000088491 001__ 88491
000088491 005__ 20200716101436.0
000088491 0247_ $$2doi$$a10.1039/c8nr07834c
000088491 0248_ $$2sideral$$a110897
000088491 037__ $$aART-2019-110897
000088491 041__ $$aeng
000088491 100__ $$aFabris, F.
000088491 245__ $$aControlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles
000088491 260__ $$c2019
000088491 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088491 5203_ $$aWe report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe 3 O 4 /Zn x Co 1-x Fe 2 O 4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co 2+ by Zn 2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present. This journal is
000088491 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78201-P
000088491 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000088491 590__ $$a6.895$$b2019
000088491 592__ $$a2.18$$b2019
000088491 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b50 / 314 = 0.159$$c2019$$dQ1$$eT1
000088491 593__ $$aNanoscience and Nanotechnology$$c2019$$dQ1
000088491 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b25 / 103 = 0.243$$c2019$$dQ1$$eT1
000088491 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ1
000088491 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b28 / 177 = 0.158$$c2019$$dQ1$$eT1
000088491 591__ $$aPHYSICS, APPLIED$$b23 / 154 = 0.149$$c2019$$dQ1$$eT1
000088491 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088491 700__ $$aLima, E.Jr.
000088491 700__ $$aDe Biasi, E.
000088491 700__ $$aTroiani, H.E.
000088491 700__ $$aVásquez Mansilla, M.
000088491 700__ $$0(orcid)0000-0002-6116-9331$$aTorres, T.E.
000088491 700__ $$0(orcid)0000-0002-6813-780X$$aFernández Pacheco, R.$$uUniversidad de Zaragoza
000088491 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M.R.$$uUniversidad de Zaragoza
000088491 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000088491 700__ $$aZysler, R.D.
000088491 700__ $$aWinkler, E.L.
000088491 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000088491 773__ $$g11, 7 (2019), 3164-3172$$pNanoscale$$tNanoscale$$x2040-3372
000088491 8564_ $$s3344567$$uhttps://zaguan.unizar.es/record/88491/files/texto_completo.pdf$$yPostprint
000088491 8564_ $$s520743$$uhttps://zaguan.unizar.es/record/88491/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088491 909CO $$ooai:zaguan.unizar.es:88491$$particulos$$pdriver
000088491 951__ $$a2020-07-16-08:55:20
000088491 980__ $$aARTICLE