
Apéndice A

Desarrollo de la aplicación para
el tablet NVIDIA Tegra

El prototipo tablet Tegra 3 de NVIDIA es uno de los dispositivos exis-
tentes compatibles con las libreŕıas de código abierto de la FrankenCamera
(Fcam). Estas libreŕıas, escritas en lenguaje C++, permiten controlar a ba-
jo nivel todas las caracteŕısticas relacionadas con la cámara que incorpora
el dispositivo móvil, siendo aśı la herramienta ideal para el desarrollo de la
aplicación móvil necesaria en este proyecto. Dado que el tablet funciona bajo
el sistema operativo Android, la incorporación de estas libreŕıas no resulta
trivial. Este anexo detalla la estructura de la aplicación móvil desarrollada,
que sigue el esquema presentado en la figura A.1.

Figura A.1: Diagrama de componentes correspondiente a la aplicación móvil
desarrollada.

1



Desarrollo de la aplicación para el tablet NVIDIA Tegra

A.1. Android

Android es un sistema operativo pensado para dispositivos móviles tales
como smartphones o tablets. Su éxito sobre sus competidores (iOS, Symbian
o Blackberry OS) radica en su núcleo de sistema basado en Linux, es decir, es
libre, gratuito y multiplataforma. Como se observa en la figura A.2, la capa
más baja del sistema es el núcleo Linux. Él es el encargado de interactuar
con el hardware del dispositivo y de realizar las gestiones propias del sistema
operativo (gestión de memoria, procesos y seguridad). En el segundo nivel
más bajo se encuentran las libreŕıas y la máquina virtual, también conoci-
da como Dalvik (Android Runtime). A diferencia de la máquina virtual de
Java (JVM), Dalvik esta basada en una máquina de registros y no en una
máquina de pila. A continuación se sitúa la capa mediante la cual Android
proporciona las herramientas necesarias para desarrollar aplicaciones (Apli-
cation framework). Por último, en la capa de mayor nivel, es donde se sitúan
las aplicaciones instaladas en el dispositivo, ya sean pertenecientes al usuario
o nativas del sistema.

Figura A.2: Arquitectura del sistema operativo Android. Imagen obtenida de
developer.android.com.

2



Desarrollo de la aplicación para el tablet NVIDIA Tegra

Las aplicaciones desarrolladas para Android se escriben en código Java.
Una vez compiladas y generado el correspondiente bytecode, éste se con-
vierte al formato de ejecución soportado por Dalvik (.dex). Para facilitar el
desarrollo de aplicaciones, Android proporciona un kit de desarrollo software
(Software development kit o SDK ) gratuito a través de su página web (deve-
loper.android.com). Este kit incluye, además del entorno gráfico de desarro-
llo, una herramienta que permite depurar el código generado (Dalvik Debug
Monitor Server o ddms) aśı como un emulador para probar las aplicaciones
desarrolladas antes de instalarlas en el dispositivo f́ısico (Android Emulator).

A.2. Java Native Interface (JNI)

No obstante, teniendo en cuenta que las libreŕıas de la FrankenCamera
(FCam) necesarias para el desarrollo de esta aplicación se encuentran escritas
en código C++, el lenguaje de programación Java no constituye una herra-
mienta suficiente para este proyecto. Para poder solucionar este problema es
necesario hacer uso del Java Native Interface (JNI).

El JNI es un framework de programación que permite ejecutar código
nativo desde Java y viceversa. El código nativo representa funciones escritas
en otros lenguajes de programación como C, C++ o ensamblador. Por lo
tanto, gracias a esta herramienta, las libreŕıas de la FCam pueden ser inde-
pendientemente compiladas, e incluidas en los ficheros que implementan los
algoritmos de descomposición escritos en C++. Este código nativo es ejecu-
tado en el tablet NVIDIA y se divide en dos etapas: en primer lugar se realiza
la captura de la escena mediante la cámara integrada en el dispositivo móvil,
y en segundo lugar se procesan los datos y se calculan las dos componentes
de iluminación de la escena: directa y global.

A.3. Libreŕıas de la FrankenCamera (FCam)

FCam es el resultado de la Cámara 2.0, proyecto de investigación llevado
a cabo por Marc LeVoy (Universidad de Standford) y Kari Pulli (Nokia
Research Center en Palo Alto, trasladado a NVIDIA en abril del 2011) que
fue presentado en el congreso internacional de gráficos SIGGRAPH 2010 [?].
En la actualidad existen tres dispositivos compatibles con estas libreŕıas: el
dispositivo móvil Nokia N900, la cámara construida en los laboratorios F2 y
el tablet NVIDIA Tegra.

3



Desarrollo de la aplicación para el tablet NVIDIA Tegra

F2 N900 tablet NVIDIA

Figura A.3: Dispositivos compatibles con las libreŕıas FCam.

Las libreŕıas de la FrankenCamera forman una API (Application program-
ming interface) de código abierto que permiten el control fácil y preciso de
las cámaras digitales. Permiten controlar completamente a bajo nivel todos
los parámetros de la cámara para la captura de cada fotograma, haciendo
posible capturar una ráfaga de imágenes cada una con propiedades diferen-
tes. De esta forma es posible obtener efectos tan sorprendentes como el que
se muestra en la figura A.4

Figura A.4: Para tomar esta imagen la cámara dispuso de dos flash, cada
uno ajustado con un tiempo de duración distinto.

La API se compone de cuatro clases principales: Shot, Sensor, Device y
Frame. La clase Shot especifica los parámetros de captura y post-proceso
de una única imagen. Una instancia de la clase Shot especifica parámetros
del sensor tales como ganancia, tiempo de exposición, resolución, formato,
balance de blancos,etc. Una instancia de la clase Frame contiene la imagen
resultante junto con la información generada por hardware como histogramas
o mapas de contorno. La clase Device puede ser programada para ejecutar
acciones (p.ej: disparar el flash). En la figura A.5 se observa la relación entre
cada una de las clases.

4



Desarrollo de la aplicación para el tablet NVIDIA Tegra

Figura A.5: Para usar la API de la FrankenCamera, se pasan instancias de
la clase Shot al sensor de la cámara (clase Sensor), que devuelve aśıncrona-
mente Frames, los cuales contienen la imagen resultante.

A.4. Estructura de la aplicación móvil

Una vez analizados todos los componentes necesarios (Android, JNI y
FCam), el siguiente paso a seguir consiste en combinar todos ellos para po-
der desarrollar la aplicación móvil deseada. En Android, las actividades (Ac-
tivity) son clases públicas que representarán cada una de las pantallas de
nuestra aplicación. Cada actividad cuenta con, al menos, un método llamado
onCreate(). Este método es el primero en ser invocado cuando la actividad
se inicia. Su análogo es el método onCompletion() que se invoca cuando la
actividad finaliza.

La aplicación móvil desarrollada para este proyecto cuenta con dos pan-
tallas distintas: una para realizar el proceso de captura de la escena y otra
para tratar los datos capturados y obtener la descomposición. Estas pan-
tallas se visualizan a modo de pestañas dentro de una tercera, la pantalla
principal. Por lo tanto, tal y como muestra el diagrama de clases de la fi-
gura A.6, se tiene una clase distinta para cada una de estas tres pantallas.
La pantalla principal (Main Activity) constituye el punto de entrada de la
aplicación. Cada una de las clases correspondientes a las otras dos pestañas
(Process Activity y Capture Activiry) cuenta con los métodos onCreate(),
onCompletion() y con la declaración del método nativo run(). Este último,
es un método abstracto cuya implementación, en código C++, se encuentra
en la clase que implementa el framework de JNI (Java Adapter). Aśı pues,
en esta clase se tienen, entre otros, los métodos CaptureActivity run() y Pro-
cessActivity run() que a su vez, invocan a los métodos fcam thread capture()

5



Desarrollo de la aplicación para el tablet NVIDIA Tegra

y fcam thread process() respectivamente para lanzar sendos hilos que ejecu-
ten el código C++ correspondiente. En dicho código, es posible llamar a las
funciones de la libreŕıa FCam con tan sólo incluir su cabecera al inicio del
mismo (#include <FCam/Tegra.h>).

Figura A.6: Diagrama de clases para la aplicación móvil.

A.5. Arquitectura NVIDIA Tegra 3

Los procesadores NVIDIA Tegra 3 cuentan con cuatro núcleos y ofrecen
un excelente rendimiento en navegación y contenidos flash aśı como en juegos
gracias a la GPU NVIDIA GeForce ULP de bajo consumo. Las principales
innovaciones que presenta la última versión de este chip con respecto de su
predecesor (Tegra 2) son las siguientes:

1. Tecnoloǵıa 4Plus-1. La nomenclatura 4 + 1 se refiere a la arqui-
tectura de procesadores de Tegra 3, formada por cuatro núcleos de
CPU más un quinto núcleo dedicado a ahorrar bateŕıa. Se trata de una
arquitectura SMP variable que permite utilizar los cuatro núcleos de
alto rendimiento para las tareas más pesadas, de manera que cada uno
de ellos se activa o desactiva de forma independiente y automática en
función de la carga de trabajo. El núcleo de ahorro energético (o copro-
cesador) maneja tareas que necesitan menos potencia, como el estado

6



Desarrollo de la aplicación para el tablet NVIDIA Tegra

de espera activa o la reproducción de v́ıdeo y música, y lo hace de forma
transparente para el SO y las aplicaciones.
A diferencia de los ordenadores de sobremesa, en los cuales se produjo
una transición lenta desde la aparición de los primeros procesadores
con múltiples núcleos hasta su completo aprovechamiento, en el campo
de los procesadores móviles esta transición ha sido mucho más rápida
en el tiempo. Ya la antigua versión 2.3 del sistema operativo Android
inclúıa soporte para procesado con múltiples núcleos y hoy en d́ıa, con
la versión 4.0 de este sistema operativo, el rendimiento ha mejorado
considerablemente.

2. NVIDIA DirectTouch. Esta tecnoloǵıa mejora la respuesta de la
pantalla táctil y traslada al procesador Tegra 3 una parte del trabajo
que habitualmente realizan los mecanismos de control táctil del dispo-
sitivo reduciendo de este modo el consumo de enerǵıa.

3. Juego en 3D estereoscópico. Esta opción permite aprovechar la ga-
lardonada tecnoloǵıa 3D Vision de NVIDIA para convertir automáti-
camente (y en tiempo real) juegos y aplicaciones basados en OpenGL
al formato 3D estereoscópico.

4. Tecnoloǵıa de pantalla NVIDIA PRISM. La tecnoloǵıa PRISM
(Pixel Rendering Intensity and Saturation Management) reduce la po-
tencia de retroiluminación del dispositivo móvil al mismo tiempo que
mejora el color de los pixeles para brindar la misma calidad de visua-
lización, pero con mucho menos gasto de bateŕıa.

El resto de las especificaciones técnicas de los dispositivos NVIDIA Tegra
3 quedan reflejadas en la siguiente tabla:

7



Desarrollo de la aplicación para el tablet NVIDIA Tegra

PROCESADOR
Cpu 4 núcleos + 1 de bajo consumo

Máx. frecuencia Hasta 1.5 GHz
Caché nivel L2 1 MB
Caché nivel L1 32KB por núcleo
MEMORIA

Frecuencia DDR3-L a 1500Mhz
Tamaño Hasta 2GB
GPU

Arquitectura GeForce ULP (bajo consumo)
Núcleos de procesamiento 12

Compatibilidad 3D estereoscópico SI
Versión de OpenGL ES 2.0

Versión de OpenVG 1.1

CÁMARA
Cámara principal 32 Megaṕıxeles

Cámara secundaria 5 Megaṕıxeles
Megaṕıxeles por segundo 300

Zoom digital Hasta 16x
Descodificación/Codificación JPEG 80 Megaṕıxeles por segundo

Estabilización de imágenes fijas SI
Estabilización de video SI

8


