000088564 001__ 88564
000088564 005__ 20210902121713.0
000088564 0247_ $$2doi$$a10.3390/catal10020234
000088564 0248_ $$2sideral$$a117334
000088564 037__ $$aART-2020-117334
000088564 041__ $$aeng
000088564 100__ $$aMartins, P.
000088564 245__ $$aEnhanced photocatalytic activity of au/TiO2 nanoparticles against ciprofloxacin
000088564 260__ $$c2020
000088564 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088564 5203_ $$aIn the last decades, photocatalysis has arisen as a solution to degrade emerging pollutants such as antibiotics. However, the reduced photoactivation of TiO2 under visible radiation constitutes a major drawback because 95% of sunlight radiation is not being used in this process. Thus, it is critical to modify TiO2 nanoparticles to improve the ability to absorb visible radiation from sunlight. This work reports on the synthesis of TiO2 nanoparticles decorated with gold (Au) nanoparticles by deposition-precipitation method for enhanced photocatalytic activity. The produced nanocomposites absorb 40% to 55% more radiation in the visible range than pristine TiO2, the best results being obtained for the synthesis performed at 25¿C and with Au loading of 0.05 to 0.1 wt. %. Experimental tests yielded a higher photocatalytic degradation of 91% and 49% of ciprofloxacin (5 mg/L) under UV and visible radiation, correspondingly. Computational modeling supports the experimental results, showing the ability of Au to bind TiO2 anatase surfaces, the relevant role of Au transferring electrons, and the high affinity of ciprofloxacin to both Au and TiO2 surfaces. Hence, the present work represents a reliable approach to produce efficient photocatalytic materials and an overall contribution in the development of high-performance Au/TiO2 photocatalytic nanostructures through the optimization of the synthesis parameters, photocatalytic conditions, and computational modeling.
000088564 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-76039-C4-3-R
000088564 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000088564 590__ $$a4.146$$b2020
000088564 591__ $$aCHEMISTRY, PHYSICAL$$b67 / 162 = 0.414$$c2020$$dQ2$$eT2
000088564 592__ $$a0.8$$b2020
000088564 593__ $$aPhysical and Theoretical Chemistry$$c2020$$dQ2
000088564 593__ $$aCatalysis$$c2020$$dQ2
000088564 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000088564 700__ $$aKappert, S.
000088564 700__ $$aLe, H.N.
000088564 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000088564 700__ $$aKühn, K.
000088564 700__ $$aAlves, M.
000088564 700__ $$aPereira, L.
000088564 700__ $$aCuniberti, G.
000088564 700__ $$aMelle-Franco, M.
000088564 700__ $$aLanceros-Méndez, S.
000088564 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000088564 773__ $$g10, 2 (2020), 234 [20 pp.]$$pCatalysts$$tCATALYSTS$$x2073-4344
000088564 8564_ $$s3190168$$uhttps://zaguan.unizar.es/record/88564/files/texto_completo.pdf$$yVersión publicada
000088564 8564_ $$s491367$$uhttps://zaguan.unizar.es/record/88564/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000088564 909CO $$ooai:zaguan.unizar.es:88564$$particulos$$pdriver
000088564 951__ $$a2021-09-02-09:22:20
000088564 980__ $$aARTICLE