Apéndice A

Desarrollo de la aplicacion para
el tablet NVIDIA Tegra

El prototipo tablet Tegra 3 de NVIDIA es uno de los dispositivos exis-
tentes compatibles con las librerias de cédigo abierto de la FrankenCamera
(Fcam). Estas librerias, escritas en lenguaje C++, permiten controlar a ba-
jo nivel todas las caracteristicas relacionadas con la caAmara que incorpora
el dispositivo mévil, siendo asi la herramienta ideal para el desarrollo de la
aplicacion movil necesaria en este proyecto. Dado que el tablet funciona bajo
el sistema operativo Android, la incorporacién de estas librerias no resulta
trivial. Este anexo detalla la estructura de la aplicacion movil desarrollada,
que sigue el esquema presentado en la figura A.1.

Algoritmo de Librerias de la
descomposicién FrankenCamera
(Lenguaje C++) (Lenguaje C++)

Aplicacion Android
(Lenguaje JAVA)

Figura A.1: Diagrama de componentes correspondiente a la aplicacion movil
desarrollada.

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

A.1. Android

Android es un sistema operativo pensado para dispositivos méviles tales
como smartphones o tablets. Su éxito sobre sus competidores (10S, Symbian
o Blackberry OS) radica en su nticleo de sistema basado en Linux, es decir, es
libre, gratuito y multiplataforma. Como se observa en la figura A.2, la capa
mas baja del sistema es el nicleo Linux. El es el encargado de interactuar
con el hardware del dispositivo y de realizar las gestiones propias del sistema
operativo (gestion de memoria, procesos y seguridad). En el segundo nivel
mas bajo se encuentran las librerias y la maquina virtual, también conoci-
da como Dalvik (Android Runtime). A diferencia de la méaquina virtual de
Java (JVM), Dalvik esta basada en una méquina de registros y no en una
maquina de pila. A continuacién se sitia la capa mediante la cual Android
proporciona las herramientas necesarias para desarrollar aplicaciones (Apli-
cation framework). Por iltimo, en la capa de mayor nivel, es donde se sitian
las aplicaciones instaladas en el dispositivo, ya sean pertenecientes al usuario
o nativas del sistema.

APPLICATIONS

Home Caontacts Phane Browser

APPLICATION FRAMEWORK

g o Windew Content Wiew Metification
ol ik) Manager Providers System Manager
Telephony Resource Location XMPP Service

Package Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media i Core Libraries

Framework

OpenGLIES FreeType WebKit i

SGL SSL libe

LINUX KERNEL

Display

Bluetooth Flash Memaory Binder (IPC)
Driver

Camera Drive i i
Camera Driver Ores Driver Driver

USE Driver Keypad Driver WiFi Driver E?;Ifil?, M !:?::ﬁ[”_m

Figura A.2: Arquitectura del sistema operativo Android. Imagen obtenida de
developer.android.com.

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

Las aplicaciones desarrolladas para Android se escriben en cédigo Java.
Una vez compiladas y generado el correspondiente bytecode, éste se con-
vierte al formato de ejecucion soportado por Dalvik (.dex). Para facilitar el
desarrollo de aplicaciones, Android proporciona un kit de desarrollo software
(Software development kit o SDK) gratuito a través de su pagina web (deve-
loper.android.com). Este kit incluye, ademds del entorno gréfico de desarro-
llo, una herramienta que permite depurar el cédigo generado (Dalvik Debug
Monitor Server o ddms) asi como un emulador para probar las aplicaciones
desarrolladas antes de instalarlas en el dispositivo fisico (Android Emulator).

A.2. Java Native Interface (JNI)

No obstante, teniendo en cuenta que las librerias de la FrankenCamera
(FCam) necesarias para el desarrollo de esta aplicacién se encuentran escritas
en cédigo C++, el lenguaje de programacién Java no constituye una herra-
mienta suficiente para este proyecto. Para poder solucionar este problema es
necesario hacer uso del Java Native Interface (JNI).

El JNI es un framework de programacién que permite ejecutar codigo
nativo desde Java y viceversa. El cédigo nativo representa funciones escritas
en otros lenguajes de programacion como C, C++ o ensamblador. Por lo
tanto, gracias a esta herramienta, las librerfas de la FCam pueden ser inde-
pendientemente compiladas, e incluidas en los ficheros que implementan los
algoritmos de descomposicién escritos en C++-. Este codigo nativo es ejecu-
tado en el tablet NVIDIA y se divide en dos etapas: en primer lugar se realiza
la captura de la escena mediante la camara integrada en el dispositivo mévil,
y en segundo lugar se procesan los datos y se calculan las dos componentes
de iluminacion de la escena: directa y global.

A.3. Librerias de la FrankenCamera (FCam)

FCam es el resultado de la Cdmara 2.0, proyecto de investigacién llevado
a cabo por Marc LeVoy (Universidad de Standford) y Kari Pulli (Nokia
Research Center en Palo Alto, trasladado a NVIDIA en abril del 2011) que
fue presentado en el congreso internacional de graficos SIGGRAPH 2010 [?].
En la actualidad existen tres dispositivos compatibles con estas librerias: el

dispositivo mévil Nokia N900, la camara construida en los laboratorios F2 y
el tablet NVIDIA Tegra.

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

F2 N900 tablet NVIDIA

Figura A.3: Dispositivos compatibles con las librerias FCam.

Las librerias de la FrankenCamera forman una API (Application program-
ming interface) de cédigo abierto que permiten el control facil y preciso de
las camaras digitales. Permiten controlar completamente a bajo nivel todos
los parametros de la camara para la captura de cada fotograma, haciendo
posible capturar una rafaga de imégenes cada una con propiedades diferen-
tes. De esta forma es posible obtener efectos tan sorprendentes como el que
se muestra en la figura A.4

Figura A.4: Para tomar esta imagen la camara dispuso de dos flash, cada
uno ajustado con un tiempo de duracion distinto.

La API se compone de cuatro clases principales: Shot, Sensor, Device y
Frame. La clase Shot especifica los parametros de captura y post-proceso
de una Unica imagen. Una instancia de la clase Shot especifica parametros
del sensor tales como ganancia, tiempo de exposicion, resolucién, formato,
balance de blancos,etc. Una instancia de la clase Frame contiene la imagen
resultante junto con la informacién generada por hardware como histogramas
o mapas de contorno. La clase Device puede ser programada para ejecutar
acciones (p.ej: disparar el flash). En la figura A.5 se observa la relacién entre
cada una de las clases.

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

/‘ ‘Yourmde _\
Ny
‘iﬂs— Devices M’
o
k ‘-/
Sensor

|\ N

Figura A.5: Para usar la API de la FrankenCamera, se pasan instancias de
la clase Shot al sensor de la cdmara (clase Sensor), que devuelve asincrona-
mente Frames, los cuales contienen la imagen resultante.

A.4. Estructura de la aplicacion movil

Una vez analizados todos los componentes necesarios (Android, JNI y
FCam), el siguiente paso a seguir consiste en combinar todos ellos para po-
der desarrollar la aplicaciéon mévil deseada. En Android, las actividades (Ac-
tivity) son clases publicas que representaran cada una de las pantallas de
nuestra aplicacién. Cada actividad cuenta con, al menos, un método llamado
onCreate(). Este método es el primero en ser invocado cuando la actividad
se inicia. Su andlogo es el método onCompletion() que se invoca cuando la
actividad finaliza.

La aplicacion movil desarrollada para este proyecto cuenta con dos pan-
tallas distintas: una para realizar el proceso de captura de la escena y otra
para tratar los datos capturados y obtener la descomposicion. Estas pan-
tallas se visualizan a modo de pestanas dentro de una tercera, la pantalla
principal. Por lo tanto, tal y como muestra el diagrama de clases de la fi-
gura A.6, se tiene una clase distinta para cada una de estas tres pantallas.
La pantalla principal (Main_Activity) constituye el punto de entrada de la
aplicacion. Cada una de las clases correspondientes a las otras dos pestanas
(Process_Activity y Capture_Activiry) cuenta con los métodos onCreate(),
onCompletion() y con la declaracién del método nativo run(). Este tltimo,
es un método abstracto cuya implementacion, en codigo C++, se encuentra
en la clase que implementa el framework de JNI (Java_Adapter). Asi pues,
en esta clase se tienen, entre otros, los métodos CaptureActivity_run() y Pro-
cessActivity_run() que a su vez, invocan a los métodos fecam_thread_capture()

3

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

y feam_thread_process() respectivamente para lanzar sendos hilos que ejecu-
ten el cédigo C+—+ correspondiente. En dicho cédigo, es posible llamar a las
funciones de la libreria FCam con tan soélo incluir su cabecera al inicio del
mismo (#include <FCam/Tegra.h>).

z<interfaces =

Main_Actvity Java_Adapter

jniattachThread_capturel)
jniAttachThread_process()
onCreate(savedinstanceSstate) jniDetachThread_capture()

)
)

jniDetachThread_process(
natifyCompletion_capture(
notifyCompletion_process()
deleteGlobalR efs_capture()
deleteGlobalR efs_process()
*feam_thread_capture_(*arg)
*feam_thread_process_{*arg)
= —> CaptureActivity_run{eny thiz)
—> ProcessActivity_run(*eny thiz)
JNI_OnLoadivm reserved)

Process_Activity Capture_Activity

onCreate(savedinstanceState) | | onCreate(savedinstancestate)
onCompletion() onCompletion()

) ung

Figura A.6: Diagrama de clases para la aplicacion movil.

A.5. Arquitectura NVIDIA Tegra 3

Los procesadores NVIDIA Tegra 3 cuentan con cuatro ntcleos y ofrecen
un excelente rendimiento en navegacién y contenidos flash asi como en juegos
gracias a la GPU NVIDIA GeForce ULP de bajo consumo. Las principales
innovaciones que presenta la 1ltima versién de este chip con respecto de su
predecesor (Tegra 2) son las siguientes:

1. Tecnologia 4Plus-1. La nomenclatura 4 + 1 se refiere a la arqui-
tectura de procesadores de Tegra 3, formada por cuatro nicleos de
CPU maés un quinto ntucleo dedicado a ahorrar bateria. Se trata de una
arquitectura SMP variable que permite utilizar los cuatro ntcleos de
alto rendimiento para las tareas mas pesadas, de manera que cada uno
de ellos se activa o desactiva de forma independiente y automaética en
funcién de la carga de trabajo. El niicleo de ahorro energético (o copro-
cesador) maneja tareas que necesitan menos potencia, como el estado

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

de espera activa o la reproducciéon de video y musica, y lo hace de forma
transparente para el SO y las aplicaciones.

A diferencia de los ordenadores de sobremesa, en los cuales se produjo
una transicion lenta desde la aparicién de los primeros procesadores
con multiples ntcleos hasta su completo aprovechamiento, en el campo
de los procesadores moviles esta transiciéon ha sido mucho mas rapida
en el tiempo. Ya la antigua versién 2.3 del sistema operativo Android
incluia soporte para procesado con multiples nicleos y hoy en dia, con
la versién 4.0 de este sistema operativo, el rendimiento ha mejorado
considerablemente.

2. NVIDIA DirectTouch. Esta tecnologia mejora la respuesta de la
pantalla tactil y traslada al procesador Tegra 3 una parte del trabajo
que habitualmente realizan los mecanismos de control tactil del dispo-
sitivo reduciendo de este modo el consumo de energia.

3. Juego en 3D estereoscopico. Esta opcion permite aprovechar la ga-
lardonada tecnologia 3D Vision de NVIDIA para convertir automati-
camente (y en tiempo real) juegos y aplicaciones basados en OpenGL
al formato 3D estereoscépico.

4. Tecnologia de pantalla NVIDIA PRISM. La tecnologia PRISM
(Pixel Rendering Intensity and Saturation Management) reduce la po-
tencia de retroiluminacion del dispositivo mévil al mismo tiempo que
mejora el color de los pixeles para brindar la misma calidad de visua-
lizacién, pero con mucho menos gasto de bateria.

El resto de las especificaciones técnicas de los dispositivos NVIDIA Tegra
3 quedan reflejadas en la siguiente tabla:

Desarrollo de la aplicacion para el tablet NVIDIA Tegra

PROCESADOR
Cpu 4 nucleos 4+ 1 de bajo consumo
Maéx. frecuencia Hasta 1.5 GHz
Caché nivel L2 1 MB
Caché nivel L1 32KB por nicleo
MEMORIA
Frecuencia DDR3-L a 1500Mhz
Tamano Hasta 2GB
GPU
Arquitectura GeForce ULP (bajo consumo)
Ntcleos de procesamiento 12
Compatibilidad 3D estereoscopico SI
Version de OpenGL ES 2.0
Versién de OpenVG 1.1
CAMARA
Camara principal 32 Megapixeles
Cédmara secundaria 5 Megapixeles
Megapixeles por segundo 300
Zoom digital Hasta 16x
Descodificaciéon/Codificacién JPEG | 80 Megapixeles por segundo
Estabilizacion de imagenes fijas SI
Estabilizacion de video SI

