is expe
ted that this magnitude, inour model, depends on the a�nity of ea
h node and the range of preferentialatta
hment given by µ. Figure 5.13.a shows the average 
lustering 
oe�
ientof nodes with a given 
onne
tivity k, for di�erent values of the parameter µ.The BA limit exhibits almost no 
orrelations with the degree k of the verti
esand the smallest value for the 
lustering 
oe�
ient. As µ is redu
ed, the �rstsele
tion of nodes by their a�nity values plays a more dominant role 
ontribut-ing to the rising of ci for small and large 
onne
tivities. Near the transition,
µ ∼ 0.04, the average 
oe�
ient is about one order of magnitude greater thanthat of the BA network. In order to see this growth of the 
lustering as thelo
ality of the PA is in
reased we show in �gure 5.13.b the mean 
lustering
oe�
ient (averaged over all the elements of the network), c, as a fun
tion of
µ. The results reveals that the 
lustering grows in a rather regular fashionwhen µ de
reases so that �nally c is in
remented by a fa
tor 3 at µ = 0.1respe
t to the value at the BA limit.These results are important for what 
on
erns to the existen
e of 
y
les ofsmall length in the network (triangles and re
tangular loops are among thesegraph 
omponents). They are important be
ause they express the degree ofredundan
y and multipli
ity of paths among nodes in the topology of the net-work. The results obtained for ck indi
ate that as the region where the PAapplies is redu
ed, the number of 
y
les in
reases and non-random 
orrelationsarise. This is illustrated in �gure 5.14, where the average nearest neighbor
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Figure 5.14: Average nearest neighbor 
onne
tivity knn against k for several valuesof µ. Results are averaged over 100 network realizations for ea
h µ value. Otherparameters are as of �gure 5.10.
degree, knn(k) of a node with 
onne
tivity k is depi
ted. While the BA modelexhibits no 
orrelations, it is manifested the tenden
y that networks gener-ated with small values of µ display disassortative mixing at both ends of the
onne
tivity range.Finally, let us point out that although the values found for several magni-tudes 
an not be dire
tly asso
iated with real data, there are some regions ofthe parameter spa
e µ where non-trivial properties arise. In this sense, it wouldbe interesting to perform the same analysis in more realisti
 growing networkmodels looking for more similarities with real-world networks. For example,the exponent of the 
onne
tivity distribution 
an be tuned to small values byin
orporating the �rst level of sele
tion of the present model in the general-ized BA model [158℄, whi
h is known to give arbitrary γ values in the interval
(2, 3). As a plus, this model 
an be used to test the dependen
e of the net-work fun
tioning with its topologi
al stru
ture (when the degree distributionis �xed). In parti
ular, we will make use of it for analysing the performan
e ofdi�erent pro
esses pla
ed on top of the network [
ommuni
ation between nodes(se
tion 6.2.2) and sin
hronizability of Kuramoto networks (se
tion 8.2)℄ when
lustering and average path length are varied.
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ture and Generation5.4 Interpolation between Random and S
ale-FreenetworksThe seminal paper by Barabási and Albert [145, 187℄, showed that many realworld networks 
an not be des
ribed by Erdös-Rényi type graphs where the
onne
tivity distribution follows a Poisson-like distribution. While today wehave re
ognized that preferential atta
hment is not a ne
essary 
ondition forthe formation of s
ale-free networks [202℄, it seems to be 
lear that it is animportant me
hanism. Indeed, most of the existing models intrinsi
ally in
or-porate a preferential atta
hment like rule. On the other hand, uniform randomlinking of nodes on growing networks gives rise to networks where the degreedistribution de
ays exponentially fast with the degree k, thus produ
ing ho-mogeneous networks with a well de�ned (and meaningful) average value for
k [155, 181℄. The 
ombination of the two rules, i.e, uniform and preferentiallinking, have been also analyzed in several models for interpolating betweens
ale-free and exponential networks. For instan
e, Liu et al [203℄ have studieda model in whi
h the probability of establishing new links goes as a linear
ombination of both in su
h a way that a new link is established between anode i and a new one proportionally to (1 − p)ki + p, where p weights the
ontribution of the two me
hanisms. However, in previous models of this sort,there is an assumption that does not apply always. It has to do with the fa
tthat the network always grows around a single 
omponent of 
onne
ted nodesand uniform or preferential links from the emerging nodes are always madewith elements belonging to this unique 
luster. This single 
omponent growslinearly in time until it rea
hes the size of the network. Sin
e there are no
lusters of nodes other than the giant 
omponent, the models 
an not a

ountfor phenomena su
h as the 
oales
en
e of small networks into a larger one, norfor situations in whi
h more than one node is added to a preexisting stru
tureat ea
h time step, features that may be relevant in so
ial, e
onomi
 and othernetworked systems.In this se
tion, we analyze a model that interpolates between Erdös-Rényiand s
ale-free networks as far as the degree distribution is 
on
erned througha tunable parameter. The novel feature of the model is that, by 
onstru
tion,new links are not always established with nodes previouly in
orporated to thenetwork and thus allowing to interpolate with the 
lassi
al ER graphs. Weexplore analyti
ally and numeri
ally the time behavior of nodes atta
hment aswell as of the degree evolution. We �nd that, depending on the interplay be-tween uniform and preferential linking, the transition from an ER like networkto an SF one is smooth or more abrupt. The present model is useful as it pro-vides a unique re
ipe to go progressively from homogeneous to heterogeneoustopologies as well as for exploring the interplay between them.



5.4. Interpolation between Random and S
ale-Free networks 1475.4.1 The modelThe model introdu
ed in this work generates a one-parameter family of 
om-plex networks. This parameter, α ∈ [0, 1], measures the degree of heterogeneityof the �nal networks. Let us assume the �nal size of the network to be N . Thenetwork is generated in the following way:(i) Start from a fully 
onne
ted network of m0 nodes and a set U(0) of
(N −m0) un
onne
ted nodes.(ii) At ea
h time step 
hoose a new node j from U(0).(iii) This node makes a link in two ways:(a) With probability α it links to any other node i of the whole set of

N − 1 nodes with uniform probability
Πuniform

i = (N − 1)−1 . (5.29)(b) With probability (1 − α) establish a link following a preferentialatta
hment strategy, that is, the probability for any other node i toatta
h to node j is a fun
tion of its 
onne
tivity as,
ΠPA

i = F(ki) , (5.30)where di�erent 
hoi
es for the fun
tional form of F(x) are analyzedbelow.(iv) Repeat m times step (iii) for the same node j.(v) Repeat U(0) = (N −m0) times steps (ii) to (iv).A s
hemati
 plot of the linking pro
edure at step (iii) is shown in �gure 5.15.The above rules allow for the 
oexisten
e of two 
lasses of nodes. On one hand,there are nodes with at least one link. This set will be referred to hen
eforthas the 
onne
ted set Ω(t) 6. On the other hand, there is another set U(t) ofisolated nodes su
h that its size is N − Ω(t). At varian
e with other modelsin whi
h there are only nodes with 
onne
tivity di�erent from zero and thusthe 
onne
ted 
omponent grows linearly with time, the above rules allows theaddition of more than one node to the set Ω(t) as a result of random linking.Therefore, we expe
t the time dependen
y of Ω(t) to be highly non trivial.6We re
all on the possibility that the 
onne
ted set is temporarily 
omposed by morethan one 
onne
ted 
omponent. This is the 
ase for the initial stage of the network growthwhen α → 1. However, when N is high enough the �nal network is 
omposed by a unique
onne
ted 
omponent.
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α 1−α Figure 5.15: S
hemati
 representation of thegeneral pro
edure for generating the networks.With probability α one of the m links 
an bemade with any of the nodes (and with the sameuniform probability) that will take part in the�nal network. On the other hand, with proba-bility (1 − α) the link will be made only withthose nodes that form the 
onne
ted set at thattime be
ause the node will 
hoose a preferentiallinking strategy.5.4.2 Network growth and degree evolutionIn order to des
ribe the evolution of the nodes degree, one has to 
onsiderthe fun
tional form of F(x) for the preferential atta
hment probability (5.30).However, we 
an take into a

ount some previous 
onsiderations that do notdepend on the parti
ular form of F(x).First of all, it is useful to 
onsider two kind of links in order to analyze themodel. Namely, the ones that arise from a uniform random 
hoi
e, ku, andthe remaining, kpa, 
orresponding to the implementation of the preferentialatta
hment rule. The dynami
s of ku is 
ompletely independent of the dynam-i
s of the PA links, kpa, but the opposite is not ne
essarily true. From this, itfollows that the probability that one node has ku uniform links, P u(ku), is aPoisson distribution with 〈ku〉 = 2αm.
P u(ku) =

(2αm)k
ue−2αm

ku! (5.31)As a 
onsequen
e, we will 
on
entrate on analyzing the growth dynami
s ofthe PA links for the studied models.It is parti
ularly interesting to study at this point how uniform randomlinking a�e
ts the evolution of the 
onne
ted set sin
e this is 
ompletely inde-pendent on the spe
i�
 PA rule 
onsidered. This feature represents one of themain di�eren
es between the studied model and other previous me
hanismsused to generate growing networks. That is, in our model nodes are not in-
orporated to the 
onne
ted set at a 
onstant rate (like e.g. in the standardBarabási-Albert model) due to the possibility of adding new nodes from U(t)by applying uniform linking at time t and therefore the set U(t) 6= U(0) − t.
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ale-Free networks 149We 
an easily derive the evolution of the 
onne
ted set size, Ω(t) = N −U(t),for any value of the parameter α. For this, we 
onsider the growth of the
onne
ted set at ea
h time step, i.e. when a new node of U(0) throws its mlinks
Ω(t + 1) = Ω(t) +

N − Ω(t)

N − (t + m0)
+ αm

(

1− Ω(t)

N

)

. (5.32)In the above equation the se
ond term on the right a

ounts for the probabilitythat the new node (whi
h is throwing its m links) of U(0) does not belong al-ready to the 
onne
ted set at time t (due to the possible uniform links obtainedfrom previous nodes of U(0) already 
onne
ted to the 
onne
ted set Ω(t)). Be-sides, the third term on the right des
ribes the probability that any uniformlink thrown by the node is dire
ted to a node belonging to U(t). These twoterms a

ount for the growth rate of the 
onne
ted set. We 
an 
onsider thatboth time and Ω(t) are 
ontinuous variables and make the time step smallenough in order to obtain the 
orresponding ODE asso
iated to eq. (5.32),whose solution is given by
Ω(t) = N + (t + m0 −N)e−αmt/N . (5.33)The agreement between this 
al
ulation and Monte Carlo simulations is shownin �gure 5.16 for di�erent values of α and a preferential atta
hment as des
ribedin what follows (model A). It is worth noting the highly nonlinear behavior of

Ω(t), at varian
e with models in whi
h its size 
hanges at a 
onstant rate.We formulate below two di�erent ways to implement the preferential at-ta
hment rule, whi
h give rise to di�erent behaviors. In both models we will
onsider that the PA probability of a node j depends only on the PA links of thenode, kpaj . This new separation between PA links and uniform ones introdu
esa higher di�erentiation between the two simultaneous kinds of link dynami
simplemented here allowing us to manipulate (as shown below) the degree of
orrelation between them. The two models interpolate between s
ale-free andErdös-Rényi topologies but the stru
tural transition is quite di�erent (as wewill show in se
tion 5.4.3).MODEL AIn this �rst model we shall study a preferential atta
hment rule strongly 
or-related with the simultaneous uniform random linking. First, we 
onsider thatthe PA probability of a node i is linear with the in
oming PA degree of thenode, k̂pai , that is, those links re
eived by i when other node laun
hes (in aver-age) (1−α)m links following the PA rule. This parti
ularity of the PA rule wasalready 
onsidered by Dorogovtsev et al [186℄. Besides, we 
onsider that whena node is introdu
ed in the 
onne
ted 
omponent (be
ause either it is 
hosen
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Figure 5.16: Size of the 
onne
ted set Ω(t) as a fun
tion of time. Solid lines 
orrespondto the analyti
al results (eq. (5.33)) and points are the Monte Carlo results of network
onstru
tion (employing model A (se
. 5.4.2)). The 
omparison is made for N = 105and several values of α. The parameters of the model are set to A = m = m0 = 1.

Figure 5.17: Model A. Monte Carlo simulation (points) versus mean �eld (lines)results for k̂pa(t = N) as a fun
tion of the birth time t0 for di�erent values of α. Theparameters of the model were N = 105 and A = m = m0 = 1. The statisti
s of theMonte Carlo simulations were performed using 104 networks for ea
h value of α.



5.4. Interpolation between Random and S
ale-Free networks 151at random by any node or it is laun
hing its m outgoing links over the rest ofnodes) it has an initial attra
tiveness (or �tness) A. In other words, ea
h nodehas an asso
iated parameter Ai that is zero if the node i is not in the 
onne
tedset and is Ai = A if i is linked to other nodes (i.e., it belongs to Ω(t)). Wefurther 
onsider that the attra
tiveness Ai enters linearly in the preferentiallinking probability of node i. With these two ingredients, the expression for
ΠPA

j is given by
ΠPA

i =
k̂pai + Ai

∑

j∈N (k̂paj + Aj)
, (5.34)The introdu
tion of the �tness A 
orrelates the PA rule with the uniformlinking in the sense that the more links are established uniformly (the higher

α), the more new nodes with k̂pai = 0 are in
orporated to the 
onne
ted setfrom U(t) and hen
e (by the presen
e of A in the PA probability) the more
andidates to obtain PA links are available. This 
an be observed from theevolution of the 
onne
ted set Ω(t), when α is high there are a lot of nodesadded into Ω(t) at the early stage of the network 
onstru
tion so that thepotential growth of the PA degree of the former members of the 
onne
ted setis strongly weakened. In order to 
on�rm these heuristi
 
onsiderations wederive the mean �eld evolution for the in
oming PA degree of a node i, k̂paidk̂paidt
= (1− α)m

k̂pai + A

(1 − α)mt + A Ω(t)
, (5.35)(with the initial 
ondition k̂pai (ti0) = 0). Obviously, in the limit α = 0 were
over the mean �eld equation for the Generalized Dorogovtsev model [186℄(whi
h, when A = m, des
ribes the Barabási-Albert model). For α 6= 0 thein�uen
e of the uniform random linking is evident from the presen
e of Ω(t).The number of nodes that start to have the above dynami
s at some time t0 isdΩ(t)/dt evaluated at time t = t0 whi
h for α 6= 0 is not 
onstant as we haveseen in the previous 
al
ulation of Ω(t). The solution of (5.35) is then givenby

k̂pai (t = N)

A
= −1 + exp[(1− α)m

∫ N

ti0

dt

(1− α)mt + A Ω(t)

]

. (5.36)We have solved numeri
ally eq. (5.36) in order to obtain k̂pai (t = N) (or
kpai (t = N) = k̂pai (t = N) + αm) as a fun
tion of ti0. This fun
tion, alongwith the number of nodes whi
h are in
orporated to the 
onne
ted set at time
ti0 = t0, gives the degree distribution of the PA links. We have 
ompared theresults given by eq. (5.36) for di�erent values of α with the 
orresponding onesobtained by performing Monte Carlo simulations of the model (averaging over
104 networks for ea
h value of α). The results, plotted in �gure 5.17, show



152 Chapter 5. Network Stru
ture and Generationa very good agreement for the mean �eld model and the numeri
al network
onstru
tion. As expe
ted, the sooner a node is in
orporated to the 
onne
tedset the higher its �nal PA degree. However, as dis
ussed above, one 
an observethat this gain of the oldest nodes be
omes less important when the value of αgrows due to the 
ombination of two e�e
ts: (i) the appli
ation of the PA rulebe
omes less frequent and (ii) the fast growth of the 
onne
ted set tends tomake more homogeneous the PA probability of the nodes.MODEL BIn the se
ond proposal the two di�erent linking pro
esses are 
ompletely inde-pendent. For this, we 
onsider that ΠPA
i is a linear fun
tion of the (in
omingand outgoing) links that appear as a produ
t of the appli
ation of the PA rule.Then, kpai will be zero until it laun
hes its αm PA links over the rest of thenodes, i.e. regardless of kui . Then, the mean �eld equation for the evolutionof kpai is given by dkpaidt

= (1− α)m
kpai

2(1 − α)mt + m0
, (5.37)with the initial 
ondition kpai (ti0) = (1−α)m and ti0 being the time when node

i laun
hes its m links. Solving the above equation yields
kpai (t) = (1− α)m

[

t

ti0

]1/2

. (5.38)Be
ause the nodes laun
h their links at a 
onstant rate (one node per timestep), it is easy to obtain the degree distribution P (kpa)
P (kpa) = 2(1 − α)2m2(kpa)−3 , (5.39)whi
h is simply a power law distribution with a Barabási-Albert exponentregardless of the value of α. On the other hand, the relative weight of the powerlaw with respe
t to the Poisson distribution in the total degree distribution

P (k) will be obviously a�e
ted by α (as the prefa
tor in the above equationsuggests).5.4.3 Network propertiesIn this se
tion we dis
uss the transition from SF to ER networks in terms ofthe global topologi
al features of the networks. We have performed MonteCarlo simulations of the two models and 
ompared how the relevant topologi-
al measures evolve as a fun
tion of α. We are interested in obtaining how the
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Figure 5.18: Monte Carlo results for the degree distribution P (k) and rank-degreerelation for several values of α. (a) and (
) show the results for model A revealing aprogressive in
rease of the tails de
aying rate when α → 1. The results for model B((b) and (d)) show how the de
aying rate is not a�e
ted by α. The networks weregenerated with the following parameters N = 105 and m = m0 = 3 (A = 3 for modelA).di�erent 
orrelations between the uniform and PA linking rules a�e
t severalstru
tural measures. To do this, we have studied the behavior of three magni-tudes that behave very di�erent in the two known limiting 
ases (SF and ERnetworks), namely: the degree distribution P (k), the average shortest pathlength 〈L〉 and the se
ond moment of the degree distribution 〈k2〉.Degree distribution - The degree distribution evolution is 
learly di�erentfor the two models. In �gure 5.18 we have plotted the degree distribution andthe rank-degree relation for both models. The rank-degree relation provides auseful tool for analysing the degree heterogeneity of the networks [204℄ and thusit is helpful when looking at the transition between ER and SF networks. As
an be observed from �gures 5.18(a) and 5.18(
) the 
orrelated model A showsa smooth transition from the power law (α = 0) to the Poisson distribution(α = 1). The de
ay of the tails (k >> 1) of the degree distribution andthe rank-degree relation be
omes progressively faster as α grows revealing thede
rease of the exponent of P pa(kpa) as expe
ted from the results obtainedby the analyti
al insights developed for model A. For model B the transition
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Figure 5.19: Average path length(a) and se
ond moment of the de-gree distribution (b) as a fun
tionof α. Both quantities are repre-sented normalized by their respe
-tive values in the ER limit. Theresults 
learly manifest the twodi�erent transitions of the modelsregarding the heterogeneity evolu-tion along the interpolating path.The averaged networks had thefollowing parameters N = 104 and
m = m0 = 3 (A = 3 for model A).

is 
ompletely di�erent as it is shown in �gures 5.18(b) and 5.18(d). In bothrepresentations the de
aying rate of the tails is independent of α and thetransition to the Poisson distribution is mu
h more apparent for low values of
k. In this sense one 
an 
on
lude that highly 
onne
ted nodes persist alongthe transition of model B while for model A the heterogeneity is progressivelylost.Average shortest path length - The di�erent evolution of the degree dis-tributions observed above suggests to look at how the average shortest pathlength behaves along the two paths of interpolation. It is well known that theexisten
e of high degree nodes makes the network more 
ompa
t due to thepossibility of �nding short
uts between nodes going through the hubs. Hen
e,the persisten
e of highly 
onne
ted nodes determines the small diameter ofthe s
ale-free network. The results obtained are shown in �gure 5.19(a). Asexpe
ted, the average shortest path length as a fun
tion of α grows slower formodel B be
ause the probability of �nding hubs is higher than for the networksgenerated using model A for the same value of α.Se
ond moment of P (k) - In order to obtain a quantitative measure of theevolution of the degree heterogeneity for the two models it is 
onvenient tomeasure the se
ond moment of the degree distribution, 〈k2〉. This magnitudediverges (in the thermodynami
 limit N → ∞) for s
ale-free networks withexponents between 2 and 3. So, we expe
t a de
rease of the heterogeneityon the path to ER graphs. As 
an be observed from �gure 5.19(b), modelA shows a faster de
rease of 〈k2〉 as expe
ted from the study of the degreedistribution while for model B the transition is mu
h smoother revealing again
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ale-Free networks 155the persisten
e of highly 
onne
ted nodes along the path to the ER limit.As for other properties like the 
lustering 
oe�
ient and degree-degree
orrelations we have 
he
ked that they remain un
hanged irrespe
tive of thevalue α and wheter model A or B is implemented.The present model provides a useful tool to study the in�uen
e of the degreeof heterogeneity in dynami
al pro
esses of di�erent kinds just as the Watts-Strogatz model have proved to do so in the transition from regular to randomstru
tures. In parti
ular, there exist open questions in phenomena su
h asthe syn
hronization of 
oupled os
illators [205℄ where this kind of model 
ouldbe parti
ularly relevant to explore the system's behavior in the region wherehomogeneous and heterogeneous ar
hite
tures 
oexist. This question will bedeeply analysed in se
tion 8.3.





Chapter 6Propagation through ComplexNetworks The better a simulation is for its own purposes,by the in
lusion of all relevant details, the moredi�
ult it is to generalize its 
on
lusions for otherspe
ies. For the dis
overy of general ideas in e
ol-ogy, therefore, di�erent kinds of mathemati
al de-s
riptions, whi
h may be 
alled models, are 
alledfor. Whereas a good simulation should in
lude asmu
h detail as possible, a good model should in-
ludes as little as possible.� J. Maynard Smith in Models in E
ology [206℄.In this 
hapter we will fo
us on two of the main dynami
al pro
esses stud-ied on top of 
omplex networks, namely, the analysis of Epidemi
 spreadingand Information dynami
s. The interest of studying these problems is twofold.First, the simpli
ity of the des
ription of the two pro

eses allow for analyti-
al results, heuristi
 insights and extensive numeri
al simulations in order toexplain the role that the underlying topology has on the dynami
s. Then, oneof the advantages of studying these dynami
s is that the simple formulationof the models (usually expressed by means of linear rules) used for their de-s
ription does not mask the e�e
ts of the topologi
al 
omplexity. Besides, one
an realize by looking at the literature that a great number of the networkswhose 
hara
terization is available (mostly due to the simpli
ity for unveilingthe links between their 
omponents) 
an be regarded as either te
hnologi
al orlogisti
 networks. Then, the study of epidemi
s and information propagationis justi�ed for pra
ti
al purposes.



158 Chapter 6. Propagation through Complex Networks6.1 Epidemi
 spreading and ImmunizationThe history of the studies on epidemi
 spreading starts with the �rst works byepidemiologist at the beginning of the 20th 
entury [207℄. However, the burstin the mathemati
al modeling of disease transmission took pla
e in the middleof the 20th 
entury by the formulation of a large variety of models (interestingbooks on the matter are [208�211℄) aimed at reprodu
ing the evolution patternsof the number of 
asualties and infe
ted people during epidemi
 periods (see�gure 6.1). Re
ently, the attention has been redire
ted to the spreading ofinformati
 viruses. The interest in this �eld has been 
oupled to the availabilityof data about potential transmission networks (like the internet or peer-to-peernetworks). The development and deployment of a digital immune system toprevent te
hnologi
al networks from the spreading of viruses and to minimizethe damage produ
ed by intentional atta
ks are in the root of re
ent resear
he�orts [161, 212�222℄.In this se
tion we will �rst introdu
e two general models (SIR and SIS)that des
ribe the spread of epidemi
s on homogeneous systems. Then, we willturn our attention to the disease transmission in heterogenous substrates andthe performan
e of di�erent immunization strategies will be 
ompared. Finallywe will report on a new immunization strategy based on the 
overing problemof 
omplex networks. The performan
e of this new algorithm depends on thelo
al stru
ture of the network. We will implement this strategy along with theafore mentioned in order to 
ompare their results when deployed on top of realnetworks.
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Figure 6.1: Histogram ofthe number of deaths due tothe in�uenza-pneumonia epi-demi
 during the 1968-1969winter in New York. Thisextremely damaging in�uenzawas named the �Hong Kong�u� due to the pla
e where itstarted.



6.1. Epidemi
 spreading and Immunization 1596.1.1 Modeling epidemi
 spreadingThere are many di�erent models to des
ribe the epidemi
 transmission prob-lem. However, nearly all of them are variations of some general and 
oarsegrained models like the SIR (Sus
eptible-Infe
ted-Removed) and SIS (Sus
eptible-Infe
ted-Sus
eptible). The di�erent variations have to do with an in
reased
ompli
ation of the models to study parti
ular diseases. In order to fo
uson the importan
e that the topology of the network has on the spreading ofa disease we will deal with the most simpli�ed des
riptions of the epidemi
sdynami
s.The SIR modelThe SIR model was introdu
ed by Kerma
k and M
 Kendri
k in 1927 [207℄ toexplain the rapid rise and fall in the number of infe
ted patients observed inepidemi
s su
h as the plague (London 1665-1666, Bombay 1906) and 
holera(London 1865). This model was re
overed by the work of Anderson and May[223℄ after being oversought for de
ades. The SIR model is a typi
al exampleof the so-
alled 
ompartmental models. In this 
lass of models the elementsare viewed as parts of several groups (or 
ompartments) so that the evolutionequations are referred to the number of elements of ea
h group. The SIR modeldes
ribes the spreading of infe
tious diseases in whi
h ea
h individual 
an beeither immunized or dead after the 
ontagion. Following this assumption we
an 
lassify the population into three di�erent groups:
• Sus
eptible: Those healthy people who have not been infe
ted and thusare likely to 
ontra
t the disease in the future.
• Infe
ted: People who has been 
ontagied and are 
urrently su�ering thee�e
ts of the disease. They 
an infe
t Sus
eptible people in the 
ourse oftheir disease.
• Re
overed and Removed: Composed by people that �nally died due tothe disease or re
overed and got immunized.Then, individuals 
an 
hange their state by means of the jumps between thethree 
ompartments, S → I → R. The dynami
al rules a

ounting for the �uxamong the three states determine a set of di�erential equations for the densitiesof the population groups s(t) = S(t)/N , i(t) = I(t)/N and r(t) = R(t)/N .The 
hange rate for sus
eptible elements is always negative and propor-tional to the number of 
onta
ts among infe
ted and sus
eptible elements.
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all λ the probability that one sus
eptible individual gets infe
ted in one
onta
t, then we 
an write dsdt
= −λ〈k〉s(t)i(t) . (6.1)The evolution of the proportion of infe
ted individuals, i(t), has two 
ontri-butions, one positive −ṡ(t) and one negative a

ounting for the re
overing (ordeath) rate of the infe
ted individualsdidt

= λ〈k〉s(t)i(t) − µ i(t) , (6.2)where µ is the re
overing (or death) rate that 
orresponds to the inverse ofthe average disease time for an individual. Taking into a

ount that r(t) =

1− s(t)− i(t) the last evolution equation for the re
overed density isdrdt
= µ i(t) . (6.3)The above formulation of the model equations assumes the homogeneousmixing hypothesis that 
onsiders that the set of sus
eptible people with whoman infe
ted individual establishes 
onta
ts is taken at random within the wholepopulation. This is manifested in the 
onstant value for the number of 
on-ta
ts 〈k〉 so that the approa
h is only valid for homogeneous networked systems.Along with this assumption we have 
onsidered homogeneity in the agent 
har-a
teristi
s so that λ and µ (although seen as averages) are meaningful. Thismodel is seen as a mean �eld approximation to the epidemi
 spreading prob-lem. One 
an modify the SIR model by adding more 
ompartments (like e.g.in models for VIH propagation where a set of people su�ering an in
ubationperiod, or more te
hni
ally a laten
y period, should be distinguished fromthose who have the disease already diagnosed) or by 
onsidering that the times
ale involved is slow enough so that additional terms a

ounting for naturalbirth and death rates should be in
orporated. We 
an res
ale 
onveniently theabove equations (µ → 1, t → µt, λ → λ/µ) in order to have a single 
ontrolparameter λ to study the behaviour of the model.The question to answer in the SIR model has to do with the 
onditionsunder whi
h a small infe
tious seed leads to a signi�
ant fra
tion of individualsat the re
overed state when the steady state (i(t) = 0) is rea
hed for thewhole system. One 
an translate this question in terms of a general bondper
olation problem sin
e an epidemi
 is set when there is a large enoughfra
tion of �o

upied� bonds (those that the epidemy used to spread) to leadto the formation of a network 
omponent whose size s
ales with the size ofthe graph (signaling an epidemi
 per
olation). In fa
t, there exist an exa
t
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Figure 6.2: Graphi
al solutionof r⋆ given by last expressionin eq. (6.4). It 
an be ob-served the emergen
e of these
ond solution (
orrespond-ing to the epidemi
 per
ola-tion) for λ/µ > 〈k〉−1. Theinset shows a qualitative plotof the phase transition for theSIR model.
mapping between both problems [224, 225℄ that 
an be used as a powerfultool for solving the epidemi
 spreading a
ross general networks [226, 227℄. Inorder to answer this question we 
onsider the initial 
onditions s(0) = 1/N ,
i(0) = r(0) = 0 and we look for the value r⋆ = limt→∞ r(t) It is easy to noti
ethat r⋆ = 1− s⋆ be
ause i⋆ is ne
essarily null. Then, dividing eq. (6.1) by eq.(6.3) to get rid of i(t) we havedsdr

= −λ〈k〉s(t) → s(t) = exp (−λ〈k〉r(t)) → r⋆ = 1− exp (−λ〈k〉r⋆) .(6.4)Last equation has always r⋆ = 0 as a solution (no epidemi
 per
olation) and if
R0 = λ〈k〉 > 1 there is a se
ond one with r⋆ 6= 0 
orresponding to a signi�
a-tive spread of the disease. R0 is usually termed as the e�e
tive reprodu
tiverate and its physi
al meaning is 
lear: it 
orresponds to the average se
ondaryinfe
tions produ
ed when a single infe
ted individual is introdu
ed in a healthypopulation. If this number is greater than one the disease rea
hes a non nullfra
tion of the population. From the phase transitions point of view one wouldspeak about r⋆ as the appropriate order parameter and λ as the 
ontrol pa-rameter. It 
an be obtained that at the 
riti
al point, λ = 〈k〉−1, r⋆ behavesas r⋆ ∼ (λ− 〈k〉−1) so that the 
riti
al exponent is 1 as expe
ted from a mean�eld treatment.The SIS modelThe SIS model was originally introdu
ed by Heth
ote and Yorke [228℄ in 1984for des
ribing the propagation of gonorrhea and has been largely used forstudying the transmission of tuber
ulosis. These diseases have several 
ommonattributes that make it di�erent from other infe
tions. The most importantdi�eren
e is that the infe
tion does not 
onfer immunity to re
overed subje
ts



162 Chapter 6. Propagation through Complex Networksso that the SIR model is no longer valid. The SIS model 
onsiders only two
ompartments 
omposed of sus
eptible and infe
ted nodes so that a 
ontinu-ous �ux between both 
ompartments is allowed, S ↔ I. Then, the relevantequation for the SIS model isdidt
= λ〈k〉 [1− i(t)] i(t)− µ i(t) , (6.5)where we have assumed s(t) = 1− i(t) (i.e. no deaths asso
iated to the diseaseare 
onsidered). Again we 
an res
ale the equation in order to obtain µ = 1.The SIS model is analogous to the SIR model in what refers to the ex-isten
e of a epidemi
 transition. However in the SIS model the two regimesare di�erentiated by whether the disease persist inde�nitely in the population(due to the fa
t that subje
ts 
an be reinfe
ted many times) or not. Then,imposing di/dt = 0 in (6.5) we obtain two di�erent steady states, one with

i(t) = 0 and the se
ond one, for the 
ase λ > 〈k〉−1, with i(t) = (λ− 1/〈k〉)/λ
orresponding to the an endemi
 state.Due to the manifest analogy between SIR and SIS models we will fo
uson the SIR formalism in the forth
oming dis
ussions about the behaviour ofepidemi
 spreading on heterogenous networks. It has been shown that thesame qualitative results are also obtained for both models when studying more
omplex topologies.6.1.2 Epidemi
 spreading in general 
omplex networksThe homogeneous mixing hypothesis assumed in the previous dis
ussion 
an-not be applied to many real systems like te
hnologi
al networks where their
omponents do not intera
t with a similar number of network elements. Then,it is ne
essary to in
orporate the ingredient of heterogeneity to the problemof epidemi
 spreading. In the SIR model (and analogously for the SIS formu-lation) the di�erent 
ompartments S(t), I(t) and R(t) are now 
hara
terizedby the subsets {Sk(t)}, {Ik(t)} and {Rk(t)} labeled by the 
onne
tivity k oftheir 
omponents [212�214, 216, 227℄. These variables are normalized so that
Sk(t) + Ik(t) + Rk(t) = 1, then

S(t)

N
=
∑

k

P (k)Sk(t) ,
I(t)

N
=
∑

k

P (k)Ik(t); ,
R(t)

N
=
∑

k

P (k)Rk(t) .(6.6)This se
ond 
lassi�
ation of the 
ompartment elements into degree 
lasses al-lows to take into a

ount the heterogeneous 
hara
ter of real networks.At a mean �eld des
ription the evolution of these new magnitudes satisfy
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 spreading and Immunization 163the following set of 
oupled di�erential equationsdSkdt
= −λkSk(t)Θ(t) , (6.7)dIkdt
= λkSk(t)Θ(t)− Ik(t) , (6.8)dRkdt
= Ik(t) , (6.9)where we have already set µ = 1. The quantity Θ(t) represents the probabilitythat an element is linked to an infe
ted node. This probability is given by

Θ(t) =

∑

k kP (k)Ik(t)

〈k〉 . (6.10)Note that we are 
onsidering here that the degree 
orrelations are absent in thenetwork with the assumption that Θ(t) is the same for any set Sk regardlessof the 
onne
tivity of its 
omponents.Considering initial 
onditions 
onsisting on a in�nitesimal fra
tion of in-fe
ted nodes distributed homogeneously over the 
onne
tivity sets, Ik(0) =

i0 ≪ 1, we 
an 
onsider Sk(0) ≃ 1 and integrate eq. (6.7) to obtain Sk(t) =

exp [−λkφ(t)], where
φ(t) =

∑

k kP (k)
∫ t
0 Ik(τ)dτ

〈k〉 =

∑

k kP (k)Rk(t)

〈k〉 . (6.11)In order to obtain a 
losed relation for Rk(∞) we 
ompute the time derivativeof φ(t) dφdt = 1− φ(t)−
∑

k kP (k) exp[−λkφ(t)]

〈k〉 . (6.12)Solving the above di�erential equation we 
an obtain R⋆
k = Rk(∞) = 1 −

Sk(∞) = 1 − exp[−λkφ(∞)] and 
ompute the total epidemi
 prevalen
e R⋆.The solution φ(t) to eq. (6.12) is not available for a general degree distribution
P (k). However, we are interested in the behaviour of φ⋆ = φ(t→∞) to obtaininformation about R⋆. In this limit ˙φ(t) = 0 so that eq. (6.12) transform intoa 
onsistent equation for φ⋆

φ⋆ = 1−
∑

k kP (k) exp(−λkφ⋆)

〈k〉 . (6.13)The above equation has always the solution φ⋆ = 0 (implying R⋆
k = 0 ∀k,

R⋆ = 0) and when
∑

k λk2P (k)

〈k〉 > 1 (6.14)
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ond non trivial solution φ⋆ > 0 that yields R⋆ > 0 indi
ating asigni�
ative epidemi
 prevalen
e. Then, the epidemi
 threshold is given by
λc =

〈k〉
〈k2〉 . (6.15)This result is very relevant sin
e it points out that 
omplex networks withheterogeneous degree distributions (like SF networks with 2 < γ ≤ 3) showa vanishing epidemi
 threshold (sin
e 〈k2〉 → ∞ as N → ∞) and be
omeextremely fragile under possible infe
tions. An identi
al result for the thresholdvalue is found when analyzing the SIS model [212, 214℄. In this 
ase theresults are explained by a persisten
e of low levels of infe
ted individuals forlow values of λ. This interpretation is 
oherent with the long term prevalen
efound for real informati
 viruses and in prin
iple 
an only be understood inthe framework of homogeneous networks by the (unrealisti
) existen
e of aglobal tuning of the parameters in order to work 
lose enough to the epidemi
threshold. However, the bad news about the absen
e of epidemi
 threshold aresomehow played down when one looks at the behaviour of R⋆ when λ ≪ 1.Considering the BA model (P (k) = 2m2k−3) we 
an 
ompute this behaviour[212, 214, 216℄ �nding

R⋆ ∼ exp

(

− 1

mλ

)

, (6.16)so that the epidemi
 prevalen
e approa
hes smoothly to 0 at λc = 0.Correlated Complex NetworksThe above results have been obtained assuming that degree 
orrelations be-tween pairs of nodes are absent. However 
orrelations are present in most realnetworks and therefore they 
annot be negle
ted in the expression for Θ ,eq.6.10, [215, 218℄. The equations for the SIR model (6.7), (6.8) and (6.9) arethen modi�ed to dSkdt
= −λkSk(t)

∑

k
′

P (k
′ |k)Ik′ (t) , (6.17)dIkdt

= λkSk(t)
∑

k′

P (k
′ |k)Ik

′ (t)− Ik(t) , (6.18)dRkdt
= Ik(t) . (6.19)In order to have some insight above the behaviour of the system for a generalform of P (k

′ |k) one 
onsider again the initial 
onditions Sk ≃ 1. Then eq.(6.18) be
omes un
oupled and 
an be written asdIkdt
=
∑

k
′

[

λkP (k
′ |k)− µδk′ ,k

]

Ik′ (t) ≡
∑

k
′

Lk,k′Ik′ . (6.20)



6.1. Epidemi
 spreading and Immunization 165The stability of the initial state 
orresponds to the situation when there is noepidemi
 prevalen
e and it is then 
hara
terized by the sign of the eigenvaluesof the Ja
obian matrix L. Sin
e the matrix C whose elements are Ck′ ,k =

kP (k
′ |k) has the same eigenvalues as its transposed (see eq. (5.10)) all itseigenvalues are real. If Λ is the maximum eigenvalue of C we obtain that thesolution Ik(t) = Rk(t) = 0 ∀t is stable if −µ + λΛ < 0 and therefore theepidemi
 threshold is de�ned as

λc =
µ

Λ
. (6.21)Then, the existen
e of an epidemi
 threshold is 
ompletely determined by thematrix C and hen
e a non zero λc 
an be re
overed depending on the natureof the 
orrelations. It has been shown numeri
ally [218℄ that for assortativenetworks the threshold remains zero and the behaviour is qualitative the sameas for un
orrelated networks.6.1.3 Immunization strategiesThe above study of epidemi
 spreading suggests the in
orporation of me
ha-nisms or strategies for stopping the advan
e of the infe
tions a
ross the net-work. From the SIR point of view this means to in
orporate some degree ofimmunity to a fra
tion g of elements so that they 
annot be infe
ted and thusthey would lo
ally stop the possible subsequent infe
tions. The question thenis where to lo
ate this subset of immune nodes. Obviously, the answer willdepend on the topologi
al 
hara
teristi
s of the underlying network so that ane�
ient immunization design would di�er depending on what kind of networkwe are dealing with.In the following we will 
hara
terize the most 
ommon ways for perform-ing su
h immunizations in order to 
ompare these me
hanisms with a newimmunization proposal des
ribed in the next se
tion.Random ImmunizationRandom immunization 
onsists of 
hoosing a fra
tion g of the nodes withuniform probability and 
onfer them immunity to the epidemy. This is thesimplest way for pla
ing immune elements on a 
omplex network sin
e the
hoi
e of the nodes is 
ompletely independent of any attribute or 
hara
teristi
of the set. The presen
e of a fra
tion g of immune nodes simply res
ale thetransmission probability in the above dis
ussed mean �eld approa
h, λr =

(1 − g)λ. Then, for homogenous networks and for a 
onstant value of λ weobtain a 
riti
al fra
tion gc = 1 − 1/(λ〈k〉) so that r = 0 if g ≤ gc. On the
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Figure 6.3: Time evolution of a SIR epidemi
 in the Internet Autonomous Systemsrepresentation when λ = 0.8 and 1% of infe
ted nodes at t = 0. Pink and blue denotesus
eptible and re
overed nodes respe
tively. (a) Corresponds to the 
ase when noimmunization is applied and (b) when targeted immunization is applied (g = 0.01).other hand, for the same situation in heterogeneous non-
orrelated networkswe obtain gc = 1 − 〈k〉/(λ〈k2〉) so that gc = 1 regardless of the value of λ forSF networks with 〈k2〉 → ∞ and thus random immunization of heterogeneousnetworks is 
ompletely ine�
ient.Targeted ImmunizationThe failure of random immunization when applied to SF networks 
an be un-derstood by the well known results on random failures in these networks. SFnetworks are very robust (it keeps the global 
ohesion) under random removalof nodes. Then, in terms of epidemi
 spreading, no matter the amount of im-munized nodes the infe
tion will always �nd a path to arrive to any sus
eptiblenode. On the other hand, SF networks are extremely weak when intentionalatta
ks are performed, i.e. when a sele
tive removal of those highly 
onne
tednodes is applied. It is then interesting to apply a targeted immunization strat-egy [217℄ just 
olle
ting those nodes with the highest 
onne
tivity and 
onferthem immunity.In order to make an estimation of the e�e
ts that targeted immunizationhas on SF networks we take the nodes with k > kt and immunize them1. Then1Note, however, that in order to do so we should have 
omplete knowledge of the network
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 spreading and Immunization 167we have that the fra
tion of immune nodes 
orresponds to
g =

∑

k≤kt

P (k) . (6.22)This implies that those nodes, and the links that pointed to them, are removedfrom the remaining e�e
tive network available for the spread of the epidemy.Then, if we 
all p(g) the probability that any link of the original network pointto an immune node we obtain
p(g) =

∑

k≤kt
kP (k)

〈k〉 , (6.23)so that the degree distribution of the new network after removing those immu-nized nodes is
Pt(k) =

kt
∑

q≤k

P (q)

(

q

k

)

[1− p(g)]kp(g)q . (6.24)With this new distribution we 
an 
ompute its �rst and se
ond moments sothat we 
an 
ompute the new λc from eq. (6.15). These moments 
an beexpressed in terms of p(g) and the old moments of the original network as
〈k〉t = 〈k〉[1−p(g)] and 〈k2〉t = 〈k2〉[1−p(g)]2 + 〈k〉p[1−p(g)] [217℄. Applyingthese results we obtain for the BA network a 
riti
al value gc as a fun
tion of
λ so that if g < gc the epidemi
 prevalen
e is zero

gc ≃ exp(−2/mλ) . (6.25)The above equation 
learly shows that 
riti
al immunization is exponentiallysmall for a range of low values of λ. Although the above estimations are onlyvalid for homogeneous random networks, we illustrate the e�e
ts of this typeof immunization in SF networks in �gure 6.3. The evolution of the SIR modelon top of the Internet map at the Autonomous System level when there is noimmune nodes (�gure 6.3.a) and when targeted immunization is applied (�gure6.3.b). Besides, in �gure 6.4 we show the results on both the AS and Routerlevels for three 
ases of targeted immunization and the 
ase with zero immunenodes.Single A
quaintan
e ImmunizationSingle a
quaintan
e immunization (SAI) was introdu
ed in [219℄ as the �rstlo
al algorithm to immunize 
omplex networks. In this strategy a fra
tion pof the network nodes is sele
ted at random and one of their 
orrespondingneighbours is 
hosen at random and immunized. Then, only a knowledge of
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Figure 6.4: Final fra
tion ofinfe
ted nodes for the SIRmodel and SIR with targetedimmunization with di�erentnumber of immunized nodesfor the AS (a) and router (b)map representations of the In-ternet. Simulations were 
ar-ried out starting from a sin-gle infe
ted node at t = 0 inall 
ases. The plots are in alog-log s
ale for a better visu-alization.
the node neighbourhood is assumed and even the degree of its 
omponentsis not needed for the performan
e of the SAI immunization. This is not thesame s
enario as for random immunization sin
e the probability that a nodewith 
onne
tivity k is 
hosen by one of its neighbours is proportional to kP (k)and thus immunization of highly 
onne
ted nodes is favored 
ompared to thepurely random situation [229℄.The 
al
ulation of the 
riti
al fra
tion of nodes gc is performed looking atthe per
olation threshold of the network (
onsidering again that immunizednodes and their links are removed from the network) so that the infe
tionwould be
ome arrested in one part of the network. This 
al
ulation [219℄yields a value

gc = 1−
∑

k

P (k)

(

1− 1

Nk

)Nkpc

, (6.26)where pc is numeri
ally 
omputed from
∑

k

P (k)k(k − 1)

〈k〉

(

1− 1

Nk

)N(k−2)pc

· exp

(−2pc

k

)

= 1 , (6.27)for every type of network depending on the degree distribution P (k).Single a
quaintan
e immunization is a useful 
hoi
e when only minimalnetwork knowledge is available. However, this 
ase is not so usual in realproblems when neither the 
omplete knowledge of the network (as targetedimmunization assumes) nor the ultra-short horizon of nodes (where SAI pro-posal is applied) are present. An intermediate situation between targeted andSAI immunization is des
ribed in the next se
tion.
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 spreading and Immunization 1696.1.4 Covering based ImmunizationThe immunization strategy reported here has to do with a general 
lass ofproblems in the 
ontext of graph theory: the problem of identifying the minimalsubset of nodes that ful�lls 
ertain pres
riptions. In parti
ular, we report hereon a heuristi
 method that allows to �nd near-optimal solutions to the 
overingproblem in networks. The 
overing problem 
onsists of obtaining the minimumset of 
overed verti
es su
h that every vertex is 
overed or has at least one
overed vertex at a distan
e at most d (d-
overing problem). The introdu
tionof the distan
e 
onstrain leads to a wide appli
ability of the solutions foundthat 
an be 
onsidered as sets of servers in te
hnologi
al networks or largestoring fa
ilities in logisti
 networks as well as immunized nodes in 
onta
t orte
hnologi
al networks. Then, the algorithm implemented here will serve usnot only to 
onveniently pla
e those immune nodes that would help to stopthe spread of the disease, but to 
onsider more general problems. In fa
t,the allo
ation of network resour
es to satisfy a given servi
e with the leastuse of resour
es is a frequent problem in 
ommuni
ation networks. For theimmunization problem, we would like to have a robust system in front of adisease or virus spreading pro
ess while saving resour
es, that is, using theminimum number of immune nodes.For this purpose, we will make use of a heuristi
 algorithm that targetshigh degree verti
es and 
omputes an upper bound to the minimum fra
tionof servers needed to 
over the network. We will apply the method to three realnetworks: the AS and Router level graph representations of the Internet andthe Gnutella peer to peer network. As exposed in se
tion 5.1.3 these graphs arequalitatively identi
al in what 
on
erns the degree distribution and the small-world property but, however, they di�er from the point of view of the degree
orrelations between nearest neighbor verti
es: the AS and Gnutella networksexhibit disassortative degree 
orrelations whereas for the Router networks as-sortative degree 
orrelations are displayed (see �gure 5.3). The results shownbelow point out that the solution to the d-
overing problem strongly dependson the degree of similarity between the 
onne
ted verti
es. As a 
onsequen
e,we show that when designing networked systems, whether a 
entralized or dis-tributed allo
ation of these immune/serving/storing nodes (hen
eforth 
alled
overed nodes for generality) is to be used relies upon the network propertiesat a lo
al level. Therefore, the interest of applying this heuristi
 strategy to
orrelated real networks is twofold. First we will obtain a nearly optimal 
over-ing distribution and se
ondly we asses the impa
t of 
orrelations on the designof networked systems.Before explaining the heuristi
 method and the results obtained it is worthmaking a deeper analysis of the real nets 
onsidered here. In the d-
overing
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Figure 6.5: Average degree of thedistan
e-d neighbors of a vertexwith degree k, < k
(d)
nn > (k), for

d = 1 (
ir
les), d = 2 (squares),
d = 3 (diamonds) and d = 4 (tri-angles). Note that the averageneighbour degree, 〈knn〉(k) intro-du
ed in se
tion 5.1.3 
orrespondswith < k

(1)
nn > (k). (a) < k

(d)
nn >

(k) vs k for the AS graph. Theinset shows the exponent νd ob-tained from the �t to the powerlaw form < k
(d)
nn > (k) = Akνdin the range k > 1. Similar re-sults are obtained for the Gnutellagraph, but with more �u
tuationsdue to its small size. (b)< k

(d)
nn >

(k) vs k for the Router graph.The inset shows the exponent νdobtained from the best �t to thepower law < k
(d)
nn > (k) = Akνd inthe range 10 ≤ k ≤ 100.problem one is interested in distan
es beyond d = 1, therefore we also analyzethe degree 
orrelations for d > 1 (see �gure 6.5). For the disassortative graphs,the average degree of distan
e-d neighbors < k

(d)
nn > (k), restri
ted to rootverti
es with degree k, follows the same trend as < k

(1)
nn > (k), tending to beless 
orrelated for larger d (�gure 6.5.a). For the assortative graph, however,the degree 
orrelations are assortative up to d = 2, be
oming disassortative for

d > 2 (�gure 6.5.b). Finally, for d > 6 the degree 
orrelations in the originallyassortative graph show a similar trend than in the disassortative graphs.We propose the following heuristi
 algorithm to obtain an upper boundto the d-
overing problem. Lo
al algorithm: For every vertex in the graph,
over the highest degree vertex at a distan
e at most d from the vertex. In
ase there is more than one vertex with the highest degree, one of them issele
ted at random and 
overed. To test this algorithm we �rst 
onsider the
ase d = 1, known as the dominating set problem [230℄. In this 
ase we
an use a leaf-removal algorithm as a referen
e method, whi
h yields a nearlyoptimal solution together with an error estimate. The leaf-removal algorithmis de�ned as follows. To ea
h vertex i we assign two state variables xi and
yi, where xi = 0 (xi = 1) if the vertex is un
overed (
overed) and yi = 0(yi = 1) if the vertex is undominated (dominated). Here a vertex is said to be
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 spreading and Immunization 171dominated if it has at least one neighbour 
overed. Starting with all verti
esun
overed and undominated (xi = yi = 0 for all i), iteratively, (i) sele
t avertex with degree one (leaf). If it is not dominated, 
over its neighbour, setdominated its se
ond neighbours, and then remove the leaf, its neighbour, andall their in
ident edges. (ii) If no vertex with degree one is found, then 
overthe vertex with the larger degree (hub), set dominated its neighbours, andthen remove the hub and all its in
ident edges. Finally, if some verti
es withdegree zero remain, they are 
overed if they are not dominated, and removedfrom the graph. Sin
e step (i) always provides an optimal solution, the errorin 
omputing the average fra
tion of 
overed verti
es 〈x〉 =
∑N

i=1 xi/N is lessthan or equal to the fra
tion of verti
es 
overed applying step (ii).The 
omparison between the lo
al and leaf-removal algorithms is shown in�gure 6.6. First, noti
e that the solutions obtained with the leaf-removal algo-rithm are almost exa
t for the networks 
onsidered here and d = 1. The lo
alalgorithm yields satisfa
tory, though non-optimal, solutions to the 
overingproblem, with some di�eren
es depending on 
orrelations between 
onne
tedverti
es. For the AS and the Gnutella graphs, whi
h exhibit disassortative de-gree 
orrelations, the lo
al algorithm gives a good estimate, quite 
lose to theoptimal one for the AS graph. In 
ontrast, for the Router graph we observe alarger deviation from the optimal solution. The origin of this di�eren
e is dueto the fa
t that the lo
al algorithm exploits the degree �u
tuations among 
on-ne
ted verti
es. Indeed, these �u
tuations are bigger in disassortative graphsas 
onne
ted verti
es likely have di�erent degrees. In 
ontrast, in assortativegraphs, although there may be high degree �u
tuations between two verti
essele
ted at random, 
onne
ted verti
es tend to have similar degrees, result-ing in poorer solutions. These results indi
ate that the general belief thatheuristi
 algorithms targeting the hubs may be su�
ient to solve 
omputa-
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Figure 6.6: Average fra
tion of
overed nodes 〈x〉 needed to 
overa graph under the 
onstraint thata vertex should have a server atmost at a distan
e d = 1, usingthe leaf-removal (
ir
les) and lo
al(squares) algorithms, as a fun
tionof the exponent ν1 de�ned in �g-ure 6.5, with negative and positivevalues 
orresponding to disassor-tative and assortative graphs, re-spe
tively.
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Figure 6.7: (a) Average fra
tion of servers 〈x〉 
overing the graph for di�erent valuesof d. The 
ontinuous lines are the best �ts to an exponential de
ay. (b) Averagefra
tion of verti
es 〈n〉 served by a server for di�erent values of d. The inset showsthe graph size dependen
e of 〈n〉 for the AS graph and d = 1, 2.tional problems on graphs with wide degree �u
tuations may not be the 
asefor assortative graphs.The d = 1 
overing problem results in a distributed ar
hite
ture be
ausea �nite fra
tion of the verti
es is 
overed. Let us now extend the method anddis
uss the results obtained with the lo
al algorithm for the more general and
omplex problem d > 1. In �gure 6.7.a we show that, with in
reasing d, theaverage fra
tion of 
overed nodes de
ays exponentially fast, indi
ating that ifwe allow the 
overs to be more distant, a substantial de
rease in the numberof required 
overs is obtained. This exponential de
ay is a 
onsequen
e ofthe small-world property of these networks. The de
rease in 〈x〉 is, however,a
hieved at the expense of an in
rease in the average fra
tion of verti
es 〈n〉served by a 
overed node (�gure 6.7.b). This is a key metri
 as it marks thetrade-o� between the number of 
overs needed and their 
apa
ity.
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Figure 6.8: Average number of
overed verti
es 〈n〉k restri
ted toverti
es with the same degree kfor several values of d. The �g-ures show that for disassortativegraphs (a), the 
overs should havea large 
apa
ity to serve a �-nite fra
tion of the graph evenfor small to moderate values of d.On the 
ontrary, for assortativegraphs (b), the fra
tion of 
oversis a negligible fra
tion of N up tolarge values of d.
Again, a remarkable di�eren
e depending on the graph assortativities isappre
iated. For the Gnutella and AS graphs, with disassortative 
orrelations,

〈n〉 in
reases signi�
antly from d = 1 to d = 2. Indeed, a �nite size study forthe AS graph, with a growing tenden
y from 1997 to 2002 [231℄, reveals that
〈n〉 de
reases to zero with in
reasing the graph size for d = 1, while it remainsalmost 
onstant for d = 2 or larger (see inset of �gure 6.7.b). On the otherhand, in the Router graph, with assortative 
orrelations, 〈n〉 in
reases mu
hslower with in
reasing d, being almost zero up to d = 3 (�gure 6.7.b). Theseresults are the signature of a phase transition. There is a threshold distan
e
dc su
h that the average fra
tion of verti
es served by a 
overed vertex is verysmall for d ≤ dc, going to zero with in
reasing N , while it is �nite for d > dc.For disassortative graphs dc = 1 while for assortative ones dc > 1. Note thatthe value dc ≈ 3 for the Router graph 
oin
ides with the distan
e where thedegree 
orrelations be
ome disassortative, indi
ating that the phase transitionis determined by the 
hange in the degree 
orrelations. Furthermore, thistransition gives a pra
ti
al measure to get the desired trade-o� between 〈x〉and 〈n〉.Sin
e the graphs 
onsidered here are 
hara
terized by wide �u
tuations inthe vertex degrees, one 
an also 
ompute the average number of 
overed verti
es
〈n〉k, restri
ted to verti
es with the same degree k. In all 
ases an in
reasing
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y of 〈n〉k with k is observed, as it is expe
ted from the de�nition of thelo
al algorithm, whi
h targets high degree verti
es. Two distin
t behaviors areon
e again observed depending on the degree 
orrelations. In the disassortativegraphs, 〈n〉k is already as large as 10% of the verti
es for d = 2 and k > 10(�gure 6.8.a). In 
ontrast, in the assortative graphs, only beyond d = 4, oneobserves that large value of 〈n〉k.The striking di�eren
es between disassortative and assortative 
orrelationshave important 
onsequen
es form the pra
ti
al point of view, for example,regarding how resour
es for immune response or fast re
overing are allo
ated.For disassortative graphs, ex
ept for the 
ase d = 1, one would need 
overs witha vast 
apa
ity, serving a large fra
tion of verti
es. The most e�
ient strategyis, therefore, the allo
ation of resour
es in a few 
overs with a large 
apa
ity.The s
alability of the 
over system would in this 
ase be determined by thesingle 
over 
apa
ities, whi
h should be in
reased as the graph size grows. Inthe assortative 
ase, we have a di�erent s
enario. The de
rease of the numberof 
overs with in
reasing d is not as dramati
 as for the disassortative graphs.In 
ompensation, ea
h 
over serves a small fra
tion of verti
es. Hen
e, themost e�
ient strategy is to allo
ate the resour
es in a large number of 
overswith a limited 
apa
ity. The s
alability of the system would be driven by thenumber of required 
overs, whi
h augments with in
reasing the graph size. Inturn, regarding the design of 
ommuni
ation networks, we 
an de
ide betweendisassortative or assortative topologies depending on the available resour
es.A disassortative topology will be more appropriate for a 
entralized design,with a few 
overs having a large 
apa
ity, while an assortative network willbe best suited for a distributed design, when a large number of 
overs have alimited 
apa
ity.SIR with immune 
oversIn order to apply the 
overed sets found to the problem of SIR epidemi
 spread-ing we will 
onsider 
overed verti
es as immune nodes to the spreading of adisease or virus. For instan
e, in a te
hnologi
al network, they 
ould be thoughtof as being spe
ial devi
es devoted to �ltering out any virus or atta
k. Thiswould imply that the spreading pro
ess stops when it arrives to su
h nodes.This is of 
ourse the ideal situation. However, it happens more often that im-mune nodes 
an not 
at
h the epidemi
, but they are not able to stop spreadingit through other nodes − as when you have an up-to-date anti-virus. There-fore, we study the worse s
enario and 
onsider that immunized nodes just repelthe virus 
utting the path to infe
tion spreading.We will 
onsider the di�erent d-
over sets labeled by the 
orresponding
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Figure 6.9: Relative di�eren
e ofthe epidemi
 in
iden
e for di�er-ent values of d, R(d), with respe
tto that at d = 1 (λ = 1). The be-haviour observed in the �gure isdetermined by the number of sus-
eptible nodes ea
h immune ver-tex has to �prote
t�.
distan
e d used to solve the d-
overing problem. For ea
h distan
e we 
omputeby Monte Carlo simulations the epidemi
 in
iden
e, R(d), in both the Routerand AS representation of the Internet for a 
onstant value of the epidemi
transmission rate, λ = 1, when their 
orresponding d-
overs are 
onsidered asimmune nodes. We will then fo
us on the in�uen
e of degree 
orrelations onthe �nal size of the outbreak2.Figures 6.9 and 6.10 re�e
t the di�eren
es in the algorithm's performan
efor the AS and the Router maps of Internet. Figure 6.9 illustrates the relativedi�eren
e of the epidemi
 in
iden
e as a fun
tion of d, taking as a referen
ethe size of the outbreak at d = 1. The behaviour depi
ted in the �gure isquite similar to the dependen
y of the number of nodes 
overed by ea
h im-mune node, 〈n〉, when d is in
reased (�gure 6.7.b). For the AS network, thefra
tion of infe
ted nodes at the end of the epidemi
 spreading pro
ess rapidlyin
reases. In 
ontrast, the in
rease in the epidemi
 in
iden
e for the routernetwork takes pla
e at larger values of d. This indi
ates that for the same
d > 1, the immunization strategy works better at the router level as 
on�rmedin �gure 6.10, top panel. The reason of this behavior be
omes apparent bynoti
ing that for the router level 〈x〉 is bigger than for the AS, but the number
〈n〉 of nodes served on average by ea
h immune node is smaller. The 
ombi-nation of the two fa
tors leads to a more e�
ient immunization at the routerlevel, however, at the 
ost of more resour
es. Both strategies tend to be 
loseras d is in
reased be
ause at the router level the 
orrelations 
hange beyond
d ≥ 3.The previous result has to be 
arefully interpreted and should not be mis-understood. A 
loser look at the in�uen
e of the 
orrelations reveals that,although in general they determine 〈x〉 and 〈n〉 for ea
h map, these two quan-2It should be noti
ed that a number of other topologi
al features su
h as 
lustering andhierar
hy properties may also be at the root of the di�erent behaviors. Our guess is mainlybased on the performan
e of the lo
al algorithm that we will use below.
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e to explain all the di�eren
es observed. Indeed, thelo
al stru
ture of the network turns out to be at the root of the immunizatione�
ien
y and the optimal trade-o� between the size of the outbreak and theleast use of resour
es. To see this, we have analyzed the situation in whi
hboth 〈x〉 (though the d's are di�erent) and 〈n〉 are almost the same in the tworepresentations. This 
ase is represented in the bottom panel of �gure 6.10.As 
an be seen from the �gure, in the latter 
ase, the immunization s
heme forthe AS outperforms that for the router level. This behaviour is due to the fa
tthat in the AS network, the immune nodes are more distributed throughoutthe network be
ause highly 
onne
ted verti
es alternate with poorly 
onne
tedones. On the 
ontrary, at the router level, the hubs are topologi
ally 
loser toea
h other (the 
orrelations are positive) and thus some of the immune nodesare not highly 
onne
ted resulting in a less e�
ient prote
tion in front of anepidemi
.In prin
iple, one may think that as we are immunizing 
overs (highly 
on-ne
ted nodes), the use of the (global) targeted immunization strategy wouldprodu
e the same set of immune nodes. Obviously, this is not the 
ase sin
ethe 
overing operates at shorter distan
es than targeted immunization (whi
hoperates at d = D, the diameter of network). In fa
t, a dire
t 
omparison ofwhat the immune nodes are in both algorithms shows that no more than 50%of them are the same and both sets are equal only when d rea
hes the diameterof the network. Moreover, as a further eviden
e of the in�uen
e of the graph
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Figure 6.10: Comparison ofthe 
overing based immunization(CB) performan
e on the AS androuter representations of the in-ternet. Top: Phase transitionis revealed by the best perfor-man
e in Routers when 〈n〉 is big-ger for AS (d > 1). Bottom:On the 
ontrary, when the nodesserved by ea
h immune vertex 〈n〉is (roughly) the same, immuniza-tion works better in AS (〈n〉 = 0for d = 1; 〈n〉 ≃ 0.2 for d = 2 inAS and d = 5 in Routers; 〈n〉 = 1for d = 6 in AS and d = 15 inRouters). The results were ob-tained starting from a randomly
hosen infe
ted node and setting
λ = 1.
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 spreading and Immunization 177representation in the performan
e of immunization s
hemes, it is found thatfor the router level the per
entage above 
an in
rease up to 70%.Comparing immunization strategiesThe next step is to 
ompare the performan
e of all the immunization strate-gies presented in this 
hapter when SIR epidemi
 modeling is employed. It isworth stressing that the heuristi
 
overing-based immunization proposed aboveis based on a tuned lo
al knowledge of the network (only requiring informationabout the graph topology up to a distan
e d), a key property of utmost im-portan
e for most real appli
ations. Indeed, all the graphs 
onsidered here arein
omplete representations of the systems they are aimed to represent, as itgenerally happens in graph representations of large systems. An added valueof the method developed here is that the 
overing-based strategy does not onlydeal with the degree of the immune nodes, as targeted immunization does, butnaturally introdu
es the pra
ti
al 
onstraint of having limited resour
es to bedistributed in the system on top of whi
h the epidemi
s is spreading.Before 
omparing the performan
e of the di�erent algorithms let us illus-trate the importan
e of the lo
al properties of the network on the performan
eof targeted immunization. The results depi
ted in �gure 6.4 suggest that againthe degree 
orrelations is one of the main fa
tors in�uen
ing the performan
eof the immunization poli
y. We see that even for small per
entages of immunenodes, targeted immunization performs better in the AS graph. This may bedue to the 
ompa
t distribution of hubs (whi
h play a key role in targeted im-munization) in the router map whereas for the AS representation they are dis-tributed throughout the whole network. Therefore, in the AS representation,targeted immunization works better be
ause immune nodes are more e�
ientin 
utting the paths leading to poorly 
onne
ted nodes, the more abundant.We now fo
us on the implementation of the SIR epidemiologi
al model ontop of the Internet maps at the AS and router levels and 
ompare with theresults obtained by using targeted, random, SAI immunization as well as theheuristi
 
overing-based immunization strategy des
ribed above. The resultsindi
ate that the lo
al algorithm performs quite well and is near the optimalone. We have performed Monte Carlo simulations of the SIR model on top ofthe Internet maps starting from an initial state in whi
h a randomly 
hosenset of nodes 
orresponding to a 1% of the network is infe
ted. The resultshave been averaged over at least 1000 realizations 
orresponding to di�erentinitially infe
ted nodes. We have performed extensive numeri
al simulationsmaking use of the four di�erent immunization s
hemes. The immunization ob-tained following the 
overing algorithm �xes the fra
tion, gc = 〈x〉, of immune
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Figure 6.11: Comparison of the immunization strategies for the Internet AS map.In the �gure, we have represented the ratio between the epidemi
 in
iden
e of thefour immunization strategies 
onsidered (R) and that of the original system withoutimmunization (RSIR) for di�erent values of 〈x〉. The legend refers to the follow-ing immunization strategies: the one based on the 
overing problem (CB), targetedimmunization (Targeted), random immunization (Random) and single a
quaintan
eimmunization (SAI). In this 
ase, 1% of the non-immune nodes were initially infe
tedat random. See the text for further details. The distan
es 
onsidered in the lo
alalgorithm are: (a) d = 1, (b) d = 2, (
) d = 3, (d) d = 5.nodes in the whole network for ea
h value of d. Then, we 
annot 
ompare theperforman
e of the four immunization me
hanisms as a fun
tion of the fra
tionof immune nodes gc in a 
ontinuous way. Instead, we have to �x this quan-tity gc for random, targeted and SAI immunization to a dis
rete set of values
{gc(d)} = {〈x〉d} pres
ribed by the 
orresponding solutions of the d-
overingproblem of ea
h graph. Then, Random immunization means that a fra
tion
gc(d) = 〈x〉d of immune nodes is randomly pla
ed on the networks. Targetedimmunization looks for the 〈x〉dN highly 
onne
ted nodes and immunizes themand, �nally, the single a
quaintan
e immunization algorithm proposed is runtaking p ≥ 〈x〉d and ensuring that the total number of immune nodes is thesame in all the s
hemes. In all 
ases, the results are again averaged over manyrealizations for ea
h value of λ and 〈x〉. The results are displayed in �gure 6.11
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Figure 6.12: Same as previous �gure but for the Internet router map. The distan
es
onsidered in the lo
al algorithm are in this 
ase: (a) d = 2, (b) d = 5, (
) d = 7,(d) d = 10.and �gure 6.12.As expe
ted, targeted immunization produ
es the best results for bothtopologies. Note that, as dis
ussed in the previous se
tion, the performan
e ofthe algorithm depends on the spe
i�
 topology and produ
es di�erent resultsfor AS and router maps. On the other extreme we �nd random immunization,whose performan
e is not a�e
ted by the stru
ture of the underlying networks.Turning our attention to lo
al algorithms, it is found that the immunizations
heme based on the 
overing algorithm performs better than the SAI, evenfor small values of d, where it is truly lo
al. In fa
t, it is outperformed onlyby the targeted pro
edure and for all values of the parameters d and λ it liesbetween the most e�
ient and the SAI s
heme. Additionally, from a pra
ti
alpoint of view, the 
overing strategy 
ould be a good poli
y sin
e it balan
esthe degree of lo
al knowledge and the e�
ien
y of the va

ination. Moreover,as all network topologies are not neither 
ompletely known nor 
ompletelyunknown, the 
overing allows to �ne-tune the value of d on a 
ase-by-
ase base(that is, a

ording to the degree of lo
al knowledge of the network) and thus it



180 Chapter 6. Propagation through Complex Networksis more �exible than other immunization strategies (re
all that it is the resultof an optimization).The strategy introdu
ed has been shown to perform better than all previousmethods irrespe
tive of the degree of lo
al knowledge, ex
ept for the 
ase oftargeted immunization. We �nally remark that the introdu
ed 
overing-basedimmunization 
ould be more appropriate when more 
omplex immunizationdevi
es are pla
ed in the network nodes sin
e the distan
e 
onstrain allowsfor a fast 
ommuni
ation in order to stop the spread by a possible responseme
hanism departed from 
overed nodes.6.2 Information transmission and JammingThe problem of epidemi
 propagation shares a 
ommon feature with other dy-nami
s like rumour di�usion [232℄: the set up of the problem is the spreadinga
ross the network of some signal (epidemy, rumour, information,...) laun
hedfrom a small set of nodes (spreaders) and the study is fo
used on whether asigni�
ative fra
tion of the network is �nally a�e
ted (or rea
hed) by this sig-nal. Here, we will address a di�erent 
lass of propagation problems in networkswhere, as well as the sour
e nodes, the destination of the information is wellde�ned and unique for a parti
ular signal. In this 
ase, the information dy-nami
s between any given sour
e and the destination will end when it arrivesto the target. Besides, the information between every pair of nodes follows asingle path and it is not bifur
ated during its trip as o

urs in spreading pro-
esses. In this 
ontext we �nd interesting appli
ations to information dynami
sbetween agents in real networks like the internet. The interesting phenomenonfound in this 
lass of problems has to do with the existen
e of overloads andfailures due to the ex
ess of information 
arried on top of the network. Thisis usually known as jamming. We are 
on
erned in whether or not a networkar
hite
ture or a routing poli
y for the information pa
kets is more favorablefor handling a large amount of tra�
 in the network. In prin
iple, the �ndingof SF 
hara
ter in information networks like the Internet is naively attributedto the 
ompa
t ar
hite
ture a
hieved with this design. However, although theexisten
e of hubs in these networks allows the fast distribution of the infor-mation between pairs of nodes, these highly 
onne
ted nodes are exposed to alarge amount of data and thus will be easily 
ongested. Therefore, a detailedanalysis of the interplay between both the topology and the routing strategiesis needed. We begin this 
hapter with a review on the more interesting workson the subje
t and then report two studies on the in�uen
e of these two im-portant ingredients (topology and routing) on the fun
tioning of informationdynami
s.



6.2. Information transmission and Jamming 1816.2.1 Information dynami
s on NetworksReal data analysis of tra�
 levels on real 
omputer networks has provided the
hara
terization of information �ow [233�235℄. This 
hara
terization allowsfor a

urate modeling of information dynami
s on networks. Among thesereported observations and measures are:
• Long-range 
orrelations and self-similarity are observed in the time evo-lution patterns of the number of data pa
kets, A(t).
• Power law behaviour in the power spe
trum of the time a
tivity of thenetwork load,

S(f) =

∣

∣

∣

∣

∫ ∞

−∞
A(t) e ift dt

∣

∣

∣

∣

2

∼ f−ξ , (6.28)where ξ, 
alled the Hurst exponent, was found to be ξ ∼ 1.These �ndings were attributed to the existen
e of a dynami
al phase transitiondue to jamming in the system. The explanation of this 
riti
al behaviour ofthe system has been explored by means of models where this large s
ale orga-nization was reprodu
ed. However, the reasonable doubt about the in�uen
ethat the substrate network has on the 
riti
al behaviour makes essential the in-
orporation of su
h ingredient in order to obtain a 
omplete des
ription of thesystem's dynami
s. The availability of the topology of these type of 
ommuni-
ation systems allows for a detailed des
ription in
orporating both the 
omplexdynami
al rules and the topology of intera
tions among the 
onstituents.Computer network tra�
 
an be modeled in diverse ways. However, thegeneral pi
ture of a tra�
 model 
onsists in a 
onstant (in average) inje
tionof p pa
kets per unit time in the network. Ea
h pa
ket, whi
h is 
reatedwith a sour
e node (sender) and a target one (re
ipient) assigned, is deliveredfrom a sender to a re
ipient by hops between adja
ent nodes and when thepa
ket arrives to its destination it dissapears. The main magnitude used todes
ribe the state of the system is the total amount of tra�
 in the networkwhi
h is usually de�ned as the number of a
tive pa
kets that are 
urrentlysear
hing their destination at time t, A(t). The balan
e between deliveredpa
kets and in
oming ones governs the behaviour of the system. In the free�ow state the balan
e is rea
hed after a transient time and the network isable to deliver pa
kets at the same rate as new ones are introdu
ed (A(t) is
onstant in average). This is obviously found for low values of p but, on theother hand, when p is high enough the network is unable to handle the loadof information and it gets jammed yielding an unbounded growing of A(t).This s
enario is 
ommon for a variety of models although they are di�erent
on
erning parti
ular details. These pe
uliarities 
an be summarized as follows:
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• Ea
h node of the the network 
an be modeled as either a router or a host.A router node simply store and distributes among its neighbours all thetra�
 pa
kets that it re
eives from them. On the other hand, host nodesare, at the same time, senders and re
ipients of the pa
kets and hen
e thegeneration and death of information pa
kets o

urs at them. Althoughthis node 
lassi�
ation was 
onsidered in [236�238℄, in most models hostand routers are not distinguished so that all nodes are senders, routersand re
ipients of the pa
kets at the same time.
• The strategy employed by routers to de
ide whi
h neighbour is the most
onvenient for a pa
ket to move in depends on the parti
ular model weuse. This is frequently based on the router knowledge, lo
al or global,on the pla
ement of the destination node of the pa
ket. It is frequentlyassumed that a router knows its relative position to every node in the net-work and therefore the pa
ket follows a shortest path between its senderand its destination [239℄. However, this is not a realisti
 assumptionand randomness is usually in
orporated to the routing proto
ol whenthe destination node is not found on the router horizon [240�243℄.
• The relation between the number of pa
kets a router 
an deliver per unittime (the routing rate), r, and p is also meaningful. It is always assumedthat a router 
an only deliver one pa
ket per unit time r = 1 and thenno res
aling is needed. This routing limitation introdu
es the 
on
eptof router queues whi
h are 
omposed by the pa
kets allo
ated in a nodewaiting for being delivered. The maximum amount of pa
kets a router
an hold is 
alled the bu�er 
apa
ity, H. The general assumption is thatbu�er 
apa
ity is in�nite but there are models where bu�er size is limited.In these models, pa
kets moving into a node with a full bu�er are lost andnever rea
h their destinations. Therefore, in these models the jammingpi
ture des
ribed above is not valid anymore sin
e the network has alimited 
apa
ity of a
tive pro
esses, max[A(t)] = N · H, and anotherquantity a

ounting for lost pa
kets is then ne
essary.
• There are several ways for routers to manage the pa
kets allo
ated intheir bu�ers. One 
an 
onsider that the router pi
ks up the pa
ket whi
his at the head of the queue at ea
h time step, this is the so-
alled First-In-First-Out (FIFO) queue. On the 
ontrary in Last-in-First-Out (LIFO)queues it is the last pa
ket in the queue the one 
hosen by the router.Queues where pa
kets are 
hosen at random at ea
h time step are also
onsidered.The di�erent models reported below belongs to the above des
ribed generalpi
ture. The e�orts are always dire
ted to 
apture the jamming phenomena
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ed by the experimental observations and, at the same time, to obtain thesimplest and the most tra
table modellization of the system.The Ohira-Sawatari modelOne of the �rst attempts to reprodu
e the jamming transition on 
omputernetworks was proposed by Ohira and Sawatari [239℄. This model distinguishtwo 
lasses of nodes: hosts and routers (whi
h are 
apable of queuing an un-limited number of pa
kets). In this work the routing strategy was based onshortest paths (thus assuming that routers have global knowledge of the net-work ar
hite
ture). In general more than one neighbour 
an be 
hosen due todegenera
y in the shortest path from the router i to the destination node k ofthe information pa
ket. Then, the router has to de
ide what neighbour is thebest 
hoi
e among the set of neighbours that are in the way of a geodesi
 to
k, L(i, k). Ohira and Sawatari used the following probability for ea
h possibleneighbour to 
at
h the pa
ket

P k
j =

exp (−βXj)
∑

l∈L(i,k) exp (−βXl)
, (6.29)where Xj is the number of pa
kets routed by i towards j in the past. Besides,

β has the role of an inverse temperature in order to have an interpolatingparameter from the 
omplete deterministi
 routing when β → ∞ (with longtime routers memory) and the random β → 0 routing (where pa
kets aredistributed at random among the possible shortest paths). Between these twolimits the probabilisti
 routing 
an be explored. The model has been studiedon simple network ar
hite
tures as 2D latti
es with hosts on the boundaries.As a fun
tion of p, it shows a sudden transition to a 
ongestion state. The
ongestion was measured in terms of the average travel time of pa
kets. Therelevant result is that the phase transition point, pc, depends on the routingstrategy adopted (β). In parti
ular, a high degree in randomness (β ≃ 0.01) inthe path 
hoi
e is found as the optimal routing poli
y a
hieving the maximumshift of the onset of tra�
 
ongestion.Cy
li
 sear
h routingThe use of shortest path routing is linked to the unrealisti
 assumption ofglobal knowledge. Besides, this is not the best routing strategy when dealingwith SF networks be
ause of the fast 
ongestion of highly 
entral nodes (whi
husually are the hubs) that lead to a global 
ongestion in the network. Toavoid these problems Tadi¢ et al [240�243℄ have developed the so-
alled 
y
li
sear
h routing. This strategy 
onsist of employing a global random routing
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al shortest path strategy. The implementation of su
h strategyis as follows: every router has a �nite horizon of radius d so that if the targetof a pa
ket is inside this horizon the pa
ket is dire
tly moved towards thetarget following the shortest path, otherwise it is randomly sent to one of therouter neighbours. The simulations of this 
y
li
 sear
h algorithm have beenperformed on top of a variety of network topologies in
luding SF networks.Besides, the jamming transition for high values of p the dynami
al behaviour inthe free �ow phase was explored. They study the patterns of the time evolutionof the network load, A(t), as a fun
tion of p. In the free �ow regime, wellbelow the 
riti
al point, the power spe
trum of the network a
tivity followeda power law S(f) ∼ f−ξ with exponent ξ = 1.2 for the so-
alled �Web graph�3. In this regime the queue e�e
ts are negligible and thus the topology isgoverning the system behaviour. When the system approa
h the transition,
p → pc, the A(t) patterns manifest 
risis-like a
tivity with sudden growths ofthe load for relative large windows and the power spe
trum of A(t) lose itstemporal 
orrelations manifested by an in
rease of the Hurst exponent, ξ ≃ 2.The waiting times (the time a pa
ket spends in routers queue during its trip)distributions were also investigated. The results for the free �ow regime showeda power law distribution 
ompatible with those obtained empiri
ally in [233℄ forthe Internet dynami
s. However, when the 
riti
al point was approa
hed (andhen
e 
risis in A(t) were found) this distribution turned into a Cau
hy-typeshowing long queue times.Self-regulated tra�
The �ndings using 
y
li
 sear
h algorithms about the �u
tuations on the loada
tivity in the free �ow regime are in agreement with the results when ana-lyzing real time series of data tra�
 in real networks. Besides, the Internetdata analyzed does not (or rarely) manifest a behaviour similar to that of thejammed regime when the a
tivity grows over large times. On the other hand,the whole system e�
ien
y is a
hieved for p values near the 
riti
al point whenthe average 
onstant a
tivity A(t) is maximum. Valverde and Solé suggested[236℄ that there is a feedba
k between users and the system a
tivity so thatusers demand enhan
es the 
ongestion of the system but as 
ongestion in-
reases users tend to slow down their requests and tend to leave the network.This feedba
k has the overall result of set the system operation point near theonset of 
ongestion. This self organization of the system was proposed in amodel where router and host nodes where di�erentiated [237℄. They proposeda mean �eld model for the evolution of the density of information pa
kets3This is a dire
ted graph displaying SF behaviour and high 
lustering and degree 
orre-lations [244℄
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Γ(t) = A(t)/N dΓdt

= pR− τ−1〈k〉Γ(Γ− 1) (6.30)where R is the density of host and τ is the mean life time of information pa
kets(τ ≃ 〈L〉 in the free �ow state). The �xed point solution guarantees that free-�ow is a
hieved. When this solution is lost the jamming regime is rea
hed. Thiso

urs for eq. (6.30) at pc = 〈k〉/(4τR). Assuming the feedba
k between thedensity of hosts and the delivery rate pc in order to rea
h a 
onstant a
tivity Γ⋆the model predi
ts a s
aling between these two quantities of the form p ∼ R−1.In [238℄ the authors have studied an improved mean �eld model in
luding p asa dynami
al variable.Sear
h and CongestionShortest path routing lead to the problem of the fast 
ongestion of hubs. An-other possible alternative to the 
y
li
 sear
h was proposed in [245�247℄ wherethe routing me
hanism studied takes into a

ount node 
ongestion. In theseworks pa
kets follow paths of minimum length from their origin s to their des-tination l. At ea
h time step, all the pa
kets allo
ated in the nodes try to movefrom its 
urrent position i to the next node j in their path with a probability
qij whi
h is 
alled the quality of the 
hannel. This magnitude is de�ned interms of the 
apabilities of the two nodes, qi and qj as qij =

√
qiqj so that,when one of the nodes has 
apability 0, the 
hannel is disabled. High qualities(qij ≃ 1) imply that pa
kets move easily, while low qualities (qij ≃ 0) implythat it takes a long time for a pa
ket to jump from one node to the next. Itis assumed that qi = f(ni), i.e. the 
apability of a node i is a fun
tion of thenumber of pa
kets ni, 
urrently at node i. The general fun
tion f(n) = 1 for

n = 0 and f(n) = n−γ for n = 1, 2, 3, . . ., with γ ≥ 0, has been 
onsidered.For ξ > 1 (ξ < 1) the number of delivered pa
kets from i to its neighbour j,
i → j, is proportional to n1−γ

i . Then, the transmission between two adja
entnodes de
reases (in
reases) with the number of a

umulated pa
kets. For thespe
ial 
ase γ = 1 the number of delivered pa
kets is independent of the num-ber of a

umulated pa
kets. This routing poli
y has been studied in 1D, 2Dlatti
es and Cayley trees. To 
hara
terize the jamming transition the authorsemployed an order parameter, ρ, de�ned as
ρ = lim

t→∞

A(t + δt) −A(t)

δt · pN
. (6.31)A smooth 
riti
al transition to 
ongestion is found only for γ = 1, while for

γ > 1 the transition to 
ongestion is dis
ontinuous and jumps from ρ = 0 to
ρ = 1 at pc. This is due to the progressive deterioration of the transmission
hannels as 
ongestion grows in the network leading to a state where no pa
kets



186 Chapter 6. Propagation through Complex Networksare transmitted and thus ρ = 1 at the end. This �nal state is rea
hed by theemergen
e of a 
ongestion nu
lei. The behaviour of the spe
tra of A(t) for
p < pc was also analyzed showing a power law behaviour S(f) ∼ f−ξ with
ξ ≃ 2.The 
hoi
e of an spe
i�
 routing poli
y (shortest path, random, 
y
li
sear
h, et
...) is equivalent to de�ne an e�e
tive distan
e matrix betweenevery pair of nodes (we will return to this pi
ture in se
tion 6.2.3). Obviously,when the shortest path algorithm is 
hosen this e�e
tive distan
e will be thesame as the topologi
al one. In [248℄ the authors developed a general formu-lation of the model of tra�
 dynami
s by making use of the probability thata pa
ket lo
ated at a node i and whose destination is a node k will move intonode j in the next hoop, pk

ij. The 
onstru
tion of these probabilities dependson the parti
ular routing algorithm employed and several magnitudes 
an beexpressed in terms of them. For example, the probability for a pa
ket withtarget k to travel from i to j in n steps
P k

ij(n) =
∑

l1,...,ln−1

pk
il1 · ... · pk

ln−1j . (6.32)The above probability P k
ij(n) allows to 
al
ulate the average number of stepsbetween i and j for a pa
ket traveling to k, dk

ij =
∑

n nPn
ij, whi
h de�nes thematrix dk. Then, the element dk

ik is the e�e
tive distan
e from i to k, i.e. themain topologi
al magnitude governing the �ow of data tra�
 at a given nodewhen shortest path routing is implemented. For this general situation the e�e
-tive betweenes of the nodes 
an be also 
al
ulated as Bj =
∑

i

∑

k<i

∑

n P k
ij(n).Hen
e, for a general routing strategy when p pa
kets per unit time and node aresent and the routing rate is r a node j will be 
ongested when pBj/(N−1) > r.For the whole network one 
an establish a lower bound for the 
riti
al pointat pc = r(N − 1)/B⋆, where B⋆ is the maximum node betweenes. The generalformulation of the tra�
 problem performed in this work is of great interestsin
e it allows avoiding extensive numeri
al simulations of the hard problem oflooking for optimal topologies when a given routing strategy is pres
ribed. Infa
t the authors found that for a random routing strategy a dramati
 
hangein the optimal network topology is obtained when p is in
reased jumping froma highly 
entralized star-like topology at low values of p to a homogeneous onewhen p grows.6.2.2 Shortest path routingAfter the above brief summary on the modeling of information dynami
s onnetworks we fo
us now on the in�uen
e of network stru
ture on the data �owe�
ien
y. Here we will 
onsider a simple routing me
hanism based on shortest



6.2. Information transmission and Jamming 187path routing so that we assume global knowledge of routers. In order to dis
usshow the lo
al topologi
al properties in�uen
e the e�
ien
y of a given routingproto
ol, we use the network studied in se
tion 5.3. Let us re
all that in thismodel, the network is generated by 
onsidering the Barabási-Albert pro
edure[145℄ (se
tion 5.2.3) but introdu
ing an a�nity variable fi and a toleran
e µ,whi
h determine the peers j a new node 
an atta
h to. This is done by requiringthat fj ∈ (fi ± µ). This network shows the same global properties of the BAgraph, like the SF degree distribution, regardless of the toleran
e. However,depending on the value of µ, other lo
al properties, su
h as the 
lustering
oe�
ient and 
orrelations, di�er from the original BA network. The 
lustering
oe�
ient showed the major deviation 
ompared to the values at the BA limit(where 
lustering e�e
ts are negligible) and grows as µ de
reases. Besides, theaverage path length L remain nearly 
onstant for a wide range of µ valuesbut shows a sudden in
rease when the toleran
e approa
hes µ = 0. Thesetwo quantities, 
lustering and average path length, are of importan
e for theinformation disemination on networks as we will show below.Let us now de�ne the set up of the problem. We will assume that routersdeliver data pa
kets by ensuring that all routers 
onverge to a best estimateof the path leading to ea
h destination address. In other words, the routingpro
ess takes pla
e following the 
riterion of the shortest available path lengthfrom a given sour
e to its destination. We will 
onsider a situation 
onsistingof an initial amount p of information pa
kets to be transmitted a
ross thenetwork. That is, we will not 
onsider the situation before where the networkis subje
ted to a 
onstant �ux of pro
esses like in the works des
ribed but,instead, we will study how the system relax to its �ground state� (A(t) = 0)when an initial perturbation is performed. Then, in our simulations p pa
ketsare 
reated at the beginning and both their destinations and the sour
es are
hosen at random. In subsequent time steps, ea
h node i holding a pa
ketsends it to its destination j following the shortest path length between node iand j until all pa
kets rea
h their destinations. That is, ea
h pa
ket is divertedin su
h a way that the distan
e dij , measured as the number of nodes one needsto pass by between i and j, is minimized. In the 
ase that there are more thanone possible path, the 
hoi
e is made at random. Besides, we 
onsider thatrouters deliver r = 1 pa
ket per unit time and that the router bu�er size isin�nite, H →∞.The above pro
edure is repeated many times for a number of pro
essesranging from p = 1 to at least p = 500. Di�erent realizations of the dynami
sand the network substrate for the same p are performed in order to averagethe relevant quantities. As a measure of the e�
ien
y of the pro
ess, we havemonitored the relaxation time, 〈Trelax〉, by 
omputing the maximum time ittakes for a pa
ket to travel from its sour
e to its destination, averaged over
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Figure 6.13: Averaged relax-ation time, Trelax, as a fun
tionof the initial number of pa
kets,
p, for several network topolo-gies (using the model des
ribedin se
tion 5.3) 
orresponding to
µ = 1.0 (BA limit), 0.5, 0.22and 0.12. As 
an be observed
Trelax s
ales linearly with p forall the networks.di�erent realizations 4. Sin
e the SF topology is shared by all the networksstudied here, we expe
t that the pa
ket dissemination follow the same trendfor any value of µ. That is all the pa
kets will tend to 
on
entrate into thehubs queues at �rst instan
e. In these queues pa
kets will spend most of theirlife times so that the in�uen
e of other topologi
al fa
tors would be 
apturedby the 
onvergen
e and s
ape times of the trips into and from the 
entral hubs
ore.The numeri
al results show that this magnitude s
ales linearly with thenumber of pro
esses as 
an be expe
ted from the simple shortest path routingproto
ol. An example is shown in �gure 6.13 where the linear s
aling is shownfor several values of µ. Therefore, the derivative of Trelax(p) is a proper pa-rameter to 
hara
terize the routing performan
e. �gure 6.14 shows the slopesof the straight lines as a fun
tion of the 
ontrol parameter µ whi
h determinesthe lo
al properties of the network. It is 
lear from the �gure that the algo-rithm's out
ome depends on the topologi
al details of the network. For thefamily of networks labeled by µ the average shortest path length L is roughlythe same as that of the BA network up to a value around µ ≃ 0.2. This fa
tsomehow breaks the entanglement between the in�uen
e of the 
hara
teristi
length and other lo
al properties of the network on the pa
ket dynami
s al-lowing to study them separately. As shown in �gure 6.14, the e�
ien
y hasa well de�ned maximum and a minimum in the range µ values 0.2 < µ < 1where L(µ) remains almost 
onstant. This implies that lo
al properties areresponsible for the behavior observed, namely the 
lustering 
oe�
ient c.We have distinguished four µ-ranges in the �gure depending on the perfor-man
e of the pa
ket dynami
s relative to that of the BA network. In regionI, 0.8 < µ < 1, we �nd that the performan
e is almost the same as in the BA4Note that the 
hoi
e of 〈Trelax〉 is arbitrary. One 
an also use 〈Tavg〉 or 〈Trms〉, whi
hleads to the same behaviours.
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Figure 6.14: ∂〈Tmax〉/∂p, as a fun
tion of the network parameter µ. The �gureillustrates the dependen
y of the standard routing proto
ol on the lo
al properties ofthe network. The right panels show the variation of c with µ. The size of the networkis N = 104 nodes and mo = m = 3. The degree distribution is a power law withexponent equal to 3. Note that the BA limit 
orresponds to µ = 1. See the text forfurther details.limit. In this range both 
lustering and L show the same values as the BAnetwork. Region II and III, 0.35 < µ < 0.8 and 0.2 < µ < 0.35 respe
tively,show a di�erent performan
e with respe
t to the BA topology. In region IIthe relaxing times in
rease signi�
antly rea
hing a maximum at µ ≃ 0.5. Onthe other hand, in region III an enhan
ement in pa
ket di�usion is manifestedrevealing an optimal topology for pa
ket difussion at µ ≃ 0.22. In both regionsII and III the deviation from the BA performan
e 
an be only atributted to the
lustering growth sin
e L is almost 
onstant in the whole µ-range. The resultis apparently 
ontradi
tory sin
e the growing behaviour of c as µ de
reases isheld for the two regions. However, it 
an be explained in terms of the 
lusteringevolution. Sin
e the number of links is 
onstant for all the networks exploredhere (due to the growth me
hanism employed in se
tion 5.3) an initial growthof the 
lustering yields to the appearan
e of loops of length 3, triangles. Thesestru
tures are useless for the shortest path routing, as �gure 6.15.b shows, inthe sense that those links used to link neighbours of a given node i does not
ontribute anymore to any shortest path from i to other nodes in the network.However, if the 
lustering is further in
reased the probability of forming loopsof length 4 is in
remented, see �gure 6.15.
, and then the degenera
y in theshortest path from pairs of nodes is in
remented. This fa
t is very importantfor shortest path routing with 
ongestion sin
e the queue times are de
reased
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0
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cFigure 6.15: S
hemati
 representation of the di�erent stru
tures found in the neigh-borhood of a parti
ular node (white 
oloured in the �gures) when 
lustering is in-
reased as happens when going from region I to region III in �gure 6.14. When
lustering is small (I) the tree-like stru
ture in the neighbourhood of nodes makes thepa
kets to 
hoose a parti
ular bran
h depending on their destination. When 
luster-ing in
reases (II) the links employed by our model for 
onne
ting its neighbours areuseless and de
rease the number of 
hoi
es. However, if 
lustering is even larger (III)the formation of 
losed loops of length 4 diversify the possible shortest path to befollowed by a single pa
ket delivered from the white 
oloured node.when pa
kets going to similar parts of the networks are distributed in severalshortest paths. Now, pa
kets 
an 
ir
umvent more easily 
ongested nodes,thus making the shortest path proto
ol more e�
ient. The routing enhan
e-ment provided by the large 
lustering is lost when length e�e
ts appears at lowvalues of µ. For very small µ, L diverges (see inset in �gure 6.14) leading toa bad performan
e of the proto
ol, although the 
lustering 
ontinues to growfor these µ values, sin
e the algorithm works on a shortest-path-delivery basis.The 
rossover from the minimum to the divergen
e of ∂〈Tmax〉/∂p is a
hievedin the parameter region IV where the interplay between c and L breaks downand the 
ontribution from L to the routing performan
e prevails.The above results indi
ate the strong dependen
e of the routing e�
ien
yon the underlying topology. Let us �nally take a look at the queue timesdistribution, i.e. the probability that a pa
ket spends a time Tqueue waitingin the queues of the nodes visited in its trip to the destination node, whenseveral µ values are employed for the network substrate. We have plotted in�gure 6.16 these distributions for µ = 1 (BA limit), µ = 0.5 (
orrespondingto the lo
al maximum in �gure 6.14, µ = 0.22 (
orresponding to the optimaltopology as explained above) and for the Autonomous System network. For allthe networks generated by our model we �nd a power law behaviour trun
atedat long queue times where the di�eren
es between the topologies are revealed.
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Figure 6.16: Queue time dis-tribution for a set of networkswith µ = 1, 0.5, 0.22 and theAS representation of the inter-net. Trun
ated power law be-haviour is well appre
iated forthe networks generated usingour model. These networkswere grown up to a similar sizeof the AS map N = 11174.
The distribution 
orresponding to the AS network shows however a di�erenttrend and the power law behaviour is not re
overed. In this 
ase, (as weexplained in previous 
hapters), although the SF 
harater is also preserved,lo
al properties su
h as degree 
orrelations are very di�erent from those in themodi�ed BA model employed here 
on�rming the importan
e of these lo
alingredients on the pa
ket dynami
s.6.2.3 Congestion-aware routingThe pre
eding analysis shows that the routing proto
ol may be very sensitiveto lo
al details of the network on top of whi
h the spreading pro
ess is takingpla
e. It is then advisable the use of real nets in order to obtain reliable results.To this end, we will use the Internet Autonomous System map [165℄, whi
h isa SF network with γ = 2.2 and N = 11174 nodes. It is worth stressing thatea
h AS groups many routers together and the tra�
 
arried by a node is theaggregation of the tra�
 generated at the internal routers and on individualend-host �ows between the ASs.Our aim here is to explore routing me
hanisms more sophisti
ated thanpurely random or shortest path strategies. The �rst modi�
ation of the routings
heme is introdu
ed by noting that the shortest path pro
edure does not takeinto a

ount the tra�
 on the network. Spe
i�
ally, a routing poli
y based onthe shortest path between two given nodes negle
ts the queue in overloadednodes whi
h makes the pro
ess slower as the queue lengths be
ome larger. Thatis, it may be more e�
ient to divert a pa
ket through a larger but less 
ongestedpath. Let us hen
e assume that a node l is holding a pa
ket that should besent to a node j and de�ne an e�e
tive distan
e deff

ij from a neighboring node
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Figure 6.17: S
hemati
 representation of the neighbour 
hoi
e for a pa
ket transmis-sion. The neighbours of a given node 
an be at distan
e d−1, d or d+1 to the pa
kettarget (where d is the distan
e from the a
tual pa
ket position to the target). When
h = 1 only those neighbours at d− 1 a

ount for the delivery as only geodesi
s fromthe node sour
e to the node destination are to be 
onsidered. However, for h < 1, alarger but less 
ongested path 
ould be the 
hoi
e for the pa
ket route.
i of l to the destination j as

deff
ij = dij + ci , (6.33)where dij is the shortest path between node i and j and ci is the number ofpro
esses (or pa
kets) in the queue of i. The above de�nition, however, doesnot allow us a dire
t 
omparison with the other standard pro
edures. It isthen 
onvenient to rede�ne the e�e
tive distan
e as

deff
ij = hddij + hcci , (6.34)so that the limit hc = 0 
ontains the shortest path proto
ol. Furthermore,without loss of generality, we take hd + hc = 1. This algorithm will be 
alleddeterministi
 proto
ol hen
eforth. The pro
edure for 0 < hd < 1 
ombinesknowledge of the stru
tural properties of the network and its 
urrent dynami
alstate at a lo
al s
ale, 
onsequently, a trade-o� asso
iated to pa
kets' transittimes is naturally and dynami
ally in
orporated (see �gure 6.17).Taking into a

ount the above e�e
tive distan
e, dij

eff , we �rst study asimilar situation to the one presented in the previous se
tion. Starting from ppa
kets in the network, at ea
h time step, the remaining pa
kets are deliveredin su
h a way that the neighbour 
hosen when a pa
ket towards j departs froma node i is that whi
h minimizes dij
eff .A �rst look at the dynami
s shows that a proto
ol implemented in this wayis more e�
ient than taking into a

ount only the shortest path 
riterion. Infa
t, 〈Trelax〉 departs from the linear behavior previously observed and is well
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Figure 6.18: Dependen
y of 〈Trelax〉 on the number of initial pa
kets p in the deter-ministi
 limit of the model (β = 20) ran on top of an AS Internet map made up ofaround 11000 nodes. Ea
h point is an average over at least 200 realizations. Thestandard proto
ol 
orresponds to the limit hd = 1. Note that although the tenden
yof the 
urves is to 
ross the straight line as p in
reases, there is an optimal value of
hd su
h that the inter
eption would take pla
e in the limit of very heavy tra�
.below the straight line up to a high p. This behaviour 
learly depends on hd,sin
e it is straightforward to realize that if hd is zero, the pa
kets are divertedfollowing the less loaded node regardless of the path length whi
h results in anun
ontrolled in
rease in the distan
e traveled by the pa
kets from the sendingnodes when p grows.The above algorithm 
an be further generalized by in
luding a probabilisti
view. In other words, on
e we have determined the deff

ij for all pairs (i, j), we
an allow for a sto
hasti
 
hoi
e of the paths. Hen
e, our se
ond algorithm,referred to as sto
hasti
 proto
ol 
onsiders a s
ore fun
tion or �energy� Hij =

hddij + (1− hd)ci and that the probability Πij that a pa
ket with destination
j is sent pre
isely through node i is given by,

Πij =
exp (−βHij)

∑

{l|(l,i)∈V } exp (−βHlj)
, (6.35)where β is the inverse of the temperature. In the limit β → ∞ (at zerotemperature) we re
over the deterministi
 proto
ol.Figure 6.18 shows the dependen
y of 〈Trelax〉 on the number of pa
kets pfor several values of hd in the deterministi
 limit of the model, whi
h we foundto be ful�lled for β = 20. A dynami
s whi
h does not take into a

ount theamount of tra�
 handled by the neighbors of a sender node −straight line in
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Figure 6.19: Dependen
y of 〈Trelax〉 on the number of pa
kets, p, for a middle β = 5value. The network parameters are as in �gure 6.18. In this 
ase, the hd range inwhi
h the sto
hasti
 strategy performs better than the standard one is redu
ed.�gure 6.18− performs worse than the one whi
h integrates both ingredients.However, this depends on both the spe
i�
 weight of ea
h metri
 in Hij and p.In the regime where the tra�
 is not heavy (small p values) all 
urves are belowthe shortest path proto
ol performan
e, but as the amount of tra�
 handledby the network in
reases, the deterministi
 proto
ol starts performing worsefor a range of hd values. From the results, it seems that eventually, when thetra�
 in
reases too mu
h, the 
urves 
ross the straight line indi
ating that atthose limits the shortest path strategy is best suited. Note, however, that for
hd = 0.75 the 
onvergen
e of the two algorithms o

urs for a very heavy load.Consequently, we 
an assert that there is an hd region where the 
ombination ofthe two ingredients gives rise to the best performan
e. On the other hand, theexisten
e of an optimal hd value distin
t from zero 
an be understood by notingthat a me
hanism la
king some degree of path length information between thesour
e and destination nodes of the pa
kets performs badly be
ause the pa
ketstravel along too large paths that do not 
ompensate the time they would loosetrapped in the queues of 
ongested nodes.The 
ompletely sto
hasti
 limit of the model 
orresponds to β = 0. Theperforman
e of the proto
ol in this limit is however very bad. In fa
t, for anin�nite temperature, all neighboring nodes of a given sender have the sameprobability to re
eive the message regardless either their 
ongestion level ortheir distan
e to the targets. Then, the dynami
s be
omes a random walkpro
ess. With no topologi
al information about what are the destinations ofthe pa
kets, they arrive to the re
eiver at longer times and the algorithm is the
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Figure 6.20: Phase diagram of the system's dynami
s. The network parameters areas in �gure 6.18. The number of pro
esses is p = 500. Cal
ulations for higher p showthat the minimum of 〈Trelax〉 is also attained around hd = 0.8± 0.1.worst. For intermediate values of β, we have an sto
hasti
 dynami
s in whi
htopologi
al and tra�
 information 
oexist with some degree of randomnessin the 
hoi
e. This is the 
ase depi
ted in �gure 6.19 for the same valuesof hd used in �gure 6.18. As 
an be noted from the �gure, the sto
hasti
proto
ol in
reases 〈Trelax〉 by at least one order of magnitude as 
ompared tothe deterministi
 limit (β = ∞). Moreover, the shortest path routing seemsto be the best 
hoi
e for a wider range of hd values, although hd = 0.75 stillperforms better.Figure 6.20 summarizes our results for di�erent values of the 
ontrol pa-rameters β and hd. It turns out from the study of the whole phase diagramthat the best algorithm is one whi
h in
ludes information about both pathlengths and 
ongestion at a lo
al s
ale. Besides, the deterministi
 limit with
hd = 0.75 gives the best results for 〈Trelax〉. It would be worth noti
ing atthis point that, although the �gure 6.20 was obtained in not too heavy tra�

onditions, the results are 
onsistent for larger values of p. Di�erent tests al-low us to 
on
lude that the optimal value is hd = 0.8 ± 0.1. In any 
ase, this
on�rms that it would be possible to devi
e more elaborated proto
ols withthe aim of diminishing the time needed for a pa
ket to spread through thenetwork. In light of the present results, su
h an strategy may be implementedby also taking into a

ount the amount of tra�
 handled by a lo
al area of thenetwork.
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ol is the deterministi
 one,whi
h, on the other hand, should be easier to implement in pra
ti
e. Themi
ros
opi
 dynami
s of the routing pro
ess in this limit reveals that it isdesirable that the routing pro
ess in
orporates some knowledge of the node'squeue lengths. However, the 
ontribution in the s
ore fun
tion of the se
ondterm in eq. (6.34) should not weigh in ex
ess. For small values of hd, say 0.25,the algorithm performs better that shortest path routing for moderate valuesof p be
ause the pa
kets do not pass by the hubs of the network, whi
h arelikely to be in the shortest path route to any node. Instead, they go around thehubs and 〈Trelax〉 is smaller. If p is in
reased, the neighbors of the hubs alsoget 
ongested. This leads to a situation in whi
h the pa
kets around a hub gettrapped in its neighborhood, getting in and out from it, but without �ndingtheir routes to their destinations. We will analyze in depth this situation below.Jamming transitions at 
onstant information �uxTo analyze in more detail the performan
e of the 
ongestion-aware proto
ols weturn our attention to the more realisti
 situation where the network is subje
tedto a 
onstant �ux of newly 
reated pa
kets. Starting from an unloaded network,at ea
h time step p new information pa
kets are 
reated. As before, the sour
eand destination of ea
h pa
ket are 
hosen at random among all the nodes andea
h node sends only one pa
ket at ea
h time step, r = 1. As an appropriatemeasure of the e�
ien
y of the pro
ess, we monitor the aggregation of pa
ketsin the network, given by the number of pa
kets that have not rea
hed theirdestinations at ea
h time step t, A(t). Figure 6.21 shows the results obtainedfor di�erent values of p and hd. As it 
an be seen, when the external drivingis applied at low rates (i.e., small p), both proto
ols allow for a stationarystate where A(t) > 0 is 
onstant. In this state, the system is able to balan
ethe in-�ow of pa
kets with the �ow of pa
kets that rea
h their destinations.This stationary state, where no ma
ros
opi
 signs of 
ongestion is observed,
orresponds, as already introdu
ed in previous se
tions, to the so-
alled free�ow phase. The situation 
hanges when the rate at whi
h new pa
kets areintrodu
ed in
reases. As we will see below, there is a 
riti
al value pc beyondwhi
h a 
ongested phase shows up. Let us now note that for the shortest pathproto
ol (hd = 1) (�gure 6.21.a, dotted line), when p > pc, A(t) grows linearlyin time ∀t as expe
ted from earlier works where this routing was implemented[239℄. On the 
ontrary, for the tra�
-aware algorithm, hd < 1, we observe that
A(t) grows slowly at short times and then be
omes steeper as time goes onwith a 
onstant slope (�gure 6.21.
).In order to 
hara
terize the phase transition from a free phase to a 
on-
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Figure 6.21: Total number of a
tive pa
kets as a fun
tion of time steps. Figures (a)and (b) 
orrespond to the shortest path proto
ol, hd = 1 while (
) and (d) have beenobtained for the tra�
-aware routing with hd = 0.85. In ea
h �gure, the 
ontinuousline stand for sub
riti
al values of p ((a) and (b) p = 3.0, (d) p = 8.0) and the dottedline 
orresponds to p > pc ((a) and (b) p = 4.0, (
) and (d) p = 13.0).gested one, we use the order parameter introdu
ed in [245℄, eq. (6.31)
ρ = lim

t→∞

A(t + τ)−A(t)

τpwhere τ , the observation time, was typi
ally �xed to 200 time steps. Were
all that the limit in the above expression is introdu
ed only to ensure thatthe system is not in a temporary regime, for our purpose it ranged from fewthousands to 104 time steps depending on the system behaviour. The orderparameter ρ hen
e measures the ratio between the out�ow and the in�ow ofpa
kets during a time window τ . Then, ρ equals 1 when the 
ongestion ismaximal (no pa
ket rea
hes its destination) and 0 when an equilibrium isestablished, i.e., in the stationary state.For the shortest path routing the 
omputation of ρ is simple be
ause ofthe linear behaviour observed for both the free-�ow and the 
ongested phases.
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Figure 6.22: (a) Time evolutionof the number of a
tive pa
ketsin the network for the 
ongestion-aware routing hd = 0.75. The val-ues p = 1 and p = 8 
orrespondto the free-�ow phase whereas p =

10.5 and p = 12.5 lie on the 
on-gested regime. The evolution of
A(t) shows two di�erent regimes forthese two last values: a large tran-sient time (where a nearly linear be-haviour for A(t) is observed) andthe equilibrium one (where againa linear behaviour is rea
hed witha larger slope). (b) Instant 
om-putation of ρ(t). For the valuesof p where p < pc ρ(t) �u
tuatesaround 0, whereas when p > pc, thetwo aforementioned regimes are re-�e
ted by the regions where ρ(t) is
onstant.On the other hand, for the routing aware proto
ols at the 
ongested phase wehave to be 
areful about the measures of ρ. The �rst transient regime observedin �gure 6.21.
 
an be regarded as a linear regime for the neighbourhood ofthe 
orresponding value pc. In fa
t, as observed from �gure 6.22.a for valuesof p so that pc . p this transient regime 
ould be of the order of severalthousands of time steps. If one monitorizes the evolution of ρ(t), �gure 6.22.b,this quasilinear behaviour is re�e
ted as a nearly 
onstant low values of ρ(t)for initial times. This behaviour is interrupted by a suddenly growth of ρ(t)to a larger value, where it remains 
onstant signaling that the system haverea
hed its dynami
al equilibrium. At �rst look it seems that, at the beginning,the system is being 
harged by the unbalan
ed load of tra�
 and when thedynami
s rea
hes a 
riti
al number of a
tive pa
kets it explodes yielding to therapid in
rease of A(t) shown by the large slope of the �nal state. Although wewill analyze in more details this pro
ess below, it is important to stress herethat no matter how slow the 
harge rate of the transient regime is, the systemwill experien
e the �nal dramati
 in
rease in A(t). Obviously, as we approa
h

pc from the right, the time needed by the system to rea
h the �nal equilibriumdiverges and hen
e the estimation of the 
riti
al point pc is 
omputationallyhard.Figure 6.23 depi
ts the system's phase diagram. The dynami
s of the
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Figure 6.23: Jamming transitions as a fun
tion of p. The order parameter ρ is givenby eq. (6.31). Note that hd = 1 
orresponds to the standard strategy in whi
h tra�
awareness is absent. As soon as tra�
 
onditions are taken into a

ount, the jammingtransition is reminis
ent of a �rst-order phase transition and the 
riti
al point shiftsrightward (see right inset).system is 
hara
terized in both shortest path and 
ongestion-aware proto
olsby a 
riti
al point beyond whi
h a ma
ros
opi
 
ongestion arises. However,as expe
ted from the previous observations, there are two radi
ally di�erentbehaviors for the onset of tra�
 jams. In the standard proto
ol (hd = 1), the
riti
al point is small, pc ≃ 3 and the jamming transition is reminis
ent of ase
ond order phase transition. On the 
ontrary, when hd 6= 1, the 
riti
al point
pc ≃ 9 is distin
tly larger than for hd = 1, but the appearan
e of a 
ongestedphase turns out to be 
onsistent with a �rst order phase transition, with asharp jump of ρ at the transition point. Moreover, the order of the transitionfor the latter proto
ol is independent of hd provided that h 6= 1.The two di�erent types of transitions depending on whether or not tra�
-awareness is in
orporated in the proto
ol at work, poses an interesting issue.Whi
h of the two proto
ols will be best suited to handle tra�
? It dependson the system. While for the standard proto
ol we get a smaller 
riti
al point,the jammed phase does not appear suddenly. Hen
e, if we would like to have asystem in whi
h tra�
 jams appear and grow smoothly, the standard algorithmis the best 
hoi
e. On the 
ontrary, we 
ould implement a sort of tra�
-awareproto
ol if we are interested in delaying the appearan
e of 
ongestion, howeverat the 
ost of a sudden jump to a highly jammed phase due to the la
k ofprevious warnings.
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ros
opi
 origin of the 
riti
al behaviourIn order to provide more insights into the nature of the phase transitions, wenow fo
us on the mi
ros
opi
 details of the system's dynami
s that lead to thema
ros
opi
 results shown previously. We have inspe
ted how the nodes get
ongested. As both 
lasses (shortest path and 
ongestion-aware) of proto
olsin
orporate a shortest path delivery strategy, a suitable des
ription 
an beobtained by monitoring the number of a
tive pa
kets at ea
h node as a fun
tionof the betweenness of the nodes. As explained in se
tion 5.1.2, the betweennessor load of a node i gives the total number of shortest paths among all pairs ofnodes in the network that pass through i [161, 169, 249℄. It is then a measureof the 
entrality of a node in the network so that it be
omes a relevant quantityin tra�
 �ow modeling. In parti
ular, for our system, AS representation ofthe Internet, the betweenness of a node s
ales with its 
onne
tivity k [161℄.Figure 6.24 
learly illustrates the distribution of 
ongested verti
es for thetwo proto
ols analyzed. The shortest paths 
onne
ting the sour
es and thedestinations of any a
tive pa
ket always tend to visit �rst the more 
onne
tednodes and then go down to the less 
onne
ted ones. This is a 
onsequen
e ofthe hierar
hy of the network and is 
alled up-down strategy [161℄. For hd = 1,the proto
ol only works on a shortest path delivery basis. Then, the hubsbe
ome 
ongested early in the pro
ess 
ausing the pa
kets to get trapped ina few nodes as shown in �gure 6.24. When tra�
 
onditions are taken intoa

ount by the routing me
hanisms, the same up-down strategy applies up tothe hubs. Then, instead of getting trapped in them, the pa
kets 
ir
umventhighly jammed nodes and the load is distributed to nodes other than the hubs,provoking the aggregation of tra�
 in neighborhoods of over
rowded nodes.As it is shown in the �gure, when hd < 1 the 
ongestion gets �rst lo
alizedin the most 
entral nodes, the hubs, and it is progressively distributed amongthe rest of the nodes following the 
entrality hierar
hy, from the most 
entralsnodes to the less ones. At the long time limit, the 
ongestion is spread throughthe network instead of getting trapped in the hubs as happens for hd = 1.It is possible to get deeper into what is going on in the system for hd 6= 1by analyzing the redistribution pro
esses that make the pa
ket follow the less
ongested paths. Let us suppose that a node i is holding a pa
ket to be sentto j through one of its ki neighbours. Among all the neighbours of i, there isone node with the lowest load cmin. Now, assume the extreme situations inwhi
h by going through a given neighbour l the pa
ket is one hop 
loser to itsdestination, but taking the path for whi
h the 
ongestion is minimum, it is onehop farther from j. Thus it follows that whenever the relation
cl − cmin >

2hd

1− hd
(6.36)
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h=0.85 h=1.00h=0.85 h=1.00dh =0.85 h =1.0d Figure 6.24: Congestion levels asa fun
tion of time and nodes' be-tweenness. At ea
h time step,the 
olor-
oded s
ale is normal-ized by the number of pa
kets ciin the queue of the node withthe largest 
ongestion. Two rad-i
ally distin
t behaviors are ob-tained for the shortest path rout-ing (hd = 1, p = 4 > pc = 3,right panel) and for the tra�
-aware proto
ol (hd = 0.85, p =

13 > pc = 9, left panel).
is veri�ed, no pa
kets (regardless of their destination) will be sent through l.This node l is impenetrable for i. Then, if a node is impenetrable for all itsneighbors, we 
all it just impermeable, sin
e it does not parti
ipate in tra�
delivery.Following this pi
ture, as 
ongestion spreads throughout the network, thenumber of impermeable nodes would in
rease up to a 
onstant value sin
ethe de�nition of impermeable nodes is relative to their neighbourhood (it isimpossible to obtain a network 
omposed only by impermeable nodes). Then,regardless the total load of the network (that in
reases with time), the numberof impermeable nodes remain nearly 
onstant. Besides, its distribution would
hange dynami
ally sin
e an impermeable node does not admit new pa
kets intheir queues but it does 
ontinue sending pa
kets to their neighbours so that itslevel of 
ongestion relative to that of their neighbours 
an only de
rease whileits neighbours re
eive its pa
kets. Therefore a dynami
al ba
kbone made up
Cmin i

l Figure 6.25: A node l is 
alled impermeable toits neighbour i when eq. (6.36) is ful�lled.
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Figure 6.26: Time dependen
e of the total number of pa
kets in the system andaverage size of the 
lusters formed by non impermeable nodes. Note that A(t) be
omessteeper just when the in�e
tion of 〈G〉/Gmax(t) 
hanges. hd = 0.85 and p = 13. Seethe text for further details.of all nodes that are able to transmit the pa
kets 
omes up. This pi
ture issimilar to the per
olation of a �uid through a porous media. Here, pa
kets 
an�ow only through non impermeable nodes as a �uid 
an only �ow through thepore 
hannels.The existen
e of impermeable nodes provokes the appearan
e of both smallnetwork 
omponents in the form of impenetrable regions, and 
lusters of al-lowed paths. By identifying those impermeable nodes at some time t follow-ing the 
riterion (6.36), it is possible to �nd those dynami
ally un
onne
tednetwork 
omponents whose boundaries are 
omposed by impermeable nodes.Figure 6.26 depi
ts the time dependen
e of the average 
luster size (normalizedby the largest 
luster size) of allowed regions. Starting from t = 0, as timegoes on, the total number of pa
kets in the network in
reases and there is onlyone 
luster of the size of the network. When signs of 
ongestion �rst appear,
〈G〉/Gmax(t) de
reases departing from unity signaling that impermeable nodesstart to appear. At longer times, tra�
 jams rea
h more nodes (see, �gure 6.24,for t > 21000) 
ausing the 
ongestion to be more distributed in the networkand hen
e the growth of the total amount of impermeable nodes. Finally, the�ow of pa
kets in the network rea
hes the regime in whi
h A(t) in
reases lin-early in time and ρ(t) saturates to its stationary value (�gure 6.22). In thisstate, marked by an in�e
tion point in the 〈G〉/Gmax(t) 
urve beyond whi
h
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Figure 6.27: Jamming transitions for the Gnutella, Barabási-Albert and Erdös-Rényinetworks. The bottom right plot shows the estimation of the 
riti
al point, pc, forthese topologies. Syntheti
 networks (ER and SF-BA) have the same size as theGnutella peer-to-peer network N = 711.the average 
luster size of allowed regions stabilizes, the system seems to haveself-organized the distribution of jammed nodes.This self-organization phenomenon ni
ely explains why one 
an not gosmoothly from these results to those 
orresponding to the use of the short-est path proto
ol by making hd → 1, as it 
an seem from eq. (6.34). Thedis
ontinuity at hd = 1 is therefore due to the la
k of alternative paths in thestandard proto
ol. Even for hd very 
lose to 1, the system will self-organizeitself into a state in whi
h 
ongested nodes are distributed and not limited tothe very hubs of the network. The only dependen
e with hd is manifested inthe time needed for self-organization, that be
omes very large and eventuallydiverges when hd → 1.The results found here are reprodu
ed when using more general networktopologies as the tra�
 substrate. We have inspe
ted the 
ase of syntheti
networks like Erdös-Rényi and Barabási-Albert graphs as well as other realmaps like the Gnutella peer-to-peer network (see �gure 6.27). The results arequalitative the same as those shown above: a little knowledge of the lo
al
ongestion levels enhan
es the performan
e of the information dynami
s in
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riti
al point pc, but on the other hand, thetransition to the 
ongested regime 
hanges from a smooth to a sudden one dueto the dynami
al fragmentation of the network explained above. Our resultsdemonstrate that whether or not a given proto
ol is best suited for tra�
handling depends on a deli
ate trade-o� between the system's performan
eand tra�
 
apabilities (how large pc is) and how 
ongestion arises (smoothlyor suddenly).6.3 Con
lusionsWe have explored in se
tion 6.1 and 6.2 two propagation pro
esses in 
omplexnetworks, namely: epidemi
 spreading and information routing. Assumingthat the networked substrates are s
ale-free, several features have been stud-ied in detail. As we introdu
ed at the beginning of this se
ond part of theThesis, the main purpose 
on
erning the study of network dynami
s here, isto know how the heterogeneous topology and other stru
tural properties a�e
tthe development and e�
ien
y of the dynami
s.The �rst set of results, explained in se
tion 6.1, 
on
erns the immunizationstrategy of 
omplex heterogeneous networks. Taken into a

ount that hubsplay a 
entral role in these kind of pro
esses it is 
lear that the best 
hoi
e forstopping the epidemi
 spreading is to 
onfer immunity to these most 
onne
tednodes. However, taking into a

ount that knowledge of network stru
ture is not
omplete in most situations, we have proposed a new immunization strategybased on a heuristi
 solution to the 
overing problem. This new immuniza-tion s
heme is neither lo
al nor global, and hen
e, we have explored severalsituations 
orresponding to di�erent knowledge horizons (from lo
al to globalknowledge). The immunization strategy, based on the 
overing solution, takesadvantage of the heterogeneous stru
ture of networks and it has been shownto perform better than all previous methods irrespe
tive of the degree of lo-
al knowledge, ex
ept for the 
ase of targeted immunization. We have alsoshown that the solution found for the immune set of nodes, i.e. the 
overingsolution, and therefore the output of a SIR epidemi
s strongly depend on thenature of the degree-degree 
orrelations of the network. In this sense, it isworth mentioning that the traditional belief that by targeting hubs one 
an ef-�
iently solve most problems on networks with a power-law degree distributionis not 
ompletely true if the degree-degree 
orrelations are assortative, wherea distributed 
overing-based immunization is desirable.We have also analyzed the problem of information routing in 
omplex net-works in se
tion 6.2. We have studied di�erent strategies for tra�
 deliveryin 
omplex heterogeneous networks. The results showed that the performan
e
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lusions 205of the standard approa
h, based on routing through minimal distan
e (be-tween sender and re
ipient) paths, is sensitive to lo
al topologi
al 
hanges.Spe
i�
ally, the 
lustering properties may play a key role in message delivery.Besides, we have studied alternative strategies to the shortest path routingpoli
y. In parti
ular, we have studied algorithms whi
h integrate topologi
aland tra�
 information. This 
ongestion-aware algorithms have been shown toperform better that the standard proto
ol when relaxation pro
esses o

ur. Atthe same time, we have 
hara
terized the jamming transitions that take pla
ewhen a 
onstant �ux of information is introdu
ed in the network. The resultshave shown that when tra�
 awareness is in
orporated into the routing proto-
ol, new 
ooperative e�e
ts arise and the jamming s
enario is totally 
hanged.The use of 
ongestion-aware routing is seen to imply a better performan
e,for what 
on
erns the onset of jamming, i.e the network allows a higher loadof data tra�
 at the free �ow phase. On the 
ontrary, when jamming o

urthere is a sudden in
rease of the 
ongestion levels and an abrupt transition isobserved in 
ontrast to the well known se
ond order phase transition found forthe standard shortest path routing.The two main strategies introdu
ed in this se
ond part of the Thesis,
overing-based immunization and 
ongestion-aware routing, are oriented totake advantage of the s
ale-free nature of the substrates where the asso
iateddynami
s, epidemi
 spreading and information tra�
, take pla
e. In the forth-
oming part we will 
are about the two way relation between stru
ture anddynami
s.





Part IIINonlinear Dynami
s ofComplex Networks





Presentation of Part IIIIn the two pre
eeding parts of the Thesis we have dealt separately withboth dynami
al and stru
tural 
omplexity. In part I we have been 
on
ernedwith dynami
al systems 
oupled in a simple regular way 
onforming perfe
tnonlinear latti
es. These geometries of the arrays of dynami
al systems are,in most 
ases, realisti
 when 
on
erning appli
ations in �elds as solid statephysi
s, opti
s, et
... and they are 
urrently the subje
t of a 
onsiderablemultidisplinary interest [23℄. However, there are yet another kind of prob-lems, most of them asso
iated with biologi
al systems, where these simplisti
assumptions for the topology of intera
tions are not valid and, therefore, stru
-tural 
omplexity is linked to nonlinear dynami
s.Although our analyti
al tenden
y is to separate these two sour
es of 
om-pli
ation, an unitary approa
h is needed in order to explain how stru
turaland dynami
al 
omplexity in�uen
e ea
h other [250℄. This dire
tion of studyis deeply related with the growing interest in the understanding of the manyaspe
ts of the 
orrelation between Stru
ture and Fun
tion in systems made upof dis
retely many nonlinearly intera
ting 
omponents. The main assumptionbehind these studies is that the stru
ture of the network of intera
tions is theresult of a sele
tive pro
ess that yields an advantageous topology for the systemfun
tioning. The 
ommon s
ale-free 
hara
ter found for many real networkssupport these spe
ulations and many e�orts are 
urrently being made in orderto �nd dynami
ally based optimization prin
iples for modeling network growthand evolution.The most interesting problems on the relation between stru
ture and fun
-tion arise in the 
ontext of biologi
al systems su
h as biomole
ular (protein-protein intera
tion, gene regulation, 
ell metabolism), 
orti
al brain and e
o-logi
al (trophi
 networks, mutualism) networks. There exist many dynami
almodels a

ounting for the intera
tions among the elements of su
h systemsand, at the same time, the advan
es in experimental te
hniques allow for hav-ing the topology of these intera
tions mapped into a large amount of biologi
alnetworks. The s
ienti�
 basis are thus well established and the resear
h isnow being oriented to the study of the mutual in�uen
e between dynami
sand topology, attra
ting the attention of s
ientist from diverse �elds to thisinteresting problem.The most relevant results would eventually 
ome from those mentionednetwork models that, instead of de�ning network growth in terms of stru
turalproperties, in
orporate the e�
ien
y of the dynami
s (fun
tion) of the networkas the leading prin
iple for network evolution. However, most of studies up



210to now have 
on
entrated in analyzing how stru
ture a�e
ts the emergen
eof dynami
al e�e
ts like syn
hronization patterns, self-sustained dynami
ala
tivity, et
... These �rst approa
hes to the problem provide useful insightsfor more ambitious proje
ts where optimization of dynami
al properties likesyn
hronizability, dynami
al adaptability and stability, et
... will be expli
itlyemployed in network design.Our main 
on
ern in this last part of the Thesis is on the line of these�rst approa
hes to the Stru
ture-Fun
tion relation problem. We will use the
on
epts applied in the two former parts to study the dynami
al patterns thatappear when two di�erent dynami
al systems are pla
ed on top of 
omplexgeometries. We will 
hara
terize both dynami
ally and stru
turally these pat-terns in order to unveil the interplay between topology and dynami
s. Thesepatterns are seen as the produ
t of the two 
oupled sour
es of 
omplexity and,as we will see, lead to the emergen
e of new properties that 
annot be obtainedfrom a separate study of dynami
al and stru
tural 
omplexity.In 
hapter 7 we will study a 
lass of 
omplex networks where there exists a
ompetition of inhibitory and a
tivatory intera
tions between elements. Thesekind of systems are related with gene regulatory networks and metaboli
 re-a
tions 
hains. The des
ription of the system fun
tioning is performed via aMi
haelis-Menten equation, widely used for des
ribing the rea
tion kineti
s of
atalyti
 pro
esses. We will �rst study in detail the phase portrait of the sys-tem as a fun
tion of the ratio between a
tivatory and inhibitory intera
tionsof the network and 
hara
terize the diverse bifur
ations found. This dynami-
al 
hara
terization of the system 
onstitutes a generalization of those studiesperformed in random Boolean networks. A se
ond purpose of this study isto 
hara
terize topologi
ally the substru
tures of self-sustained dynami
s thatare observed. In this regard, we analyze the emergent dynami
al 
lusters bymeans of the statisti
al measures introdu
ed in the se
ond part of the Thesis,
hapter 5, and observe that new stru
tural properties absent in the networksubstrate show up.Chapter 8 is devoted to the study of syn
hronization in networks of Ku-ramoto phase os
illators. Here we will 
hara
terize the syn
hronization transi-tion in several network topologies. In parti
ular, we will des
ribe the evolutionof the system towards syn
hronization paying attention to the emergen
e ofdynami
ally 
oherent 
lusters of nodes as the 
oupling between network nodesis in
reased. These studies aim to highlight that the route to syn
hronizationdepends strongly on the underlying topology, not only for what 
on
erns thequantitative values for the onset of syn
hronization, but in the qualitativelydi�erent organizational prin
iples that lead to the formation of a ma
ros
opi
syn
hronized 
luster.



211These two stru
tural studies of the dynami
al patterns, that emerge when
oupling dynami
al systems in a networked substrate, will help to understandwhat kind of topologies are best �tted for systems fun
tion.





Chapter 7A
tivatory-Inhibitoryintera
tions in ComplexNetworksHow would we express in terms of the statisti
al theory the marvelous fa
ulty ofa living organism, by whi
h it delays the de
ay into thermodynami
al equilibrium(death)?... the devi
e by whi
h an organism maintains itself stationary at a fairlyhigh level of orderliness... really 
onsists in 
ontinually su
king orderliness from itsenvironment.� Erwin S
hrödinger in What is life? The physi
al aspe
t of theliving 
ell [251℄.How does the interplay between 
omplex stru
tures and nonlinear dynam-i
s may shed new light on what is going on at the 
ellular and mole
ular levelsof organization of biologi
al systems? As in other natural systems, on onehand, s
ientists have begun to look for patterns of intera
tions in biologi
alsystems. The idea behind this approa
h is that we 
an not 
ompletely under-stand the fun
tioning of the 
ell by studying its 
omponents separately. Thenext step 
onsists of taking into a

ount the dynami
s governing the unraveledintera
tions. This is 
ertainly not an easy task as one has to deal with twosour
es of 
omplexity: one 
oming from the unraveled stru
tural patterns andthe other from a dynami
s in whi
h analyti
al insights are di�
ult to take.In this 
hapter we address the problem of networks of agents that regulatetheir a
tivity by means of a
tivatory and inhibitory intera
tions. This kindof systems 
onstitute the 
oarse grained des
ription of regulatory networks ofgenes at the 
ellular level. We will �rst des
ribe in se
tion 7.1 the 
urrenttrends in modeling biologi
al networks with spe
ial interest in gene networks.



214 Chapter 7. A
tivatory-Inhibitory intera
tions in NetworksThe results obtained when a simple 
ase of this 
lass of systems is analyzedare des
ribed in se
tion 7.2.7.1 Modeling biologi
al networksIn 1999, Hartwell and 
ollaborators published an in�uential paper dis
ussingthe new 
hallenges of modern biology [252℄. The authors pointed out that anissue of utmost importan
e is to develop a general framework in whi
h biologi-
al fun
tions 
ould be understood as part of a 
omplex modular organization ofmole
ules or 
ell's 
onstituents. In other words, modern biology should explainnot only the fun
tioning of individual 
ellular 
omponents, but also how these
omponents are inter
onne
ted through a 
omplex web of intera
tions leadingto the fun
tion of a living 
ell. It is then natural to ask what these biologi-
al networks at the 
ell organization level look like, and how their stru
ture
ouples to the dynami
s.Cells are life's fundamental units of stru
ture and fun
tion. It was expe
tedthat, on
e the 
omplete instru
tions en
oded in DNA would have been inter-preted, one 
ould map a gene (the basi
 information unit in the DNA) intoa spe
i�
 a
tivity or fun
tion, with all the 
onsequent potential appli
ationssu
h as targeted drug development [253℄. On the 
ontrary, although today the
omplete knowledge on the genes of several organisms is available, yet the rela-tionship between blueprints in DNA and fun
tional a
tivities of the 
ell is notfully understood. For instan
e, the p53 gene and protein (having the fun
tionof 
ontrolling 
ell's life and death) are known as tumor-suppressor, sin
e it wasfound that the p53 protein does not fun
tion 
orre
tly in most human 
an
ers.However, despite the many studies performed on p53 gene and protein, theway on how e�e
tively suppressing the growth of 
an
er 
ells is missing at ageneti
 level. Re
ently, it has been proposed that the understanding of su
h
an
er 
ell growth me
hanism would be gathered not only from the study ofthe p53 gene and protein, but taking into a

ount the whole network inter-a
ting with them [254℄. That is, the fun
tion of the gene should be analyzedthrough a network in whi
h the gene parti
ipates. Similarly to p53 network
ase, several other observations prove that some fun
tional a
tivities of the 
ellemerge from intera
tions between di�erent 
ell's 
omponents through 
omplexwebs. Moreover, it is expe
ted that the large-s
ale network approa
h may leadto new insights on various longstanding questions on life, su
h as robustness toexternal perturbations, adaptation to external 
ir
umstan
es, and even hiddenunderlying design prin
iples of evolution.In what follows, we dis
uss the last advan
es in the 
hara
terization of somebiologi
al networks from two points of view: their stru
tural organization and
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al networks 215their fun
tioning. The main point here is how to un
over the relationshipbetween the two sour
es of 
omplexity intimately linked (dynami
s and stru
-ture) as both play a key role in the fun
tioning of the system. We stress herethat our main intention is to provide a brief overview of the 
urrent state inthe �eld, and that many works may be overlooked due to spa
e 
onstraints.We invite the interested reader to follow the spe
ialized literature.7.1.1 Stru
tureIn the se
ond part of the Thesis we introdu
ed a variety of types of networksthat have been analyzed in order to unveil their 
omplex topologies. Amongthese di�erent network 
lasses biologi
al networks are of spe
ial interest sin
ethey have emerged following a natural evolving pro
ess. A plenty of 
ellularand mole
ular networks have been unraveled in the last several years. We hererefer to those that have been more used in subsequent studies or be
ause theyare 
onsidered to be essential for the 
ell's life.The �rst of these 
omplex biologi
al networks is that formed by metaboli
rea
tions: the metaboli
 network. Jeong et al have 
onsidered the metaboli
rea
tions of 43 di�erent organisms, representing the three domains of life, andhave 
onstru
ted dire
ted graphs whose nodes are the metabolites and edgesrepresent bio
hemi
al rea
tions [146℄. A node re
eives an in
oming edge whenthe 
orresponding metabolite is produ
ed, and re
eives an outgoing edge whenthe metabolite is edu
ed. Enzymes are not in
luded in the graph. The totalnumber of 
onne
tions (edges) of a node is 
alled the degree of the node. If theedges have a dire
tion (in
ident to or going out from the node), the degree of anode is divided in in-degree and out-degree, respe
tively. For all investigatedorganisms, the resulting graphs for metaboli
 rea
tions exhibit s
ale-free prop-erties for both in
oming and outgoing degree distributions similarly to manyother real world networks.The above-mentioned property was found universally, irrespe
tive of me-taboli
 pathway databases and of the methods used to 
onstru
t graphs frombio
hemi
al rea
tions. For example, instead of assuming virtual intermediate
omplexes, Wagner and Fell built up two networks (the metabolite and therea
tion networks) from the metaboli
 pathways of Es
heri
hia 
oli [255℄. Themetabolite network 
onsists of nodes representing metabolites and bidire
tionallinks between edu
t and produ
t of a metaboli
 rea
tion. On the other hand,the rea
tion network is the network where the nodes 
orrespond to metaboli
rea
tions and two nodes are linked when the two rea
tions share a metabolite.In metabolite networks, s
ale-free properties are dete
ted, while the rea
tionnetwork does not show power-law degree distributions. Small-world properties
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tivatory-Inhibitory intera
tions in Networksand relatively high 
lustering (i.e, how probable it is that two nodes with a
ommon neighbor are also 
onne
ted together) are found in both networks.Other studies with di�erent ways of obtaining graphs show almost identi
alresults [256�259℄.Another 
lass of well-studied 
ellular networks is that of protein-protein andprotein-gene intera
tion networks. This is due to the in
reasing availabilityof data sets and new experimental te
hniques that allows a more detailedstudy of the intera
tions at the 
ellular level. On the other hand, intera
tionsamong proteins have a 
ru
ial role in several fun
tional a
tivities, su
h assignal transdu
tion. A

ording to the demand of understanding the proteinintera
tion map, several high-throughput experiments have been performed.They provide eviden
e of a partial intera
tion map between proteins. In thegraph representation, a node 
orresponds to a protein and two proteins arelinked when they physi
ally intera
t. The least two-hybrid s
reen method hasbeen applied for revealing protein-protein intera
tions by Uetz et al [260℄ andby Ito et al [261℄. Similarly to metaboli
 networks, s
ale-free properties, high-
lustering and small-world properties have been found. Besides, the studiesperformed have allowed to address other questions su
h as the robustness ofthese networks against random and dire
ted failures [262℄. It should be noti
edthat the databases used in the analysis show very small overlap, while theindividual networks obtained from ea
h database show a very similar stru
ture.In parti
ular, it has been argued that the biologi
al fun
tional organization andthe spatial 
ellular organization are 
orrelated signi�
antly with the topology ofthe network, by 
omparing the 
onne
tivity stru
ture with that of randomizednetworks.Finally, we note that networks 
onstru
ted from gene expression data are
urrently under exploration [263, 264℄. For instan
e, Agrawal [264℄ have stud-ied networks from gene expression of 
an
er data. By analyzing individual geneexpression level at di�erent samples, networks in whi
h the degree distributionof the nodes shows a power-law behavior in the tails with an exponent 1 
an be
onstru
ted. Stuart et al have further shown that 
o-expressed gene networksof humans, �ies, worms, and yeast have s
ale-free properties [263℄.In summary, biologi
al networks seems to share many topologi
al prop-erties. What do these properties mean in a biologi
al system? And whatbasi
 prin
iples in biology give rise to su
h universal features? Many stepstoward the answers to these questions have been 
ertainly given in the lastseveral years. However, the majority of the issues addressed are based mainlyon analyzing the stru
ture of these networks without taking into a

ount theirdynami
s, i.e., the fa
t that the stru
ture 
orrelates with the fun
tioning of theunderlying system. For instan
e, from a topologi
al point of view, it has been
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al networks 217argued that the nodes with a high degree (the hubs, those 
ontributing to thetail of the degree distribution) are 
riti
al for the robustness of the system tointentional removal of them. On the other hand, the hubs have been shown toradi
ally 
hange the behaviour of the system in front of several dynami
al pro-
esses su
h as epidemi
 spreading [163, 216℄. It is yet to see whether or not thesame results hold when nonlinear dynami
s 
oexists with 
omplex topologi
alstru
ture. We next des
ribe two promising approa
hes in this dire
tion.7.1.2 Dynami
sDuring the last several years a wealth of experimental data, obtained withte
hnologi
al advan
es su
h as 
DNA mi
roarrays, have allowed the dynami-
al 
hara
terization of several biologi
al pro
esses both on a genome-wide andon a multi-gene s
ales and with �ne time resolution. From a theoreti
al side,
ompelling models on the dynami
s governing metaboli
 and geneti
 pro
essesare hard to build as these biologi
al phenomena are highly nonlinear and withmany degrees of freedom. However, s
ientists have 
ertainly advan
ed towardsa 
omprehensive global understanding of, for instan
e, gene regulation throughgeneti
 engineering that require a thorough understanding of the general prin-
iples that 
an guide the design pro
ess. It is impossible here to provide anexhaustive review of the subje
t. However, it is important to provide at leastsome ideas about the resear
h lines that relate the stru
ture and the fun
tionof biologi
al systems.Con
epts su
h as operon, regulator gene and trans
riptional repression were�rst introdu
ed in the literature by Ja
ob and Monod [265℄. Their model hasserved as the basis for more elaborated models as di�erent regulatory me
h-anisms have been dis
overed [266℄. Re
ent theoreti
al studies 
apitalize onthese kind of models in order to elu
idate what are the system 
onstituents,their properties and how they intera
t in order to give rise to the 
olle
tive be-havior of the system. The �nal goal is to understand the relationship betweenstru
ture and fun
tion as determined by the biologi
al environment. In thissense, di�erent gene 
ir
uit designs should be 
ompared to determine whi
h ofthem 
onfers sele
tive advantage in an e
ologi
al 
ontext and thus one shouldbe able to advan
e what the fun
tional 
onsequen
es of di�erent designs are.This is usually done by exploring the parameter spa
e and looking for perfor-man
e 
riteria su
h as the ability of a system to return to a steady state aftera perturbation (
alled stability) or its responsiveness, that 
an be measured asthe re
overy time of the system after an environmental 
hange (a 
hange in anindependent variable).The results obtained for elementary gene 
ir
uits 
ertainly provide answers
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tivatory-Inhibitory intera
tions in Networksto intriguing questions about how gene 
ir
uits 
ould be organized, but at thesame time pose new ones. With the re
ent advan
es in the 
hara
terizationof the stru
ture of gene networks, it is 
lear that genome-wide approa
heswill allow to dis
over new higher-order patterns. Therefore, more e�orts inmodeling the dynami
s of in
reasingly 
omplex gene 
ir
uits are expe
ted inthe near future. Some steps in this dire
tion have been given.The basi
 pro
ess of single gene expression is depi
ted in �gure 7.1. The
hain rea
tion starts when a protein binds to a parti
ular DNA region. Thebinded protein is known as trans
ription fa
tor and the set of DNA sites towhi
h the trans
ription fa
tor is atta
hed is 
alled promoter gene. The bindingstage yields to the a
tivation of a given gene manifested by the trans
riptionof the geneti
 information lo
ated at this gene into messenger RNA. Finallythe mRNA is translated into a protein at the ribosomes. The protein produ
tof this rea
tion 
hain 
an be either used as a trans
ription fa
tor for startinganother rea
tion or modi�ed for taking part or protein 
omplexes like enzymesinvolved in 
ellular physiology. Sin
e the resulting protein is a dire
t produ
tof the a
tivated gene one 
an say that a given gene regulates the a
tivity ofanother one when the produ
t of the former a
t as the trans
ription fa
torof the latter. In this 
ase the regulation is seen produ
e an a
tivating e�e
tbut proteins produ
ts 
an as well a
t as repressors or inhibitors of other genea
tivity. We will now fo
us in the modeling of these intera
tion dynami
sbetween di�erent genes and negle
t more sophisti
ated details about singlegene expression.Boolean modeling of regulatory networksThe �rst attempt to des
ribe the fun
tioning of geneti
 regulatory networks wasperformed by S.A. Kau�man [267℄. This pioneering work settled the basis formodeling the 
omplex nature of dynami
s and intera
tions between genes andtheir produ
ts. In his work, ea
h gene, i, and its produ
t, I, were abstra
tedas a node of a random network having a �xed number, k, of neighbors thatregulate its a
tivity level, gi. This level of a
tivation 
an be viewed as the
on
entration of the trans
ribed mRNA and/or the protein I en
oded. Theboolean 
hara
ter of the formulation done by Kau�man implies a qualitativedes
ription of whether a gene is a
tivated (gi = 1) or not (gi = 0). Besides,time is 
onsidered as a dis
rete variable so that the dynami
al behavior of thegene ensemble is des
ribed by the temporal series of their a
tivity levels. Atea
h time step the a
tivity level of a single gene is updated 
onsidering thestate of its k neighbors
gi(t + τ) = fi(gj1(t), ..., gjk

(t)) . (7.1)
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ActRepFigure 7.1: Stages of the gene expression. The basi
 ingredients are the geneti
 seg-ments in the DNA and proteins. At the �rst stage a spe
i�
 protein binds to a partof the DNA sequen
e 
alled the promoter, the protein is known as the trans
rip-tion fa
tor sin
e it starts the trans
ription of the geneti
 information en
oded at thespe
i�
 gene that the 
omplex promoter + trans
ription fa
tor regulates. After thegeneti
 information is trans
ribed into the messenger RNA polymerase it is subse-quently translated into proteins at the ribosomes. The protein produ
t that emergesafter this pro
ess 
an a
t either as another trans
ription fa
tor for the expression ofother genes or as a repressor of other genes a
tivity stopping the 
reation of theirprotein produ
ts. Another possibility is that this protein produ
t parti
ipates in thephysiologi
al pro
esses of the 
ell and form protein 
omplexes as enzymes.This is performed by means of booleans fun
tions, fi, that make use of thebasi
 �AND�, �OR� and �NOT� logi
al fun
tions so that the results 
an beeither 1 if the statement is true or 0 if it is false. The 
onstru
tion of ea
hboolean fun
tion depends on the parti
ular intera
tions that a gene shares withits regulators and has to be 
arefully analyzed with the help of bio
hemi
aldata. On the other hand, the work by Kau�man was performed from a generalpoint of view and 
onsidered a random assignment of the boolean fun
tionsthat governs the dynami
al evolution of the gene's a
tivity. The main result ofthe work is the existen
e of a phase transition on the number and length of thedynami
al attra
tors. In parti
ular, for k > 2 the number of 
y
les s
ales withthe number of genes, N , and its length s
ales exponentially with N . On theother hand, for the 
ase k = 2 these two quantities s
ale as √N . The above�ndings are biologi
ally relevant if one 
onsiders that di�erent geneti
 dynami
s
an be regarded as biologi
ally di�erentiate 
ells. Taking into a

ount that the
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tions in Networks
ell diversity of a living organism s
ales approximately with the square rootof the geneti
 population Kau�man suggested that gene regulatory networksshould operate just on the border of the dynami
ally ordered region.The above �ndings represented the starting point of a lot of resear
h onthe so-
alled subje
t of �Kau�man networks� during the last 25 years. Theseworks mainly fo
us on the sear
h of a full des
ription of the dynami
ally di�er-ent regions as well as the 
hara
terization of the phase transition (re
ent workon the matter 
an be found in [268�273℄). On the other hand, �Kau�man net-works� have served as a framework for performing a 
oarse-grained des
riptionof real gene regulatory networks. The availability of real regulatory networksinferred from DNA mi
roarray data joined with the easy implementation andmanagement of the boolean dynami
s provides a useful tool for understandingthe interplay between the topology and the fun
tion of biologi
al networks.The use of boolean dynami
s to 
hara
terize real geneti
 regulatory net-works has been re
ently applied to the 
ase of the segment polarity genes inthe Drosophila Melanogaster [274℄. In this 
ase the whole map of intera
tionsbetween genes is known and Boolean dynami
s is seen to reprodu
e the pat-terns of gene expression that appear in the wild type. Besides, it has beentested when mutations are present 
on�rming the validity of the model. Theappli
ation of this method 
an help to determine the e�e
ts of new mutationsand 
onstitute a test for the question of whether the topologi
al features ofthe intera
tion network or the kineti
 details play the key role in the fun
tion-ing of biologi
al networks. The su

ess of the use of Boolean modeling pointsout that it is the former whi
h is the relevant ingredient. Another re
ent ap-pli
ation of Boolean dynami
s to a real gene 
ir
uit is found in [275℄ wherethe yeast trans
riptional network is 
onsidered. In this 
ase the point of viewis drasti
ally di�erent be
ause neither the nature of the intera
tions betweengenes nor any dynami
al state of the system is available. The starting pointis simply a set of 
onne
ted genes and the authors apply a Boolean modelingof the intera
tions for determining what set of (Boolean) intera
tion rules leadto a stable dynami
s of the whole system. The authors also study the e�e
t ofrewiring links of the network and 
on
lude that dynami
al states on top of theoriginal network is more stable than on the perturbed ones. The above twoexamples show how the 
oarse-grained Boolean modeling 
an help to analyzethe large amount of available experimental data and answer the question onwhere the biologi
al stability observed has its roots.Finally, let us remark that the boolean modeling 
an be reformulated inorder to in
orporate realisti
 features of real regulatory networks. Perhaps,the most important ingredient is to reprodu
e the e�e
ts of noise (whi
h is asubstantial 
hara
teristi
 of a biologi
al system). This is usually in
orporated
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al networks 221on the form of a non syn
hronous update rule, assigning a time delay to ea
hvariable of the Boolean fun
tions, fi. Another interesting extension of theformulation is 
onsidering multi-levels for the gene a
tivity so that the modelin
orporates some quantitative des
ription on how mu
h the gene is a
tivated.Continuous time modeling of dynami
sNow we turn our attention to the ingredients of the 
ontinuous time modelingof geneti
 regulation. We will address three important issues on this matter,namely: (i) the saturable 
hara
ter of the dynami
s, (ii) the advan
es per-formed when syntheti
 regulatory networks are used to understand the kineti
of the pro
esses and �nally (iii) the appli
ation of the knowledge gained withthese predesigned networks when real ones are analyzed.Saturable Dynami
s.- The 
ontinuous time formulation of a gene responseto the a
tivity of its regulating genes is made in
orporating the saturable 
har-a
ter. There is a wide variety of situations in whi
h the system response to anexternal a
tion saturates. Perhaps the most familiar example of saturable be-havior known to physi
ists is the adsorption of gas mole
ules on a solid surfa
e:At thermodynami
al equilibrium, the fra
tion (
overage ratio) θ of surfa
e in-terstitials o

upied by adsorbed mole
ules depends on the gas pressure P as[276℄
θ =

P

P0(T ) + P
, (7.2)where the temperature-dependent 
onstant P0(T ) is the pressure value at whi
hthe 
overage ratio rea
hes half of its possible maximal value θ = 1. While forsmall values of P , 
ompared to P0(T ), θ in
reases linearly with P , for valuesof the pressure larger than P0(T ) the 
overage ratio be
omes insensitive topressure variations. Saturable behaviours of this type [277℄ (and of a moregeneral form; see below) have been introdu
ed by Drossel and M
Kane in [157℄for the modeling of intera
tions among spe
ies in e
ologi
al systems, where(most notably) they e�e
tively provide robustness to the limit-
y
le behaviouroften observed in these systems [278, 279℄. In the realm of So
ial S
ien
es,saturated response fun
tions have been also used to model some type of so
ialintera
tions like e.g. the e�e
ts of 
ommunity investments in poli
e pressureand/or edu
ational programs on the street-gang growth phenomena [279℄.Biologi
al rea
tion rates are often saturable; while at small 
on
entrationsof a new 
hemi
al introdu
ed in a 
ell, this responds sensitively, the responseshould not keep growing inde�nitely as the new 
hemi
al 
on
entration grows.The ar
hetypal example of saturation in biologi
al systems is the Mi
haelis-Menten equation [280, 281℄ governing the 
on
entration evolution of a produ
t
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atalyzed from a substrate by an enzyme whi
h binds to it. If x and y denotethe 
on
entrations of produ
t and substrate respe
tively, then the rea
tion rateis given by
dx

dt
=

Vmaxy

KM + y
(7.3)where KM is 
alled the Mi
haelis 
onstant and Vmax is the value at whi
h therate saturates for high substrate 
on
entrations. This saturation behaviour
an be understood from the usual 
hemi
al kineti
s (law of mass-a
tion) inan intuitive way: when the enzyme mole
ules are mostly bound to substratemole
ules, adding more substrate 
annot speed up the rea
tion [282℄. If n,instead of only one, substrate mole
ules bind to the enzyme, the rea
tion ratetakes a more general fun
tional form of saturation, often 
alled Hill equation

dx

dt
=

Vmaxyn

KM + yn
(7.4)showing a sudden in
rease of the rea
tion rate towards saturation around y =

KM . The Hill parameter n often takes on non-integer values. Both Mi
haelis-Menten and Hill equations are often used in models of biologi
al rea
tions, evenwhen the expli
it me
hanisms generating them are unknown in many 
ases.Syntheti
 geneti
 networks.- In 
ells, the proteins, RNA and DNA form a
omplex network of intera
ting 
hemi
al rea
tions governing all 
ellular fun
-tional a
tivities like metabolism, response to stimuli, reprodu
tion, . . . Whilethe understanding of the stru
ture of these networks is growing rapidly, the
urrent understanding of their dynami
s is still rather limited. In this regard,an interesting body of resear
h is 
urrently addressed to syntheti
 geneti
 net-works, whi
h o�er an alternative approa
h aimed at providing a 
ontrolled testbed for the detailed 
hara
terization of some isolated fun
tions of natural genenetworks, and also pave the way to engineering of new 
ellular behaviour.An example of syntheti
 gene regulatory network, termed the �repressila-tor�, is be
oming one of the best studied model systems of this kind. Therepressilator is a network of three genes, whose produ
ts (proteins) inhibit thetrans
ription of ea
h other in a 
y
li
 way; they were added to the ba
teriumE. 
oli, so periodi
ally indu
ing the synthesis of green �uores
ent protein as areadout of the network state [283℄. The authors of the work �rst argue thatthe represilator 
an show temporal �u
tuations in the 
on
entration of ea
hof its 
omponents, by analyzing a system of six ODE's (whi
h, in turn, wereobtained by a pro
ess of integration-out or 
oarse-grain away of the promoterstates involved in the regulation, and res
aling of the variables) modeling thenetwork. If pi (i = 1, 2, 3) denote the three repressor-protein 
on
entrations (in
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Figure 7.2: S
hemati
 representation ofthe so-
alled repressilator. The repressi-lator is small network 
omposed of threegenes gi (i = 1, 2, 3) ea
h of one inhibitsthe a
tivity of the subsequent. That is,the protein produ
t of gene gi a
t as therepressor of the a
tivity of gene gi+1 (g3inhibits g1).
units of the Mi
haelis 
onstant KM ), and mi their 
orresponding mRNA 
on-
entrations (appropriately res
aled), the repressilator equations are (assumingthe symmetri
al 
ase in whi
h all three repressors are identi
al ex
ept for theirDNA-binding spe
i�
ities):

dmi

dt
= −mi +

α

1 + pn
i

+ α0 (7.5)
dpi

dt
= −β(pi −mi) (7.6)where i = 1, 2, 3 and j = 3, 1, 2; α0 (α + α0) is the number of protein 
opiesprodu
ed from a given promoter type in the presen
e (absen
e) of saturatingamounts of repressor, β is the ratio of the protein de
ay rate to the mRNAde
ay rate, and time is res
aled in units of the mRNA lifetime. This system ofequations has a unique steady state whi
h 
an be stable or unstable dependingon the parameter values. In the unstable region of parameter spa
e, the threeprotein 
on
entrations �u
tuate periodi
ally. Experiments show temporal os-
illations of �uores
en
e, whi
h were 
he
ked to be due to the repressilator.Though admittedly oversimpli�ed, the model of ODE's guided the experimen-tal design, for it served to identify possible 
lasses of dynami
 behaviour andto determine whi
h experimental parameters should be adjusted in order toobtain sustained os
illations.Not surprisingly, the repressilator 
alled attention from experts on (biolog-i
al) syn
hronization, for it o�ers good prospe
tives for further insights intothe nature of biologi
al rythms, whose me
hanisms remain to be understood.In this respe
t, in referen
e [284℄ the authors propose a simple modular addi-
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tions in Networkstion (of two proteins) to the repressilator original design, whi
h allows for ame
hanism of 
oupling between 
ells 
ontaining the repressilator networks.Modules.- As seen in the previous subse
tion, even a very small gene net-work, like the repressilator, requires some simplifying assumptions for an anal-ysis of its dynami
 behaviour in terms of ordinary di�erential equations. Withlarge networks involving thousands of regulatory genes, this approa
h wouldrequire a huge number of di�erential equations and, what is even more prob-lemati
, an exploding number of dimensions of the parameter spa
e (de
ayrates, produ
tion rates, intera
tion strengths, et
. ). Thus an important issue
on
erns the right level of des
ription when 
onstru
ting quantitative modelsof large geneti
 networks [285℄.In this regard, several works (e.g. [286�288℄) have fo
used on the identi�
a-tion of general building blo
ks (motifs) in geneti
 networks, showing robust or�reliable� behaviour. These in
lude small modules of a few genes, su
h as au-toregulatory ex
itatory feedba
k loops, inhibitory feedba
k loops, feed-forwardloops and dual positive-feedba
k loops, whi
h represent di�erent kinds of ro-bust swit
hing elements, whose o

urren
e as subgraphs in real networks issigni�
antly higher than in their randomized versions. These works providesupport to dis
rete models in whi
h genes are modeled as swit
h like dynami
elements that are either �on� or �o��, of the Boolean type des
ribed in theprevious se
tion, and point toward strong 
orrelations between stru
tural andfun
tional properties of geneti
 regulation networks.The robustness of slightly larger modules, like the segment polarity genesof the fruit �y Drosophila (a subgraph of the segment determination network,responsible for the embryoni
 development of the inse
t body segments), hasbeen 
onvin
ingly tested with a realisti
 dynami
al model [289℄ supportingthe view that segmentation is modular, with ea
h module autonomously ex-pressing a 
hara
teristi
 intrinsi
 behaviour in response to transient stimuli.A 
onne
tionist model for the segment determination system of Drosophila,in
luding 
ell-
ell intera
tion via one-dimensional di�usion [290, 291℄ has beenthoroughly 
hara
terized (along with its 
ontinuum limit (PDE) equations[292℄). These generalized rea
tion-di�usion models inspired further work in[157, 293, 294℄ whi
h identi�ed minimal gene networks asso
iated to di�erentsegmentation patterns; also, extensive 
omputer simulation of randomly gen-erated networks showed that 
ombinations of spatial patterns 
an be mappedinto 
ombinations of the basi
 modules.The resistan
e of modules to variations (proxy for mutations of small e�e
t)in the kineti
 
onstants and various parameters that govern its dynami
al be-haviour, may suggest that evolution 
ould rearrange inputs to modules without
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hanging their intrinsi
 behaviour, or as 
onje
tured in [157, 293, 294℄, thatthe target of sele
tion would operate not only on single-gene level stru
tures,but also on the available stru
tures in the high-dimensional parameter spa
eof the model equations.In summary, it is a major 
hallenge the dis
overy of how biologi
al entitiesintera
t to perform spe
i�
 biologi
al pro
esses and tasks, as well as how theirfun
tioning is so robust under variations of internal and external parameters.Su
h an a
hievement is only possible by merging the new knowledge gainedfrom network analysis with nonlinear dynami
s models relevant in biologi
alpro
esses su
h as the geneti
 regulation. This is what is driving 
urrent theo-reti
al e�orts, in whi
h new mathemati
al models and methods borrowed fromnonlinear dynami
s are being studied on top of the real ar
hite
ture of biolog-i
al networks. Besides, the 
on�uent interest of several s
ienti�
 dis
iplines inthe many aspe
ts of the problem of Stru
ture-Fun
tion 
orrelations in systemsmade up of dis
retely many nonlinearly intera
ting 
omponents (of whi
h generegulatory networks are but a parti
ular example), re

omends to pay some at-tention to general abstra
t models. These models should be both 
on
eptuallysimple and universal in their per
eptions.In next se
tion we will 
onsider the essential ingredients of both topologyand dynami
s of gene regulatory network, namely saturability of the intera
-tions and s
ale-free 
hara
ter of the patterns of inter
onne
tions among 
on-stituents. As a result, we fa
e a problem where nodes in a s
ale-free networkself-regulate their dynami
s through either a
tivatory or inhibitory intera
tionsin a fashion that resembles the regulation among genes in 
ells.7.2 Regulatory dynami
s in s
ale-free networksThe model that we analyze in this se
tion tries to 
apture the general in-gredients of the entangled topologi
al and dynami
al 
omplexity of geneti
regulatory networks introdu
ed in the previous se
tion. For this we employa relevant kind of nonlinear dynami
s: A
tivation/Inhibition (AI) 
ompetingintera
tions with a �saturated response� rule for the rate of a
tivation (see�gure 7.3) of Mi
haelis-Menten type (introdu
ed previously in se
tion 7.1.2).Besides, the intera
ting units (genes) sit on a latti
e whi
h is both small-worldand s
ale-free. For this we use the Barabási- Albert network (se
tion 5.2.3).We have to remark that neither real geneti
 networks are explored nor a de-tailed des
ription of the nonlinear A/I dynami
s is in
orporated. However,this 
oarse-grained representation of geneti
 regulatory networks presents fea-tures that are revealed when dynami
s and topology from experimental data
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tions in Networksare analyzed.We will �rst present in detail the AI dynami
s in se
tion 7.2.1. Here, somebasi
 general features of the model are dis
ussed, namely the network fragmen-tation in sub
lusters (or islands) of 
olle
tive dynami
s, and the generi
 typesof asymptoti
 behaviours 
oexisting in the phase spa
e of 
olle
tive dynami
s(steady, periodi
 and 
haoti
 states) as well as the observed bifur
ations inphase portrait upon parameter variations. These basi
 
onsequen
es of the AI
ompetition on the 
omplex network are prevalent for a range of values of theAI ratio as we will see below. Finally, the bifur
ations found are explained interms of the Floquet analysis of the solutions.On
e the main dynami
al regimes of the model are 
hara
terized we willturn our attention on the statisti
al 
hara
terization of both the dynami
al be-haviours observed and the stru
tural 
hara
terization of the dynami
al islandsin se
tion 7.2.2. We perform an extensive exploration of the parameter spa
e,employing di�erent initial 
onditions and substrate network realizations, inorder to �nd the 
onditions for the existen
e of 
haoti
 and periodi
 behav-ior as well as to fully 
hara
terize the main topologi
al 
hara
teristi
s of thedynami
al islands.We will end this study in se
tion 7.2.3 looking for those substru
tures of thedynami
al islands that are relevant for the dynami
al evolution of the system.7.2.1 The model: basi
 dynami
al featuresAs stated above, we introdu
e here a model of A
tivatory/Inhibitory intera
-tions regulating the a
tivity gi(t) (i = 1, ..,N), of N 
onstituents (e.g. genes,agents, substrates), with N generally being a large number. The real fun
tionsof time gi(t) are ea
h one atta
hed to a node of a graph with adja
en
y matrix
Cij (N ×N). Then, in terms of the dynami
s, the matrix element is non-zero,
Cij 6= 0, only if the rate of variation of the i-th node a
tivity, gi(t), dependson the a
tivity gj of the j-th node (intera
tion i ← j). Di�erent realizationsof the Cij matrix are 
onstru
ted using the method of Barabási and Albert(se
tion 5.2.3) for m = 3 (〈k〉 = 6) in order to have a s
ale-free network withexponent γ = 3 (P (k) ∼ k−3).The intera
tion (i← j) 
an be either a
tivatory (ex
itatory) or inhibitory;
orrespondingly we de�ne the intera
tion matrix element Wij to be +1 or −1,respe
tively (and Wij = 0 whenever Cij = 0), and 
all p the fra
tion, amongnon-zero elements, of negative signs (note that while Cij is a symmetri
 matrix,
Wij is not in general). Moreover, the sign distribution of elements is takenuniform in the set of (approx. 〈k〉N/2) links of the network realization.
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The dynami
s of the nodes a
tivity ve
tor G(t) = {gi(t)} (with i =

1, . . .,N) that we 
onsider is su
h that only in the presen
e of ex
itatory neigh-bours a
tivity 
ould gi possibly be non null, otherwise gi de
ays to zero withan exponential rate:
dG(t)

dt
= −G(t) + αF [WG(t)] , (7.7)where F is a nonlinear ve
tor fun
tion whose argument is the produ
t of theintera
tion matrix W and the a
tivity ve
tor G, and α (> 0) a

ounts for thestrength of the intera
tion. The fun
tion F is a saturated response fun
tion(see �gure 7.3), de�ned as:

F(z) =

{

Φ(zi)

h−1 + Φ(zi)

}

, (7.8)where Φ(x) is a fun
tion de�ned as
Φ(x) =

{

0 if x ≤ 0

x if x > 0
(7.9)The dynami
s of the system de�ned as before is determined by only twoparameters, h and p. One 
ontrols the degree of nonlinearity and the other thetopologi
al properties of the network, respe
tively. In our numeri
al studiesof the model we have �xed the value of the parameter α = 3, and varied theparameters 0 ≤ p ≤ 1 and 0 ≤ h ≤ 10. One 
an easily realize that the solutionsfor non-negative initial 
onditions remain bounded for all t ≥ 0. Indeed, asthe nonlinear term in eq. (7.7) is bounded above by α, one obtains that ġi < 0whenever gi > α. Also, if gi = 0 then Fi(WG) ≥ 0, so that the a
tivities
annot be
ome negative.
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Figure 7.4: Two examples of network fragmentation. The nodes of the networks are
lassi�ed in: (i) dynami
al nodes (red), (ii) stationary nodes with nonzero a
tivity(blue), (iii) stationary nodes with zero a
tivity belonging to D0 ⊕ D1 (yellow) and(iv) remaining nodes with zero a
tivity (white). Note that the white 
entral nodes in(b) a
t as the frontier between the dynami
al island and the steady nonzero a
tivityone.The above dynami
s 
an be regarded, e. g., as a generalization of thesimpli�ed and 
oarse-grained geneti
 models, Random Boolean Networks, in-trodu
ed in se
tion 7.1.2. Equation (7.7) in
orporates the experimental obser-vation of a 
ontinuous range of a
tivity levels [294℄. It is worth mentioningthat while 
ontinuous time linear models have been su

essful for the re
on-stru
tion of the intera
tion networks from experimental data [295℄, nonlinearmodels like eq. (7.7) are expe
ted to be more appropriate for a quantitativedes
ription of the dynami
s.The dynami
s (7.7) of a two-agent (dimer) model has been 
onsidered inreferen
e [294℄, in the 
ontext of virus-
ell intera
tions in ba
teria and gen-eral gene regulatory a
tivity models, where a ri
h repertoire of behaviours,like multi-stability (multiple attra
tors in phase spa
e) was reported. In theforth
oming paragraphs, we will report some remarkable general features ofthe network dynami
s.A
tivation and Inhibition interplay: FragmentationA brief look at equation (7.7) easily reveals that for any value of the parameters
p and h the state of ina
tivity, G = 0, is always a solution. As a matter of fa
t,for h = 0, or h 6= 0 but p = 1, this is the unique asymptoti
 solution (globalattra
tor in the phase spa
e) for all possible non-negative initial 
onditions.However, for h 6= 0 and p 6= 1 other asymptoti
 solutions, with islands ofpositive a
tivity, generi
ally 
oexist with the rest state. The term islandsdenotes here subnetworks that are inter
onne
ted through nodes whi
h haveevolved to null a
tivity, so that their dynami
s are e�e
tively dis
onne
ted.
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s into dis
onne
ted islands isa generi
 feature of AI intera
tions, as the following 
onsiderations suggest.Let us 
all D the set of nodes whose a
tivities, for a given initial 
ondition
G(t = 0), asymptoti
ally vanish. It is easy to see that, irrespe
tive of theinitial 
ondition, this set is generi
ally non-empty.Indeed, if a node i is su
h that Wij = −1 or 0 for all j, then its a
tivity
gi(t) will tend to zero. Let us 
all D0 the set of these nodes, and note thatits measure (∑k P (k)pk) is a non-zero in
reasing fun
tion of p. Now, 
all D1the set of nodes l su
h that their positive Wlj o

ur for j's in D0, and so on. . . Due to the small-world property, there are in fa
t very few relevant Dn(n = 0, 1, . . .) sets. Its union D∗ =

⋃Dn is easily seen to have a non-zeromeasure whi
h in
reases with p.The nodes of D∗ are stru
turally (i.e. irrespe
tive of initial 
onditions)ina
tive. Depending on the initial 
ondition, the set D may in
lude othernodes not 
ontained in D∗, namely those nodes that evolve to ina
tivity dueto the initial 
ondition (dynami
ally, instead of stru
turally, ina
tive): See e.g.the white nodes in �gure 7.4, where we show two small networks of N = 50nodes to allow a simple visualization of the sets D∗ and D. In other words,the measure of D may in general be (mu
h) larger than the measure of the�stru
turally dead� nodes D∗.From the previous 
onsiderations, whether or not the set D per
olates thenetwork realization, leaving out islands of dis
onne
ted a
tivity, is an eventthat 
learly depends on both the parameter p and the initial 
onditions. Butalso the dis
ussion 
orre
tly suggests that fragmentation of the network intosub
lusters with independent temporal evolution is a generi
 (non-zero mea-sure) feature. Our numeri
s, whi
h are extensive in the sense of (both, networkrealizations and initial 
onditions) large sampling, 
onvin
ingly 
orroboratethis assertion. Figures 7.5 and 7.6 show two islands of periodi
 and 
haoti
a
tivity, respe
tively, as well as the temporal evolution of gi(t) for some of their
onstituent's nodes (see the next se
tion for a more detailed dis
ussion of the�gures).Temporal �u
tuations of asymptoti
 solutionsThe dynami
s of the system turns out to be very ri
h and, depending onthe values of p and h, three di�erent asymptoti
 dynami
al regimes are ob-served, 
hara
terized by stationary, periodi
 and 
haoti
 attra
tors. Here we
hara
terize these di�erent dynami
al regimes and the transitions between thedi�erent states when h is varied. For this purpose we have performed extensive
omputations following this s
heme:
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luster of 21 nodes displaying periodi
 dynami
s. Theinsets show the dynami
al patterns of ea
h node (see text for the interpretation).The maximum Lyapunov exponent is λ = −0.00034 and the dynami
al parametersare h = 4 and p = 0.7. The 
luster is embedded in a substrate network of N = 50.(i) For a given value of the parameters h and p and network realization theinitial values of gi are taken from a uniform distribution in the interval
(0, α).(ii) First integration of the equations is performed using a 4th order Runge-Kutta s
heme. The total integration time is large 
ompared with thetransient.(iii) Che
k the dynami
al state of the network.(iv) Che
k the 
onne
tivity between the dynami
al (if any) nodes in order toobtain the dynami
al islands.(v) In order to determine the state of the system we perform a se
ond inte-gration for 
omputing the largest Lyapunov exponent λ (See AppendixB). If λ > 5 · 10−3 the dynami
s is 
onsidered 
haoti
. If λ < 5 · 10−3 welook at the frequen
y of the periodi
 motion.
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timeFigure 7.6: Example of a 
luster of 19 nodes displaying 
haoti
 dynami
s. The insetsshow the dynami
al patterns of ea
h node (see text for the interpretation). Themaximum Lyapunov exponent is λ = 0.4716 and the dynami
al parameters are h = 4and p = 0.7. The 
luster is embedded in a substrate network of N = 50.(vi) Change adiabati
ally the value of h, h
′

= h + δh with |δh| ≪ 1, andrepeat stages (ii)-(v).Following this pro
edure one 
an monitorize the evolution of the system as afun
tion of the nonlinear parameter h.Steady states.- Let us �rst fo
us on the steady state solution to eq. (7.7).As already noted above steady states of zero and non-zero (for h 6= 0 and
p 6= 1) a
tivity 
an be found as asymptoti
 solutions. Let us �rst fo
us onthe transition between both steady states. This transition is just the genesis(
onsidering the evolution as the parameter h is in
reased) of the dynami
alislands presented above.Depending on the spe
i�
 network realization (i.e. the matrix Wij), therest state 
an be
ome unstable when the value of h is in
reased from zero.This will o

ur for the value h = h̃ at whi
h the largest eigenvalue (amongthose asso
iated to eigenve
tors su
h that all their 
omponents have the samesign 1) of the matrix −δij + αhWij be
omes positive. Then h̃ is determined1Note that F(z) has a jump dis
ontinuity in �rst partial derivatives at the rest state.Thus we 
onsider the matrix of right-handed partial derivatives, and then pay only attention
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Figure 7.7: Probability Ptransthat the uniform state of geneina
tivity be
omes unstable forsome value of h, as a fun
tionof the parameter p. 104 di�er-ent realizations have been usedfor ea
h value of p.
as 1/(αλmax), where λmax is the largest eigenvalue of Wij, provided λmax > 0(no instability of the rest state will o

ur if λmax ≤ 0). In �gure 7.7 we showthe probability Ptrans that the rest state be
ome unstable for some value of h,as a fun
tion of the parameter p. This probability has been estimated fromthe 
omputation of λmax for 104 di�erent realizations of Wij for ea
h value of
p. Though for most values of p the rest state remain stable at all values of
h in 75% (or more) of the realizations, it 
oexists in phase spa
e with otherattra
tors, so that only a basin of initial 
onditions evolve to this state.The rest state typi
ally destabilizes through a trans
riti
al bifur
ation[296℄, where an unstable bran
h of stationary solutions ex
hanges stabilitywith the rest bran
h (see �gure 7.8.a. The 
omputed largest Lyapunov ex-ponent shows then a variation with h as in �gure 7.8.b near h ≃ 0.33: itapproa
hes zero (from negative values) at the bifur
ation parameter value,and then de
reases indi
ating that now the attra
tor belongs to the new stablestationary bran
h, in whi
h the nodes of a 
luster display non-zero 
onstanta
tivity gi(t) = g∗i (let us say 
hemostasis regime). As shown in �gure 7.8.a,the a
tivity of these nodes typi
ally in
reases with h. Eventually, this statebe
omes unstable for larger values of h, and evolves to a periodi
 state in whi
hthe a
tivities os
illate (�gure 7.8.
) regularly in time.Periodi
 states.- The presen
e of inhibitory intera
tions makes possible theexisten
e of instabilities in the �xed point 
hemostati
 solutions of evolution eq.(7.7). Using linear stability analysis te
hniques, these "typi
al" instabilities are
hara
terized as Hopf bifur
ations (either dire
t or often inverse), where attra
-tors of exa
tly periodi
 
olle
tive a
tivities, gi(t) = gi(t+T ), are born out fromthe unstable �xed points. To illustrate the aspe
t of typi
al periodi
 �u
tua-to tangent spa
e ve
tors whi
h do not bring the system into the region of negative a
tivities.
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Figure 7.8: (a) Dependen
e of the quantity gi[ġi = 0] (a
tivity level when the its�rst derivative is zero) of a single gene with the parameter h. This gene belongs to a
luster whi
h undergoes two bifur
ations when in
reasing the value of h starting fromthe rest state 
on�guration of the whole network at h = 0. In the �rst bifur
ation(h ≃ 0.345) a 
luster of nodes in a stationary state with non-zero a
tivity level merges.When h ≃ 0.976 the genes of this 
luster end in a periodi
 attra
tor. The evolutionof the Largest Lyapunov exponent of the network as h is in
reased is plotted in (b)showing the two bifur
ations. (
) Periodi
 traje
tory in the portion of the phasespa
e 
orresponding to the gene of �gure (a), the value of h is 0.98. (d) De
ay of thea
tivity level of the same gene to the stable �xed point for h = 0.97 (just before these
ond bifur
ation) when the initial 
ondition of the network is the periodi
 solutionshown in (
).tions we turn our attention to �gure 7.5 where some examples of the temporala
tivity gi(t) of di�erent nodes inside an island of syn
hronized a
tivity froma representative system are represented. Note that the abundan
e of out ofphase os
illations of neighbours a
tivity is a natural 
onsequen
e of inhibitoryintera
tions: the growth of the a
tivity of a gene j inhibiting gene i (Wij = −1)leads eventually to a null value of Fi(WG(t)), thus to an exponential (free)de
aying of the a
tivity of gene i, until its a
tivity is triggered again (due tothe de
ay of the a
tivity of inhibitory genes and/or the in
rease of the ex
ita-tory genes a
tivity). Horizontal lines in insets of �gure 7.5 indi
ate the averagelevel ḡi of node a
tivity. We see that in some of the island nodes the amplitude
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ωperFigure 7.9: Probability that a node with periodi
 dynami
s 
onverges to an orbit ofangular frequen
y ωper (in arbitrary units). The results are average over di�erentnetwork realizations and at least 100 di�erent initial 
onditions for a network of
N = 100 nodes and p = 0.7. h has been �xed to 4.of the os
illation is small 
ompared to ḡi (see e.g. top rightmost and bottomleftmost insets); while in others they are of 
omparable size, even to the pointthat lowest levels of a
tivity 
an rea
h a null value, before a
tivity is triggeredagain after inhibiting neighbors a
tivity de
reases enough. The inverse period(frequen
y) ω = 1/T of a periodi
 attra
tor 
hanges with parameter and isnaturally dependent on ea
h spe
i�
 island realization. A sampling over di�er-ent initial 
onditions and network realizations allows to 
ompute the frequen
ydistribution for a periodi
 state P (ω). For this purpose we identify those real-izations in whi
h λ < 5·10−3. Then, we fo
us on the nodes for whi
h dg/dt 6= 0.On
e identi�ed, a ve
tor Ti

n = {ti1, ti2, . . . , tin} is 
onstru
ted and stored for ev-ery periodi
 dynami
s gi. The tij 's stand for the times ful�lling the 
onditions
gi(t

i
1) = gi(t

i
2) = . . . = gi(t

i
n) and dgi(t

i
1)/dt = dgi(t

i
2)/dt) = . . . = dgi(t

i
n)/dt2. In this way, after verifying that tij − tij−1 is 
onstant, the period of the
orresponding i-orbit is given by this 
onstant. As the free de
ay of a genea
tivity, that o

urs when its inhibitory inputs prevail over a
tivatory ones,has an asso
iated time s
ale of order unity, one should expe
t values of thisorder for the period of os
illations. This expe
tation is 
on�rmed looking atthe probability that a periodi
 
y
le has an angular frequen
y ωper, P (ωper)2Sin
e the integration is done at �xed time intervals, a further numeri
al 
he
k is imposed.Namely, |gi(t) − gi(0)| < dgi(0)/dt

2
and | dgi(t)

dt
− dgi(0)

dt
| < d2gi(0)/dt2

2
.
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ale-free networks 235shown in �gure 7.9. As shown in this �gure, it is very likely that the frequen
yof the a
tivity of a periodi
 island lies around ωper = 1. It is also of interestthat P (ωper) is not symmetri
, but biased towards larger frequen
y values. Itis di�
ult to �gure out an explanation to this behavior. It may probably has todo with the spatial distribution of the nodes and the spe
i�
 value of p whi
h
ontrols the average number of input and output 
onne
tions a node has.Chaoti
 States.- When h is further in
reased one observes that these peri-odi
 attra
tors, in turn, typi
ally experien
e also period doubling instabilities,and through the well-known universal s
enario of (su

essive) period doublingbifur
ation 
as
ade, the onset of 
haoti
 attra
tors takes pla
e in the phaseportrait of the network dynami
s. To help visualization of the generi
 typesof asymptoti
 network dynami
s, we represent in �gure 7.10 the bifur
ationdiagram for a typi
al attra
tor. At di�erent values of the (Mi
haelis-Menten)parameter h, and 
onstant values of α = 3, p = 0.7, we plot the a
tivity ofan individual node at the instant when its time derivative vanishes. Thus, asingle bran
h in the �gure indi
ates stationary a
tivity, two bran
hes indi
atea periodi
 attra
tor, et
. We also plot in �gure 7.10 the largest Lyapunovexponent λ on the attra
tor, so to allow dis
erning between 
haoti
 (positive
λ) and eventual regular quasiperiodi
 evolutions (λ = 0). Figure 7.11 showsthe phase spa
e diagrams for the a
tivity of one node (belonging to a di�erentdynami
al island) as h is in
reased. For small values of h, the gene is in a pe-riodi
 
y
le, whi
h doubles its period su

essively until it rea
hes the 
haoti
phase.A similar bifur
ation diagram for a di�erent network realization is shownin �gure 7.12, where one 
an appre
iate (see inset) a 
ommonly found bi-fur
ation (though it appears mu
h less often than period doubling), namelyperiod tripling bifur
ation. Its 
hara
terization will be made below in the nextsubse
tion where the Floquet analysis of periodi
 attra
tors is presented.A visualization of 
haoti
 temporal �u
tuations of the a
tivities in a 
lusteris shown in �gure 7.6. Here again we see nodes (e.g. top left inset) where thesize of a
tivity �u
tuations is less than 1 per 
ent of the average level ḡi.Most remarkable, there are nodes (like the one in bottom left inset) whi
hremain ina
tive most of the time intermittently experien
ing spikes of shortduration a
tivity. This amazing variability of individual node temporal a
tivityon the 
haoti
 attra
tors is a generi
 feature of the network dynami
s. Theexisten
e of spike behaviour of individual nodes a
tivity suggests 
orre
tly thateventual variations of parameters like h may lead to permanent ina
tivity ofsome parti
ular nodes, so providing a straightaway de
reasing of the dynami
al
luster size or, the other way around, the a
tivation of ina
tive nodes in thefrontier.
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Figure 7.10: Example of bi-fur
ation diagram (N = 60;island size: 14; p = 0.8).One 
an appre
iate an inverseHopf bifur
ation and several(dire
t and inverse) perioddoubling bifur
ation 
as
ades.The maximum Lyapunov ex-ponent λ is plotted in thelower part.

Figure 7.11: Phase spa
e of a node ending up in a 
haoti
 state as the value of
h is in
reased. Su

essive period doublings starting from a periodi
 
y
le 
an beappre
iated. The values of h (from (a) to (f)) are: 5.30, 5.50, 5.63, 5.65, 5.66, 5.68,respe
tively. The parameters are set to p = 0.7 and N = 100.



7.2. Regulatory dynami
s in s
ale-free networks 237

 0.5

 0

-0.5

-1
 4 3 2 1 0

λ

h

 0.5

 0

-0.5

-1
 4 3 2 1 0

λ

h

 0.6

 0.4

 0.2

 0

g

 0.6

 0.4

 0.2

 0

g

 0.3

 0.25

 2.8 2.6 2.4

0.3

0.25

2.4 2.6 2.8

0

0.5

g
i(g

i=
0

)

.

λ

Figure 7.12: Example of bi-fur
ation diagram (N = 60;island size: 12; p = 0.8)showing (see inset) a pe-riod tripling bifur
ation. Themaximum Lyapunov expo-nent λ is plotted in the lowerpart.
It is important to note that, for a �xed set of parameter values and a givennetwork realization, there are generally several di�erent attra
tors 
oexistingin the phase spa
e portrait of the network dynami
s, ea
h one having its ownbasin (of attra
tion) of initial 
onditions. Multi-stability appears as a generi

onsequen
e of the ex
itatory/inhibitory interplay. Importantly also, there
an be very many unstable periodi
 traje
tories (often entangled) �owing inbetween basins of attra
tions. The ex
itatory/inhibitory 
ompetition is alsoresponsible for the appearan
e of temporally 
omplex (positive Lyapunov ex-ponent) aperiodi
 evolutions, asso
iated to the bifur
ation 
as
ade s
enario.As we will show in se
tion 7.2.2 the manifestation of �u
tuating (either peri-odi
 or 
haoti
) temporal behaviours takes importan
e when inhibitory linkspredominate, though not too mu
h, over ex
itatory ones.Floquet analysis of the periodi
 attra
torsAs shown in the bifur
ation diagrams of �gures 7.10 and 7.12, periodi
 solutionsof the network dynami
s often be
ome unstable under variations of the modelparameters. In order to 
hara
terize these instabilities in a pre
ise manner,
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Figure 7.13: Floquet spe
tra. (a) Pe-riod doubling bifur
ation in an islandof size 14 at h = 1.57. (b) Naimark-Sa
ker bifur
ation (at rational Floquetangle θ = ±2π/3) in an island of size12 at h=2.44 (the same as used inthe diagram of �gure 7.12). For both
N = 60 and p = 0.8.

one may perform the linear stability analysis of the periodi
 orbits (see, e.g.[296℄) near the bifur
ation points.For this we 
onsider small perturbations of the dynami
al variables, δ~g(t0) =

{δgi(t0)}, and 
ompute their evolution over the period T of the periodi
 orbit.The evolution of these small perturbations (ve
tors in tangent spa
e) followsthe (linear) dynami
s obtained by linearizing equation (7.7) around the peri-odi
 orbit {ĝi(t)} = {ĝi(t + T )}, i.e.,
dδ~g(t)

dt
= −δ~g + α · Aδ~g , (7.10)where the matrix A is obtained as

Ai,j =
Θ[
∑

k Wi,kgk]

(1 + h−1Φ[
∑

k Wi,kgk])2
·Wi,j (7.11)and Θ[x] denotes the (Heaviside) step fun
tion. Note that the above equationis only valid when the sum of the inputs (a
tivatories and inhibitories) whi
hre
eives a node from its neighbours is nonzero. Hen
e, the Floquet analysis isperformed for ea
h dynami
al 
luster found and not for the whole network.As introdu
ed in the �rst part of this thesis when dis
rete breather solutionswere studied the so-
alled Floquet (or monodromy) matrix F of the periodi




7.2. Regulatory dynami
s in s
ale-free networks 239solution {ĝi(t)} is de�ned as the linear operator in tangent spa
e that mapsthe initial perturbation at t0, δ~g(t0), onto the perturbation at t0 + T

δ~g(t0 + T ) = Fδ~g(t0) (7.12)The Floquet matrix F is obtained here by numeri
al integration of thelinearized eq. (7.10) over a period T for a basis of initial 
onditions in thetangent spa
e. The spe
trum of eigenvalues of this matrix provides the infor-mation on the linear stability of the periodi
 solution. Note that be
ause F isa real matrix, if a Floquet eigenvalue µ is a 
omplex number, then its 
omplex
onjugate µ̄ also belongs to the Floquet spe
trum. Also, be
ause solutions ofautonomous di�erential equations 
an be shifted in the time t dire
tion, theirFloquet matrix always has unity as an eigenvalue, say µ1 = 1, with asso
iatedeigenve
tor { ˙̂gi(t0)}. The solution is linearly stable if all the other eigenvalues
µj = |µj | exp(iθj) are in the interior of the unit 
ir
le of the 
omplex plane,i.e. |µj| < 1 for j 6= 1. A periodi
 solution be
omes unstable when a Floqueteigenvalue (or a pair of 
omplex 
onjugate eigenvalues) 
rosses the unit 
ir
le.The asso
iated Floquet eigenve
tor indi
ates the dire
tion in tangent spa
ewhere perturbations will grow exponentially away from the solution.In �gure 7.13.a we plot the Floquet spe
trum of a periodi
 attra
tor ata period doubling bifur
ation. As seen in the �gure, a Floquet eigenvalue
rosses the unit 
ir
le at −1. In �gure 7.13.b we plot the Floquet spe
trum ofthe periodi
 attra
tor of �gure 7.12 at h = 2.44, where the inset suggested thata period tripling bifur
ation may o

ur. We see a 
omplex 
onjugate pair ofFloquet eigenvalues exiting the unit 
ir
le at angles θ = ±2π/3. In general, forgeneri
 irrational values of θ/π this type of bifur
ation (
alled Naimark-Sa
keror generalized Hopf bifur
ation) gives rise to a quasiperiodi
 attra
tor whosetraje
tories �ll densely a two-frequen
y torus. However, as a generi
 featureof our model, the two frequen
ies of the new attra
tor are in a 
ommensurateratio (2 : 3), so that the new stable traje
tory has a period of 3T.In terms of how often di�erent types of bifur
ation o

ur in the networkdynami
s, as inferred from our (non-exhaustive, but signi�
ant at the s
ales
onsidered) sampling of initial 
onditions and network realizations, one may saythat period doubling 
as
ades and, less often, 
ommensurate Naimark-Sa
kerbifur
ations have been generi
ally found by varying the Mi
haelis-Menten pa-rameter h. But, besides the formal 
hara
terization of the dynami
al instabil-ities observed, the Floquet analysis allows also to give an answer on a moregeneral question, namely how temporal instabilities 
orrelate with networking
onne
tivity 
hara
teristi
s. Are there 
hara
teristi
 features dis
ernible in thestru
ture of instabilities? This point will be dis
ussed further below in the nextsubse
tion.
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tions in Networks7.2.2 Statisti
al 
hara
terization of island's dynami
s andstru
tureAs noted before, the dynami
s of the system is determined by only two param-eters, h and p. The behaviour of the system des
ribed by equation (7.7) on theunderlying network is very ri
h and one 
an have steady, periodi
 or 
haoti
states as well as fragmentation. In this se
tion, we analyze in more details thesystem's phase diagram as well as how the dynami
al regimes 
ouple to thelo
al stru
tural properties of the underlying network and dynami
al islands.Density distribution fun
tions of dynami
al regimesThe previously reported existen
e of 
haoti
 states have very interesting impli-
ations for the stability of the system under external perturbations or internalvariations of the working parameters and points to the 
entral problem of ro-bustness of biologi
al networks studied by Kau�man for the design of RandomBoolean networks (see se
tion ??). For this reason it is important to 
omple-ment the study of the dynami
al regimes with the study of the phase diagramin the (p, h)-spa
e where 
haos appears. The s
heme of the 
omputations per-formed in order to 
hara
terize the phase diagram of the system dynami
s isslightly modi�ed with respe
t to that used in the previous se
tion:(i) For a given value of the parameters h and p and network realization theinitial values of gi are taken from a uniform distribution in the interval
(0, α).(ii) First integration of the equations is performed using a 4th order Runge-Kutta s
heme. The total integration time is large 
ompared with thetransient.(iii) Che
k the dynami
al state of the network. If all the nodes are in a steadystate we try another initial 
on�guration; if there are dynami
al nodesgo to the next stage.(iv) Che
k the 
onne
tivity between the dynami
al nodes in order to obtainthe dynami
al subnetworks (islands).(v) Se
ond integration for 
al
ulating the Largest Lyapunov exponent λ. If
λ > 5 · 10−3 the dynami
s is 
onsidered 
haoti
. If λ < 5 · 10−3 we lookat the frequen
y of the periodi
 motion.(vi) Repeat stages (i)-(v) for di�erent initial 
onditions and realizations ofthe network.



7.2. Regulatory dynami
s in s
ale-free networks 241
0.0

0.2

0.4

0.6

0.8

1.0

1.0 3.0 5.0 7.0 9.0

0.00 0.05 0.10 0.15 0.20 0.25

h

p

Pchaos

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

P
ch

/p
er

p

N=300

PERIODIC
CHAOTIC

Size

ch
ao

s 
/ p

er
P

p

(b)(a)

Figure 7.14: (a) Probability, Pchaos (Pper), that the system evolves to a 
haoti
(periodi
) regime as a fun
tion of the probability of inhibitory intera
tions, p, for
h = 4 and N = 300. (b) Phase diagram in the (p, h)-parameter spa
e of the 
haoti
dynami
s of the system. Color 
ode indi
ate the values of Pchaos (N = 300).In �gure 7.14.a, we have represented the probability, Pchaos, of ending up ina 
haoti
 regime as a fun
tion of p for a network of N = 300 nodes and h = 4.This probability is given by the fra
tion of the total number of realizations(typi
ally 103 di�erent initial 
onditions over di�erent network realizationsfor ea
h value of p and h were used) in whi
h at least one 
haoti
 dynami
sis observed. The �gure also shows the 
orresponding probability, Pper, forperiodi
 orbits. As �gure 7.14.a 
learly shows, there is a threshold value p = pthbeyond whi
h the network dynami
s is not robust under variations of the initialvalues of the gi's and 
onstitutes the onset of the 
haoti
 phase 3. For valuesof p above pth ≈ 0.25(5), two randomly 
hosen initial 
onditions 
an lead thesystem to disparate asymptoti
 regimes. The value pch

th ∼ 0.25(5) Besides, thesize of the system a�e
ts the value of Pchaos, but the onset −and the end− ofthe 
haoti
 phase seems to be N independent (see �gure 7.15).Figures 7.14.a 
onstitutes a quantitative illustration of how the prevalen
eof �u
tuating asymptoti
 regimes over 
hemo-stasis ones depends on the modelparameter p. The sum of both fun
tions, Pper(p) + Pchaos(p), gives the prob-ability that the asymptoti
 state shows temporal variations of the a
tivityve
tor (either regular or 
haoti
) as a fun
tion of p. These results give thatin the range of values 0.5 ≤ p ≤ 0.8 regimes of temporal �u
tuations o

urmore often than 
onstant a
tivity regimes. This measure is maximized by val-3Note that there is a se
ond threshold for p ∼ 1 whi
h avoids 
haoti
 behaviour. Thisis a 
onsequen
e of the dynami
s (7.7). Remind that in this region most of the intera
tionsare inhibitory and the dynami
s of the genes die out due to the damping term in eq. (7.7).Thus, the nontrivial threshold is the lower one.
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haoti
 regime as a fun
tion ofthe probability of inhibitoryintera
tions, p, for three net-work sizes. The results shown
orrespond to a middle valueof h = 4.

ues around p ≃ 2/3 and, quite naturally, it in
reases with the value of theMi
haelis-Menten parameter h, i.e. the slope at the origin of the saturatedresponse fun
tion (see �gure 7.3). Note that even larger values of p meansoverabundan
e of inhibitory intera
tions, whi
h leads to the predominan
e ofthe asymptoti
 rest state, while smaller values of p favour 
hemostati
 equilib-ria.The quantities Pchaos and pth depend on h. As we move to larger valuesof h, the strength of the intera
tions in
reases and hen
e it is expe
ted thatslight perturbations produ
e a behavior in whi
h the fra
tion of nodes whosedynami
al patterns are easily disturbed grows. This is indeed the 
ase, asillustrated in �gure 7.14.b. The 
olor-
oded �gure shows that as h is in
reased,the probability of having a 
haoti
 phase grows, and that the onset of su
h
haoti
 patterns shifts to smaller values of p. This drift of pth is howeverbounded. For small enough values of p (even for very large h), most of theelements a
tivate ea
h other (Wij = 1 for a large fra
tion of pairs ij and ji)and hen
e the resulting dynami
s is steady. In other words, the onset of 
haoti
regimes is always lo
ated at a nonzero value of pth (the same applies to theright (de
aying) part of Pch(p), but in this 
ase the a
tivity falls down to zero).Although the model and the underlying topology are very di�erent, theexisten
e of a nonzero value of pth, no matter the value of h, points to theoriginal suggestion by Kau�man (explained in se
tion 7.1.2) that there is a rel-evant (input) 
onne
tivity κc for the regulatory gene network of an organismbelow whi
h the dynami
al behavior of the system is frozen and is not easily
hanged by perturbations [267℄. Around κc, the behavior is neither 
haoti
(not robust and then biologi
ally not desiderable) nor frozen (biologi
ally un-
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Figure 7.16: Onset of 
haoti
 regime as a fun
tion of p for three di�erent values of theexponent of the degree distribution P (k) ≃ k−γ (γ = 3, 2.33 and 2.2). The results
orrespond to a network of N = 300 and the nonlinear parameter is set to h = 4 and.realisti
), but exhibits a ri
h behavioral repertoire. The same pi
ture appliesto pth in our model. In this dire
tion, the quantity Pper(p)−Pchaos(p) allows todetermine the regions in the parameter spa
e where regular dynami
s prevailsover 
haos. As pointed above the range of p values where Pper(p) > Pchaos(p)
an be regarded as dynami
ally robust and then 
ompatible with the operationpoints for real biologi
al networks.We have also performed the 
omputation of the phase diagram for the ex-isten
e of 
haoti
 dynami
s for networks with di�erent degree of heterogeneity.For this purpose, we have varied the exponent γ of the 
onne
tivity distribution
P (k) ∼ k−γ to values lower than 3 using the so-
alled generalized Barabási-Albert model reported in [297℄. These networks are even more heterogeneoushaving a higher number of highly 
onne
ted genes. These 
omputations al-low to gain information on the importan
e of highly 
onne
ted genes on theexisten
e of 
haoti
 behavior. The results shown in �gure 7.16 manifest thatwhen γ de
reases the threshold value for displaying 
haoti
 behavior pth(γ)slightly grows, giving a narrower 
haoti
 region but, on the other hand, theprobability Pch in the 
haoti
 region takes higher values for the same valuesof p as γ de
reases. In table 7.1 we show the thresholds pth(γ) and the values
I(γ) given by

I(γ) =

∫ 1

0
Pch(γ, p)dp , (7.13)that a

ounts for the strength of the 
haoti
 behavior in the whole range ofthe parameter p. When periodi
 behaviour is also 
onsidered one realizesby looking (Figure) at the aforementioned substra
tion Pper(p) − Pch(p) that
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Figure 7.17: (a) Probability that a 
onne
ted 
luster of nodes displaying either 
haoti
or periodi
 behavior has a given size (in number of nodes forming the 
luster). (b)S
aling of the mean 
luster size with N . The parameters have been set to h = 4 and
p = 0.7.although the onset of 
haoti
 behaviour pth is lower for the less heterogeneous
ase γ = 3 it 
orresponds to the more robust 
ase as it presents the largerregion of periodi
 prevalen
e. These quantitative results have to be 
arefully
onsidered sin
e it is 
lear that, as a matter of fa
t, regardless of the value of γemployed, the dynami
al robustness of the system is mainly determined by thetopologi
al properties given by p. We remark again that this 
on
lusion is inagreement with the �ndings when Random Boolean Networks are 
onsidered.Dynami
al island stru
tureWe next fo
us on the topologi
al 
hara
terization of islands of dynami
al units.For this we will take into a

ount only the nodes belonging to those 
onne
ted
omponents of the whole network whi
h share 
ommon dynami
al patterns,
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γ 3 2.33 2.2

pth(γ) 0.25 0.32 0.38
I(γ) 0.1581 0.1962 0.2Table 7.1: The table shows the values of the probability (of inhibitory intera
tions)threshold, pth for having 
haoti
 behavior and the values of the integral 7.13 for thethree values of γ = 3, 2.33 and 2.2.the islands, and only those links that 
onne
t two dynami
al nodes of thesame islands. That is we will not 
onsider those links that 
onne
t island'snodes with the rest of the substrate network. In this sense, the islands 
an beviewed as those modules introdu
ed in se
tion 7.1.2 that display independentdynami
s but are lo
ated nested in large network of intera
tions. We expe
tto �nd di�eren
es between the topologi
al features of the islands and those ofthe s
ale-free substrate as a result of the nonlinear dynami
s that de�nes theislands.We �rst analyze how the 
luster size distribution of islands of nodes dis-playing either periodi
 or 
haoti
 a
tivity s
ales with the system size. Figure7.17.a represents the probability that an island has a given size for severalnetworks made up of a number of nodes ranging from 50 to 800. Clearly, thesize distribution shows an average value that 
hanges as N grows. A 
loserlook at the �gure (see �gure 7.17.b) reveals that the mean 
luster size s
aleswith N and that about 17% of the nodes, in average, exhibits nonzero a
tivity.This 
on�rms what we have dis
ussed in se
tion 7.2.1 about the measures ofthe sets D∗ and D, namely, that the fragmentation of the network into islandsof independent dynami
s appears as one of the most 
hara
teristi
 features ofthe model.As we stated above, it is interesting to elu
idate how the topologi
al proper-ties of the islands 
orrelate with those of the underlying (original) network. Tothis end, we have further s
rutinized the stru
ture of the 
lusters and measuredtwo topologi
al quantities of interest. Figure 7.18 shows the degree distribu-tion of nodes belonging to dynami
al islands for several system sizes. Thisproperty 
an be regarded as a global one and indi
ates that within the islands,the probability that a node has k links pointing to other nodes of the samedynami
al island also presents a slow de
ay with k, though with a more pro-noun
ed 
ut-o� and a (slightly) di�erent value for the exponent γ than thatof the substrate network. More striking is the result depi
ted in �gure 7.19,where the average 
lustering 
oe�
ient 〈c〉 of the substrate (original) networkand of the islands is plotted as a fun
tion of N . While for the BA networkthe 
lustering is vanishing as the network size grows, as reported in se
tion
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k other nodes of the island. Parameters were set to h = 4 and p = 0.7.5.2.3, it seems that for dynami
al islands its value saturates. This is quiteinteresting be
ause, on the other hand, the value of the 
lustering 
oe�
ientis very large and 
omparable to measures of real systems where the kind ofdynami
s explored here applies, for instan
e, biologi
al networks [298℄.That is, the stru
ture of dynami
al islands 
orre
tly reprodu
es several ofthe most important topologi
al features observed in biologi
al networks and not
aptured by 
urrent network models. Namely, the heterogeneous distribution
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Figure 7.19: Average 
lustering 
oe�
ient 〈c〉 as a fun
tion of the network size for theBA original network and the dynami
al 
luster. Note that while 〈c〉 in the BA network
ontinuously de
reases, for the dynami
al island it saturates. See more details in thetext. The results have been obtained using h = 4 and p = 0.7.
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onne
tions, a high average 
lustering and the independen
e of 〈c〉 withrespe
t to the system size. This result points to the 
onje
ture that severaltopologi
al properties observed in systems driven by AI intera
tions wherenodes are themselves (nonlinear) dynami
al units may be biassed by their owndynami
s. In other words, what we a
tually see is the result of the a
tivityshowed up by a smaller �dynami
al� network whose lo
al topologi
al propertiesgreatly di�er from those of a larger substrate network that we don't �see�be
ause many of its 
omponents are simply o�. This, in fa
t, may be the 
aseof biologi
al systems where stru
ture and dynami
s are indissoluble linked[298℄.7.2.3 Stru
ture inside dynami
al islandsThe above �ndings on new (dynami
ally) emergent 
hara
teristi
s of the is-lands stru
ture motivate the question of whether these 
lusters have an internalorganization or hierar
hy among its 
onstituents. It is widely known that whenone deals with problems where the network topology (s
ale-free) is the onlydegree of 
omplexity of the problem the answer to this question is usuallybased on the presen
e of highly 
one
ted nodes (the hubs). This is the 
asewhen linear evolution equations are studied on top of 
omplex networks likeepidemi
 or rumour spreading, tra�
 and 
ommuni
ation problems (
hapter6). However, our 
ase is not so simple and the nonlinear ex
itatory/inhibitorydynami
s between the elements of the network plays a 
ru
ial role in deter-mining whi
h nodes are governing the evolution of the system. Moreover, thehigh 
lustering found for the dynami
al 
lusters points out that this leadingrole is not played by isolated nodes but by small substru
tures inside the dy-nami
al islands. This 
on
ept is not new, the problem of �nding small relevantsubstru
tures inside large networks, usually 
alled �motifs� (see se
tion 5.1.4),has been studied in di�erent ways in the �eld of biologi
al networks.It is indeed very revealing to pay attention to the networked stru
ture ofthe unstable manifold, whi
h is given in the linear regime of small perturba-tions by the Floquet unstable eigenve
tors. For this purpose, we look at thebehaviour of the 
omponents of the dynami
al islands when a bifur
ation (ei-ther period doubling or Naimark-Sa
ker type) o

urs. In these 
riti
al points,it is possible to get a deeper insight into what is going on in the dynami
alislands by looking at the Floquet eigenve
tor responsible for the bifur
ation,
~δg

⋆
(t0) = {δg⋆

i (t0)}, 
orresponding to the Floquet eigenvalue whi
h rea
hes theunit 
ir
le. In parti
ular, integrating equation (7.10) for the initial 
ondition
~δg

⋆
(t0) we 
an 
ompute the following ve
tor

~〈δg⋆〉 = {〈δg⋆
i 〉} =

{

1

T

∫ T

0
|δg⋆

i |dt

}

. (7.14)
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Figure 7.20: The �gure shows the
omponents of the ve
tor 〈 ~δg⋆〉(see text) for �ve dynami
al is-lands at the 
riti
al point of ei-ther a period doubling bifur
a-tion [(a), (b), (d) and (e)℄ or aNaimark-Sa
ker one (
).
The 
omponents of this ve
tor measure, for ea
h node, the average (over aperiod T of the old solution) distan
e of the new solution after the bifur
ationpoint from the old periodi
 solution. Note that a zero 
omponent of thisve
tor at a node k, means orthogonality of the single-site perturbations atthat node with respe
t to the unstable dire
tion in tangent spa
e. In otherwords, by looking at the 
omponents of the ve
tor (7.14) we 
an identify thosenodes that are more a�e
ted by the perturbation that leads the system toinstability. In �gure 7.20 we show this quantity for several dynami
al islands(relatively small, but still representative) 
orresponding to values of h where abifur
ation o

urs. In parti
ular, �gures 7.20.
 and 7.20.e 
orresponds to those
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ale-free networks 249islands whose Floquet spe
tra are given in �gure 7.13, one 7.21.
 
orrespondingto a Naimark-Sa
ker bifur
ation and the other 7.21.e to a period doublingbifur
ation.As it 
an be seen from the �gures, the ve
tors ~〈δg⋆〉 have several null 
om-ponents. The unstable perturbation ~δg
⋆
(t0) that 
hange the island's attra
torat the 
riti
al point does not perturb the motion of these nodes. For the threelatter 
ases (
orresponding to �gures 7.20.
, 7.20.d and 7.20.e) there is a rep-resentative group of nodes where this measure vanish. The stru
tural pro�lesreveal for these three 
ases (see the islands plotted in �gure 7.21), apparentlyirrespe
tive of the type of instability, that the set S of nodes in the islandwhi
h are alien to instability (white regions), that is, the set of those nodes

j su
h that 〈δgj〉 = 0, is a non-zero measure set; it is sometimes even largerthan the 
omplementary set (green area) U = I − S of parti
ipating nodeson the unstable eigenve
tor evolution during a period. We observe here thatthe fragmentation tenden
y (see dis
ussion on islands of dis
onne
ted dynam-i
s made above) operates also at the level of the tangent spa
e, in the sensethat a binary partition of the island nodes is well de�ned at the bifur
ation(
riti
al) point. Namely, the instability introdu
es a partition of the island
I = U ⊕ S into (a) the set U of nodes that do parti
ipate in the instabilityevolution in the linear regime, and (b) the 
omplementary set S, of nodes su
hthat single-node perturbations are orthogonal to the unstable linear manifold.This drasti
, generi
 fragmentation of the island of periodi
 a
tivity at thelinear des
ription level of the bifur
ation, is also 
learly the 
onsequen
e ofthe AI 
ompetition on the network of intera
tions, and we have not seen anydeviation from this observation in the 
omputations performed (of whi
h only�ve 
ases are illustrated). In summary, one 
ould say that inside the dynami
alislands there are 
ompa
t substru
tures (and not single nodes) governing thedynami
al 
hanges of the whole 
luster of nodes.The behavior des
ribed above suggest the following numeri
al experiment:we have explored the responses of the di�erent nodes to an external pertur-bation when the system is in a periodi
 state near a bifur
ation point. Inparti
ular, we for
e a single node i by adding an aditional term to eq. 7.7 ofthe form

dG(t)

dt
= −G(t) + αF [WG(t)] + ei · [A sin (ωt)] , (7.15)where ei is a ve
tor whose 
omponets are {ei}j = δij. The for
ing frequen
yis set to ω = 2π/T where T the period of the unperturbed system. Then we
ompute, as a fun
tion of the for
ing amplitude A, the evolution of the Floqueteigenvalue µ⋆ responsible for the forth
oming bifur
ation in the unperturbedsystem. The e�e
ts of su
h a perturbation strongly depend on whether theperturbed node belongs to the subset of those identi�ed as leaders, i.e the
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Figure 7.21: In the left side of the �gure the dynami
al islands 
orresponding to �gures7.20.
, 7.20.d and 7.20.e are represented. The islands show the distribution (greenregion) of the nodes with non null 
omponent of 〈 ~δg⋆〉 in �gure 7.20 respe
tively. Inthe right side, the plots show the evolution of the Floquet eigenvalue µ⋆ (see text) asa fun
tion of the for
ing amplitude A applied to di�erent nodes of the left dynami
alislands respe
tively. For all the islands the susbstrate network was of N = 60 nodeswhith a fra
tion of 80% of inhibitory intera
tions (p = 0.8).



7.3. Con
lusions 251ones with non null 
omponent in ~〈δg⋆〉 (represented inside the green area in�gure 7.21). The results obtained for the dynami
al islands plotted in �gure7.21 are shown in the right plots of the �gure. When the nodes inside thegreen area are perturbed the Floquet eigenvalue µ⋆ signi�
antly deviate (eitherin
rease or de
rease, we have not been able to elu
idate when a given 
hangeis expe
ted) from the values of the unperturbed system. On the other hand,the perturbation of the nodes lo
ated outside the green region does not implyany 
hange to linear stability of the whole system. These results illustrate therelevant role played by the substru
tures found above by the 
omputation of
~〈δg⋆〉.7.3 Con
lusionsIn this 
hapter we have analyzed the interplay between 
omplex topologiesand a
tivatory-inhibitory intera
tions driven by a saturated response dynam-i
s of the Mi
haelis-Menten type. The dynami
s of the system is very ri
h andexhibits steady, periodi
 and 
haoti
 regimes that in turn lead to the fragmen-tation of the original substrate network into a smaller 
luster of dynami
allya
tive nodes. We have fully 
hara
terized these states by means of the Lya-punov exponent and the Floquet analyses as well as the topologi
al featuresof a
tive islands. The rea
h behavioral repertoire observed is thus a 
onse-quen
e of the entangled 
omplexity of the system temporal behavior and theheterogeneous stru
ture of the underlying network.The emerging dynami
s 
hara
terized in this work 
ould plausible des
ribeat least two relevant s
enarios in biologi
al systems. On one hand, the dy-nami
s expressed in eq. (7.7) has been proposed as a way to 
hara
terize the-oreti
ally the individual dynami
s of gene expression [294℄. In fa
t, eq. (7.7)is the generalization of the su

essful Random Boolean models widely used tomodel gene expression. In this 
ontext, two nodes at the ends of a link are
onsidered to be trans
riptional units whi
h in
lude a regulatory gene. One ofthese end-nodes 
an be thought of as being the sour
e of an intera
tion (theoutput of a trans
riptional unit). The se
ond node represents the target bind-ing site and at the same time the input of a se
ond trans
riptional unit. Bystudying simpli�ed models as the one implemented here − the intrinsi
 
om-plexity of the problem does not allow for a 
omplete and detailed des
riptionof real gene dynami
s −, one 
an infer the region of the parameter spa
e (i.e.

(p, h)) that better des
ribes gene networks. The latter seems possible due tolatest developments in mi
roarray te
hnologies, bio
omputational tools, anddata 
olle
tion software.A se
ond s
enario where the results obtained apply is rea
tion kineti
s in
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tions in Networksmetaboli
 networks. In metaboli
 systems, a very ri
h behavioral repertoire iswell do
umented [210℄, as for instan
e, the os
illations observed in the 
on
en-tration of 
ertain 
hemi
als in bio
hemi
al rea
tions su
h as gly
olysis. Thesystem of di�erential equations, Eqs. (7.7), represents one of the most basi
bio
hemi
al rea
tions, where substrates and enzymes are involved in a rea
tionthat produ
es a given produ
t. In this 
ontext, there are several importantissues as how fast the equilibrium is rea
hed, how the 
on
entration of sub-strates and enzymes 
ompare, et
. Besides, it is known that in a large numberof situations, some of the enzymes involved show periodi
 in
rements in theira
tivity during division, and these re�e
t periodi
 
hanges in the rate of enzymesynthesis. This is a
hieved by regulatory me
hanisms that ne
essarily requiresome kind of feedba
k 
ontrol as that emerging in our model. The interest-ing point here is that the real topologi
al features of the underlying metaboli
network [146℄ have not been taken into a

ount in studies performed so far.As this work shows, they have important bearings in the 
orrelation betweenstru
ture and the observed dynami
s.Finally, on more general theoreti
al grounds, we anti
ipate several featuresof interest su
h as the fragmentation of the original network a

ording to thedynami
al states of the nodes, multistability and di�erent routes to 
haoti
behavior within the same system. The �rst of these points is parti
ularly rel-evant sin
e it may indi
ate that in networks of dynami
al units, the topologyobserved 
an be the result of a given network state hiding a larger substratewhose topologi
al properties are 
ompletely di�erent at a lo
al level. Of parti
-ular interest is also the result gathered in the last part of the work, namely, theexisten
e of an additional substru
ture inside dynami
al islands determined bythe di�erent responses of nodes to external perturbations. This points to the
entral issue in many biologi
al pro
esses of what subset of nodes are the mostimportant in order to sustain (or break) the system's robust fun
tioning. As a
on
lusion, the 
hara
terization of models where nonlinearity and spatial 
om-plexity 
oexist yields new results missed when only one of these ingredients ispresent and opens the path to a better 
omprehension of biologi
al pro
essesand the dynami
s of networks of nonlinear dynami
al units.



Chapter 8Syn
hronization on ComplexNetworksWhile I was in for
ed to stay in bed for a few days and made obser-vations on my two 
lo
ks of the new workshop, I noti
ed a wonderfule�e
t that nobody 
ould have thought of before. The two 
lo
ks, whilehanging [on the wall℄ side by side with a distan
e of one or two feetbetween, kept in pa
e relative to ea
h other with a pre
ision so highthat the two pendulums always swung together, and never varied.While I admired it for some time, I �nally found that this happeneddue to a sort of sympathy: when I made the pendulums swing at dif-ferent pa
es, I found that half an hour later, they always return tosyn
hronism and kept it 
onstantly afterwards, as long as I let themgo. Dis
overy of syn
hronization by Christian Huygens(Extra
ted from a letter to his father, 26 February 1665) [299, 300℄.The understanding of emergent 
olle
tive phenomena in natural and so
ialsystems has driven the interest of s
ientists from di�erent dis
iplines duringde
ades. One example of these phenomena is the emergen
e of lo
alized stru
-tures in extended nonlinear latti
es like those studied in part I. Besides, thestudy of syn
hronization of a set of intera
ting individuals or units o

upies aprivileged position among these 
oherent phenomena be
ause its ubiquity inthe natural world. In this 
hapter, we show how the emergen
e of lo
al pat-terns of syn
hronization behaves di�erently depending on the properties of theunderlying networked stru
ture, driving the pro
ess towards a 
ertain globalsyn
hronization degree following di�erent paths. The dependen
e of the dy-nami
s on the 
oupling strength and on the topology is studied in this 
hapter



254 Chapter 8. Syn
hronization on Complex Networksin an e�ort to provide a new perspe
tive and tools to understand this emergentphenomena.We will fo
us on the syn
hronization of 
oupled os
illators, in parti
ular onthe paradigmati
 Kuramoto model, be
ause of its validity as an approximationfor a large number of nonlinear equations and its ubiquity in the nonlinearliterature. In se
tion 8.1 we will review the main 
hara
teristi
s of this modeland brie�y summarize the �state of the art� 
on
erning syn
hronization in
omplex networks. Se
tions 8.2, 8.3 and 8.4 are devoted to the study of therelationship between network topology and syn
hronization dynami
s. Forthis we will 
onsider a variety of networks whose topologi
al properties (su
has 
lustering, average path length, degree distribution, et
...) 
an be tunedand study how topologi
al variations a�e
t the emergen
e of the 
olle
tivesyn
hronization.8.1 The Kuramoto modelThe 
on
ept of syn
hronization studied in this 
hapter refers to the state of ama
ros
opi
 system of limit-
y
le os
illators whose frequen
ies are lo
ked to a
ommon value despite of the di�eren
es of their natural frequen
ies of individ-ual os
illations. However, the very 
on
ept of syn
hronization of n dynami
alsystems implies that there exist a smooth and invertible map that relate thetraje
tories of any pair of these systems. Then, syn
hronization of any type ofdynami
al behaviour, su
h as 
haos [301℄, 
an be studied. Depending on the
hara
teristi
s of the maps that 
onne
t two given evolutions di�erent types ofsyn
hronization are 
onsidered su
h as 
omplete syn
hronization [302℄, phasesyn
hronization [303℄, lag syn
hronization [304℄, et
... This ri
h repertoiremakes the general problem of syn
hronization an outstanding �eld for non-linear physi
s. Besides, the syn
hronization of non-identi
al intera
ting unitso

upies a privileged position among emergent 
olle
tive phenomena be
auseof its various appli
ations in interdis
iplinary �elds like Neuros
ien
e, E
ology,Earth S
ien
e, among others [300, 305�308℄.Let us now fo
us on the problem of 
omplete syn
hronization of an extendedset of limit-
y
le os
illators where the Kuramoto model has been obje
t of in-tensive resear
h during the last de
ades [309℄. In 1967 Winfree [310℄ fa
ed theproblem of syn
hronization with the following two simpli�
ations: (i) the 
ou-pling between the os
illators is weak and (ii) they are nearly identi
al (similarnatural frequen
ies). Subje
ted to these assumptions one 
an perform a times
ales separation. From one hand, at a fast time s
ale, the os
illators relax totheir natural limiting 
y
les so that they are des
ribed by the rotation angleof their phases. At a slow time s
ale these phases evolve a

ording to the
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tion with their neighbours and the small di�eren
es between thefrequen
y of the os
illators. This approa
h allows to fa
e the problem simi-larly to a 
lassi
al mean �eld model when one assumes that every os
illatoris 
oupled to the entire ensemble of os
illators and hen
e to the overall rithmgenerated by the whole population. Winfree expressed the model by means ofthe following general equations
θ̇i = ωi +





N
∑

j=1

X(θj)



Z(θi) (i = 1, ..., N) , (8.1)where θi is the phase of os
illator i, ωi is its natural frequen
y, X(θj) a

ountsfor the in�uen
e that a os
illator j makes over the rest of the elements and�nally Z(θi) denotes the response of the os
illator i to the overall 
oupling.Winfree found that when the width of the natural frequen
y distribution g(ω)is large 
ompared to the 
oupling strength the system behaves in
oherentlyand ea
h os
illator evolves a

ording to its natural frequen
y. On the otherhand, when the distribution gets narrower the in
oheren
e persists up to athreshold below whi
h a small subset of os
illator gets into syn
hrony.After the work of Winfree lots of works tried to understand the me
ha-nism of the syn
hronization transition. One of the most su

essful attempts tounderstand it is due to Kuramoto [311, 312℄. By means of perturbative meth-ods Kuramoto proved that for any system of nearly identi
al weakly 
oupledlimit-
y
le os
illators, the long time dynami
s is expressed by equations for thephase evolution of the form
θ̇i = ωi +

N
∑

j=1

Γij(θi − θj) (i = 1, ..., N) , (8.2)where the intera
tion fun
tions Γij 
an be 
al
ulated as integrals 
ontainingmodel-dependent terms. These fun
tions 
an be 
omposed of a (arbitrarily)large number of Fourier harmoni
s, and besides, one has to provide them in-
luding information about the 
oupling topology. Kuramoto analyzed a mean�eld 
ase 
orresponding to an uniform, all-to-all and sinusoidal 
oupling
Γij(θi − θj) =

K

N
sin (θi − θj) , (8.3)where the fa
tor 1/N is in
orporated in order to ensure a good behaviour ofthe model in the thermodynami
 limit, N →∞. Besides, he assumed that thefrequen
ies ωi are distributed following a density distribution g(ω) unimodaland symmetri
 with respe
t to an average frequen
y Ω, g(Ω− ω) = g(Ω + ω).One 
an then take Ω = 0 by 
hanging to a rotating frame of frequen
y Ω so
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hronization on Complex Networksthat the phases are rede�ned a

ording to θi → θi + Ωt, the distribution g(ω)is even and unimodal and the equations of motion are
θ̇i = ωi +

K

N

N
∑

j=1

sin (θi − θj) (i = 1, ..., N) . (8.4)This is the so-
alled Kuramoto model. It is 
onvenient to de�ne the 
omplexorder parameter in order to des
ribe properly the syn
hronization transition
r exp (iφ) =

1

N

N
∑

j=1

exp (iθj) , (8.5)where the modulus r measures the phase 
oheren
e and φ(t) is the averagephase. For example, let us suppose that the os
illators dynami
s is su
h thatthe phases move grouped around the unit 
ir
le, then r ≃ 1 and the systembehaves as a ma
ros
opi
 os
illator. On the other hand, if phases �ll denselythe unit 
ir
le then r ≃ 0, and the os
illators behave in
oherently and noma
ros
opi
 rithm is observed. By multiplying eq. (8.5) by exp (−iθj) weobtain for the imaginary part: r sin (φ− θi) = 1/N
∑

j sin (θj − θi), so thatone 
an write eq. (8.4) as
θ̇i = ωi + Kr sin (φ− θi) (i = 1, ...,N) , (8.6)where it is easily realized the mean �eld 
hara
ter of the model. Ea
h os
illatorintera
ts with the remaining ones through average quantities (r and φ). Then,the individual phases θi are attra
ted to the average phase φ and the inten-sity of this attra
tion is proportional to the overall 
oheren
e of the system

r. This establishes a positive feedba
k between 
oupling and 
oheren
e: themore 
oherent the 
olle
tive motion the larger is r and so is the tenden
y forre
ruiting os
illators into the syn
hronized 
luster.The numeri
al integration of eq. (8.4) (using a Gaussian or similar dis-tribution, with in�nite tails, for g(ωi)) show that for low enough values of Kthe os
illators seem un
oupled, i.e for arbitrary initial 
onditions the phases
θi tend to distribute uniformly a
ross the unit 
ir
le. Then r(t) de
ays to val-ues that �u
tuate around zero (O(N−1/2)). When K ex
eeds some thresholdvalue, Kc, the in
oherent state be
omes unstable and r(t) grows exponentiallyup to a nearly 
onstant value 1 > r > 0, showing the emergen
e of a small
luster of syn
hronized os
illators (see �gure 8.1).8.1.1 Solution to the Kuramoto modelIt is possible to obtain an analyti
al estimation of the 
riti
al point for thesyn
hronization transition. For this purpose Kuramoto looked for stationary
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Figure 8.1: Dynami
al patterns of a set of N = 100 globally 
oupled os
illators.A random set of initial 
onditions were 
onsidered lying on the unit 
ir
le, θi(0) ∈
[−π, π], and the natural frequen
ies are uniformly distributed between ωi ∈ [−0.5, 0.5].Starting from an un
oupled system K = 0 (r = 0.089) the 
oupling is adiabati
allyin
reased letting the system rea
h the equilibrium for every value of K where r is
omputed. For every pattern we have K = 0.2 (r = 0.109), K = 0.4 (r = 0.240), K =

0.6 (r = 0.648) and K = 1.0 (r = 0.962) where the system rea
hes the syn
hronizedstate (note that the frequen
y of this syn
hronized state is seen to be ωsync ≃ 2π·10−3,i.e. nearly zero as the mean value for the natural frequen
y distribution 
onsidered).solutions where r(t) is 
onstant and φ(t) rotates uniformly around the unit
ir
le with frequen
y Ω. Then it is possible to take a rotating frame of frequen
y
Ω and �x the phases origin so that φ = 0. With these assumptions eq. (8.6)take the form

θ̇i = ωi −Kr sin θi (i = 1, ...,N) . (8.7)In the above expression it is 
lear that the os
illators are 
ompletely indepen-dent, although their dynami
s should be 
onsistent with the pres
ribed valuesof r and φ. Equation (8.7) admits two solutions depending on the relativesize of the natural frequen
ies |ωi| with respe
t to the prefa
tor Kr. Those



258 Chapter 8. Syn
hronization on Complex Networksos
illators su
h that |ωi| ≤ Kr evolve to a stable �xed point so that
ωi = Kr sin θi , (8.8)with |θi| ≤ π/2 to ensure stability. These os
illators are 
alled lo
ked sin
e theirphases evolve 
oherently following a well de�ned frequen
y Ω in the originalreferen
e system. On the other hand if |ωi| > Kr the 
orresponding os
illatorsare drifting and rotate around the unit 
ir
le in a non-regular fashion. Theexisten
e of these os
illators seems to 
ontradi
t the assumptions of stationary
hara
ter of r(t) and the regular motion of φ. However, it 
an be found 
ertain
onditions so that the 
ompatibility is ful�lled [311℄. In parti
ular, it is enoughto assume that the os
illators phase distribution is stationary in order to theassure the stationary state 
onditions.Now we 
ompute the value of r. Taking into a

ount that φ = 0 oneobtains r · exp(iφ) = r = 1/N
∑

j exp(iθi) = 〈exp(iθ)〉. The latter average 
anbe de
omposed into the following two 
ontributions
r = 〈exp(iθ)〉lo
k + 〈exp(iθ)〉drift , (8.9)from the lo
ked and drifting os
illators. For the �rst average one obtains that

〈exp(iθ)〉lo
k = 〈cos θ〉lo
k sin
e for the lo
ked solutions relation (8.8) holds andhen
e the 
ontributions for the os
illators with natural frequen
y ω 
an
elswith the 
orresponding to those with −ω due to the pres
ribed symmetry
g(ω) = g(−ω). Then,

〈exp(iθ)〉lo
k = 〈cos θ〉lo
k =

∫ Kr

−Kr
cos [θ(ω)] g(ω) dω , (8.10)where θ(ω) is impli
itly de�ned by eq. (8.8). Changing the variable ω to θusing eq. (8.8) in the above expression one �nally obtains

〈exp(iθ)〉lo
k =

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.11)The 
ontribution to r from the drifting os
illators, 〈exp(iθ)〉drift, is seen tovanish invoking symmetry arguments [311℄ and hen
e the 
ontrol parameter ris equal to the right side of eq. (8.11)

r = Kr

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.12)This equation has always r = 0 as a solution (whi
h 
orresponds to the in
o-herent system). A se
ond solution for r 6= 0 is possible if the following relationholds

1 = K

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.13)
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ur for K > Kc so that the threshold value Kc 
orresponds to the
riti
al point where 
oheren
e appears, r → 0+. Then one �nds
Kc =

2

πg(0)
(8.14)for the 
riti
al 
oupling. The behaviour of the system's 
oheren
e near the
riti
al point r ≪ 1 
an be obtained expanding g(Kr sin θ) up to se
ond orderyielding

r ≃
(
√

16

−πg′′(0)K4
c

)

(K −Kc)
1
2 , (8.15)where the mean �eld 
hara
ter of the model be
omes evident.8.1.2 Syn
hronization in 
omplex networksThe Kuramoto mean-�eld approa
h to syn
hronization was a great break-through for the understanding of the emergen
e of syn
hronization in largepopulations of os
illators. However, we are aware that a large amount of realsystems do not show a homogeneous pattern of inter
onne
tions among theirparts. That is, the underlying stru
ture is not 
ompatible with the originalassumption of the Kuramoto model. Moreover, it is not even well des
ribed byrandom patterns of inter
onne
tions in the vast majority of systems. There-fore, the mean-�eld approa
h requires of several 
onstraints that are not usu-ally ful�lled in real systems like natural[262, 313℄, so
ial [148℄ and te
hnologi
al[143, 314℄ ones. The study of pro
esses taking pla
e on top of 
omplex net-works with s
ale-free 
hara
ter has led to re
onsider 
lassi
al results obtainedfor regular latti
es or random graphs due to the radi
al 
hanges of the system'sdynami
s when the heterogeneity of 
omplex networks 
an not be negle
ted. Itis then natural to investigate how syn
hronization phenomena in real systemsare a�e
ted by the 
omplex topologi
al patterns of intera
tion. This is notan easy task, as one has to deal with two sour
es of 
omplexity, the nonlinear
hara
ter of the dynami
s and highly non trivial 
omplex stru
tures, whi
h areusually presented to us in an entangled way. In fa
t, in 1998 Watts and Stro-gatz in an e�ort for understanding the syn
hronization of 
ri
ket 
hirps, whi
hshow a high degree of 
oordination over long distan
es as though the inse
tswhere �invisibly" 
onne
ted, end up with a seminal paper about the small-world e�e
t that was the seed of the modern theory of 
omplex networks [155℄.Nevertheless, the understanding of the syn
hronization dynami
s in 
omplexnetworks remains a 
hallenge.Let us fo
us again on the paradigmati
 Kuramoto model. In order tomanage with the KM on top of 
omplex topologies we reformulate eq. (8.4) to
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hronization on Complex Networksthe form
dθi

dt
= ωi +

∑

j

ΛijAij sin(θj − θi) (i = 1, ..., N) , (8.16)where ωi stands for its natural frequen
y, Λij is the 
oupling strength betweenpairs of 
onne
ted os
illators and Aij is the 
onne
tivity matrix (Aij = 1if i is linked to j and 0 otherwise). The original Kuramoto model studiedabove assumed mean-�eld intera
tions so that Aij = 1,∀i 6= j (all-to-all) and
Λij = K/N,∀i, j.The �rst problem when dealing with the KM in 
omplex networks is thede�nition of the dynami
s. In the seminal paper by Kuramoto [311℄, eq. (8.4),the 
oupling term in the right hand side of eq. (8.16) is an intensive magni-tude. The dependen
e on the number of os
illators N is avoided by 
hoosing
Λij = K

N . This pres
ription turns out to be essential for the analysis of thesystem in the thermodynami
 limit N → ∞. However, 
hoosing Λij = K
N thedynami
s of the KM in a 
omplex network be
omes dependent on N . There-fore, in the thermodynami
 limit, the 
oupling term tends to zero ex
ept forthose nodes with a degree that s
ales with N 1. A se
ond pres
ription 
onsistsof taking Λij = K

ki
(where ki is the degree of node i) so that Λij is a weightedintera
tion fa
tor that also makes intensive the right hand side of eq. (8.16).This form has been used to solve the paradox of heterogeneity that states thatthe heterogeneity in the degree distribution, whi
h often redu
es the averagedistan
e between nodes, may suppress syn
hronization in networks of os
illa-tors 
oupled symmetri
ally with uniform 
oupling strength [316℄. One should
onsider this result 
arefully be
ause it refers to the stability of the fully syn-
hronized state (see below) not to the whole evolution of syn
hronization in thenetwork. More important, the in
lusion of weights in the intera
tion stronglya�e
ts the original KM dynami
s in 
omplex networks be
ause it imposes adynami
 homogeneity that mask the topologi
al heterogeneity of the network.Finally, the pres
ription Λij = K [315, 317, 318℄, whi
h may seem more appro-priate, also presents some 
on
eptual problems be
ause the sum in the righthand side of eq. (8.16) 
ould eventually diverge in the thermodynami
 limit ifsyn
hronization is a
hieved.To our understand, the most a

urate interpretation of the KM dynami
s in
omplex networks should preserve the essential fa
t of treating the heterogene-ity of the network independently of the intera
tion dynami
s, and at the sametime, should remain 
al
ulable in the thermodynami
 limit. Taking into a
-
ount these fa
tors, the intera
tion Λij in 
omplex networks should be inversely1Note that this is only possible in networks with power-law degree distributions, but witha very small probability as P (k) ∼ k−γ with γ > 0. In these 
ases, mean-�eld solutionsindependent on N are re
overed, with slight di�eren
es in the onset of syn
hronization ofall-to-all and s
ale-free networks [315℄.
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kmax

= λ keeping inthis way the original formulation of the KM valid in the thermodynami
 limit(in SF networks kmax ∼ N1/(γ−1)). In addition, the same order parameter, eq.(8.5), 
an be used to des
ribe the 
oheren
e of the syn
hronized state. Sin
e
kmax is 
onstant for a given network, the physi
al meaning of this pres
riptionis a re-s
aling of the time units involved in the dynami
s. Note, however, thatfor a proper 
omparison of the syn
hronizability of di�erent 
omplex networks,the global and lo
al measures of 
oheren
e should be represented a

ording totheir respe
tive time s
ales. Therefore, given two 
omplex networks A and Bwith kmax = kA and kmax = kB respe
tively, the 
omparison between observ-ables must be done for the same e�e
tive 
oupling KA

kA
= KB

kB
= λ. With thisformulation in mind eq. (8.16) redu
es to

dθi

dt
= ωi + λ

∑

j

Aij sin(θj − θi) (i = 1, ..., N) , (8.17)independently of the spe
i�
 topology of the network. This allow us to studythe dynami
s of eq. (8.17) over di�erent topologies in order to 
ompare theresults and report properly the interplay between topology and dynami
s forwhat 
on
erns to syn
hronization.In re
ent years, s
ientists have addressed the problem of syn
hronizationon 
omplex networks 
apitalizing on the Master Stability Fun
tion (MSF) for-malism [319℄ whi
h allows to study the stability of the fully syn
hronized state[316, 320�326℄. The MSF is simply the result of a linear stability analysis fora 
ompletely syn
hronized system. Although we are not going to make use ofthe MSF along the forth
oming se
tions, let us brie�y summarize the basis ofthis te
hnique for the sake of 
ompleteness.Consider a general system of N 
oupled dynami
al systems for the n-dimensional variables {xi} (i = 1, ...,N) of the form
ẋi = F(xi) + λ

N
∑

j=1

LijH(xj) (i = 1, ..., N) , (8.18)where F : Rn → Rn is the isolated n-dimensional dynami
al system, λ is the
oupling strength, Lij is the N ×N Lapla
ian matrix ful�lling∑j Lij = 0 and
H : Rn → Rn is an output fun
tion that a

ounts for the mutual in�uen
e ofthe dynami
al states of two 
oupled dynami
al systems. The above equations
an be written in a more 
ompa
t form

ẋ = [IN ⊗ F + λ · L⊗H](x) , (8.19)where IN is the N × N identity matrix and ⊗ is the dire
t produ
t. Theevolution of a small perturbation around any solution of the above system
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hronization on Complex Networkswill be governed by the linearized equations around the 
orresponding solutionfrom whi
h one 
an 
ompute the Floquet and Lyapunov exponents (see Ap-pendix B). However, if the whole system displays syn
hronous dynami
s onehas xi = xj ∀i, j and it implies some simpli�
ations about the linear stabilityanalysis. Sin
e the Ja
obians DF and DH that appear in the linearized equa-tions are the same for every n-dimensional tangent subspa
e 
orresponding toperturbations of single n − dimensional variables xi (i = 1, ...,N) one 
ane�e
tively de
ouple the stability analysis of the N dynami
al system. For thispurpose diagonalizing the N×N Lapla
ian matrix, and 
alling γi (i = 1, ...,N)its eigenvalues, one arrives to a set of N n-dimensional systems of equations
ξ̇i = [DF + λγiDH]ξi (i = 1, ...,N) (8.20)with the same fun
tional form. The similarity of these n-dimensional systemsof equations, derived from the the symmetry of the syn
hronized solution, leadsto formulate the general problem of �nding the maximum eigenvalue, Λ of thegeneri
 equation

ẏ = [DF + (a + ib)DH]y (i = 1, ...,N) (8.21)as a fun
tion of a and b. The above equation is the so-
alled Master StabilityEquation and the surfa
e, Λ(a, b) generated by the solutions 
orrespond to theMaster Stability Fun
tion. By means of this surfa
e, that only depends on theparti
ular equations for the isolated dynami
al systems and the form of the
oupling between them, one 
an 
ompute the maximum Lyapunov exponentsfor ea
h Lapla
ian eigenve
tor γi (i = 1, ...,N), that would depend on the un-derlying topology employed, and hen
e obtain the stability of the syn
hronizedstate over the 
omplex network stru
ture.While the MSF approa
h is useful to get a �rst insight into what is goingon in the system as far as the stability of the syn
hronized state is 
on
erned,it tells nothing about how syn
hronization is attained and whether or not thesystem under study exhibits a 
riti
al point similar to the original KM. Tothis end, one must rely on numeri
al 
al
ulations and explore the entire phasediagram. Surprisingly, there are only a few works that have dealt with thestudy of the whole syn
hronization dynami
s in spe
i�
 s
enarios [317, 327�329℄ as 
ompared with those where the MSF is used, given that the onset ofsyn
hronization is rea
her in its behavioral repertoire than the state of 
ompletesyn
hronization. In the following se
tions we will study this point using the KMmodel on top of di�erent substrate topologies in order to get insight about therole of the stru
tural properties on the route towards 
omplete syn
hronization.
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al s
ale-free networks 2638.2 Syn
hronization in lo
al s
ale-free networksIn this se
tion, we take a further step in the detailed 
hara
terization of thephase diagram and spe
i�
ally, in the des
ription of the dynami
al behaviorat the onset of syn
hronization in SF networks. By performing a standard�nite size s
aling analysis, we show that the lo
al topology a�e
ts the 
riti
alproperties of the dynami
s, though it is less pronoun
ed that what one mayexpe
t a priori. We 
apitalize on the network model reported in se
tion 5.3that keeps the power-law exponent �xed while varying the 
lustering 
oe�
ientand the average path length. This model was already used in se
tion 6.2.2 forstudying the role of the lo
al topology when studying tra�
 dissemination.Let us �rst review the main features of the model. Roughly speaking, themodel mimi
s the situation in whi
h new nodes are atta
hed to an existing
ore or network but without having knowledge of the whole topology. Themodel generates a one parameter family of networks labeled by µ ∈ [0, 1] thatmeasures the degree of knowledge that is applied when preferential atta
hmentis performed during the network growth. Then, the limit µ→ 1 assumes globalknowledge an thus it re
overs the BA network. On the other hand, µ → 0implies extremely lo
al knowledge and the resulting networks while displayinga s
ale-free stru
ture (the exponent γ of the power-law degree distribution is thesame, i.e. γ = 3, regardless of the value of µ) are very large (large values of 〈L〉)and highly 
lustered 
ompared to BA networks. Both magnitudes, 
lustering
oe�
ient 〈c〉 and average path length 〈L〉, in
rease as µ de
reases from 1 to 0(see �gures 7.4 and ??). Remind that the larger variations 
orrespond to the
lustering 
oe�
ient (a fa
tor greater than 4 as 
ompared to a fa
tor 
lose to 2for 〈L〉) and that it is the �rst property that deviates from the BA limit while
〈L〉 holds up 
lose to similar values to that of the BA limit up to small valuesof µ, where 〈L〉 raises at a higher rate than 〈c〉.We will 
onsider the Kuramoto model (8.17) dis
ussed in the last se
tionand employ the 
ontrol parameter r introdu
ed above to measure the degreeof syn
hronization as a fun
tion of the 
oupling strength λ and the topologyparameter µ.In order to inspe
t how the dynami
s of the N os
illators depends onthe underlying topology, we have performed extensive numeri
al simulationsof the model. Starting from λ = 0, we in
rease at small intervals its value.The natural frequen
ies ωi and the initial values of θi are randomly drawnfrom a uniform distribution in the interval (−1/2, 1/2) and (−π, π), respe
-tively. Then, we integrate the equations of motion eq. (8.17) using a 4th orderRunge-Kutta method over a su�
iently large period of time to ensure that thesystem rea
hes the stationary state, where the order parameter r is 
omputed.
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Figure 8.2: Order parameter r as a fun
tion of λ for di�erent values of µ as indi
ated.The network parameters are N = 1000 and 〈k〉 = 6.The pro
edure is repeated gradually in
reasing λ for every network realizationlabeled by µ. All the results are averaged over at least 100 realizations.The results for r versus the 
ontrol parameter λ are shown in �gure 8.2 forseveral networks 
hara
terized by di�erent values of µ. For all values of µ, whenthe 
oupling is in
reased from small values, the in
oherent solution prevailsand ma
ros
opi
 syn
hronization is not attained. This behavior persists untila 
ertain 
riti
al value λc(µ) is 
rossed. At this point some elements lo
k theirrelative phase and syn
hronized 
lusters of nodes appear. This 
onstitutesthe onset of syn
hronization. Beyond this value, the population of os
illatorssplits into a partially syn
hronized state 
ontributing to r and a group ofnodes whose natural frequen
ies are too spread as to be part of the 
oherentpa
k. Finally, after further in
reasing the value of λ, more and more nodes getentrained around the mean phase and the system settles down in a 
ompletelysyn
hronized state where r ≈ 1.A 
omparison between the results for di�erent values of µ (and thus dif-ferent 〈c〉 and 〈L〉 values) indi
ate several interesting features of the syn
hro-nization pro
ess. First, it is remarkable that when the 
lustering 
oe�
ientin
reases, the system rea
hes 
omplete syn
hronization at higher values of the
oupling. This result agrees with the results reported in [328℄, where a di�erentnetwork model able to generate topologies with a tunable 
lustering 
oe�
ientwas implemented.At this point, one may ask whether the e�e
ts are only due to the in�uen
e
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ale-free networks 265of 〈c〉 or to the in
rease of the average path length 〈L〉 (note that the modelimplemented in [328℄ does not explore this possibility). Unfortunately, the twofa
tors are generally linked together so they 
an not be 
onsidered separately.However, a 
loser look at �gures 7.4 and ?? reveals that there is a regionof the parameter µ where the 
lustering 
oe�
ient grows while the averageshortest path length remains almost 
onstant. This 
orresponds to the interval
0.4 ≤ µ ≤ 1.0 approximately. Going ba
k to �gure 8.2, the behaviour of
r in this interval of µ reveals that syn
hronization is almost una�e
ted. Infa
t, the r(λ) 
urves lie slightly above that 
orresponding to the BA limit.Therefore, though the above 
omparison is not 
on
lusive, it seems that thedelayed transition to 
omplete syn
hronization is mainly due to the e�e
t ofthe in
rease in 〈L〉 at smaller values of µ rather than to the in
rease in 〈c〉.This 
on
lusion is further supported by a dire
t 
omparison of the results in�gure 8.2 with those reported in [328℄, where the authors explored a regionwith higher values of 〈c〉 (up to 0.7) and the pro�le of r(λ) is almost the sameas ours.The se
ond region of interest is the onset of syn
hronization. From �gure8.2, it is di�
ult to elu
idate how the 
riti
al point for the BA limit 
ompareswith those at values of µ < 1. At �rst glan
e, it seems that λc(µ) shiftsrightward as the parameter µ is de
reased below 1. However, a more detailedanalysis shows that it is indeed the 
ontrary. To this end, we have performeda �nite size s
aling analysis that allows to determine the 
riti
al points λc(µ).We assume a s
aling relation of the form

r = N−αf
[

Nβ(λ− λc)
]

, (8.22)where f(x) is a universal s
aling fun
tion bounded as x → ±∞ and α and
β are 
riti
al exponents to be determined. The estimation of λc 
an then bedone by plotting Nαr as a fun
tion of λ and tuning α for several system sizes
N until the 
urves 
ross at a single point, the 
riti
al one.The results of the FSS analysis are shown in �gure 8.3 for di�erent valuesof µ (from top to bottom and from left to right µ = 0.05, 0.15, 0.50, 0.60).The insets show a blow-up around the 
riti
al points λc(µ). Although thedi�eren
es in the 
riti
al points at di�erent values of µ are small, they are
ertainly distinguishable. In fa
t, the higher the value of µ, the higher the
riti
al point. That is, when the 
lustering 
oe�
ient and the average pathlength grow with respe
t to the BA network, the onset of syn
hronization isanti
ipated. Moreover, taking into a

ount that the in
rease in 〈L〉 is likely toinhibit syn
hronization, one may hypothesize that the e�e
ts of the 
lustering
oe�
ient prevail in this region of the parameter λ. To 
he
k this hypothesis,we have also in
luded in �gure 8.3 the analysis performed for µ = 0.50 and µ =

0.60. As pointed out before, for these values, the di�eren
es 
an only arise from
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Figure 8.3: Finite size s
aling analysis for several values of µ. From top to bottomand from left to right the values of µ are: 0.05, 0.15, 0.50 and 0.60. In ea
h panel, it isrepresented the res
aled order parameter against the 
ontrol parameter λ. The insetsare a zoom to the regions around the 
riti
al points λc(µ). The data are averaged overat least 100 realizations for ea
h value of λ. The sizes of the networks, the 
riti
alpoints λc(µ) at whi
h the onset of syn
hronization takes pla
e, as well as the values ofthe 
riti
al exponents α are those indi
ated in the plots. See the main text for moredetails.the variations of the 
lustering 
oe�
ient as the average path length remains
onstant in this region of the parameter µ. The 
riti
al points, although very
lose to ea
h other, are 
learly di�erent. Therefore, the main 
ontribution tothe onset of syn
hronization at low values of λ 
omes from the raising of the
lustering 
oe�
ient.Rounding o�, the results point to a nontrivial dependen
e between the
lustering 
oe�
ient and the average path length, and the syn
hronizationpatterns of phase os
illators. Separately, the onset of syn
hronization seems tobe mainly determined by 〈c〉, promoting syn
hronization at low values of the
oupling strength with respe
t to networks not showing high levels of stru
-tural 
lustering. On the other hand, when the 
oupling is in
reased beyond the
riti
al point, the e�e
t of 〈L〉 dominates and the phase diagram is smoothedout (a sort of stret
hing), delaying the appearan
e of the fully syn
hronized
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on�rm and 
omplement those anti
ipated in [328℄ andshow that general statements about syn
hronizability using the MSF are mis-leading. Whether or not a system is more or less syn
hronizable than othersshowing distin
t stru
tural properties is depends on the region of the phasediagram in whi
h the system operates.With this �rst study we have shown that syn
hronizability of 
omplexnetworks is dependent on the e�e
tive 
oupling λ among os
illators, and onthe properties of the underlying network: For small values of λ, the in
oherentsolution r = 0 �rst destabilizes as the 
lustering 
oe�
ient is higher, while the
oherent solution r = 1 is promoted when both the stru
tural 
lustering andthe average path length are small.8.3 Homogeneous versus heterogeneous topologiesThe results obtained in the above se
tion shed light about the in�uen
e ofthe intera
tions topology on the route to syn
hronization. However, in thisstudy at least two parameters (
lustering and average path length) vary alongthe studied family of networks. This paired evolution, although yielding a in-teresting interplay between the two topologi
al parameters, made di�
ult todistinguish what e�e
ts were due to one or other fa
tors. The family of net-works used in the present se
tion are 
omparable in their 
lustering, averagedistan
e and 
orrelations so that the only di�eren
e relies on the degree dis-tribution, ranging from a Poissonian type to a s
ale-free distribution. In thissense, the obtained results are as far rea
hing as the highly a

laimed onesobtained for per
olation and epidemi
 spreading on top of homogeneous orheterogeneous graphs, where the radi
al di�eren
es are rooted in the topologyof the underlying networks.The main goal of this se
tion is to s
rutinize and 
ompare the syn
hroniza-tion patterns in Erdös-Rényi (ER) and s
ale-free (SF) networks. These kindsof syn
hronization patterns have been observed in the all-to-all KM model forbroadly heterogeneous (in natural frequen
ies) populations of os
illators[330℄,however, those reported in this se
tion are shown to be intrinsi
ally related tothe underlying topologi
al stru
ture and hen
e of importan
e for the stru
ture-fun
tion problem. For this purpose we make use of the model presented inse
tion 5.4 that allows a smooth interpolation between these two importanttopologies. Besides, we introdu
e a new parameter for 
hara
terizing the syn-
hronization paths in order to unravel their di�eren
es. The results reveal thatthe syn
hronizability of these networks does depend on the 
oupling betweenunits, and hen
e, that general statements about their syn
hronizability areeventually misleading. Moreover, we show that even in the in
oherent solu-



268 Chapter 8. Syn
hronization on Complex Networkstion, r = 0, the system is self-organizing towards syn
hronization. We willanalyze in detail how this self-organization is attained.The �rst studies about the onset of syn
hronization in SF networks [317℄revealed some important di�eren
es from the behaviour observed from purelyrandom networks as ER graphs. The main di�eren
e relied on the great ten-den
y of SF networks to syn
hronizability, whi
h is revealed by a non-zero butvery small 
riti
al value λc. Besides, it was observed that at the syn
hronizedstate, r = 1, hubs are extremely robust to perturbations sin
e the re
overytime of a node as a fun
tion of its degree follows a power law with exponent
−1. These �ndings point out that the spe
ial ar
hite
ture of SF networks en-han
es the syn
hronizability both at its onset and at the 
oherent regime. Inthis sense, it is interesting to 
hara
terize the roots of this di�erent behaviour
omparing it to that observed for ER graphs.We �rst 
on
entrate in global syn
hronization for the Kuramoto model(8.17). For this we follow the evolution of the order parameter r, eq. (8.5),as λ in
reases, to 
apture the global 
oheren
e of the syn
hronization in net-works. We will perform this analysis on the family of networks generated withthe model introdu
ed in se
tion 5.4. This model generates a one-parameterfamily of networks labeled by α ∈ [0, 1]. The parameter α measures the degreeof heterogeneity of the �nal networks so that α = 0 
orrespond to the hetero-geneous BA network and α = 1 to homogeneous ER graphs. For intermediatevalues of α one obtains networks that has been grown 
ombining both prefer-ential atta
hment and homogeneous random linking so that ea
h me
hanism is
hosen with probabilities (1−α) and α respe
tively. It is worth stressing thatthe growth me
hanism preserves the total number of links, Nl, and nodes, N ,for a proper 
omparison between di�erent values of α. We will 
onsider thevariant A of the model sin
e with this formulation the interpolation in termsof the degree distribution is seen to be smoother than in the se
ond variant ofthe model (see �gure 5.18).The 
urves r(λ) for several network topologies ranging from ER to SF areshown in �gure 8.4. We have performed extensive numeri
al simulations of eq.(8.17) for ea
h network substrate starting from λ = 0 and in
reasing it up to
λ = 0.4 with δλ = 0.02. A large number (at least 500) of di�erent networkrealizations and initial 
onditions were 
onsidered for every value of λ in orderto obtain an a

urate phase diagram of the syn
hronization onset. As in theprevious se
tion the natural frequen
ies ωi and the initial values of θi wererandomly drawn from a uniform distribution in the interval (−1/2, 1/2) and
(−π, π), respe
tively.Figure 8.4 reveals the di�eren
es in the 
riti
al behaviour as a fun
tion ofthe substrate heterogeneity. The global 
oheren
e of the syn
hronized state,
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Figure 8.4: Global syn
hronization 
urves r(λ) for di�erent network topologies labeledby α (α = 0 
orresponds to the BA limit and α = 1 to ER graphs). The networksizes are N = 104 and 〈k〉 = 6 (Nl = 3 · 104).represented by r, shows that the onset of syn
hronization �rst o

urs for SFnetworks. As the network substrate be
omes more homogeneous the 
riti
alpoint λc shifts to larger values and the system seems to be less syn
hronizable.On the other hand, it is also 
lear that the route to 
omplete syn
hroniza-tion, r = 1, is faster for homogeneous networks. That is, when λ > λc(α) therate growth of r grows with α. In order to inspe
t in more details the 
riti
alparameters of the system dynami
s we pro
eed as in the previous se
tion byfollowing a �nite size s
aling pro
edure. This allows to determine with pre
i-sion the 
urve λc(α) and study the 
riti
al behaviour near the syn
hronizationtransition. A detailed analysis performed for both SF and ER topologies showsthat the 
riti
al value of the e�e
tive 
oupling, λc, 
orresponds in s
ale-freenetworks to λSF
c = 0.05(1), and in random networks to λER

c = 0.122(2), a
-
ordingly with �gure 8.4. In both 
ases, the transition strongly re
alls the
lassi
al transition of the original KM [311℄ with a 
riti
al exponent near 0.5(0.46(2) for the SF network [317℄).The di�eren
es between ER and SF topologies observed when looking atglobal patterns of syn
hronization motivate a more detailed study of the syn-
hronization onset for both topologies. The original work by Kuramoto pointedout that at the onset of syn
hronization small 
lusters of lo
ked os
illatorsemerge and that the re
ruitment of more os
illators into these 
lusters as the
oupling is in
reased makes larger the global 
oheren
e r of the system. Obvi-ously the emergen
e of these 
lusters would depend on the underlying topology
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hronization on Complex Networkswhi
h drives the possible 
on�gurations that lo
ked os
illators would eventu-ally form. In order to inspe
t how this initial 
oheren
e is a
hieved we proposea new order parameter, rlink. This parameter measures the lo
al 
onstru
tionof the syn
hronization patterns and allows for the exploration of how globalsyn
hronization is a
hieved. Then we de�ne
rlink =

1

2Nl

∑

i

∑

j∈Γi

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

, (8.23)being Γi the set of neighbours of node i. The parameter rlink measures thefra
tion of all possible links that are syn
hronized in the network. The aver-aging time ∆t should be taken large enough in order to obtain good measuresof the degree of 
oheren
e between ea
h pair of physi
ally 
onne
ted nodes.Besides, rlink is 
omputed after the system relaxes at some large time tr.In �gure 8.5 we represent the evolution of both order parameters, r and
rlink, as a fun
tion of the 
oupling strength λ for both ER and SF networks.The behaviour of rlink shows a 
hange in syn
hronizability between ER andSF and provides additional information to that reported by r. Interestingly,the nonzero values of rlink for λ ≤ λc indi
ate the existen
e of some lo
alsyn
hronization patterns even in the regime of global in
oheren
e (r ≈ 0).Right at the onset of syn
hronization for the SF network, its rlink value deviatesfrom that of the ER re
overing the known result about the syn
hronizationof SF networks for lower values of the 
oupling. In this region, while thesyn
hronization patterns 
ontinue to grow for the ER network at the samerate, the formation of lo
ally syn
hronized stru
tures o

urs at a faster ratein the SF network. Finally, when the in
oherent solution in the ER networkdestabilizes, the growing in its syn
hronization pattern in
reases drasti
allyup to values of rlink 
omparable to those obtained in SF networks and evenhigher.The results in terms of rlink show again that statements about syn
hro-nizability are dependent on the 
oupling strength value. Additionally, theprevious dis
ussion suggests that syn
hronization is attained following two dif-ferent paths that depend on the underlying topology. To shed new light on thisphenomenon, we have studied the 
hara
teristi
s of the syn
hronization pat-terns along the evolution of rlink. Following the usual pi
ture syn
hronizationpatterns are formed by pairs of os
illators, physi
ally 
onne
ted, whose phasedi�eren
e in the stationary state tends to zero. In order to determine whi
hpairs of nodes are truly syn
hronized we have to determine the 
oheren
e oftheir dynami
s. Note that eq.(8.23) is the average dynami
al 
oheren
e be-tween every pair of linked nodes and then the syn
hronization degree of every
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Figure 8.5: Evolution of (a), the KM order parameter de�ned in eq. (8.5), and (b)the fra
tion of syn
hronized links rlink, eq. (8.23), as a fun
tion of λ. The 
urvesseparate when the in
oherent solution for SF networks destabilizes. The �gure 
learlyillustrates that the syn
hronizability of the networks does depend on the value of the
oupling strength. Both plots are represented for Erdös-Rényi (ER) and s
ale-free(SF) networks as indi
ated. The size of the networks is N = 103 and their averagedegree is 〈k〉 = 6. The exponent of the SF network is γ = −3.pair of 
onne
ted os
illators 
an be written in terms of a symmetri
 matrix
Dij = Aij

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj (t)]dt

∣

∣

∣

∣

. (8.24)Then one has to analyze ea
h matrix term Dij in order to label a link (i, j)as syn
hronized or not. As introdu
ed above, from the 
omputation of rlinkone determines the fra
tion of physi
al links that are syn
hronized so that onewould expe
t that 2rlink · Nl elements of the matrix D are Dij = 1, whilethe remaining elements are Dij = 0. However, this is not the real situationsin
e the network dynami
s is not well de�ned in terms of a fully syn
hro-nized 
luster and a set of 
ompletely in
oherent os
illators. On the other handthe worst s
enario would be found if there were 2Nl elements of matrix D sothat Dij = rlink, implying that all the physi
ally 
onne
ted pairs are equallysyn
hronized and hen
e the parameter rlink 
ould not be interpreted as thefra
tion of links that are dynami
ally 
oherent and no information about the
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Figure 8.6: Degree of syn
hroniza-tion, Dij between pairs (i, j) of
onne
ted nodes. These elementsof the matrix D are ordered fromlargest rankij = 1 to the lowest
rankij = Nl. The network is SFwith N = 103 and 〈k〉 = 6. Thetwo 
urves 
orrespond to λ = 0.05(onset of syn
hrony) and λ = 0.13with rlink ≃ 0.25 and 0.82 respe
-tively for these two parti
ular re-alizations. The thi
k regions ofthe 
urves 
orrespond to the links
hosen in order to re
onstru
t thesyn
hronized 
luster.topologi
al patterns of syn
hronization 
ould be extra
ted from matrix D. Thesituation found is not as simple as the former possibility and not so dramati
as the latter. In �gure 8.6 the 
ontributions Dij of the Nl elements of matrix

D that 
orresponds to physi
al links are plotted ordered from the highest tothe lowest one. The two situations plotted 
orrespond to the onset of syn
hro-nization (λ = 0.05) and when high global 
oheren
e (λ = 0.13) is observed fora SF network. As 
an be observed for the onset of syn
hronization, a subsetof nearly 20% of links displaying 
oherent dynami
s with high degree of syn-
hronization, Dij > 0.8, is well separated from the behaviour of the remaininglinks as the dramati
 de
rease of Dij reveals for the remaining 80% of links.In this sense, it is 
lear that the dynami
s of a 20% of the possible pairs 
anbe regarded as syn
hronized whi
h is in agreement with the obtained value
rlink = 0.25 for λ = 0.05 and hen
e supporting that although ma
ros
opi

oheren
e is not observed (r ≃ 0 at this point) the system is seen to walktowards it. For the 
urve 
orresponding to λ = 0.13 a plateau of nearly 75% oflinks is observed, thus revealing the high degree of global 
oheren
e, r ≃ 0.7,at this point. As a 
on
lusion, the shape of both 
urves allows to interpret
rlink as the fra
tion of syn
hronized links and thus to obtain information aboutsyn
hronized patterns from D.In order to determine exa
tly whi
h pairs of nodes are regarded as syn
hro-nized, matrix D is thus �ltered using a threshold T su
h that the fra
tion ofsyn
hronized pairs equals rlink. In this way T is a moving threshold so that if
Dij > T os
illators i and j are 
onsidered syn
hronized. The value of T de-pends on the parti
ular realization and is determined by means of an iteratives
heme starting from T = 1 and de
reasing it with δT = 0.01 one 
omputes
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linkFigure 8.7: Size of largest syn
hronized 
onne
ted 
omponent (GC) and number ofsyn
hronized 
onne
ted 
omponents (Nc), as a fun
tion of λ (left) and rlink (right)for the di�erent topologies 
onsidered. Small values of rlink 
orrespond to values of

λ for whi
h r ≈ 0. Despite r being vanishing and hen
e no global syn
hronizationis yet attained, a signi�
ant number of 
lusters show up. This indi
ates that for any
λ > 0 the system self-organizes towards ma
ros
opi
 syn
hronization. The networkparameters are as in �gure 8.5the amount of links that ful�lls the 
ondition. De
reasing progressively thevalue of T more pairs of os
illators are 
hosen and the pro
ess is stopped whenthe value of T is su
h that the fra
tion of 
hosen links is equal to the desiredvalue rlink previously 
omputed from D. When the syn
hronized links areidenti�ed the 
lusters of syn
hronized nodes are re
onstru
ted. In �gure 8.6the 
hosen links a

ording to the 
orresponding values of rlink are those lyingin the thi
ker part of both 
urves.In �gure 8.7 we represent the number of syn
hronized 
lusters and the sizeof the largest one (GC) as a fun
tion of λ and rlink for ER and SF networks.The lo
al information extra
ted from it unveils an astonishing and novel featureof the syn
hronization pro
ess that 
an not be derived from �gures 8.4 and8.5, and that in some sense is 
ounterintuitive. The emergen
e of 
lusters ofsyn
hronized pairs of os
illators (links) in the networks shows that for values of
λ ≤ λSF

c , i.e., still in the in
oherent solution r = 0, both kind of networks havedeveloped a largest 
luster of syn
hronized pairs of os
illators involving 50%of the nodes of the network, and an equal number of smaller syn
hronization
lusters. From this point on, in the SF network the GC grows and the numberof smaller 
lusters goes down, whereas for the ER network the growth explodes.These results indi
ate that although SF networks present more 
oheren
e in



274 Chapter 8. Syn
hronization on Complex Networksterms of r and rlink, the mi
ros
opi
 evolution of the syn
hronization patternsis faster in ER networks, being these networks far more lo
ally syn
hronizablethan the heterogeneous ones.The observed di�eren
es in the behaviour at a lo
al s
ale are rooted inthe growth of the GC. It turns out that for the ER networks, many di�erent
lusters of syn
hronized pairs of os
illators (note in �gure 8.7 the large numberof 
lusters formed when a 15% of the links are syn
hronized) merge togetherto form a GC when the e�e
tive 
oupling is in
reased. The 
oales
en
e ofmany small 
lusters leads to a giant 
omponent of syn
hronized pairs that isalmost the size of the system on
e the in
oherent state destabilizes. On theother hand, this is not anymore the 
ase for SF networks, where os
illators arein
orporated slowly to the GC pra
ti
ally one-by-one (forming new pairs) interms of λ (or rlink), but starting from a 
ore made up of half the nodes of thenetwork. As a 
on
lusion, while for ER network the 
ollapse at λc of the small
lusters of syn
hronized nodes that have been grown when r = 0 is the rootof the fast in
rease of the global 
oheren
e, for SF the pro
ess is des
ribed asa slow and progressive growth as the 
oupling is in
reased of an initial 
ore ofsyn
hronized nodes.The above pi
ture is 
on�rmed in �gure 8.8, where we have represented theevolution of lo
al syn
hronization patterns in ER and SF networks for severalvalues of λ. It is 
lear that when r ≃ 0 the two networks follow di�erent

Figure 8.8: Syn
hronized 
lusters for several values of λ for the two di�erent topologiesstudied (ER and SF). These networks are made up of 100 nodes, in order to have asizeable pi
ture of the system. The evolution of lo
al syn
hronization patterns isalways agglomerative, however, it follows two di�erent routes. In the ER 
ase, thegrowth of the GC pro
eeds by aggregation of small 
lusters of syn
hronized nodes,while for the SF network the 
entral 
ore groups the smaller 
lusters around it.



8.3. Homogeneous versus heterogeneous topologies 275
 1

 0.75

 0.5

 0.25

 0

 0  0.05  0.1  0.15  0.2

λ

α=1.00
 1

 0.75

 0.5

 0.25

 0

 0  0.05  0.1  0.15  0.2

λ

α=1.00
α=0.75

 1

 0.75

 0.5

 0.25

 0

 0  0.05  0.1  0.15  0.2

λ

α=1.00
α=0.75
α=0.50

 1

 0.75

 0.5

 0.25

 0

 0  0.05  0.1  0.15  0.2

λ

α=1.00
α=0.75
α=0.50
α=0.25

 1

 0.75

 0.5

 0.25

 0

 0  0.05  0.1  0.15  0.2

λ

α=1.00
α=0.75
α=0.50
α=0.25
α=0.00

 1

 0.75

 0.5

 0.25

 0

α=1.00
 1

 0.75

 0.5

 0.25

 0

α=1.00
α=0.75

 1

 0.75

 0.5

 0.25

 0

α=1.00
α=0.75
α=0.50

 1

 0.75

 0.5

 0.25

 0

α=1.00
α=0.75
α=0.50
α=0.25

 1

 0.75

 0.5

 0.25

 0

α=1.00
α=0.75
α=0.50
α=0.25
α=0.00r

r lin
k

 150

 100

 50

 0
 1 0.8 0.6 0.4 0.2 0

N
c

rlink

α=1.00 150

 100

 50

 0
 1 0.8 0.6 0.4 0.2 0

N
c

rlink

α=1.00
α=0.75

 150

 100

 50

 0
 1 0.8 0.6 0.4 0.2 0

N
c

rlink

α=1.00
α=0.75
α=0.50

 150

 100

 50

 0
 1 0.8 0.6 0.4 0.2 0

N
c

rlink

α=1.00
α=0.75
α=0.50
α=0.25

 150

 100

 50

 0
 1 0.8 0.6 0.4 0.2 0

N
c

rlink

α=1.00
α=0.75
α=0.50
α=0.25
α=0.00

 1000

 750

 500

 250

 0

α=1.00

 1000

 750

 500

 250

 0

α=1.00
α=0.75

 1000

 750

 500

 250

 0

α=1.00
α=0.75
α=0.50

 1000

 750

 500

 250

 0

α=1.00
α=0.75
α=0.50
α=0.25

 1000

 750

 500

 250

 0

α=1.00
α=0.75
α=0.50
α=0.25
α=0.00

N
c

G
C (ER)

(SF)

(ER)

(SF)

Figure 8.9: (Left) Evolution of the 
ontrol parameters r and rlink as a fun
tion ofthe 
oupling strength for networks generated with the model introdu
ed in se
tion ()
orresponding to α = 0.0, 0.25, 0.5, 0.75 and 1.0. (Right) Evolution of the number ofsyn
hronized 
lusters Nc and the syn
hronized giant 
omponent size GC as a fun
tionof rlink for the same topologies. The network parameters are the same as in �gure8.5.paths toward syn
hronization as 
an be observed for λ = 0.05 where for theER network three 
lusters of syn
hronized nodes of similar size appear whilefor the SF network a unique large 
luster is present. The 
oales
en
e of thesyn
hronized patterns for the ER is 
lear at λ = 0.07 2 and 
orresponds tothe emergen
e of the global 
oheren
e of the system. On the other hand, forthe SF network the unique 
luster su�ers a smooth growth by adding newsyn
hronized nodes to the giant 
luster.This study about the patterns of self-organization towards syn
hroniza-tion reveals that the quantitative di�eren
e about the ma
ros
opi
 behaviour,shown by the 
omputation of the evolution of the global 
oheren
e r for ERand SF networks, has its roots on a qualitatively di�erent route at the mi
ro-s
opi
 level of des
ription. The use of the new parameter rlink whi
h involvesthe 
omputation of the degree of 
oheren
e between ea
h pair of linked nodesis a useful tool for des
ribing su
h di�eren
es.We have repeated analogous 
omputations using those networks that inter-polate between ER and SF topologies. As expe
ted the behaviour of relevant2Note that the size of the network is relatively small (N = 100) and thus the 
riti
al pointis shifted to lower values (λER
c ≃ 0.07 in this 
ase) than that found using a FSS analysis.
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hronization on Complex Networksmagnitudes su
h as rlink, the number of syn
hronized 
lusters and the sizeof the giant syn
hronized 
luster lies between the two limiting 
ases studiedabove. In �gure 8.9 we have plotted the evolution of these magnitudes for theseinterpolating network topologies labeled with α. The results suggest that thedegree of heterogeneity of the network is the key ingredient to explain the twodi�erent routes observed.The te
hnique developed for extra
ting the syn
hronization patterns allowsthe analysis of the topologi
al features of su
h 
lusters of nodes. Consideringas we did in last 
hapter 7 the emergent 
lusters of syn
hronized nodes andlinks, we 
an 
ompute the average measures of relevant quantities su
h asthe 
lustering 
oe�
ient or the degree distribution, and see how these mag-nitudes evolve from the un
oupled limit, where no syn
hronization o

urs, tothe 
oherent regime where the syn
hronized network 
oin
ides with the un-derlying substrate. It is then relevant to explore the regions where the onsetof syn
hronization takes pla
e and 
hara
terize topologi
ally these emergentsyn
hronized 
lusters.In �gure 8.10 the evolution of the 
lustering 
oe�
ient, 〈c〉, of the giantsyn
hronized 
luster is plotted as a fun
tion of λ for the topologies 
orrespond-ing to SF to ER networks. The results are illustrative, for these topologies the
lustering de
reases as the 
oupling is in
reased or, in other words, as the gi-ant 
omponent grows by the addition of new syn
hronized nodes. However,
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Figure 8.10: Evolution of the 
lustering 
oe�
ient of the giant syn
hronized 
luster,
〈c〉, as a fun
tion of λ for ER and SF network topologies (α = 0, and 1). Networkparameters are those used in �gure 8.5.
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ts of the two di�erent routes to 
omplete syn
hronization observed forER and SF are well appre
iated from the results. For SF networks there is asmooth de
rease of the 
lustering 
oe�
ient and the e�e
ts of the emergen
eof global 
oheren
e for λ > λSF
c = 0.05(1) are not dramati
 in what refers tothe behaviour of 〈c〉. That is, it takes too long in terms of λ to arrive to valuesof the 
lustering similar to those of the substrate network. On the other hand,for ER graphs the slow de
ay rate observed for λ < λER

c = 0.122(2) when noma
ros
opi
 
oheren
e is observed is interrupted by a sudden jump near their
riti
al value. In fa
t, for λ > λc the 
lustering of the syn
hronized 
luster issimilar to that found for the substrate network. This e�e
t be
omes 
lear ifone has in mind the 
oales
en
e of small 
lusters, whi
h happens around the
riti
al point for ER graphs. In fa
t, taking into a

ount the giant syn
hro-nized 
omponent on ER for λ < λER
c , implies to 
onsider one of the severaldisjoint syn
hronized 
lusters of similar size that are in this region. Then, whenthese 
lusters 
ollapse into a mu
h larger one the topologi
al features 
hangedramati
ally as observed from the evolution of the 
lustering 
oe�
ient. Thisis not anymore the 
ase in SF where the topologi
al 
hara
teristi
s of the gi-ant 
omponent 
hange smoothly as new nodes are dynami
ally atta
hed to the
omponent. The remaining 
urves 
orresponding to the interpolating networks
onne
t these two di�erent behaviours.All the results reported above point out that the ultimate reason behind thetwo di�erent routes to 
omplete syn
hronization is the heterogeneous 
hara
terof the SF network and the role played by the hubs. The natural 
ohesion thathubs provide to SF network prevents the existen
e of independent ma
ros
opi

lusters of syn
hrony as o

urs for ER networks. It is then interesting to studyhow these hubs parti
ipate in the formation of the �nal syn
hronized state. Forthis, we �rst study the evolution with λ of the 
omposition of the syn
hronized
luster in terms of the degree of its 
omponents. In �gure 8.11, we have plottedthe probability that a node with degree k belongs to the giant syn
hronized
luster as a fun
tion of its degree k and the 
oupling λ for the SF network.This probability turns out to be an in
reasing fun
tion of k for every value ofthe 
oupling λ. Hen
e one 
an state that the more 
onne
ted a node is, themore likely it takes part in the 
luster of syn
hronized links. In parti
ular,the results 
on�rm the hypothesis made above that the hubs parti
ipate fromthe very beginning on the formation of the syn
hronized 
luster. Re
ently[331℄, Zhou and Kurths have reported the study of hierar
hi
al organizationin 
omplex networks, using the MSF and a mean-�eld approa
h in the weak
oupling limit. Our results thus substantiate and generalize those about therole of hubs in the syn
hronization pro
ess presented in [331℄.The above 
hara
terization of the syn
hronized 
luster in terms of the de-gree of its 
omponent should be 
ompleted studying their e�e
tive degree, kint.
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Figure 8.11: The plot shows the 
orrelation between the likelihood that a node belongsto the GC of pairs of syn
hronized os
illators and its degree k as a fun
tion of the
oupling strength λ. This probability, PGC(k), is 
olor-
oded as indi
ated in the rightpanel. The �gure 
onvin
ingly demonstrates that highly 
onne
ted nodes are thosethat re
ruit poorly 
onne
ted nodes as the GC grows. The network is SF and itsparameters are those used in �gure 8.5.
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Figure 8.12: The plot shows the fra
tion of links that a node with degree k belongingto the syn
hronized 
luster shares with other nodes of the same syn
hronized 
luster.This fra
tion kint/k is plotted as a fun
tion of k and λ. The �gure shows how thehubs progressively in
orporate their neighbours to the syn
hronized 
omponent as λgrows. The network is SF with parameters as those used in �gure 8.5.



8.4. Syn
hronization in stru
tured networks 279The e�e
tive degree of a syn
hronized node is the number of links it shareswith other nodes belonging to the same syn
hronized 
luster. Obviously, atthe 
omplete syn
hronized regime a node with degree k will have kint = k.We have plotted in �gure 8.12 the quantity kint/k (the fra
tion of links thata node has with syn
hronized neighbours) as a fun
tion of λ and the degree
k of the nodes. The results reveal that although hubs are the �rst to takepart of the syn
hronized 
luster, their neighbours are progressively in
orpo-rated to the 
luster as λ grows. Besides, if a node with small k is syn
hronizedthe probability that its neighbours are also syn
hronized grows very fast with
λ whi
h is an e�e
t of the network topology (this nodes in the BA networkare physi
ally 
onne
ted to hubs with high probability). These results furthersupport the statement about the essential role played by hubs in the path tosyn
hronization in SF networks.The results of this se
tion 
learly show that syn
hronizability of 
omplexnetworks is dependent on the e�e
tive 
oupling λ among os
illators. For smallvalues of λ, SF networks outperform ER topologies, but the tenden
y is re-verted for intermediate to large values of the 
oupling. On the other hand, thedetailed analysis of evolution of patterns of syn
hronization showed that thereare two radi
ally di�erent me
hanisms to attain syn
hronization. In the pres-en
e of hubs, a giant 
omponent of syn
hronized pairs of os
illators forms andgrows by re
ruiting nodes linked to them. On the 
ontrary, in homogeneousstru
tures, many small 
lusters �rst appear and then group together through asharp merging pro
ess. These results are in the same dire
tion of those foundfor per
olation and epidemi
 spreading (see se
tion 6.1.2) on top of homoge-neous or heterogeneous graphs, where the radi
al di�eren
es of the system'sdynami
s are found depending on the heterogeneity of the underlying networks,demonstrating that the same behavior may hold for nonlinear dynami
al sys-tems 
oupled to 
omplex stru
tures. More importantly, the fa
t that the routeto 
omplete syn
hronization is radi
ally di�erent in homogeneous and hetero-geneous networks, raises the question of its motivation in nature and shedlight on the stru
ture-fun
tion interplay. Besides, the results open new pathsto 
larify how syn
hronization is attained in 
omplex topologies and give newtools to analyze this ubiquitous phenomenon.8.4 Syn
hronization in stru
tured networksIn the light of the results of the above se
tion we have extended the studybeyond unstru
tured networks to stru
tured or modular networks. This is alimiting situation in whi
h the lo
al stru
ture may greatly a�e
t dynami
s,irrespe
tive of whether or not we deal with homogeneous or heterogeneous



280 Chapter 8. Syn
hronization on Complex Networksnetworks and then they 
onstitute a perfe
t framework for testing the neworder parameter rlink introdu
ed in the last se
tion.Many 
omplex networks in nature are modular, i.e. 
omposed of 
ertainsubgraphs with di�erentiated internal and external 
onne
tivity that form 
om-munities (see se
tion 5.1.4). The use of modular networks where a proper
omparison in syn
hronizability 
an be performed (same number of nodes andlinks) restri
ts us to the 
onsideration of syntheti
 stru
tured networks. Thenwe make use of a 
ommon ben
hmark of random network with 
ommunitystru
ture, �rst proposed by Newman[332℄ 
onsidering one hierar
hi
al leveland later extended to two hierar
hi
al levels[329℄.The modular network stru
ture we build is as follows: in a set of N nodes,we pres
ribe n 
ompartments that will represent our �rst 
ommunity organiza-tional level, and m 
ompartments, ea
h one embedding four di�erent 
ompart-ments of the �rst level, that de�ne the se
ond organizational level of the net-work. The internal degree of nodes at the �rst level zin1 and the internal degreeof nodes at the se
ond level zin2 keep an average degree zin1 + zin2 + zout = 〈k〉so that these networks are stri
tly homogeneous in the sense of the degreedistribution , P (k) = δ(k − 〈k〉). Networks with two hierar
hi
al levels arelabeled as zin1 - zin2 , e.g. a network with i-j means i links with the nodesof its �rst hierar
hi
al 
ommunity level (more internal), j links with the restof 
ommunities that form the se
ond hierar
hi
al level (more external) and
(〈k〉 − i− j) links with any 
ommunity of the rest of the network.Syn
hronization pro
esses on top of modular networks of this type has beenre
ently studied as a me
hanism for 
ommunity dete
tion [329℄. Starting froma set of homogeneous (in terms of the natural frequen
ies) Kuramoto os
illa-tors with di�erent initial 
onditions the system evolves after a transient of timeto the syn
hronized state. It has been shown that the 
ommunity stru
ture isprogressively unveiled at the same time the system's dynami
s evolve towardthe 
oherent state and the syn
hronization is attained. In parti
ular, the nodesbelonging to the �rst 
ommunity level are the �rst to get syn
hronized, subse-quently the se
ond level nodes a
hieve the frequen
y entrainment and �nallythe whole system shows global syn
hronization.Here we adopt a di�erent perspe
tive sin
e we will 
onsider as previouslya set of non-identi
al Kuramoto os
illators with random assignment of naturalfrequen
ies and hen
e the �nal degree of system's syn
hronization will dependon the strength of the 
oupling. It is then interesting to study how the de-gree of syn
hronization evolves as a fun
tion of λ and whether the 
oheren
ebetween nodes is progressively distributed following the hierar
hy imposed bythe underlying topology. For this, we make use of the order parameters r, eq.(8.5), and rlink, eq (8.23), to 
hara
terize the syn
hronization transition on two
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Figure 8.13: Global and lo
al syn
hronization in modular networks. Evolution of (a),
r and (b), rlink as a fun
tion of λ for stru
tured modular networks. The networksare syntheti
ally built with an a priori 
ommunity stru
ture. The network size is256 nodes and the number of links is 4608. We pres
ribe 16 
ompartments that willrepresent our �rst 
ommunity organizational level, and four 
ompartments ea
h oneembedding four di�erent 
ompartments of the above �rst level, that de�ne the se
ondorganizational level of the network. Ea
h node has 18 links distributed between its�rst 
ommunity level, the se
ond, and the whole network at random. The network 13-4 has 13 internal 
onne
tions in its �rst hierar
hi
al level, 4 external 
onne
tions in itsse
ond hierar
hi
al level, and 1 
onne
tion with any other 
ommunity in the network.The generation of the 15-2 stru
ture is equivalent. The 
urves show that although13-4 has always a better global syn
hronization, 15-2 has better lo
al syn
hronizationas shown by rlink.slightly di�erent modular networks with two well de�ned hierar
hi
al levels,
13− 4 and 15− 2, being this di�eren
e the 
ohesion of the internal 
ommunity
ore, 13 links out of 15 possible neighbors or 15 links (i.e., all-to-all) at the mostinternal level. Both networks have N = 256 and 〈k〉 = 18. Figure 8.13 showthe results for both kinds of networks revealing that the path towards syn-
hronization as a fun
tion of the intera
tion is again a�e
ted by the stru
ture.They also show that the information provided by rlink is essential to unveil thesyn
hronization pro
ess. While the global syn
hronization parameter r is re-�e
ting that the 13−4 stru
ture globally syn
hronizes always better, rlink tellsus again about the lo
al syn
hronization. It shows that lo
al syn
hronization
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Figure 8.14: Syn
hronization patterns in a 15 − 2 modular network. We representthe degree of syn
hronization between pairs of 
onne
ted nodes for several valuesof the 
oupling λ in a 15 − 2 modular network (with two organizational levels) of
N = 256 nodes. The 
olor 
ode denotes the value of the averaged (over di�erentinitial 
onditions) �ltered matrix 〈Dij〉 ∈ [0, 1]. The values of the 
oupling are (fromleft to right and top to bottom) λ = 0.0110, 0.0210, 0.0275, 0.0305, 0.0360, 0.0440 and
0.210 (
orresponding to full syn
hronization). The pi
tures show that the order ofsyn
hronization is given by the organizational levels. The �rst 
ommunity level is the�rst one to get syn
hronized, subsequently, se
ond level nodes attain syn
hronizationfor a larger value of λ and �nally the full syn
hronized state is rea
hed when outerlinks have 〈Dij〉 = 1.
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hronization in stru
tured networks 283is indeed favored in the 15 − 2 stru
ture sin
e rlink is larger for this topologyfor small values of λ where the system is lo
ally forming syn
hronized 
lusters.This result, not 
aptured by the ma
ros
opi
 indi
ator r, is expe
ted sin
e theinternal 
ohesion of 
ommunities at the �rst hierar
hi
al level is larger for the15-2 than for the 13-4. The evolution of rlink shows that when the 
oupling λis in
reased the number of links syn
hronized in the 13 − 4 network be
omeslarger than in the 15 − 2 stru
ture revealing that 
omplete syn
hronization isthen favoured by the presen
e of more external links 
onne
ting the �rst level
ommunities.The inspe
tion of the syn
hronization path in modular networks 
an beeasily visualized by the representation of the �ltered matrix D. It implies toreassign the values of matrix D so that Dij = 1 if Dij > T Dij = 0 otherwise.Plotting this �ltered matrix for di�erent values of the 
oupling λ one 
aneasily determine whi
h links are the �rst to syn
hronize sin
e the form of theadja
en
y matrix A (that in
ludes all the physi
al links between nodes) isalso easy to interpret be
ause of its nested stru
ture. Figure 8.14 shows howthe 
ommunity stru
ture determines the internal organization of the system inthe route towards full syn
hronization for the 15 − 2 network. For this studywe have 
omputed the value of the �ltered matrix D for a number of initial
onditions and then took its average value so that 〈Dij〉 ∈ [0, 1] a

ounts for thesyn
hronization strength of the network link (i, j). The results point out thatlink syn
hronization depends on the organizational level they belong to. Those
onne
ting nodes belonging to the same �rst level 
ommunity are the fastest(in terms of the 
oupling strength λ) to rea
h full syn
hronization. For largervalues of λ full syn
hronization is attained progressively for the subsequentorganizational levels. Then, one 
an 
on
lude that the inner the link is thefaster it gets syn
hronized in agreement with previous studies reported above[329℄.As a 
on
lusion, the framework of stru
tured networks has provided a usefulben
hmark for testing the validity of the new parameter rlink and the infor-mation obtained from the 
omputation of matrix D. The results obtained bymeans of these quantities allow to 
on
lude that for modular networks syn-
hronization is �rst lo
ally attained at the most internal level of organizationand, as the 
oupling is in
reased, it progressively evolve toward outer shells ofthe network. Besides, we have obtained eviden
es that a high 
ohesion at the�rst level 
ommunities produ
e a high degree of lo
al syn
hronization althoughit delays the global 
oherent state.
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hronization on Complex Networks8.5 Con
lusionsIn this 
hapter we have explored several issues about syn
hronization in 
om-plex networks of Kuramoto phase os
illators. Our main 
on
ern has been thestudy of the syn
hronization patterns that emerge as the 
oupling betweennon-identi
al os
illators in
reases. As in the previous 
hapter, nonlinear dy-nami
s on top of 
omplex networks lead to the formation of a
tivity patterns.These dynami
al patterns (syn
hronized 
lusters here) are the byprodu
t ofthe dynami
al and stru
tural 
omplexity of the problem.First, in se
tion 8.2 we have fo
used on s
ale-free networks. In this se
tionwe have explored the ma
ros
opi
 behaviour of syn
hronization when both
lustering and average path length are 
ontinuously varied making use of thenetwork model de�ned in se
tion 5.3. The results show that the onset of syn-
hronization is favoured as the 
lustering 
oe�
ient grows but, on the otherhand, as the average path length in
reases the path toward full syn
hroniza-tion be
omes larger. Se
tion 8.3 a

ounts for the main 
on
ern of this thirdpart of the Thesis, the analysis of the emergen
e of dynami
al patterns. Forthis purpose we 
ompute the degree of syn
hronization between ea
h pair of
onne
ted os
illators. This te
hnique allows to re
onstru
t the syn
hroniza-tion 
lusters from the dynami
al data. We have studied how the underlyingtopology (ranging from homogeneous to heterogeneous stru
tures) a�e
ts theevolution of syn
hronization with the help of the network model introdu
edin se
tion 5.4. The results reveal that the route towards full syn
hronizationdepends strongly on whether one deals with homogeneous or heterogenoustopologies. In parti
ular, it has been shown that the syn
hronization 
lusterin heterogeneous networks grows from a unique 
ore formed by those highly
onne
ted nodes (hubs) whereas for homogeneous networks several syn
hro-nization 
lusters of similar size 
an 
oexist. In the latter 
ase, a 
oales
en
eof these 
lusters is observed in the syn
hronization path whi
h is ma
ros
opi-
ally manifested by the sudden growth of global 
oheren
e typi
ally observedfor Erdös-Rényi networks. The main result of this se
tion is that systems areseen to organize towards syn
hronization even when no ma
ros
opi
 signal ofglobal 
oheren
e is observed. The di�eren
e between these two observed orga-nizational behaviours in�uen
es the eventual onset of syn
hronization. Finally,in se
tion 8.4, we have applied the new te
hnique for unveiling the lo
al syn-
hronization patterns to the analysis of the emergen
e of syn
hronization instru
tured networks. In this 
ase, the te
hnique allows to observe how syn-
hronization is progressively attained from the most internal 
ommunities until
oheren
e of the whole network shows up.



Chapter 9Con
lusionsWe want to 
on
lude with a brief summary of the most relevant resultsobtained along the three parts of this Thesis. We want to stress here theirrelevan
e as well as some prospe
tive resear
h that arises in the light of theseresults.In the �rst part we have studied the issue of intrinsi
 lo
alization (dis-
rete breathers) in nonlinear S
hrödinger anharmoni
 latti
es (des
ribed bythe Salerno model). The major a
hievement of these studies is the 
omputa-tion of exa
t mobile lo
alized modes. For these 
omputations, it was importantto develop a generalized 
ontinuation method, that 
an be thought of, as thenatural extension of those employed for 
omputing standard (pinned) dis
retebreathers. The generalized 
ontinuation method allows to obtain, in a highlysystemati
 way, families of mobile, os
illating and vorti
al dis
rete breathers(as well as pinned ones).The problem on the existen
e of mobile dis
rete breathers has been exten-sively dis
ussed after the theory for pinned lo
alized modes was su

essfullydeveloped. The use of 
olle
tive variable methods and numeri
al simulationsof perturbed pinned solutions la
ks the pre
ision required to obtain generalarguments about the possibility of having mobile lo
alized states in nonlinearlatti
es. However, the 
omputation of mobile dis
rete breathers in this Thesisis neither unbiased (i.e. based on a priori ansatzes) neither su�ers from lownumeri
al a

ura
y. On the 
ontrary, our 
ontinuation pro
edure 
omputesmobile dis
rete breather solutions as exa
t �xed points solutions of a map and,therefore, the unique requirement is that the Ja
obian of the map is invertibleso that the iterative method 
onverges to the desired solution.Con
erning mobile breathers, our results point out that, ex
ept for inte-grable and other ex
eptional (e.g. vanishing Peierls-Nabarro barrier) situa-
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lusionstions, mobile lo
alized states in nonlinear S
hrödinger latti
es are des
ribedby a lo
alized part (the 
ore) and an asymptoti
ally extended ba
kground
omposed of plane waves. We have obtained numeri
al eviden
es of the im-portan
e of this extended ba
kground in the 
ore mobility. In parti
ular, wehave shown how the Peierls-Nabarro barriers that a mobile breather experi-en
es periodi
ally in its motion a
ross the latti
e are surpassed with the helpof the energy balan
e 
ore-ba
kground. In this sense, we have observed thatthe higher is the Peierls-Nabarro barrier, the higher is the energy �ux between
ore and ba
kground and the higher is the amplitude of the extended ba
k-ground. These observations reveal the essential role of the ba
kground in 
oremobility pointing out that 
olle
tive variables approa
hes are in
omplete when
onsidering only those degrees of freedom relative to the 
ore.The study of the whole Salerno latti
e, both in its one- and two-dimensionalversions, has provided a detailed a

ount of the existen
e and properties ofdis
rete breather solutions and, at the same time, it has proved the versatilityof the 
ontinuation method.Several questions remain open after these studies. In parti
ular, it wouldbe desirable to perform a deep analysis on the mobility of two-dimensionaldis
rete breathers and more exoti
 solutions like trains of dis
rete breathers orvorti
al states. It would be also interesting to apply the 
ontinuation methodsto other important nonlinear latti
es su
h as Klein-Gordon or Peyrard-Bishop-Dauxois models. Finally, it is also interesting to develop a 
olle
tive variabletheory a

ounting for the relevant ingredients of the mobile solutions found.In the se
ond part we have studied the stru
ture of 
omplex networks andthe performan
e of propagation dynami
s on top of them. Several results havebeen obtained for ea
h of these two issues.We have �rst presented two models of network 
onstru
tion that providetwo network families where only a few topologi
al 
hara
teristi
 vary signi�-
antly among the members of these families. The purpose of these models is toprovide a useful tool for analyzing the role that these 
hanging stru
tural prop-erties have on the performan
e of di�erent network dynami
s. In fa
t, thesemodels have been used for this purpose along the Thesis. Whereas one modelpreserves the s
ale-free 
hara
ter of the degree distribution while the 
lustering
oe�
ient and average 
hara
teristi
 path length are varied, the se
ond one al-lows the degree distribution to interpolate between the s
ale-free and Poissondistributions while other magnitudes remain 
omparable. This latter modelwould be very useful to shed new light on the roots of the di�erent phenomenafound when dealing with homogeneous and heterogeneous topologies.The studies on the propagation dynami
s on networks have been fo
usedon two important dynami
s, namely, the SIR model for epidemi
 spreading



287and the analysis of 
oarse-grained information routing models. The main ob-je
tive of these two studies is to analyze the e�
ien
y of di�erent routing andimmunization algorithms depending on the substrate topology.For the studies performed on epidemi
 spreading the main results 
on
ernthe development of a new immunization method based on the d-
overing prob-lem. We have implemented an heuristi
 method for �nding the nearly smallestsubset of network's elements that should be 
overed so that every node in thenetwork has at least one 
overed node at a distan
e less than or equal to d.The results show that, depending on the degree-degree 
orrelations of the net-work, the obtained solution is very di�erent. Besides we have shown that theobtained solution of the d-
overing problem, when thought of as immune nodesto a SIR epidemi
s, yields a very e�
ient algorithm 
ompared to those alreadyexisting in the literature. The e�
ien
y of the d-
overing subset of immunenodes also depends strongly on the 
orrelations of the network when a SIR-likeepidemi
s is studied.The study of information routing dynami
s also yields interesting results.In parti
ular, the main result 
on
erns the study of a 
ongestion-aware strategyfor the routing of information pa
kets a
ross the network. The use of shortest-path strategies in s
ale-free networks lead to a fast 
ongestion of highly 
on-ne
ted nodes and hen
e to the development of jamming for low levels of inje
tedinformation. We have obtained a more robust routing poli
y making use of ane�e
tive distan
e that takes into a

ount the 
ongestion level of the networkat the lo
al s
ale. However, the shift of the onset of jamming is a
hieved at theexpenses of a sudden growth of the 
ongestion levels at the jammed phase. Wehave explained the mi
ros
opi
 origins of this �rst order like phase transitionas a 
onsequen
e of the e�e
tive fragmentation of the network. This fragmen-tation is due to the formation of dynami
 walls 
omposed of those nodes thatdo not allow to re
eive data pa
kets from their neighbors, due to their highlevel of lo
al 
ongestion.We have seen in this se
ond part several examples on the relation of topo-logi
al 
hara
teristi
s like the 
lustering 
oe�
ient, the average path length andthe degree-degree 
orrelations on the development of two simple model dynam-i
s of importan
e for s
ale-free networks. Besides, the modeled algorithms forimmunization and data routing have been designed for a nearly optimal de-ployment when applied on top of highly heterogeneous networks. The natureof the simple dynami
s studied here and their appli
ation to human-made realsystems allows our models to be reliable in these kind of networks. This is notanymore the 
ase of real biologi
al networks where both topology and (nonlin-ear) dynami
s are imposed to the system. This extreme has been analyzed inthe third part of the Thesis.
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lusionsThe third part of this thesis is devoted to the study of nonlinear dynami
son top of 
omplex networks. It is thought of as the 
on�uen
e of the abovetwo parts be
ause it applies the tools obtained from the studies on nonlin-ear lo
alization in homogeneous latti
es and the analysis of 
omplex networksstru
ture. Along with the results obtained in this part, the mixed use of thesetools 
onstitutes a, somewhat, novel feature sin
e the study of nonlinear 
om-plex networks is still in its infan
y.We have studied two di�erent nonlinear systems: a Mi
haelis-Menten reg-ulatory dynami
s (where a
tivatory and inhibitory terms 
ompete) and theparadigmati
 Kuramoto model of 
oupled phase os
illators. In these two prob-lems, related to diverse natural systems, the main purpose is to unveil therelation between the networked stru
ture of the systems and the fun
tion theyful�ll. The sear
h for this �Stru
ture-Fun
tion� 
onne
tion is based on theassumption that the evolution of the real networks is the result of a kind of op-timization for the performan
e of their fun
tion. Then, a �rst step is to analyze
oarse-grained syntheti
 systems modeled by relevant nonlinear dynami
s.The study of a
tivatory-inhibitory regulation, modeled by means of a gen-eral Mi
haelis-Menten dynami
s between the network nodes, allows to ap-proa
h the problem of gene-gene regulation. In this sense, some importantresults are related to the experimental observations of this kind of systems.The �rst important result 
on
erns the fragmentation of the network into in-dependent dynami
al 
lusters while the rest of the network remains at therest (zero a
tivity) state. The dynami
s of these dynami
al islands show avery ri
h dynami
al behavior: steady, periodi
 and 
haoti
 states. When theseemergent dynami
al 
lusters of self-sustained non-zero a
tivity are 
onsideredas networks de�ned by its nodes and the links among them, new topologi
alfeatures, di�erent from those of the underlying network, are obtained. In thisregard, the most important �nding is a 
lustering 
oe�
ient for the dynami-
al islands mu
h higher than that of the substrate network (a Barabási-Alberts
ale-free network). A se
ond important result is obtained when looking atthe observed bifur
ations. Periodi
 
lusters display either period doubling ortripling bifur
ations on their route to 
haos. Analyzing the shape of the Flo-quet eigenve
tors asso
iated to these bifur
ations it is possible to determinewhi
h nodes are responsible for the transition from the old (period 1) attra
torto the new (period 2 or 3) one. This method allows us to observe that, dif-ferently from other pro
esses on networks, nodes' substru
tures and not singlenodes are responsible for the evolution of the dynami
al 
lusters.The se
ond obje
tive of this third part is the study of the syn
hronizationpaths in networks of Kuramoto phase os
illators. This study is performed on avariety of networked substrates, namely, the two networks families introdu
ed



289in the �rst part of the Thesis and stru
tured networks. For this purpose, wehave introdu
ed a new order parameter that allows to unveil the lo
al patternsof the syn
hronized 
lusters that emerge as the 
oupling strength is in
reased.In this sense, the main result is obtained when 
omparing the syn
hronizationpaths in homogeneous and heterogeneous networks. The results point out thatthe emergen
e of the giant syn
hronized 
luster for Erdös-Rényi networks is theresult of the 
oales
en
e of multiple small syn
hronized 
lusters. This simul-taneous 
lusters' 
ollapse is thus produ
ed in a narrow region for the 
ouplingparameter so that the degree of global syn
hronization is rapidly in
reasedfrom zero near the syn
hronization onset. On the other hand, for s
ale-freenetworks the pro
ess is des
ribed by a gradual growth of the giant syn
hroniza-tion 
luster. This syn
hronization 
luster, organized around the 
entral hubsof the networks, grows by in
orporating more and more syn
hronized nodesas the 
oupling is in
reased. As a result, the onset of global syn
hroniza-tion o

urs earlier (in terms of the 
oupling strength) than in the Erdös-Rényi
ase. However, the global 
oheren
e in s
ale-free networks grows, far from thesyn
hronization onset, at a mu
h slower rate than in the 
ase of Erdös-Rényigraphs due to the (one-by-one) additive growth for the syn
hronized 
luster.These two works 
onstitute interesting examples on the interplay betweenFun
tion and Stru
ture. In the �rst study it is 
lear that nonlinear dynami
sshows up an emergent stru
ture with new topologi
al 
hara
teristi
s. For these
ond work it is shown that, depending on the underlying stru
ture, radi
allydi�erent patterns of syn
hronization are obtained. Therefore, the importan
eof ta
kling the 
ombined study of both stru
tural 
omplexity and nonlineardynami
s is 
lear, sin
e a separate analysis would be in
omplete. The mutualin�uen
e observed thus prevent from going from one to the other or vi
e versa.The 
ontinuation of the presented work would be 
arried following di�erentdire
tions. Perhaps, the most ambitious dire
tion is to make one step furtherinto the analysis of real networks. For example, the availability of gene expres-sion data (although one must be 
areful and sele
tive with the large amount ofexperimental data sets) motivates the study of real gene regulatory networks inorder to apply the tools and results found in this part. At the same time, otherkind of relevant nonlinear dynami
s, like models of neural a
tivity (Hop�eld,integrate and �re, et
...), 
ould be also studied by means of similar te
hniquesin order to obtain more examples on the interplay of stru
ture and dynami
s.The results presented in this Thesis are intended to analyze and understandseveral phenomena displayed when two essential ingredients of 
omplexity arepresent (both separated and 
ombined). It would take still a long time beforethe understanding of simple dynami
s and models allows to go one step fartherand atta
k the uni�
ation of these two ingredients in order to have a frameworkwithin whi
h one 
an solve the �Stru
ture-Fun
tion� problem. In this sense, the
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lusionspresent work provides some examples and tools about how the problem 
ouldbe �rst ta
kled. As all resear
h work that does not su�
e to fully unravel thefeatures of a given problem, our work also motivates further studies on thisinteresting question that we intend to pursue in the years to 
ome.



Appendi
esWe want to add two appendi
es about the 
omputation and stability 
har-a
terization of periodi
 orbits sin
e these solutions have extensively appearedthroughout this Thesis. Although for parti
ular types of periodi
 solutions anddynami
al systems, the results reported here 
an be further extended we havetried to brie�y summarize the essential features about these two issues.A Computation of Periodi
 OrbitsThe 
omputation of periodi
 solutions to a set of N 
oupled nonlinear dif-ferential equations
∂~x

∂z
= ~F~ξ

[~x] , (A.1)where ~x are the variables of the system and ~ξ denote the parameters of theparti
ular equations, 
an be formulated as a problem of �nding the solution ofa system of N nonlinear equations, with N variables xi (i = 1,...,N) and a setof m parameters ξi (i = 1,...,m), of the form
~G(~x; ~ξ) = 0 . (A.2)As we introdu
ed in se
tion 2.2, let us 
onsider a periodi
 solution ~x~ξ

as a �xedpoint solution of a N -dimensional mapM
M~y n = ~y n+1 , (A.3)where the map M 
an be 
onstru
ted using the z-evolution operator (z isusually time or spa
e) given by equations (A.1) over a (time or spa
e) period

T when we are looking for z-periodi
 solutions
M = T~ξ,T

, (A.4)or a 
ombination of an index (latti
e) displa
ement and a z-evolution operatorswhen looking for 
ombined periodi
ities as in (p, q)-resonant states for time and
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eslatti
e displa
ement, eq. (2.24),
M = LpT q

~ξ,T
. (A.5)Given the parti
ular de�nition of the map M, the desired periodi
 solutionwill satisfy eq. (A.2) in the form

~G(~x; ~ξ) =M ~x~ξ
− ~x~ξ

= 0 . (A.6)One is typi
ally interested in a parti
ular solution 
orresponding to a spe
ial
hoi
e of the parameters ~ξ but, on the other hand, the only available solution
orresponds to a simpli�ed version of the system 
orresponding to ~ξ 0. In these
ases the solution 
an be found by means of a homotopy pro
edure [296℄: givena known solution, ~x~ξ 0 , to some spe
ial 
hoi
e of parameters, ~ξ 0, the solution,
~x~ξ, is 
omputed via the 
omputation of intermediate solutions to a 
hain ofequations with parameters, ~ξ 0 → ~ξ 1 → ... → ~ξ n−1 → ~ξ n = ~ξ. Thelatter path in parameter spa
e is 
onveniently used so that every intermediatesolution 
an be found. There are several methods used for solving ea
h step inthe 
hain of equations and nearly all of them make use of the solution found forthe latter system as the ansatz for the analyti
al or numeri
al methods usedat ea
h step.The homotopy strategy is based on the impli
it fun
tion theorem thatassures the existen
e of an unique solution ~x~ξ n , so that ~G(~x~ξn ; ~ξn) = 0, whenthere exist a solution ~x~ξ n−1 ( ~G(~x~ξn−1 ; ~ξ

n−1) = 0) and ~ξ n belongs to an openset 
entered at ~ξ n−1. The 
onditions that must be ful�lled are:(i) ~G(~x; ~ξ) is 
ontinuous on an open set 
entered at (~x~ξ n−1 , ~ξ
n−1).(ii) The Ja
obian determinant of ~G(~x; ~ξ) evaluated at (~x n−1

~ξ
, ~ξ n−1) is non-null,Det{[D~xG(~x~ξ n−1 ; ~ξ

n−1)
]

ij

}

= Det [∂Gi(~x; ~ξ)

∂xj

∣

∣

∣

∣

(~x~ξ n−1 ,~ξ n−1)

]

6= 0 .(A.7)In order to satisfy the lo
al 
onvergen
e 
onditions of the theorem, the homo-topi
 
omputation must be 
arried by dividing the path toward the desiredsolution into as mu
h intermediate steps as ne
essary. In this way, the solutionfor ~x~ξ n would not di�er very mu
h to that for ~x~ξ n−1 so that expressing thenew solution as ~x~ξ n = ~x~ξ n−1 + ~∆ one would write
~G(~x~ξ n−1 + ~∆; ~ξ n) = 0 = ~G(~x~ξ n−1 ; ~ξ

n) + D~xG(~x~ξ n−1 ; ~ξ
n)~∆ + . . . , (A.8)
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Figure A.1: S
hemati
 representation of the iterative pro
ess of homotopi
 
ontinua-tion.negle
ting those higher order terms in ~∆. From the above expression one
an obtain the di�eren
e ~∆ between the old and the desired solution by just
omputing the inverse of the Ja
obian matrix D~xG

~∆ = −[D~xG(~x~ξ n−1 ; ~ξ
n)] −1 · ~G(~x~ξ n−1 ; ~ξ

n) . (A.9)Due to the error at the trun
ation in Taylor expansion (A.8), one must iteratethis pro
edure until the desired 
onvergen
e (bounded by ma
hine pre
ision)is rea
hed, ∣∣
∣

~G(~x~ξ n ; ~ξ n)
∣

∣

∣
< ǫ. For this purpose, one uses as the new trialsolution the one obtained by the last 
omputation of ~∆. Calling ~y i

ξ n thetrial fun
tion used at the ith stage of the iterative 
omputation of solution
~xξ n and ~∆ i the obtained solution of eq. (A.9) at this stage, a s
hemati
pi
ture of the whole pro
ess for 
omputing ~x~ξ n from the initial ansatz ~x~ξ n−1(the solution of the before equation in the homotopy 
hain) is re�e
ted in�gure A.1. The 
onvenien
e of using the above iterative pro
ess relies on itsquadrati
 
onvergen
e but, on the other hand, one must posses a good ansatzfor the initial trial fun
tion (sin
e no global 
onvergen
e is assured) and hen
ea homotopi
 
ontinuation to the desired solution is required.For the parti
ular situation when one is interested in the 
omputation ofpurely z-periodi
 solutions (su
h as dis
rete breathers for the 
ase of timeperiodi
 solutions), the equation to solve would be written as

G
(

~x~ξ(z0); ~ξ
)

= T~ξ,T

(

~x~ξ(z0)
)

− ~x~ξ(z0) = 0 , (A.10)
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eswhere z0 stands for the z-origin of integration. Therefore, eq. A.9 will takethe form
~∆ = −

{[

D~xT~ξ n,T

(

~x~ξ n−1(z0)
)]

− I
} −1

·G
(

~x~ξ n−1(z0); ~ξ
n
)

, (A.11)where the matrix D~xT~ξ,h
(~x(z0)) is 
omputed integrating from z0 to z0 + hthe equations that are obtained by deriving eq. (A.1) respe
t to the initial
onditions, ~x(z0),

[

∂D~xT~ξ,z
(~x(z0))

∂z

]

ij

=
∂2xi(z)

∂z∂xj(z0)
=

N
∑

k=1

∂
[

F~ξ
(~x(z))

]

i

∂xk(z)

∂xk(z)

∂xj(z0)
=

=

N
∑

k=1

Aik
∂xk

∂xj(z0)
=
[

A ·D~xT~ξ,z
(~x(z0))

]

ij
, (A.12)with the initial 
ondition D~xT~ξ,z0

(~x(z0)) = I, i.e. integrating the linearizedequations around the solution, ~x~ξ
(z).The matrix D~xT~ξ,h

(

~x~ξ
(z0)

) provides a map between an initial perturbationof the solution, ~δx~ξ
(z0), and its evolution up to z0 + h,

~δx~ξ
(z0 + h) =

[

D~xT~ξ,h

(

~x~ξ
(z0)

)]

· ~δx~ξ
(z0) . (A.13)For a z-periodi
 solution the elements of matrix A in eq. (A.12) are z-periodi
fun
tions with the same period T and hen
e

D~xT~ξ,qT

(

~x~ξ
(z0)

)

=
[

D~xT~ξ,T

(

~x~ξ
(z0)

)]q
, (A.14)with q integer. This implies that it is enough to integrate the evolutionof the linearized equations over a period T and obtain D~xT~ξ,T

(

~x~ξ
(z0)

) for
hara
terizing the time evolution of the perturbations after an integer num-ber of periods. For a time periodi
 solution the so-
alled Floquet matrix,
F = D~xT~ξ,T

(

~x~ξ
(t0)
), 
ontains all the information about the linear stability ofa periodi
 solution (we will dis
uss it later in Appendix B).As the impli
it fun
tion theorem states, the key point for being able to
ompute the solutions to eq. (A.10), is that the Ja
obian is invertible so thateq. (A.11) 
an be solved. In the parti
ular 
ase of time periodi
 solutions thisimplies that the eigenvalues of the Floquet matrix, F , must be di�erent from

+1. In other words, if the spe
tra of the Floquet matrix 
ontains perturbationsthat are also time periodi
 with the same period of the solution, T , theirasso
iated eigenvalue will be +1 and therefore we 
ould not solve eq. (A.11).The existen
e of su
h perturbations 
auses the degenera
y of the linear problem
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e given any solution of period T one 
an 
onstru
t another one by addingany 
ombination of su
h perturbations and therefore the solution is not unique.Although the existen
e of degenera
ies depends on the parti
ular dynam-i
al system, when we are dealing with autonomous dynami
al systems, su
has eq. (A.1), there always exist one Floquet eigenvalue +1. The asso
iatedeigenve
tor is related with the time translation invarian
e of the solutions,
~δx~ξ

(t) = ~̇x~ξ
(t), and a
ts translating the instant solution a
ross its path in thephase spa
e. However, the non invertibility of the Ja
obian does not preventus from implementing the 
ontinuation s
heme. The 
ommon way used tosolve this problem is to restri
t the rank of the Ja
obian matrix to a subspa
eorthogonal to its kernel. This restri
tion does not in�uen
e the e�
en
y of themethod sin
e the kernel ve
tors 
orrespond to dire
tions in tangent spa
e that
onvert the solution into itself.There exist several ways for restri
ting the Ja
obian rank that depend onthe parti
ular properties of the periodi
 solution. For example, in the 
ase oftime-reversible orbits, i.e. those whi
h are invariant under the transformation

R(~q, ~p, t)→ (~q,−~p,−t) (where ~q and ~p denote the two sets of 
anoni
ally 
on-jugated variables of the system), one 
an �x the time origin without loss ofgenerality setting ~p = 0 [81℄. With this restri
tion we prevent from perturba-tions inside the same periodi
 manifold and, as a plus, we have redu
ed thedegrees of freedom to the half, N/2. However, this tri
ky method does not al-low to 
ompute other kind of periodi
al orbits whi
h are not time-reversible (asmobile dis
rete breathers) and the use of other methods su
h as the SingularValue De
omposition [82, 83℄ is required.B Linear Stability of Periodi
 OrbitsBefore analysing the stability analysis for periodi
 solutions let us brie�y fo-
us on the stability 
hara
terization of general orbits of dynami
al systems.The linear system of equations de�ned in (A.12) de�nes the most general toolfor 
hara
terizing the stability of dynami
al systems solutions: the Lyapunovexponents whi
h are the eigenvalues, {µj} (j = 1, ...,N), of matrix A thatde�ne the system of linear di�erential equations for the evolution of linear per-turbations. In parti
ular, the general de�nition of Lyapunov exponents 
anbe expressed in terms of the eigenvalues of matrix D~xT~ξ,t

(

~x~ξ
(t0)
) (whi
h forperiod T solutions and t = T is the Floquet operator), {λj(t)}, as

µj = lim
t→∞

1

t
ln|λj(t)| . (B.1)
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Figure B.1: S
hemati
 representation of theres
aling pro
edure for the 
omputation ofthe largest Lyapunov exponent µ1.Although there are several te
hniques for 
omputing Lyapunov exponents, itis somehow a hard task sin
e it implies large integration times in order to geta

urate values independent of the time origin 
hoi
e. However, one is mostof the times interested in the value of the largest Lyapunov exponent (say µ1)whi
h is the easiest to 
al
ulate due to the tenden
y of any perturbation togrow towards the dire
tion asso
iated to the largest Lyapunov exponent (see[296, 333℄). The largest Lyapunov exponent, µ1, tell us whether the solutionrepeals nearby orbits (perturbations), µ1 > 0, and thus the solution is regardedas 
haoti
. In the 
ase of stable periodi
 orbits of autonomous dynami
alsystems the maximum Lyapunov exponent is always 0, this 
orresponds to theFloquet eigenvalue +1 asso
iated to the time translational invarian
e. Thelargest Lyapunov exponent 
an be expressed as
µ1 = lim

t→∞

1

t
ln∣∣∣D~xT~ξ, t

(

~x~ξ
(t0)
)

~δx~ξ
(t0)
∣

∣

∣

∣

∣

∣

~δx~ξ
(t0)
∣

∣

∣



 . (B.2)This expression, whi
h makes uses of the ratio of separation of an initial per-turbation ~δx~ξ
(t0) after large times, turns out to be helpful for 
omputing µ1.The 
omputational method 
onsists in making a perturbation of the solutionwith a tangent ve
tor of arbitrary dire
tion and modulus |d|, and follow theevolution of the perturbed orbit for a time interval, h. Then, the distan
e,

|d1| between the original and the perturbed orbits is measured. At the sametime h, the perturbed solution is varied by preserving its dire
tion but beingres
aled to |d|. This pro
ess is iterated for a number of times (see �gure B.1) sothat a set of distan
es {|di|} with (i = 1, ..., n) is 
olle
ted. Finally, averagingthese measures one obtains the largest Lyapunov exponent
µ1 =

1

nh

n
∑

i=1

ln |di|
|d| . (B.3)
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 Orbits 297As stated above, this method turns out to be helpful sin
e the 
ontributionof the largest Lyapunov exponent to the dynami
s of the perturbed orbitsdominates for large times.Turning our attention to periodi
 orbits it is then 
onvenient to look atthe properties of the Floquet matrix. An unstable periodi
 orbit is manifestedby the presen
e of Floquet eigenvalues with |λi| > 1, whi
h implies that themodulus of the perturbations of the �xed point solution of map (A.4) (theperiodi
 orbit) along the eigenve
tor asso
iated to this eigenvalue will grow ata rate |λi|.Sin
e the Floquet matrix, F , is real the Floquet eigenvalues 
ome in pairs(λi, λi). For Hamiltonian systems, one 
an say a little bit more about thestru
ture of the Floquet spe
tra. In parti
ular, when the nonlinear evolutionis Hamiltonian, so that we have an even set of dynami
al variables, N = 2n(~x = (~q, ~p)t), and
~̇x = (~̇q, ~̇p)t =

(

0 In
−In 0

)(

∂H
∂q1

, ...,
∂H
∂qn

,
∂H
∂p1

, ...,
∂H
∂pn

)t

= J ·∇~xH , (B.4)the map de�ned by the Floquet operator () is symple
ti
, i.e. given an orthog-onal and skew-symmetri
 matrix su
h as J in (), F obeys the relation
FJF t = J . (B.5)From this property it 
an be shown that if λ is an eigenvalue of F so is 1/λby proving that the 
hara
teristi
 polynomial, p(λ), of F is re�exive (i.e. the
oe�
ients ai of degree i in λ satisfy ai = aN−i with i = 0, ...,N)

p(λ) = det (F − λI) = det (JFJ t − λI
)

= det((F−1
)t − λI

)

=

= det (F−1 − λI
)

= det (F) det (F−1 − λI
)

= det (I − λF) =

= (−λ)Ndet (F − λ−1I
)

= (λ)Np(λ−1) . (B.6)Therefore, for Hamiltonian dynami
al systems the Floquet eigenvalues for aperiodi
 orbit 
ome in quadruplets (λ, λ, 1/λ, 1/λ). This result implies thatthe Floquet multipliers of a stable periodi
 solution will lie on the unit 
ir
leof the 
omplex plane so that, these solutions are marginally stable sin
e anyperturbed solution will not de
ay into the original one, i.e. the 
y
le is not anattra
tor of surrounding traje
tories. Besides, this result implies that in orderto a pair (or a single if it is at +1 or −1) of Floquet eigenvalues leave the unit
ir
le it is ne
essary that they (it) 
ollide with another pair.By 
omputing the periodi
 solutions for a 
hain of equations 
orrespondingto di�erent parameters ~ξ one 
an study how the stability of the periodi
 solu-tion 
hanges a
ross the 
ontinuation path. In this regard, stability 
hanges of
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esthe periodi
 solution 
an o

ur for 
ertain values ~ξc manifested by the existen
eof Floquet eigenvalues leaving the unit 
ir
le. There are several me
hanismsof loosing stability and one 
an identify whi
h type of bifur
ation o

urs (dif-feren
ed by the new stable solutions that emerge when the original periodi
orbit loss its stability) at ~ξc by looking how the asso
iated Floquet eigenvalue,
λj , leaves the unit 
ir
le. One 
an distinguish three types of bifur
ations 
or-responding to:(a) λj = 1,(b) Im (λj) 6= 0,(
) λj = −1.These three types of bifur
ations are s
hemati
ally plotted in �gure B.2.In the �rst one (�gure B.2.a) a Floquet eigenvalue leaves the unit 
ir
le at
+1 and therefore the perturbation responsible for this instability, ~δx

∗
~ξc

(t), istime periodi
 with the same period as the original solution. It is thus an har-moni
 bifur
ation or also 
alled stationary bifur
ation sin
e the new solution,
~x~ξc

(t)+ ~δx
∗
~ξc

(t), is also a �xed point of the original map (eq. (A.4)). The most
ommon s
enario is depi
ted in �gure B.2.a at bottom, where two new orbits ofidenti
al period, T , emerge passed ~ξc. For this 
ase a pit
hfork (super
riti
al)bifur
ation has o

urred. Pit
hfork bifur
ations are often asso
iated with asymmetry breaking sin
e, after the bifur
ation, the system dynami
s 
an o
-
upy either stable periodi
 orbit. This latter situation was reported in se
tion(3.1.3). Other possible s
enarios are saddle-node and trans
riti
al bifur
ations.In these two 
ases there are two solutions, one stable and another unstable,meet at ~ξc, while in the former situation no solutions are available after thebifur
ation point, for the latter there is an inter
hange of stability between thetwo solutions.Case (b) (see �gure B.2.b) 
orresponds to an os
illatory or generalized Hopfbifur
ation or also a Naimark-Sa
ker bifur
ation. In this 
ase the frequen
yof the new solution, ~x~ξc
(t) + ~δx

∗
~ξc

(t), 
an be in
ommensurable with the periodof the map if the angle where the Floquet eigenvalue) leaves the unit 
ir
le isan irrational multiple of 2π, θ 6= p2π/q with p an q integers. In this 
ase thequasiperiodi
 movement of the emergent solution moves over a Torus de�nedby the frequen
y of the Map (the frequen
y of the original solution) ω = 2π/Tand the angle where the eigenvalue leaves the unit 
ir
le (the frequen
y of theunstable perturbation) ω∗ = θ/T . For the 
ases where these two frequen
iesare 
ommensurate the new orbit is periodi
 (see se
tion 7.2.1).Finally, 
ase (
) (see �gure B.2.
) 
onstitutes the �ngerprint of a period-doubling bifur
ation sin
e the angle where the unstable Floquet eigenvalue is
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Im Im Im

Re Re

Im Im Im

Re Re Re

Re

(b)(a) (c)

Figure B.2: S
hemati
 plot of the three types of bifur
ations and their 
orrespondingFloquet behaviour (the upper plot 
orrespond to a Hamiltonian System and the onebelow for a non-Hamiltonian one). The lowest plots are the representation of theunstable (dashed and red) original orbit and the stable (solid and blue) emergentsolution after the bifur
ation.lo
ated at θ = π and, therefore, the period of the unstable eigenve
tor, ~δx
∗
~ξc

(t),will be T ∗ = 2π/ω = 2πT/θ = 2T . Therefore, the new solution ~x~ξc
(t)+ ~δx

∗
~ξc

(t),will be periodi
 with period 2T (see se
tion 7.2.1).The Floquet analysis of the periodi
 solutions is threfore useful for iden-tifying the nature of the bifur
ations found. Besides, the inspe
tion of theeigenve
tors asso
iated with the Floquet eigenvalues that leave the unit 
ir
lehelp us to investigate how the unstable solution evolves.
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