000088534 001__ 88534
000088534 005__ 20210902121657.0
000088534 0247_ $$2doi$$a10.3390/nano10030539
000088534 0248_ $$2sideral$$a116756
000088534 037__ $$aART-2020-116756
000088534 041__ $$aeng
000088534 100__ $$aRamírez Jiménez, Rafael
000088534 245__ $$aSurfactant-free synthesis and scalable purification of triangular gold nanoprisms with low non-specific cellular uptake
000088534 260__ $$c2020
000088534 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088534 5203_ $$aGold nanoprisms possess remarkable optical properties that make them useful for medical biotechnology applications such as diagnosis and photothermal therapy. However, shape-selective synthesis of gold nanoprisms is not trivial and typically requires either toxic surfactants or time-consuming purification protocols, which can limit their applicability. Here, we show how triangular gold nanoprisms of different sizes can be purified by precipitation using the non-toxic glutathione ligand, thereby removing the need for toxic surfactants and bottleneck purification techniques. The protocol is amenable for direct scaling up as no instrumentation is required in the critical purification step. The new purification method provides a two-fold increased yield in gold nanoprisms compared to electrophoretic filtration, while providing nanoprisms of similar localized surface plasmon resonance wavelength. Crucially, the gold nanoprisms isolated using this methodology show fewer non-specific interactions with cells and lower cellular internalization, which paves the way for a higher selectivity in therapeutic applications.
000088534 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU014-06249$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2017-84246-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2013-12570
000088534 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000088534 590__ $$a5.076$$b2020
000088534 591__ $$aPHYSICS, APPLIED$$b35 / 160 = 0.219$$c2020$$dQ1$$eT1
000088534 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 106 = 0.481$$c2020$$dQ2$$eT2
000088534 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 178 = 0.309$$c2020$$dQ2$$eT1
000088534 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b103 / 333 = 0.309$$c2020$$dQ2$$eT1
000088534 592__ $$a0.919$$b2020
000088534 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000088534 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000088534 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000088534 700__ $$0(orcid)0000-0001-9475-6367$$aArtiga, Álvaro
000088534 700__ $$0(orcid)0000-0003-4848-414X$$aMitchell, Scott G.$$uUniversidad de Zaragoza
000088534 700__ $$0(orcid)0000-0003-0702-8260$$aMartín Rapún, Rafael$$uUniversidad de Zaragoza
000088534 700__ $$ade la Fuente, Jesús M.
000088534 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000088534 773__ $$g10, 3 (2020), 539  [10 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000088534 8564_ $$s2260621$$uhttps://zaguan.unizar.es/record/88534/files/texto_completo.pdf$$yVersión publicada
000088534 8564_ $$s483057$$uhttps://zaguan.unizar.es/record/88534/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000088534 909CO $$ooai:zaguan.unizar.es:88534$$particulos$$pdriver
000088534 951__ $$a2021-09-02-09:11:05
000088534 980__ $$aARTICLE