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1. RESUMEN 

 El objetivo del presente Proyecto Fin de Carrera es el estudio de la influencia de 

los tratamientos térmicos de sinterización sobre las propiedades de los materiales 

compuestos cerámicos de sílice reforzados con fibras de tipo óxido.  

 En la primera parte se describe el procedimiento seguido para la fabricación del 

material compuesto que consiste en la preparación de una suspensión estable con la que 

posteriormente se impregnan las fibras de tipo manta. La consolidación del material se 

lleva a cabo bajo presión y a la vez tiene lugar una etapa de secado a temperatura 

controlada donde se elimina la mayor parte del agua que contiene el material. Se ha 

trabajado con suspensiones con un contenido del 41 %  en volumen de SiO2 en silicasol, 

con la adición de 1,5 % de Duramax D3005, a pH 9,2 y molidas durante una hora a 500 

rpm en un molino planetario de bolas. Las placas de material compuesto fabricadas 

contienen dos capas de fibras de silicatos de alcalinotérreos apiladas, con un espesor de 

13 mm y de densidad 96 kg/cm3, de dimensiones 10x10 cm2. 

 Una vez fabricado el material compuesto, se analiza su microestructura  con un  

microscopio electrónico de barrido y se somete a tratamientos térmicos de sinterización 

con el fin de compactarlo y densificarlo. Éstos se han realizado a 900, 800, 700 y 600 ºC 

durante 2, 6 y 12 horas, con una rampa de subida y de bajada en todos los casos de 5 

ºC/min. En la segunda parte del proyecto, se recogen los datos obtenidos en el estudio 

de la influencia de la temperatura y del tiempo de permanencia a dicha temperatura en 

las propiedades de los composites. Para ello, se han realizado medidas de densidad y 

ensayos de flexión de las piezas sinterizadas. Con el objeto de ayudar a explicar el 

comportamiento de estos composites se ha utilizado como referencia un material 

homogéneo fabricado a nivel industrial, denominado ZIRCAR. 

 Los resultados obtenidos indican que la realización de tratamientos térmicos de 

sinterización en el rango de temperaturas de 600 a 900 ºC con permanencias entre 2 y 

12 horas no supone ninguna variación en la densidad del material procesado. Sin 

embargo, estos tratamientos si ejercen efectos significativos en cuanto a las propiedades 

finales del material, siendo más acusado sobre el material ZIRCAR comercial, lo que 

indica que el proceso de fabricación propio debe mejorarse y optimizarse para conseguir 

las propiedades deseadas. 
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2. INTRODUCCIÓN 

 
 Los materiales cerámicos son materiales inorgánicos no metálicos, constituidos 

por elementos metálicos y no metálicos enlazados principalmente mediante enlaces 

iónicos y/o covalentes. Las composiciones químicas de los materiales cerámicos varían 

considerablemente, desde compuestos sencillos a mezclas de muchas fases complejas. 

Sus propiedades varían mucho debido a las diferencias que existen entre sus enlaces. En 

general, son duros y frágiles, con baja tenacidad y ductilidad. Son buenos aislantes 

eléctricos y térmicos debido a la ausencia de electrones conductores. Poseen elevadas 

temperaturas de fusión y una estabilidad relativamente alta frente a medios agresivos. 

 
 El principal inconveniente que presentan muchas cerámicas es su fragilidad lo 

que plantea la necesidad de buscar alternativas para la mejora de sus propiedades 

mecánicas. Una de las alternativas es la incorporación de fibras como refuerzo de la 

matriz cerámica. Las fibras aportan fundamentalmente resistencia mecánica, rigidez y 

dureza y son determinantes en las propiedades mecánicas finales del material. Por tanto, 

la combinación adecuada de matriz y fibras origina materiales con mejores propiedades 

que las partes que los componen por separado. 

 
 Dentro los materiales compuestos cerámicos reforzados con fibras, hay dos 

clases, los compuestos óxido-óxido y los no óxidos. Los primeros, entre los que se 

incluyen los compuestos cerámicos basados en matriz y fibras cerámicas, presentan 

grandes ventajas con respecto a los no óxidos. Estos últimos son susceptibles a la 

degradación en ambientes químicamente agresivos, o ricos en vapor de agua, tienen una 

baja resistencia a la oxidación y las técnicas de procesado de estos materiales son muy 

complejas, lo que conlleva unos altos costes de fabricación [1]. 

 
 El procesado del material que se ha utilizado en este proyecto se puede resumir 

de forma general de la siguiente manera. La incorporación de las fibras en la matriz 

tiene lugar a través de la impregnación de las fibras con una suspensión estable que 

contiene el polvo cerámico de partida. Posteriormente, la consolidación inicial del 

material tiene lugar bajo presión a temperatura controlada. Durante la compactación 

tiene lugar la transición de la suspensión fluida, sol, a un estado de gel. Finalmente, se 

aplican tratamientos térmicos de sinterización. 
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 La sinterización es el proceso de tratamiento térmico de un sistema de partículas 

individuales en forma de un aglomerado poroso, previamente conformado, con el objeto 

de transformarlo en un producto denso que evoluciona hacia un estado de máxima 

compactación (reducción de la porosidad) y resistente. Se consigue que pequeñas 

partículas de un material se mantengan unidas por difusión al estado sólido. En el 

proceso de sinterizado las partículas coalescen por difusión al estado sólido a muy altas 

temperaturas pero por debajo del punto de fusión del compuesto que se desea sinterizar. 

En la sinterización, la difusión atómica tiene lugar entre las superficies de contacto de 

las partículas a fin de que resulten químicamente unidas. 

 
 En este proyecto se presenta un estudio de la influencia de los tratamientos de 

sinterización sobre los materiales compuestos cerámicos. Es decir, se ha analizado como 

influyen las temperaturas alcanzadas en estos tratamientos, así como el tiempo que esa 

temperatura permanece constante antes de empezar a descender. Se han fabricado 

diversas placas de material compuesto con la misma composición de la suspensión 

cerámica y con el mismo número de capas de fibra de refuerzo y se han estudiado la 

densidad y la resistencia a flexión después de someterlas al tratamiento térmico. 

 
 
 

3. MATERIALES COMPUESTOS CERÁMICOS 

REFORZADOS CON FIBRAS 

 
 Los componentes fabricados de materiales compuestos de matriz cerámica sobre 

base de fibras de óxido cerámico como, por ejemplo 3MTM NextelTM  610, y de matrices 

de óxido cerámico  (Al2O3, SiO2, 8YSZ) son cada vez más importantes en todo el 

mundo. Un gran número de empresas, como COI Ceramics (EE.UU.), DLR – WHIPOX 

(Alemania) y W.E.C. Pritzkow Spezialkeramik (Alemania) desarrollan componentes a 

partir de este material. 

 
 El proceso utilizado es el método preimpregnado con autoclave, el método de 

devanado y el recubrimiento con cuchilla. Las cerámicas reforzadas con fibra se utilizan 

principalmente para fabricar paredes finas, componentes resistentes a los daños y 

resistentes al choque térmico, que se usan a temperaturas de 1300 °C en atmósferas 

oxidantes y reductoras. 
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3.1. IDEAS BÁSICAS SOBRE EL MATEIAL  

 
 La cerámica clásica se sabe que es un material frágil que se rompe abruptamente 

una vez que se alcanza el límite de carga. A diferencia de los metales, un componente 

cerámico sobrecargado falla por completo sin ningún tipo de preaviso. Muchos usuarios 

potenciales de las cerámicas desean combinar sus propiedades positivas, tales como 

resistencia a la temperatura, resistencia a la corrosión, capacidad de aislamiento y la 

dureza, con las buenas propiedades de los metales o plásticos reforzados con fibra, tales 

como la plasticidad y la resistencia a los daños, así como obtener un material predecible. 

 
 Si se utiliza plástico reforzado con fibras como base para obtener el material 

cerámico deseado, en una combinación de fibra / matriz, es necesario utilizar una fibra 

de gran resistencia, mecánicamente fuerte, pero una matriz cerámica elástica (módulo 

de elasticidad <50 GPa). Los efectos conocidos de los plásticos reforzados con fibra no 

pueden, sin embargo, corresponderse con los materiales cerámicos utilizables ya que no 

hay "cerámicas elásticas" con un módulo de elasticidad por debajo de GPa. 

 
 El concepto convencional de cerámicas reforzadas con fibra se basa en una 

interfaz débil entre la fibra y la matriz. Tan pronto como las primeras grietas se forman 

en la matriz, a causa de la interfaz débil, la fibra se sale de ésta. Una vez que la grieta ha 

avanzado en la matriz hasta el momento que sólo las fibras soportan las fuerzas, llega al 

punto de carga en el que las fibras fallan. Que las fibras se salgan de la matriz, es el 

llamado "efecto de la fibra extraíble". Especialmente para cerámicas reforzadas con 

fibras, se ha demostrado que el concepto convencional no puede aplicarse. Para obtener 

una cerámica de matriz densa, el material compuesto debe ser sinterizado a 

temperaturas muy altas. A estas temperaturas de sinterización, las fibras están sujetas a 

degradación extremadamente grave y las propiedades deseadas en el material 

compuesto se pierden. 

 
 A mediados de la década de 1990 se demostró que una matriz porosa y débil por 

lo tanto es una alternativa prometedora. La función principal de la matriz es mantener 

las fibras unidas. La carga se transmite fundamentalmente por la fibra, es decir, en un 

cuerpo repleto de grietas, con el límite de carga de la matriz cerámica sobrepasado, las 

fibras todavía pueden mantener la estructura unida. Las fuerzas están por lo tanto 

desviadas o transferidas desde la matriz a las fibras, a través de la interfaz. De esta 
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manera, se puede obtener un comportamiento pseudoplástico. La curva de fractura 

(figura 1) y el tipo de fractura (figura 2) muestran la absorción de energía de 

mecanismos tales como el "efecto de la fibra extraíble" y la desviación de la grieta, que 

tienen un efecto positivo en la resistencia a los daños y el comportamiento frente al 

choque térmico [2]. 

 

 
 

Figura 1: Curva de rotura transversal de una lámina cerámica tipo AvA-Z-ISC.  Esfuerzo de flexión 

(N/mm2) vs. Alargamiento (%). 

 

 
 

Figura 2: Muestras después de ensayos de flexión, se ve claramente el efecto de la fibra extraíble. 

 

3.2. TÉCNICAS DE FABRICACIÓN 

 
 A nivel mundial se utilizan tres métodos de fabricación [2]. 

 
3.2.1. COI Ceramics 

 
 El método COI Ceramics, en general, puede explicarse como una tecnología de 

preimpregnación con tratamiento en autoclave, como la utilizada en la producción de 
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plásticos reforzados con fibra. La matriz está fabricada de un sol acuoso y rellena de 

polvos del sistema Al2O3/SiO2. Esta matriz se aplica a la fibra 3MTM NextelTM 312, 610 

o 720 en un proceso de impregnación. El tejido impregnado se lamina en el número 

requerido de capas en un molde. Además, la fibra se puede impregnar con la matriz y 

enrollarse para moldear un elemento simétrico. La pieza laminada o enrollada se envasa 

en una bolsa en la que se hace el vacío. En un proceso con autoclave, el componente se 

endurece con presión y temperatura. A continuación, la pieza se puede desmoldar y 

cocer independiente. Para conseguir el contorno final, el componente se acaba con 

herramientas de diamante. 

 
3.2.2. DLR, Colonia 

 
 El proceso desarrollado en el DLR (Centro Aeroespacial Alemán), Colonia se 

puede describir como un proceso de devanado. El material fabricado se denomina 

WHIPOX. La matriz se compone de precursores de óxido cerámico a partir del sistema 

Al 2O3/SiO2. En el proceso de devanado continuo, primero la fibra 3MTM NextelTM 610 o 

720 se cambia de tamaño en un horno de tubo y luego se infiltra en un baño de 

suspensión. La infiltración es seguida por un secado previo, después de infiltrado el 

hilo, todavía húmedo, se enrolla en una forma definida alrededor de un núcleo 

simétrico. La estructura enrollada se seca. También puede ser retirada del núcleo cuando 

todavía está húmeda para ser laminada en moldes y formar componentes complejos. 

Después de secarse, las piezas se desmoldan y hornean independientemente. Aquí 

también los componentes pueden ser acabados para obtener el contorno final. 

 
3.2.3. W.E.C. Pritzkow Specialkeramik 

  
 El proceso aplicado por W.E.C. Pritzkow Spezialkeramik puede ser descrito 

como un recubrimiento con cuchilla. El material fabricado con espesores típicos de 0,3-

5 mm se conoce como "lámina de cerámica". El mínimo espesor posible depende del 

grosor del tejido. Las matrices son suspensiones acuosas del sistema Al2O3/SiO2 o 

suspensiones basadas en soles orgánicos (Al2O3/SiO2/mullita/8YSZ) y rellenas de 

polvos (Al2O3/SiO2). El tejido compuesto por 3MTM NextelTM 610, Nitivy o sílice es 

infiltrado por recubrimiento con cuchilla. En función de la complejidad del componente, 

el número requerido de capas de tejido impregnado se laminan en uno o múltiples 

moldes de acuerdo con los diseños definidos y se secan. El tejido infiltrado se puede 
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enrollar en forma de tubos o en formas simétricas. Las estructuras secas se hornean 

independientemente a una temperatura de entre 1000 y 1300 ºC. El proceso de cocción 

es seguido por la infiltración con soles acuosos u orgánicos, que mejoran aún más la 

resistencia de los componentes. Cada infiltración es seguida por un proceso de cocción. 

Los componentes cocidos se terminan con herramientas de diamante para obtener los 

contornos finales. 

 

3.3. DAÑOS Y FALLOS DEL MATERIAL 

 
 En las aplicaciones industriales de los diversos materiales de alta temperatura 

tales como metal, cerámicas monolíticas, como SiC y óxidos cerámicos reforzados con 

fibra, se encuentran diferentes daños y fallos de forma. Al ser sometidos a un choque 

térmico severo, los óxidos de cerámicas monolíticas pueden sufrir grietas extremas y 

fallar de repente. El SiC es más resistente al choque térmico, pero a temperaturas 

superiores a 1000 °C, este material sufre oxidación, lo que significa que las zonas del 

borde de un componente de SiC se oxidan formando una capa de SiO2. A largo plazo 

esto puede conducir a la fragilidad extrema y una grave pérdida de fuerza. Cuando se 

expone al choque térmico o la carga térmica cambia, el componente puede fallar 

repentinamente. Los óxidos cerámicos reforzados con fibras, en cambio, son estables a 

la oxidación y, gracias a sus propiedades, extremadamente resistente a los choques 

térmicos. El fallo de los componentes cerámicos reforzados con fibras se produce 

cuando se acumulan  tensiones térmicas excesivas como resultado de elevados 

gradientes de temperaturas dentro del componente y la expansión térmica asociada. Si 

los componentes hechos de óxidos cerámicos reforzados con fibras se someten a 

temperaturas superiores a 1300 °C, las fibras se degradan y resquebrajan. Asociado a 

esto, el compuesto se convierte también en frágil y pierde una gran cantidad de fuerza. 

Pueden fallar incluso cuando son expuestos a cargas extremadamente mecánicas [2]. 

 
 
 

4. PROCESO SOL-GEL 

 
 El proceso sol-gel permite la fabricación de materiales amorfos y policristalinos 

con características especiales en su composición y propiedades. Su utilidad radica en 
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que necesita menor temperatura en comparación con los métodos tradicionales de 

fabricación de vidrios por fusión. 

 
 El sol-gel es una ruta química que comienza con la síntesis de una suspensión 

coloidal de partículas sólidas o cúmulos en un líquido (sol) seguida de la hidrólisis y 

condensación de este sol para formar un material sólido lleno de solvente (gel). 

Mediante este método se pueden sintetizar materiales en forma de polvos, fibras o 

películas dependiendo de la aplicación deseada. 

 
 En cualquiera de los casos anteriores es necesario eliminar los solventes y el 

agua utilizados durante el proceso. Esto se puede lograr simplemente dejando reposar el 

gel a temperatura ambiente durante un periodo de tiempo llamado envejecimiento, en el 

cual el gel se encogerá expulsando el solvente y el agua residual. 

 
 Al término del tiempo de envejecimiento, por lo general aún se tienen solventes 

y agua en el material, además de que el tamaño del poro es considerable. Para 

solucionar esto, el material se somete a un tratamiento térmico. Al final de este 

procedimiento se obtiene un material en forma de monolito, polvos, fibras  o de película 

delgada [3]. 

 
 El proceso sol-gel se esquematiza en la figura 3. 

 

 
 

Figura 3: Proceso sol-gel. 

 
 Los precursores utilizados en este proceso pueden ser de tipo inorgánico como 

una sal, u orgánicos como un alcóxido. Los alcóxidos son los precursores más 

ampliamente utilizados en los procesos sol-gel debido a que se hidrolizan fácilmente. 
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 Un alcóxido está compuesto de un ion metálico unido por medio de un enlace de 

oxígeno con uno o más ligandos  del tipo “alcoxi”. Un grupo alcoxi se forma al eliminar 

un protón del grupo hidroxilo presente en un alcohol.  

 
 La mayoría de los geles son amorfos (no cristalinos) aunque estén secos, pero 

muchos cristalizan al ser calentados. Cuando un material amorfo es sometido a un 

proceso de sinterización, el transporte de masa se lleva cabo por flujo viscoso y en 

materiales cristalinos la sinterización involucra difusión de las especies. 

 
 Debido a que el proceso de trasporte por difusión es más lento que el transporte 

por flujo viscoso, la densificación de materiales amorfos obtenidos por el método sol-

gel es más fácil y generalmente más rápida. El proceso de sinterización de estos 

materiales presenta una disminución en la temperatura o en el tiempo de reacción, 

comparado con otros métodos. 

 
En general, las ventajas del uso de este proceso de síntesis son [4]: 

 
• La posibilidad de proporcionar polvos finos de gran área superficial, alta energía 

intrínseca y como consecuencia, un alto grado de sinterización. 

• Ofrecer gran homogeneidad en el sistema de trabajo, alta pureza en el producto 

terminado y sencillez en la preparación de las fases. 

• Aportar gran rendimiento y ahorro en los tiempos y/o en las temperaturas de 

calcinación. 

• Facilidad de impregnación de las fibras con el sol. 

• La ductilidad y moldeabilidad del gel permiten diseñar piezas con la forma 

deseada, adaptándose a la geometría del molde. 

• Facilitar la formación de fases en condiciones de no equilibrio. 

 
Las desventajas que proporciona son: 

 
• Elevado costo de materias primas (para el caso de síntesis vía alcóxidos). 

• Lentitud en el proceso de gelación. 

• Formación de grietas en recubrimientos por el desprendimiento de material 

volátil en el formado de piezas. 
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4.1. ESTABILIZACIÓN – DESESTABILIZACIÓN DE UNA 

SUSPENSIÓN COLOIDAL 

 
 Una dispersión coloidal es un sistema fisicoquímico formado por dos o más 

fases, principalmente una continua, normalmente fluida, y otra dispersa en forma de 

partículas; por lo general sólidas. La fase dispersa es la que se halla en menor 

proporción. 

 
 Una suspensión se considera estable cuando las partículas no sedimentan ni 

coagulan durante largos periodos de tiempo. 

 
 La estabilidad de una suspensión coloidal es la propiedad inherente de las 

partículas coloidales a permanecer en dispersión durante mucho tiempo. En los sistemas 

de coloides hidrófilos, se admite que el mantenimiento de la estabilidad se debe al 

fenómeno de hidratación, es decir las moléculas de agua atraídas hacia la superficie de 

las partículas forman una barrera que impide el contacto entre estas. 

 
 La estabilidad de las partículas hidrófobas se debe en gran parte al fenómeno de 

la doble capa eléctrica, esta teoría postula que dichas partículas suspendidas en el agua, 

tienen en su superficie, carga eléctrica (generalmente negativa) que atrae iones de carga 

opuesta de entre los que se encuentran en el agua. Se forma entonces a su alrededor una 

capa de iones de carga contraria (denominados contraiones) que se mantienen cerca de 

la partícula por efecto de las fuerzas electrostáticas. 

 
 La desestabilización del coloide se produce por la eliminación de las dobles 

capas eléctricas que rodean a todas las partículas coloidales, con la formación de 

núcleos microscópicos. Los coagulantes cancelan las cargas eléctricas sobre la 

superficie del coloide permitiendo la aglomeración y la formación de flóculos. Estos 

flóculos inicialmente son pequeños, pero se juntan y forman aglomerados mayores 

capaces de sedimentar. Para favorecer la formación de aglomerados de mayor tamaño se 

adicionan un grupo de productos denominados floculantes [4]. 
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5. MATERIALES EMPLEADOS 

 

5.1. SÍLICE 

 
 El óxido de silicio (IV) o dióxido de silicio (SiO2) es un compuesto de silicio y 

oxígeno, llamado comúnmente sílice. Es uno de los componentes de la arena. Este 

compuesto ordenado espacialmente en una red tridimensional (cristalizado) forma el 

cuarzo y todas sus variedades. Si se encuentra en estado amorfo constituye el ópalo, que 

suele incluir un porcentaje elevado de agua, y el sílex. En este proyecto se ha utilizado 

polvo de sílice amorfo. En la figura 4 se muestra la estructura de ambas. 

 

 
 

Figura 4: Redes tridimensionales del SiO2 cristalino (a) y amorfo (b). 

 
 La sílice se usa, ente otras cosas, para hacer vidrio, cerámicas, fibra óptica, 

aislamiento de cables y cemento. También es un desecante, es decir que quita la 

humedad del lugar en que se encuentra.  

 
 Se trata de un compuesto muy duro y poco soluble que presenta un brillo 

metálico y color grisáceo. Aunque es un elemento relativamente inerte y resiste la 

acción de la mayoría de los ácidos, reacciona con los halógenos y álcalis diluidos. El 

silicio transmite más del 95 % de las longitudes de onda de la radiación infrarroja. La 

resistencia del enlace Si-O se refleja en una temperatura de fusión alta, 1713 ºC.  

 
 En la tabla 1 se recogen algunas de las propiedades físicas de la sílice, entre las 

que destacan sus elevados puntos de fusión y ebullición, su alta densidad y su baja 

solubilidad en agua [5]. 
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Tabla 1: Propiedades físicas de la sílice. 
 

Propiedades Físicas 

Peso molecular 60,1 g/mol 

Punto de fusión 1713 ºC 

Punto de ebullición 2230 ºC 

Densidad 2634 Kg/m3 

Estructura cristalina 
Cuarzo, cristobalita o 

tridimita 
Solubilidad 0,012 g en 100 g de agua 

 

 Se prepara en forma de polvo amorfo amarillo pardo o de cristales negros-

grisáceos. Se obtiene calentando sílice, o dióxido de silicio (SiO2), con un agente 

reductor, como carbono o magnesio, en un horno eléctrico. 

 
 Se disuelve en ácido fluorhídrico formando el gas tetrafluoruro de silicio, SiF4, y 

es atacado por los ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de silicio 

formado inhibe la reacción [6]. 

 
 El silicio no existe en estado libre, sino que se encuentra en forma de dióxido de 

silicio y de silicatos complejos. Los minerales que contienen silicio constituyen cerca 

del 40 % de todos los minerales comunes, incluyendo más del 90 % de los minerales 

que forman rocas volcánicas. El mineral cuarzo, sus variedades y los minerales 

cristobalita y tridimita son las formas cristalinas del silicio existentes en la naturaleza. 

 

5.2. SILICASOL 

 
 Silicasol, también conocido por hidrosol de sílice, es una solución coloidal de 

alta hidratación molecular de partículas de sílice dispersas en agua. Es inodoro, insípido 

y no tóxico. Su fórmula química molecular es mSiO2·nH2O.  

 
 Gracias a la medida de sus partículas que oscila entre los 10 y 20 nanómetros, el 

área específica de superficie es muy amplia. Ofrece una excelente dispersión y 

penetración cuando se mezcla con otros materiales, esto es debido a su baja viscosidad. 

 



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  17   

 En la tabla 2 se reflejan algunas de las propiedades del silicasol. Destacan su pH 

básico, su densidad mayor que la del agua, el contenido de SiO2 y que contiene un 

pequeño porcentaje de Na2O. 

 
Tabla 2: Propiedades del silicasol. 

  

Propiedades 

Contenido en SiO2 (% peso) 30 

Contenido en Na2O (% peso) 0,3 

pH 8,5 - 10 

Viscosidad (25 ºC) 7 mPa·s 

Densidad (25 ºC) 1,19-1,21 g/cm3 

Tamaño de partícula 10 - 20 nm 

Superficie específica 200 m2/g 

 

 Cuando la humedad contenida en el hidrosol se evapora, las partículas coloidales 

quedan adheridas firmemente a la superficie y concavidades por lo que produce un 

excelente adhesivo. 

 
 El silicasol se usa para la elaboración de materiales de abrigo en paredes 

exteriores, como agente de apresto en la industria textil, para moldes de precisión en 

fundición, como componente de tratamiento en la producción de placas de silicio y 

como agente de vínculo para materiales refractarios por su resistencia a altas 

temperaturas (1500 a 1600 ºC) [7]. 

  
 En este proyecto se usa como medio dispersante ya que es una solución coloidal 

de alta hidratación molecular de nanopartículas de sílice dispersas en agua y porque es 

un dispersante limpio y eficiente para polvos cerámicos, además en partículas 

nanométricas se ha demostrado que el 50 % de los silicios está en la superficie en forma 

de grupos siloxano lo que favorece el proceso de gelificación al adicionar la sal 

inorgánica [8]. 

 

5.3. FIBRAS  

 
 La fibra es el componente de refuerzo de un material compuesto y es el que 

fundamentalmente aporta resistencia mecánica, rigidez y dureza y va a ser determinante 

para obtener las principales propiedades mecánicas. Las características más 
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sobresalientes de las fibras de los materiales compuestos son su resistencia a la tracción 

específica y su elevado módulo específico. 

 
 Los tipos de fibras de refuerzo se pueden clasificar según su origen. Las fibras 

pueden ser de origen mineral y de origen orgánico según se aprecia en la tabla 3 [9].  

 
Tabla 3: Clasificación de fibras de refuerzo en función de su origen. 

 

Fibras Cerámicas (Carburo de 
Silicio, Aramida) 
Fibras Metálicas FIBRAS DE ORIGEN MINERAL 
Fibras de origen inorgánico 
(Carbono, Vidrio, Boro) 

FIBRAS DE ORIGEN ORGÁNICO Aramida, Polietileno 

 

 Dentro de los tipos de fibras que se muestran en la tabla 3 se han seleccionado 

para este proyecto las de tipo cerámico porque son las que resisten mayores 

temperaturas de servicio. Este tipo de fibras tienen las siguientes características: 

 
- Son mantas de fibras refractarias. 

- Son aislantes de altas temperaturas. 

- Tienen gran estabilidad térmica a elevada temperatura. 

- Son resistentes químicamente. 

- Tienen elevada resistencia mecánica. 

- Tienen baja contracción a elevada temperatura. 

- Poseen elevada resistencia al choque térmico. 

 
 A nivel industrial y de forma general, las fibras cerámicas pueden clasificarse en 

tres grupos según su composición y propiedades. El principal componente de todas ellas 

es la sílice, y le siguen el óxido de calcio y la alúmina y otros óxidos. Existe una gran 

variedad de fibras en función de su composición y de acuerdo con los requisitos que se 

les exigen. Existen, por un lado, las fibras de silicato de aluminio donde el 99 % están 

formadas por sílice y alúmina en diferentes proporciones, y en algunos casos contienen, 

además, zirconio. El hecho de que este tipo de fibras contenga alúmina supone una 

mejora en sus propiedades refractarias y por eso se pueden encontrar importantes 

mercados en continuo desarrollo. Sin embargo, existe una gran preocupación sobre este 

tipo de fibras porque están clasificadas por el Reglamento (CE) nº 1907/2006 del 
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Parlamento Europeo y del Consejo, de 18 de diciembre de 2006, relativo al registro, la 

evaluación, la autorización y la restricción de las sustancias y preparados químicos 

(REACH) como cancerígenas tipo 1B y etiquetadas como “pueden causar cáncer por 

inhalación durante su manipulación”, por lo que han sido descartadas para la 

elaboración del material compuesto cerámico. 

 
 Existen otros dos tipos de fibras, denominadas fibras vítreas, las formadas por 

silicatos de alcalinotérreos y las policristalinas. Estas fibras son más saludables que las 

tradicionales de alúmina y podrían permanecer menos tiempo en los pulmones en caso 

de inhalación. Para el conformado del material compuesto se han seleccionado las de 

silicatos de alcalinotérreos que soportan temperaturas de servicio de hasta 1200 ºC de 

forma continua. Este tipo de fibras nos permiten una amplia gama de temperaturas. 

 
 Este tipo de fibras pueden ser cortas y se pueden fundir mientras que otras fibras 

basadas en alúmina y aluminosilicatos se fabrican mediante proceso sol-gel. Los usos 

iniciales de estas fibras eran como aislantes refractarios a temperaturas superiores a 

1600 ºC, sin embargo, actualmente las fibras continuas de tipo óxido se están 

implantando como refuerzo a partir de 1000 ºC [6]. 

 
A modo de resumen, las características de este tipo de fibras, actuando como refuerzo 

de materiales compuestos son: 

 
• Resistencia mecánica: tiene una resistencia específica (tracción/densidad) 

superior a la del acero. 

• Características eléctricas: es un excelente aislante eléctrico, incluso en espesores 

reducidos, buena permeabilidad dieléctrica y permeable a ondas 

electromagnéticas. 

• Incombustibilidad: Por su naturaleza es incombustible y no propaga la llama ni 

origina humos ni toxicidad. 

• Estabilidad dimensional: Poco sensible a las variaciones de temperatura e 

higrometría, tiene un muy bajo coeficiente de dilatación. 

• Débil conductividad térmica. 

• Alta adherencia fibra-matriz. 

• Bajo coeficiente de dilatación. 

• Compatible con materiales orgánicos. 
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• Imputrescibilidad. 

• Excesiva flexibilidad. 

• Bajo coste. 

 
 Las aplicaciones típicas de este tipo de fibras son el revestimiento de conductos 

en cogeneración y plantas de energía, el revestimiento de hornos de alta temperatura, el 

aislamiento de calderas, la protección pasiva al fuego, el aislamiento de conductos, 

tubos y chimeneas, como escudos térmicos, aislamiento de envoltura de moldes, etc. 

 

5.4. ZIRCAR 

 
 Es un compuesto de alta resistencia, de matriz de sílice reforzado con fibras de 

sílice. Su bajo coeficiente de expansión térmico y su alta resistencia al calor se 

combinan para darle una resistencia al choque térmico que no se encuentra en otros 

materiales compuestos de matriz cerámica. Otras propiedades únicas del material son 

una baja conductividad térmica, un excelente aislamiento eléctrico, una alta pureza 

química y una excelente resistencia a la corrosión [10]. 

 
 Este material es adecuado para cualquier aplicación que requiera un material con 

resistencia a altas temperaturas y se utiliza en presas, surtidores, flotadores, lavadores, 

deflectores, anillos, cajas de distribución, tapones, revestimientos, etc. 

 

5.5. DURAMAX D3005 

 
 Es un polielectrolito comercial consistente en una sal amónica de ácido 

poliacrílico para estabilizar la mezcla mediante un mecanismo electrostérico.  

 
 Su bajo peso molecular no sólo lo hace efectivo en bajos niveles de uso, sino que 

también elimina el cambio de viscosidad de deslizamiento debido a la adsorción del 

dispersante. 

 
 En la tabla 4 se muestran las propiedades del Duramax D3005 utilizado en este 

proyecto [11]. 

 
 
 

 



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  21   

Tabla 4: Propiedades del dispersante Duramax D3005. 
 

Propiedades 

Apariencia Líquido amarillo claro 

Contenido total en sólido 35 % 

Peso molecular 2400 g/mol 

Densidad a 23 ºC 1,16 g/cm3 

Viscosidad <100 cP 

pH 6,0 - 7,0 

Forma iónica Sal de amonio 

 

5.6. CLORURO DE AMONIO 

 
 El cloruro de amonio es una sal de amonio, y su fórmula química es NH4Cl. Esta 

sal se obtiene a partir de la reacción de ácido clorhídrico y amoníaco. Habitualmente se 

encuentra en forma de polvo blanco o incoloro. Es inodoro e higroscópico (tiene 

afinidad por la humedad ambiental). 

 
 En la tabla 5 se recogen las propiedades físicas del cloruro de amonio [12]. 

 
Tabla 5: Propiedades físicas del cloruro de amonio. 

 

Propiedades Físicas 

Estado de agregación Sólido 

Apariencia Blanco 

Densidad 1,527 Kg/m3 

Peso molecular 53,49 g/mol 

Punto de fusión 340 ºC 

Punto de ebullición 520 ºC 

 

 Es soluble en agua, disociándose parcialmente, formando un ácido débil. Su 

solubilidad aumenta con la temperatura. Se descompone si es sometido a altas 

temperaturas, liberando humos tóxicos e irritantes, como amoníaco, óxidos de nitrógeno 

y cloruro de hidrógeno. 

 
 Esta sustancia puede reaccionar con violencia en contacto con nitrato de amonio 

y clorato de potasio, causando explosiones y peligro de incendio. Se debe conservar en 

lugar seco y fresco, alejado de las sustancias con las que pueda reaccionar [13]. 



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  22   

 El cloruro de amonio tiene distintas y variadas aplicaciones, se usa en la 

fabricación de pilas secas, en los procesos de galvanizado y estañado de zinc, como 

fundente en soldaduras, como eliminador de óxido en metales, también es utilizado en 

la industria textil, en alfarería, fertilizante, etc. 

 
 En este proyecto, el cloruro de amonio se ha utilizado como agente 

desestabilizador de las suspensiones de sílice. 

 

5.7. AMONIACO 

 
 El amoniaco es un compuesto químico cuya molécula está compuesta por un 

átomo de nitrógeno y tres átomos de hidrógeno y cuya fórmula química es NH3. Es un 

gas tóxico, corrosivo, incoloro y más ligero que el aire. Es soluble en disolventes 

orgánicos y sobre todo en agua. 

 
 En la tabla 6 se muestran algunas propiedades físicas del amoniaco [14]. 

 
Tabla 6: Propiedades físicas del amoniaco.  

 

Propiedades Físicas 

Apariencia Incoloro 

Peso molecular 17,03 g/mol 

Densidad 0,73 Kg/m3 

Punto de fusión -78 ºC 

Punto de ebullición -33 ºC 

 

 El amoniaco se obtiene a escala nivel industrial por el proceso denominado 

Haber-Bosch. El proceso consiste en la reacción directa entre el nitrógeno y el 

hidrógeno gaseosos. Es una reacción muy lenta por lo que se utiliza un catalizador de 

óxido de hierro o se trabaja a altas temperaturas para favorecer la cinética del proceso. 

 
 El amoniaco sirve de materia prima para un número elevado de aplicaciones. Es 

utilizado en la fabricación de fertilizantes agrícolas, fibras y plásticos, de productos de 

limpieza, de explosivos, de ácido nítrico, como refrigerante, etc [15]. 

 
 En este proyecto se ha usado para ajustar el pH de las suspensiones consiguiendo 

una mejor dispersión y estabilidad. 
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5.8. MYLAR 

 
 La palabra Mylar se utiliza a menudo para referirse genéricamente a una película 

de poliéster o de plástico. Sin embargo, es una marca registrada propiedad de DuPont 

Teijin Films  para referirse a una familia específica de productos de láminas de plástico 

hechas de polietileno tereftalato (PET). Este es un polímero que se obtiene mediante una 

reacción de policondensación entre el ácido tereftálico y el etilenglicol y pertenece al 

grupo de materiales sintéticos denominados poliésteres, por lo que el término correcto 

para este material es film de poliéster. 

  
 El film de poliéster Mylar es un film flexible, fuerte y duradero con un abanico 

de propiedades que lo hacen recomendable en múltiples aplicaciones industriales y que 

presenta un punto de fusión de 260 °C acompañado de una alta resistencia al desgaste y 

la corrosión, una alta resistencia química y buenas propiedades térmicas pues posee una 

gran indeformabilidad al calor. 

 
 Además, el Mylar es adecuado para una amplia gama de usos tales como 

embalaje, impresión, troquelado, electrónica, como capa protectora  y otras aplicaciones 

industriales. En este proyecto se ha utilizado para evitar que las muestras se pequen al 

molde de acero y se contaminen [16]. 

 
 
 

6. TÉCNICAS EMPLEADAS 

 

6.1. MOLINO PLANETARIO DE BOLAS 

 
 Los molinos planetarios de bolas de óxido de circonio pueden usarse para todas 

aquellas aplicaciones en las que se deben obtener granulometrías finísimas. Además de 

realizar los procesos clásicos de trituración y mezcla, estos molinos cumplen 

técnicamente con todos los requisitos para la molienda coloidal y cuentan con el 

rendimiento energético necesario para efectuar aleaciones mecánicas. La fuerza 

centrífuga extremadamente alta de estos molinos planetarios de bolas hace que se 

genere una energía de trituración muy alta, la cual se traduce en tiempos muy cortos de 

molienda.  



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  24   

 Este tipo de molino se utiliza principalmente en agricultura, biología, geología, 

metalurgia, materiales de construcción, medicina, medio ambiente y química. En este 

proyecto el modelo de molino planetario de bolas utilizado ha sido el Retsch PM 100, 

que puede observarse en la figura 5, y se ha empleado para reducir el tamaño de 

partícula de la sílice contenida en la suspensión. 

 
 

 
 

Figura 5: Molino planetario de bolas. 

 
 Los recipientes de molienda se encuentran colocados de forma excéntrica sobre 

la rueda principal. La rueda principal gira en sentido contrario que los recipientes de 

molienda con una relación de velocidad de 1:-2. El movimiento de las 50 bolas de óxido 

de zirconio de 1 cm de diámetro dentro de los recipientes es afectado por un efecto 

Coriolis debido al movimiento giratorio diferente de éstos con respecto a la rueda 

principal. La diferencia de velocidad entre las bolas y los recipientes se traduce en una 

acción combinada de fuerzas de choque y fricción que libera gran cantidad de energía 

dinámica. La gran interacción entre dichas fuerzas es responsable del alto grado de 

trituración de los molinos planetarios de bolas. 

 
 Los molinos planetarios con un solo puesto de molienda necesitan un contrapeso 

que balancee al recipiente de molienda. En el molino de bolas PM 100 dicho contrapeso 

puede deslizarse radialmente hacia fuera sobre un riel de guía inclinado. Esto permite 

balancear el centro de gravedad de recipientes de molienda de diferente tamaño y no se 

producen bamboleos fuertes en la máquina. 

 
 Entre las ventajas de estos molinos planetarios destacan las siguientes: 

 
• Trituración potente y rápida hasta el rango submicrónico. 
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• Ventilación automática de la cámara de molienda para evitar 

sobrecalentamientos. 

• Inicio automático programable. 

• Energía y velocidad regulables, para garantizar resultados reproducibles. 

• Para ensayos de larga duración y operación prolongada. 

• Moliendas en seco y en húmedo. 

• Sistema de medición de presión y temperatura (opcional). 

• Medición del rendimiento energético. 

• Amplia selección de materiales que permite la preparación de muestras para 

cualquier tipo de análisis. 

 
 En la tabla 7 se recogen las características más importantes del molino planetario 

de bolas utilizado [17]. 

 
Tabla 7: Características del molino planetario de bolas. 

 

Aplicación 
Pulverización, mezcla, homogeneización, molienda 

coloidal, aleación mecánica 
Tipo de material blando, duro, frágil, fibroso - seco o húmedo 

Principio de molienda impacto, fricción 

Granulometría inicial < 10 mm 

Granulometría final < 1 micra, para molienda coloidal < 0,1 micras 

Ø efectivo rueda principal 141 mm 

Tipos de tarros de molienda 
"confort", tapa con válvula especial opcional, 

dispositivo de cierre de seguridad 

Material de los útiles de 
molienda 

acero templado, acero inoxidable, carburo de 
wolframio, ágata, corindón sinterizado, óxido de 

circonio 
Operación por intervalos sí, con inversión del sentido de giro 

Potencia 750 W 

 

6.2. SINTERIZACIÓN 

 
 La sinterización es el proceso de tratamiento térmico (cocción), con o sin 

aplicación de presión externa, de un sistema de partículas individuales (metálicas, 

cerámicas, poliméricas) en forma de un aglomerado poroso compacto (previamente 

conformado), con el objeto de transformarlo en un producto denso que evoluciona hacia 

un estado de máxima compactación (reducción de la porosidad, tendiendo a que sea 
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nula) y resistente, como resultado de la unión entre las partículas adyacentes del 

material. 

 
 La unión de las partículas se produce a una temperatura suficiente (T < TFusión) 

con el fin de estimular los mecanismos de transporte de masa. 

 
 La sinterización puede ocurrir con la presencia o ausencia de una fase líquida. 

En el primer caso, se denomina sinterización en presencia de fase líquida, donde las 

composiciones y temperaturas de calentamiento son elegidas de tal forma que se origine 

un líquido durante el procesamiento. En ausencia de una fase líquida, el proceso se 

denomina sinterización en estado sólido. 

 
 Tal definición del proceso de sinterización engloba los siguientes hechos o 

fenómenos, de forma explicita o implícita: 

 
- Necesidad de energía térmica (temperatura) para que el sistema evolucione 

(activación térmica). 

- Se produce un aumento de la cohesión por formación de puentes o cuellos entre 

las partículas, que llegan a "soldarse" en estado sólido unas a otras, como puede 

apreciarse en la figura 6. 

 

 
 

Figura 6: Formación de cuellos debido a la sinterización. 

 
- Se opera un proceso de densificación que elimina progresivamente la porosidad 

inicial. 

- Las partículas individuales que integran, inicialmente el sistema, pueden ser de 

la misma o diferente naturaleza. 
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- La sinterización, para llevarse a cabo, no necesita del concurso de una presión 

externa aplicada, pero, eventualmente, con objeto de acelerar el proceso, pudiera 

hacerse uso de ella. 

- Al final de la sinterización, el sistema no tiene porque haber alcanzado el estado 

de energía libre mínima, pero se encuentra más cerca de el que al principio. 

 
Los cambios que tienen lugar durante el proceso de sinterización son: 

 
• Reducción de la energía interna del sistema de partículas inicial. Este tiende 

hacia un estado de equilibrio que le confiere una estabilidad de forma y 

dimensiones. 

• Disminución de un modo importante de la porosidad inicial (cambios en la 

forma, tamaño y distribución de los poros) (figura 7). 

 

 
 

Figura 7: Cambios en la forma y tamaño de los poros durante la sinterización. 

 
• Crecimiento de grano (cristal), con posibles recristalizaciones (cambios en el 

tamaño y la forma de los granos). 

• Cristalización o vitrificación parcial. 

• Difusión en estado sólido, líquido o gaseoso. 

• Cambios de fase. 

• Variación de las propiedades físicas (resistencia mecánica, conductividad 

térmica, etc.). 

 
 En la sinterización de los productos cerámicos tienen lugar una serie de cambios 

microestructurales de la pieza. El cambio en la forma y tamaño de los poros es uno de 

los más importantes, ya que gran parte de las propiedades físicas del producto cocido 

son dependientes de este parámetro (resistencia mecánica, resistencia al choque térmico, 

resistencia a las heladas, expansión por humedad, etc.). 
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 Para aumentar el valor de algunas de las propiedades, es deseable eliminar tanta 

porosidad como sea posible, lo que se consigue durante el tratamiento térmico, 

mediante la transferencia de materia de unas partes a otras del compacto poroso y 

mediante la disminución de volumen [18]. 

 
6.2.1. Etapas de la sinterización 

 
 Cuando dos o más partículas sólidas de un material capaz de sinterizarse se 

ponen en contacto y son sometidas a un ciclo de cocción determinado, el 

comportamiento de estas se puede esquematizar en tres etapas idealizadas: inicial o 

formación de cuellos, intermedia (densificación y crecimiento de granos) y final 

(formación de porosidad cerrada). 

 
Primera etapa. Formación de cuellos 

 
 Esta etapa inicial tiene lugar, cuando las partículas comienzan a unirse entre si, 

mediante la formación de cuellos. En este estado de la sinterización no tiene lugar un 

crecimiento apreciable de los granos y la contracción macroscópica de la muestra es 

prácticamente inapreciable. Es posible, sin embargo, seguir la sinterización en este 

estado, mediante la evolución de la superficie específica de la muestra que disminuye 

mientras la sinterización avanza. Además, hay una menor rugosidad de las superficies. 

Durante este estado la densidad relativa se incrementa del 60 al 65 %, esto es que hay 

una reducción lenta de la porosidad. 

 
Segunda etapa. Densificación y crecimiento de granos 

 
 Con el avance de la sinterización, se observa un crecimiento de los granos de 

material, perdiendo estos su identidad. Los cuellos se engrosan creando una estructura 

tridimensional, en la que las partículas tienden a redondear los espacios vacíos, 

formando una textura porosa. 

 
 Los poros en este estado tienden a formar una estructura continua y abierta. Con 

el avance de la sinterización se puede alcanzar una densidad de material del 80  a 90 % 

de la densidad teórica. A partir de este momento se inicia la formación de poros 

cerrados, que conduce al estado final de la sinterización. 
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 El efecto macroscópico más característico en esta etapa de la sinterización, es 

una marcada contracción de la muestra, que alcanza casi el valor final de todo el 

proceso. Paralelamente al aumento de la contracción, tiene lugar una reducción intensa 

de la porosidad abierta y consecuentemente un aumento de la densidad aparente del 

material. 

 
Tercera etapa. Formación de porosidad cerrada 

 
 En esta etapa de la sinterización, los poros tienden a conseguir la forma esférica, 

perdiendo su textura continua y se aíslan en la masa de la pieza. La velocidad de 

sinterización disminuye y el aumento de la contracción de la pieza es mucho menos 

marcado que en la etapa anterior, hasta el punto de resultar difícil determinar con 

exactitud cuando ha finalizado el proceso de sinterización. 

 
 Esta etapa final de la sinterización implica la eliminación de la porosidad final, 

que desaparece por la difusión de vacantes a lo largo de las fronteras de grano. Por lo 

tanto, los poros deben permanecer cerca de las fronteras de grano. 

 
 La eliminación de los poros y la difusión de vacantes se favorecen por el 

movimiento de las fronteras de grano y el crecimiento controlado de grano. Sin 

embargo, si el crecimiento de grano es demasiado rápido, las fronteras de grano pueden 

moverse más rápido que los poros y, por tanto, dejarlos aislados dentro de un grano. 

Como el grano sigue creciendo, el poro cada vez está más lejos del borde de grano y 

disminuye la posibilidad de su eliminación. Por lo tanto, el crecimiento de grano debe 

ser controlado para alcanzar la máxima eliminación de porosidad [18]. 

 
6.2.2. Variables que afectan a la sinterización 

 
 Los factores más importantes que intervienen en el proceso de sinterización 

pueden dividirse en dos categorías: las variables relacionadas con el material y las 

relacionadas con el propio proceso de sinterización. En la tabla 8 se recoge un resumen 

de dichas variables.  

 
 
 
 
 
 



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  30   

Tabla 8: Variables que afectan a la sinterización. 
 

Variables relacionadas con el 
material 

Variables relacionadas con el 
proceso 

Forma de las partículas Temperatura 

Tamaño de las partículas Tiempo 

Distribución de tamaños Presión 

Grado de dispersión Atmósfera 

Composición 
Rampa de calentamiento y de 

enfriamiento 
Grado de pureza  

Grado de homogeneidad  

 

 Las variables relacionadas con el material influyen fundamentalmente en la 

compactación y sinterización, es decir, en la densificación y crecimiento de grano. El 

resto de variables son de carácter termodinámico y su efecto ha sido ampliamente 

estudiado sobre el proceso de sinterización. 

 
 
 El horno utilizado en este proyecto para realizar los tratamientos térmicos ha 

sido el modelo CWF 1300 de la empresa Carbolite (Reino Unido). Entre las 

características técnicas de este equipo destacan las siguientes [19]: 

 
- Máxima temperatura de operación: 1300 ºC. 

- Volumen de la cámara: 5 litros. 

- Rápida velocidad de calentamiento, hasta 1000 ºC en 30 minutos y 1300 ºC en 

40 minutos. 

- Potentes elementos radiantes a ambos lados de la cámara para garantizar una 

buena uniformidad térmica. 

- Aislamiento refractario alrededor de la cámara y en la puerta que ofrece una 

buena resistencia a la abrasión. 

- Puerta de apertura vertical con contrapeso, perfectamente aislada y con 

interruptor de seguridad que aísla la cámara de la fuente de alimentación cuando 

se abre. 

- Aislamiento de doble cámara, de baja conductividad térmica que reduce al 

mínimo las pérdidas caloríficas y la temperatura externa del horno. 
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- Regulador de temperatura con resolución de 1 ºC y controlador PI con 

programador digital de hasta 8 rampas. 

 
 Las aplicaciones más comunes de estos hornos son las siguientes: 

 
• En la industria en general: tratamientos térmicos de metales, recocido, templado, 

endurecimiento, revenido y simulación de procesos industriales a escala de 

laboratorio. 

• Control de calidad: ensayos de materiales de fabricación o productos acabados. 

• Fabricación y mantenimiento de herramientas: tratamiento térmico de 

herramientas de metal y acero para herramientas.  

• Fabricación de revestimientos: ensayos de recubrimientos resistentes al fuego y 

ensayos de durabilidad de los revestimientos acabados. 

 

6.3. ENSAYOS DE FLEXIÓN A TRES PUNTOS 

 
 Un método de ensayo comúnmente utilizado para los materiales frágiles, como 

cerámicos y vidrios entre otros, es el ensayo de flexión.  Este evalúa el comportamiento 

esfuerzo-deformación y la resistencia a la flexión de los materiales frágiles. Por lo 

general involucra una probeta que tiene una sección transversal rectangular y está 

soportada en sus extremos. La carga es aplicada verticalmente, ya sea en un punto o en 

dos y como resultado, estos ensayos se conocen como flexión en tres puntos o en cuatro 

puntos, respectivamente. 

 
 La configuración elegida para la realización de este ensayo es la denominada a 

“tres puntos”. Este ensayo consiste en apoyar en dos puntos (mandriles) la probeta a 

ensayar y aplicar sobre su centro superior una carga mediante un tercer mandril, de 

manera que la probeta flexione. En la figura 8 puede verse un esquema de este tipo de 

ensayo. 
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Figura 8: Esquema del ensayo de flexión a tres puntos. 

 
 Según la teoría general de la flexión, la mitad superior de la probeta trabaja a 

compresión, mientras que la mitad inferior lo hace a tracción. Así, existe una sección 

longitudinal de la misma, a medio camino entre las superficies superior e inferior, que 

no está sometida ni a esfuerzos de compresión ni de tracción. A esta sección se la 

denomina fibra neutra. Los esfuerzos máximos de tracción se dan en la fibra más 

externa de la mitad inferior, longitudinalmente justo a medio camino entre los apoyos 

de la probeta (punto de aplicación de la carga), y son los responsables de la rotura de la 

misma. En la figura 9 se muestra un esquema de los esfuerzos a los que está sometida la 

probeta durante el ensayo [4]. 

 

 
 

Figura 9: Esquema del estado tensional al que está sometida la probeta en el ensayo de flexión. 

 
 Los ensayos realizados en este proyecto se llevaron a cabo en una máquina 

INSTRON 5565. El equipo aplica fuerzas o desplazamientos a la muestra de ensayo con 

objeto de medir la resistencia del material, rigidez y demás parámetros que definen su 

comportamiento mecánico [20]. 

 
 Sus características técnicas son: 

 
- Capacidad de carga: 5 kN. 

- Velocidad máxima: 1000 mm/min. 

- Velocidad mínima: 0,001 mm/min. 
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- Recorrido total de la cruceta: 1135 mm. 

- Espacio entre columnas: 420 mm.  

 
 Sus aplicaciones son las siguientes: 

 
• Determinación de las propiedades mecánicas del material: módulo de 

elasticidad, resistencia a rotura, deformación a rotura, coeficientes de Poison, 

etc. 

• Aplicación de esfuerzos de tracción, compresión, flexión, cortadura, fluencia, 

etc. 

• Aplicación de esfuerzos o deformaciones a una pieza o componente para simular 

su comportamiento en servicio. 

 
 La máquina aplica sobre la muestra objeto de ensayo una deformación con 

velocidad constante. Una célula de carga mide la fuerza ejercida en cada momento. De 

esta forma se obtienen las curvas de comportamiento mecánico del material (curvas 

tensión-deformación). A partir de dichas curvas se obtienen los parámetros 

característicos del comportamiento mecánico: tensión de rotura, fluencia, módulos 

elásticos, etc. 

 
 Para el cálculo de la resistencia máxima a flexión a partir de los valores 

obtenidos mediante este ensayo, se utiliza la siguiente ecuación: 

 

22

3

eW

FL M
f ⋅

⋅
⋅=σ   (1) 

 

 Donde FM es la carga máxima aplicada en Newton, L es la distancia entre 

apoyos en mm, W es el ancho de la pieza en mm y e el espesor en mm. 

 

6.4. MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM) 

 
 El Microscopio electrónico de barrido o SEM (Scanning Electron Microscope), 

es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una 

imagen. Este microscopio es un instrumento que permite la observación y 

caracterización superficial de materiales inorgánicos y orgánicos, entregando 

información morfológica del material analizado. A partir de él se producen distintos 
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tipos de señal que se generan desde la muestra y se utilizan para examinar muchas de 

sus características. Con él se pueden realizar estudios de los aspectos morfológicos de 

zonas microscópicas de los distintos materiales, además del procesamiento y análisis de 

las imágenes obtenidas.  

 
 Las principales características del SEM son:  

 
- Alta resolución (~100 Å), que significa que características espacialmente 

cercanas en la muestra pueden ser examinadas a una alta magnificación.  

- Gran profundidad de campo la cual permite que se enfoque a la vez una gran 

parte de la muestra y le da apariencia tridimensional a las imágenes.  

- Sencilla preparación de las muestras pues la mayoría de SEMs solo requieren 

que estas sean conductoras.  

 
 En un microscopio electrónico de barrido se pueden distinguir tres partes 

fundamentales: la cámara de vacío que contiene la muestra, el haz de electrones que 

barre la superficie de la muestra y el detector de señales para formar la imagen.  

 
 El microscopio electrónico de barrido puede estar equipado con diversos 

detectores, entre los que se pueden mencionar: un detector de electrones secundarios 

para obtener imágenes de alta resolución, un detector de electrones retrodispersados que 

permite la obtención de imágenes de composición y topografía de la superficie y un 

detector de energía dispersiva que permite medir los rayos X generados y realizar 

microanálisis de las muestras para conocer los elementos presentes en ellas [21]. 

 
6.4.1. Fundamentos de la técnica 

 
 La técnica consiste, principalmente, en enviar un haz de electrones sobre la 

muestra y mediante un detector apropiado registrar el resultado de esta interacción. El 

haz se desplaza sobre la muestra realizando un barrido de tal modo que la posición en la 

que se encuentra el haz en cada momento coincide con la aparición de brillo en un 

determinado punto de una pantalla.  

 
 Las imágenes que se obtienen en el microscopio electrónico de barrido 

corresponden a electrones secundarios o electrones retrodispersados emitidos tras la 

interacción con la muestra de un haz incidente de entre 5 y 30 KeV.  
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 La señal de electrones secundarios se forma en una delgada capa superficial, del 

orden de 50 a 100 Å. Al ser grande el número de electrones emitido se puede establecer 

un buen contraste. Por otra parte, al ser electrones de baja energía, menos de 50 eV, que 

se producen al colisionar el haz incidente con los electrones atómicos de la muestra, 

pueden ser desviados fácilmente de su trayectoria emergente inicial, y se puede obtener 

información de zonas que no están a la vista del detector. Esta particularidad es 

fundamental para otorgar a esta señal la posibilidad de aportar información “en relieve”.  

 
 En cuanto a la señal de electrones retrodispersados, su principal utilidad reside 

en que su emisión, que se debe a choques de tipo elástico y por tanto con energía del 

mismo orden que la de los electrones incidentes, depende fuertemente del número 

atómico de la muestra. Esto implica que dos partes de la muestra que tengan distinta 

composición se revelan con distinta intensidad aunque no exista ninguna diferencia de 

topografía entre ellas. Los electrones retrodispersados salen de la muestra en mayor 

cantidad en las direcciones próximas a la de incidencia, por lo que su detección se hace 

mejor en las proximidades del eje de incidencia [22]. 

 
 En la figura 10 se ilustra esquemáticamente el funcionamiento y las partes que 

componen el SEM. 

 

 
 

Figura 10: Esquema del funcionamiento de un microscopio electrónico de barrido. 

 
6.4.2. Preparación de las muestras 

 
 Las muestras no necesitan a priori ninguna condición especial para su 

observación al SEM, tan solo deben ser estables en las condiciones de vacío y 

bombardeo con electrones además de estar exentas de líquido y ser conductoras. 
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 Las muestras que vayan a  ser analizadas mediante microscopía electrónica de 

barrido deben ser secadas antes de ser introducidas en el microscopio, de otro modo la 

baja presión en el mismo causará que el agua (y otros líquidos volátiles) se evapore 

saliendo violentamente del espécimen y alterando la estructura del mismo. 

 
 Cuando se desea visualizar una muestra en un microscopio electrónico de 

barrido ésta debe ser conductora ya que, de no ser así, se carga durante la irradiación por 

una acumulación de carga que desvía el haz electrónico y, como consecuencia de ello 

aparecen distorsiones en  la imagen. Una solución a este problema es recubrir la muestra 

con una película conductora, de espesor comprendido entre 10 y 25 nm.  

 
 La elección del material con el que se va a recubrir la muestra depende 

fundamentalmente del estudio que se va a realizar. Así, para la observación de imágenes 

de electrones secundarios el oro y el oro-paladio son los materiales que conducen a los 

mejores resultados; al ser elementos pesados, producen mayor emisión. Cuando lo que 

se pretende es realizar un estudio microanalítico es recomendable emplear carbono. El 

bajo número atómico de este elemento lo hace prácticamente transparente a los rayos X 

emitidos por la muestra. También se emplean, a veces, aluminio, cromo, etc. Además es 

importante que la muestra no se recubra con un material que forme parte de ella. 

 
6.4.3. Principales aplicaciones 

 
 Las aplicaciones del microscopio electrónico de barrido son muy variadas, y van 

desde la industria petroquímica o la metalurgia hasta la medicina forense. Sus análisis 

proporcionan datos como textura, tamaño y forma de la muestra [22].  

 
 Entre las áreas de aplicación de esta técnica, se pueden destacar: 

 
• Geología: Estudio morfológico y estructural de las muestras. 

• Estudio de los materiales: Caracterización microestructural, valoración de su 

deterioro, presencia de defectos, tipo de degradación (fatiga, corrosión, 

fragilidad, etc.) de materiales cerámicos, metálicos, semiconductores, polímeros. 

• Control de calidad: En este campo, el microscopio electrónico de barrido es de 

gran utilidad para el seguimiento morfológico de procesos y su aplicación en el 

control de calidad de productos de uso y consumo.  

• Botánica, biomedicina y medicina: Estudio morfológico.  
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6.5. ANÁLISIS TERMOGRAVIMÉTRICO 

 
 En un análisis termogravimétrico se registra, de manera continua, la variación de 

la masa de una muestra colocada en una atmósfera controlada, o bien en función de la 

temperatura, o bien en función del tiempo. En el primer caso (experimento dinámico) la 

temperatura de la muestra va aumentando de manera controlada (normalmente de forma 

lineal con el tiempo), y en el segundo (experimento isotermo), la temperatura se 

mantiene constante durante todo el experimento. Esta variación de masa puede ser una 

pérdida o una ganancia de masa. La representación de la masa o del porcentaje de masa 

en función del tiempo o de la temperatura se denomina termograma o curva de 

descomposición térmica.  

 
 Existen otros tipos de análisis denominados de termogravimetría diferencial 

donde se registra o representa la variación de masa o derivada con respecto a la 

temperatura o respecto al tiempo dependiendo de que el experimento sea dinámico o 

isotermo respectivamente [23]. 

 
6.5.1. Instrumentación 

 
 Los instrumentos empleados en termogravimetría constan de una balanza 

analítica sensible, un horno, un sistema de gas de purga para proporcionar una 

atmósfera inerte (o algunas veces reactiva) y un microprocesador/microordenador para 

el control del instrumento y la adquisición y visualización de datos. Además, existe la 

opción de añadir un sistema para cambiar el gas de purga en las aplicaciones en las que 

este gas debe cambiarse durante el experimento. 

 
Balanza 

 
 Existen diseños diferentes de termobalanzas que son capaces de proporcionar 

información cuantitativa sobre muestras cuyas masas van desde 1 g hasta 100 g. Sin 

embargo, el tipo de balanza más común tiene tan sólo un intervalo entre 5 y 20 mg. Si 

bien, el soporte de la muestra debe estar situado en el horno, el resto de la balanza debe 

estar aislado térmicamente del horno. La figura 11 muestra el esquema de un diseño de 

termobalanza. Un cambio en la masa de la muestra provoca una desviación del brazo, 

que se interpone al paso de la luz entre una lámpara y uno de los dos fotodiodos. La 

disminución en la corriente fotodiódica se amplifica y alimenta la bobina E, que está 
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situada entre los polos de un imán permanente F. El campo magnético generado por la 

corriente en la bobina devuelve al brazo a su posición original. La corriente amplificada 

del fotodiodo se recoge y transforma en información sobre la masa o pérdida de masa en 

el sistema de adquisición de datos.  

 

 
 

Figura 11: Esquema de un diseño de termobalanza: A) brazo; B) copa y soporte de muestra; C) contador 

de peso; D) lámpara y fotodiodos; E) bobina; F) imán; G) control del amplificador; H) calculador de tara; 

I) amplificador; J) registro. 

 
Horno 

 
 El intervalo de temperaturas de la mayoría de los hornos que se usan en 

termogravimetría va desde la temperatura ambiente hasta 1500 ºC. A menudo se pueden 

variar las velocidades de calentamiento o enfriamiento del horno desde 

aproximadamente cero hasta valores tan elevados como 200 ºC/min. Para evitar la 

transferencia de calor a la balanza es necesario aislar y refrigerar el exterior del horno. 

Normalmente se utiliza nitrógeno y argón para purgar el horno y prevenir la oxidación 

de la muestra. En algunos análisis es deseable cambiar los gases de purga a lo largo del 

análisis. Las temperaturas registradas se miden generalmente con un pequeño termopar 

localizado lo más cerca posible del contenedor de la muestra. Las temperaturas 

registradas dan entonces la temperatura real de la muestra. 

 
Preparación de la muestra 

 
 En general, la preparación de una muestra para realizar análisis 

termogravimétrico no conlleva dificultades. Se adiciona una cantidad relativamente 

pequeña de muestra sobre una cápsula de platino y ésta se suspende, mediante un 

soporte, de un alambre en forma de gancho quedando finalmente en el interior del horno 
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que a su vez está aislado del exterior mediante un tubo de vidrio. La propia 

termobalanza se utiliza para pesar la masa inicial de muestra. 

 
6.5.2. Aplicaciones 

 
 Esta técnica tiene una gran variedad de aplicaciones entre las que cabe destacar 

las siguientes: 

 
• Estudios composicionales. 

• Estudios de descomposición y estabilidad térmica.  

• Determinación de purezas.  

• Determinación de contenido en humedad, materia volátil, cenizas y carbono fijo. 

• Estudios de gasificación de muestras carbonosas.  

• Estudios cinéticos.  

 
 
 El equipo utilizado en este proyecto para la realización de análisis 

termogravimétricos ha sido el modelo SDT Q600 de la empresa TA Instruments que 

puede verse en la figura 12. 

 

 
 

Figura 12: Equipo de análisis termogravimétrico. 

 
 Las principales características técnicas del equipo son las siguientes [24]: 

 
- Diseño del sistema: Balanza horizontal y horno. 

- Diseño de la balanza: Doble haz. 

- Capacidad de muestra: 200 mg (350 mg incluyendo el portamuestras). 
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- Sensibilidad de la balanza: 0,1 µg. 

- Rango de temperatura: Ambiente a 1500 ºC. 

- Velocidad de calentamiento (Ambiente a 1000 ºC): 0,1 a 100 ºC/min. 

- Velocidad de calentamiento (Ambiente a 1500 ºC): 0,1 a 25 ºC/min. 

- Enfriamiento del horno: Aire a presión (1500 a 50 ºC en menos de 30 min, 1000 

a 50 ºC en menos de 20 min). 

- Termopares: Platino/Platino-Rodio. 

- Vacío: a 7 Pa. 

- Cápsulas para muestras: Platino: 40 µL, 110 µL; Alúmina: 40 µL, 90 µL. 
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7. PARTE EXPERIMENTAL 

 

7.1. CARACTERIZACIÓN DE LOS MATERIALES 

 
 Como compuesto cerámico principal de la matriz se ha utilizado polvo de sílice 

amorfa, SiO2. Entre sus propiedades destacan su bajo coeficiente de expansión térmica 

(0,54·10-6 K-1) que le confiere una alta resistencia al choque térmico, su baja 

conductividad térmica (1,38 W/mK), su alta dureza (600 Kg/mm2) y que es inerte 

químicamente a temperaturas moderadas (salvo en ácido fluorhídrico que se disuelve). 

 
 Como medio dispersante se ha utilizado silicasol, que es un coloide acuoso 

comercial de nanopartículas de sílice en agua. Esta elección se ha llevado a cabo porque 

además de ser un buen dispersante es un excelente aglomerante, proporciona una mayor 

compactación de las piezas procesadas y les confiere mejores propiedades mecánicas. 

 
 Por otro lado, como refuerzo de la matriz cerámica se han seleccionado fibras 

vítreas resistentes a las temperaturas de servicio. 

 
 Además, se ha utilizado, como referencia, un material de estructura homogénea 

constituido por matriz de sílice y reforzado con fibras de sílice denominado ZIRCAR. 

 
 A continuación se indican los resultados obtenidos en la caracterización de los 

materiales de partida utilizados en este proyecto. 

 
7.1.1. Sílice 

 
 En la preparación de las suspensiones cerámicas estudiadas en este proyecto, se 

parte de polvo cerámico comercial de sílice amorfa con una pureza mayor del 99 % 

suministrado por Lianyungar Ristar (China).  

 
 El tamaño de partícula del polvo de sílice inicial es micrométrico siendo el 

tamaño medio de las partículas, d50, en torno a 6 µm, y el d90, 36 µm. Esto significa que 

el 50 % y el 90 % de las partículas tienen un tamaño inferior a dichos valores. La 

densidad específica media del polvo de sílice utilizado es 2,28 g/cm3 y el área específica 

superficial es de 3,24 m2/g. La preparación de la suspensión en un molino planetario de 

bolas conlleva la reducción del tamaño de partícula del polvo de sílice, obteniéndose 
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una distribución caracterizada por los parámetros d50 y d90 de 3,8 y 10,8 µm, 

respectivamente. Además, el área específica del polvo molido aumenta hasta 8 m2/g. 

Por otro lado, el difractograma de Rayos X muestra que el polvo de sílice suministrado 

es amorfo [6]. 

 
7.1.2. Silicasol 

 
 En la preparación de las suspensiones se utiliza como medio dispersante 

silicasol, que es una solución coloidal de alta hidratación molecular de nanopartículas 

de sílice dispersas en agua. Tiene un contenido de SiO2 del 30% en peso y un pH de 9,2. 

El tamaño medio de las partículas de sílice contenidas en él es de 22,85 nm por lo que el 

área específica de superficie es muy amplia de 200 m2·g-1, lo cual índica que es un polvo 

muy reactivo. Su viscosidad media es de 5 mPa·s [7]. 

 
7.1.3. Fibras 

 
 Las fibras utilizadas como refuerzo de la matriz cerámica son de tipo manta y 

han sido suministradas por la empresa Unifrax. Esta empresa comercializa tres tipos de 

fibras de tipo óxido denominadas Fiberfrax, Insulfrax y Fibermax. 

 
 Debido a los requerimientos térmicos del material y de su procesado, además de 

por el bajo coste de las fibras, se han seleccionado para la elaboración del material 

compuesto las fibras de tipo Insulfrax. Las mantas de este tipo son de silicatos de 

alcalinotérreos y soportan temperaturas de hasta 1200 ºC en continuo. 

 
 En la tabla 9 se muestran las propiedades físico-químicas de las fibras de 

silicatos de alcalinotérreos (Insulfrax) seleccionadas para la elaboración de los 

materiales compuestos.  
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Tabla 9: Propiedades físico-químicas de las fibras de silicatos de alcalinotérreos (Insulfrax). 
 

Análisis 
Químico ( % peso) 

Propiedades Físicas Conductividad Térmica 
(W/mK) 

SiO2 61 - 67 Color Blanco 400 ºC 0,11 

CaO 27 - 33 
Temperatura de 

clasificación 
1200 ºC 600 ºC 0,17 

MgO 2,5 - 6,5 
Punto de 
fusión 

>1330 ºC 800 ºC 0,26 

Al 2O3 < 1 
Diámetro medio 

de fibra 
3,0 µm 1000 ºC 0,36 

Fe2O3 < 0,6 Densidad 96 Kg/m3 
Resistencia 
a la tracción 

50 kPa 

 

 En la tabla 9 se observa que el componente mayoritario de este tipo de fibras es 

el SiO2 y que contiene otros óxidos como CaO, MgO, Al2O3 y Fe2O3. Además entre sus 

propiedades físicas destacan el color blanco, el diámetro medio de las fibras, su elevado 

punto de fusión y su temperatura de clasificación (límite de operación). Por otro lado, su 

baja conductividad térmica hace que sean idóneas para la aplicación deseada [25]. 

 
 Con el objetivo de analizar la estabilidad térmica que presentan este tipo de 

fibras se ha realizado un análisis termogravimétrico con el equipo SDT Q600 V8.3 (TA 

Instruments). En la figura 13 se muestra la representación gráfica del TGA-DSC que se 

ha realizado con una velocidad de calentamiento de 10 ºC/min hasta 1400 ºC en 

atmósfera de aire. 

 

 
 

Figura 13: Representación TGA-DSC de fibras Insulfrax. 
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 La línea continua de la figura 13 representa la pérdida de masa de la muestra de 

fibra cerámica en función de la temperatura. Ésta indica que hasta 1400 ºC la pérdida de 

masa total es inferior al 3 %. Por otro lado, la pérdida de masa hasta 400 ºC indica la 

eliminación de pequeñas cantidades de agua y de aditivos orgánicos que contienen las 

fibras inicialmente. Esto sugiere que sería adecuado realizar un tratamiento térmico 

previo entre 300 y 400 ºC para eliminar estos aditivos. Además se puede observar un 

descenso más abrupto de la curva a partir de 1300 ºC que coincide con el punto de 

fusión de la fibra suministrado por el fabricante (1330 ºC) lo que indica la degradación 

completa y que la temperatura a la que se somete a este tipo de fibras debe ser inferior a 

1300 ºC. 

 
 Por otro lado, la curva de flujo calorífico en función de la temperatura (línea 

discontinua) indica que a partir de 1100 ºC comienza un proceso endotérmico que está 

relacionado con alguna transformación de fase. Por tanto, la temperatura máxima a la 

cual se pueden someter este tipo de fibras es de 1100 ºC. 

 
7.1.4. Zircar 

 
 Este material ha sido suministrado por la empresa ZIRCAR Refractory 

Composites, Inc (USA) y, al tratarse de un material homogéneo fabricado a nivel 

industrial, se ha sometido a los mismos tratamientos térmicos que el material compuesto 

fabricado en este proyecto con el fin de comparar los resultados y explicar el 

comportamiento de los mismos a las distintas temperaturas y tiempos de permanencia. 

 
  Se trata de un compuesto de alta resistencia de matriz de sílice reforzado con 

fibras de sílice. Presenta un coeficiente de expansión térmica muy bajo (0,3·10-6 °C-1), 

que le proporciona una resistencia notable al choque térmico, de hasta 1200 °C, en 

atmósfera oxidante y permite su uso con una variación rápida de la temperatura en dicha 

zona. Más allá de 1200 °C  se transforma en una estructura cristalina, que mantiene sus 

propiedades hasta 1650 °C siempre y cuando no haya una caída significativa de la 

temperatura. A éstas elevadas temperaturas el material presenta un acristalamiento 

superficial mientras que conserva su fuerza, resistencia e integridad.  

 
 El material se haya 100 % libre de compuestos orgánicos y no contiene ninguna 

fibra de cerámica refractaria. 
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 En la tabla 10 se muestran las propiedades físico-químicas del material ZIRCAR 

utilizado en este proyecto [10]. 

 
Tabla 10: Propiedades físico-químicas del material ZIRCAR. 

 

Composición 
Química (% peso) 

Conductividad 
Térmica (W/mk) 

Propiedades Físicas 

SiO2 99 200 ºC 0,54 Color Blanco 

Otros óxidos 
metálicos 

<1 400 ºC 0,64 Porosidad 31 % 

Contenido de 
materia orgánica 

0 600 ºC 0,61 Densidad 1,4 g/cm3 

  800 ºC 0,67 Inflamabilidad Nula 

  1000 ºC 0,75   

 

 En la tabla 10 se observa que el componente mayoritario de este material es SiO2 

y que los otros óxidos metálicos que contiene suponen menos de un 1 %. Además entre 

sus propiedades físicas destacan el color blanco, su alta densidad y su nula 

inflamabilidad, así como la porosidad próxima al 30 %. 

 

7.2. FABRICACIÓN DEL MATERIAL COMPUESTO 

 
 La fabricación del material compuesto tiene lugar mediante un proceso manual 

que consiste en la preparación de una suspensión estable y homogénea con la que 

posteriormente se impregnan las fibras de tipo manta. La consolidación del material 

tiene lugar bajo presión y a la vez tiene lugar una etapa de secado a temperatura 

controlada, 60 ºC, donde se elimina la mayor parte del agua que contiene el material. 

Finalmente, las muestras se someten a tratamientos térmicos. 

 
7.2.1. Preparación de las suspensiones 

 
 En este proyecto las suspensiones cerámicas se preparan siguiendo los resultados 

obtenidos en trabajos previos sobre el procesado de materiales compuestos cerámicos y 

sobre la estabilización de partículas micrométricas de sílice vítrea dispersas en un 

coloide acuoso de nanopartículas de sílice, denominado silicasol [6, 8]. 
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 A partir de la definición del contenido de sólido en volumen se determina la 

masa de sílice a añadir, msílice, en función de volumen del medio dispersante, VL: 
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 Siendo ρSílice la densidad de la sílice (2,28 g/cm3) y Vol. el volumen de sólido 

micrométrico contenido en la suspensión expresado como tanto por uno. 

 
 Una vez conocida la masa de sílice en función del volumen de líquido, se 

determina la cantidad de defloculante necesaria y se añade sobre el volumen de silicasol 

establecido. En este proyecto las suspensiones contienen 1,5 % en peso de Duramax 

D3005 respecto del polvo de sílice adicionado. 

 
 Se adiciona el polvo de sílice poco a poco manteniendo la suspensión en 

agitación y se fija el pH, con NH3, hasta un valor determinado, en torno a 9,2. 

Finalmente, la suspensión se somete a ultrasonidos con una potencia de 300 W durante 

3 minutos con ciclos de 0,5 s para romper los aglomerados. 

 
 Para reducir el tamaño de partícula del polvo de sílice suministrado, la 

suspensión se somete a un proceso de molienda en vía húmeda en un molino planetario 

de bolas (PM 100, Retsch) durante una hora a 500 rpm. Se ha trabajado con 50 bolas de 

óxido de zirconio de 1 cm de diámetro para un contenido de aproximadamente 150 ml y 

se ha aplicado un ciclo de cambio de giro de 3 minutos en cada sentido y 1 minuto 

parado. Una vez finalizado el proceso de molienda, se ajusta de nuevo el pH hasta 9,2 y 

la suspensión se mantiene en agitación. 

 
 En este proyecto se ha trabajado con suspensiones con un contenido de sílice en 

volumen total de 41%, considerando las micropartículas de polvo adicionadas así como 

las nanopartículas que contiene el silicasol, con la adición de 1,5 % de Duramax D3005 

y a pH 9,2. Para la fabricación de una placa de material compuesto de dimensiones 
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10x10 cm2 es necesaria una suspensión con un volumen final de 150 ml. Por tanto, para 

la preparación de dicha suspensión se dispersan 122,8 g de polvo de sílice en 100 ml de 

silicasol y se añaden 1,842 g de Duramax D3305.  

 
 Una vez preparada una suspensión estable y homogénea se provoca su 

desestabilización y se procede a la fabricación de los materiales compuestos cerámicos. 

 
 A la suspensión se le añade una concentración de cloruro de amonio de 0,08 M 

(0,642 g) que provoca la gelificación de la misma al cabo de 35 minutos, este tiempo es 

suficiente para impregnar las fibras y que la gelificación comience cuando el material ya 

esté sometido a presión. 

 
7.2.2. Proceso de fabricación 

 
 Una vez preparada la suspensión de sílice y adicionada la cantidad de cloruro de 

amonio necesaria, se procede a la impregnación de las fibras. Para ello se vierte la 

suspensión sobre las fibras y con la ayuda de un rodillo se hace que la suspensión 

penetre por el interior de las fibras. Además, aplicando una suave presión con el rodillo 

sobre las mantas se elimina el exceso de suspensión. Las placas de material compuesto 

fabricadas contienen dos capas de fibras apiladas con un espesor de 13 mm y de 

densidad 96 kg/cm3 de dimensiones 10x10 cm2. 

 
 El método seguido en este proyecto para la fabricación del composite deseado se 

muestra en la figura 14.  

 
 

Figura 14: Etapas del proceso de obtención del material compuesto cerámico. 

 
 Posteriormente, las fibras impregnadas con las suspensiones se colocan en un 

molde de acero inoxidable de 30x20 cm2. Para evitar que las muestras se peguen al 

molde y se contaminen se coloca sobre la superficie interior del mismo una lámina de 

Mylar adherido mediante grasa. La gelificación de la suspensión cerámica y la 

consolidación del material compuesto en verde tienen lugar bajo presión, que se aplica 

mediante el sellado del molde con tornillos. Los tornillos se aprietan manteniendo una 
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presión prácticamente constante en todos los casos y se consiguen probetas de 

aproximadamente 6 mm de espesor. No obstante al tratarse de un proceso manual el 

espesor, de unas probetas a otras, puede variar ligeramente. En este proyecto se han 

conseguido espesores que se encuentran entre 5 y 6 mm. 

 
 A continuación tiene lugar una etapa de secado a temperatura controlada, a 40 ºC 

durante 4 horas y a 60 ºC durante 24 horas. En esta etapa tiene lugar la gelificación de la 

suspensión que atrapa en su interior las fibras utilizadas como refuerzo y la eliminación 

de la mayor parte de agua procedente de la suspensión. Una vez completada esta etapa 

previa de secado se retira la muestra del molde y se deja secar a 60 ºC pare eliminar el 

resto de agua que contiene el material. Las piezas en verde una vez finalizada la etapa 

de secado, se pulen para darles la forma deseada y se cortan obteniendo las probetas del 

tamaño requerido para su posterior ensayo de flexión. 

 
 Finalmente, con el objetivo de compactar el material, las muestras ya cortadas 

son sometidas a un tratamiento térmico. En este proyecto los tratamientos térmicos se 

han realizado a 600, 700, 800 y 900 ºC durante 2, 6 y 12 horas, con una rampa de subida 

y de bajada en todos los casos de 5 ºC/min. 

 
 La figura 15 presenta el resultado de una de las muestras fabricadas por el 

método descrito anteriormente. 

 

 
 

Figura 15: Material compuesto fabricado. 
 

7.3. CARACTERIZACIÓN DE MATERIALES COMPUESTOS 

 
7.3.1. Nomenclatura de las muestras 

 
 En este proyecto se han fabricado probetas de material compuesto cerámico con 

fibras de tipo Insulfrax con una misma composición y un mismo número de capas de 
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fibra. Se ha analizado la influencia de la temperatura al someterlas a tratamientos 

térmicos, así como el tiempo de permanencia a dicha temperatura. En la tabla 11 se 

indica la nomenclatura que se ha establecido para identificar cada una de las muestras 

con el objetivo de determinar una metodología de trabajo y con la que a partir de ahora 

se hará referencia a cada una de ellas. 

 
Tabla 11: Nomenclatura de las probetas fabricadas. 

 

Probeta Nombre abreviado 
Muestras no sinterizadas NoSint. 

Sinterizadas a 900 ºC durante 2 horas S9H2 
Sinterizadas a 900 ºC durante 6 horas S9H6 
Sinterizadas a 900 ºC durante 12 horas S9H12 
Sinterizadas a 800 ºC durante 2 horas S8H2 
Sinterizadas a 800 ºC durante 6 horas S8H6 
Sinterizadas a 800 ºC durante 12 horas S8H12 
Sinterizadas a 700 ºC durante 2 horas S7H2 
Sinterizadas a 700 ºC durante 6 horas S7H6 
Sinterizadas a 700 ºC durante 12 horas S7H12 
Sinterizadas a 600 ºC durante 2 horas S6H2 
Sinterizadas a 600 ºC durante 6 horas S6H6 
Sinterizadas a 600 ºC durante 12 horas S6H12 

 

 Los dos primeros caracteres (S9, S8, S7 o S6) hacen referencia a la temperatura 

de sinterización, 900, 800, 700 o 600 ºC y los últimos (H2, H6 o H12) al tiempo de 

permanencia a esa temperatura, 2 horas, 6 horas o 12 horas. 

 
 Por otra parte, el material de referencia, ZIRCAR, también ha sido sometido a 

los mismos tratamientos térmicos y tiempos de permanencia. En la tabla 12 se indica la 

nomenclatura de las probetas de material de ZIRCAR comercial.  
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Tabla 12: Nomenclatura de las probetas de material ZIRCAR. 
 

Probeta Nombre abreviado 
Muestras no sinterizadas NoSint.Z 

Sinterizadas a 900 ºC durante 2 horas S9H2Z 
Sinterizadas a 900 ºC durante 6 horas S9H6Z 
Sinterizadas a 900 ºC durante 12 horas S9H12Z 
Sinterizadas a 800 ºC durante 2 horas S8H2Z 
Sinterizadas a 800 ºC durante 6 horas S8H6Z 
Sinterizadas a 800 ºC durante 12 horas S8H12Z 
Sinterizadas a 700 ºC durante 2 horas S7H2Z 
Sinterizadas a 700 ºC durante 6 horas S7H6Z 
Sinterizadas a 700 ºC durante 12 horas S7H12Z 
Sinterizadas a 600 ºC durante 2 horas S6H2Z 
Sinterizadas a 600 ºC durante 6 horas S6H6Z 
Sinterizadas a 600 ºC durante 12 horas S6H12Z 

 

 La nomenclatura seguida para las probetas de ZIRCAR es similar a la adoptada 

para las muestras fabricadas en este proyecto con la única diferencia de que se ha 

añadido una “Z” al final del nombre para diferenciar las probetas de este material de las 

fabricadas en este proyecto.  

 
7.3.2. Análisis de la microestructura 

 
 La microestructura del material compuesto fabricado se ha estudiado mediante 

Microscopía Electrónica de Barrido (SEM). Esta técnica nos permite determinar la 

distribución del tamaño de partícula, así como la distribución y diámetro de las fibras. 

 
 Para su observación en el SEM es necesario embutirlas en resina epoxi y tras un 

proceso de secado y endurecimiento de la resina se realizan varios pulidos para 

conseguir que la muestra esté completamente pulida y plana. Las muestras de sílice no 

son conductoras, por lo que para su observación en SEM es necesario recubrirlas con 

una capa muy fina, generalmente de carbono. En este proyecto se ha analizado la 

sección transversal de una placa de material compuesto no sinterizado con el objetivo de 

ver la distribución de las fibras en todo el material y analizar la composición química de 

las mismas. En la figura 16 se muestra una imagen SEM de la sección transversal de 

una pieza de material compuesto en verde procesado con dos capas apiladas de fibras. 
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Figura 16: Imagen SEM de la sección transversal pulida del material compuesto en verde. 

 
 En la figura 16 se puede observar la microestructura de la sección transversal de 

una muestra de material compuesto procesado. La variación de contraste corresponde al 

cambio de composición de la muestra, siendo las zonas más oscuras sílice y las más 

claras las fibras utilizadas. En dicha imagen se puede observar, además, que las fibras se 

distribuyen de forma bastante homogénea y que algunas de ellas presentan formas no 

cilíndricas. Por otro lado, se puede observar que el material es poroso. 

 
 A continuación se van a presentar algunas imágenes SEM obtenidas a más 

aumentos para poder analizar con mayor detalle la microestructura del material 

compuesto mostrado en la figura 17. 

 

 
 

Figura 17: Imagen SEM a más aumentos del material compuesto procesado. 

  
 En la figura 17 se pueden observar dos imágenes SEM obtenidas a los mismos 

aumentos en zonas diferentes del material. En la figura 17.A se observan fibras de 
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diámetro muy diferentes, se han encontrado fibras con diámetros desde 1 a 40 µm y en 

algunas zonas puntuales se han observado diámetros mayores como la que se puede 

observar en el extremos inferior izquierdo de la figura 17.A con diámetros de entre 200 

y 300 µm. Por otro lado, a lo largo de todo el composite se han encontrado zonas donde 

el diámetro de las fibras es mucho más homogéneo como el que se puede observar en la 

figura 17.B donde la gran mayoría de ellas tienes un diámetro medio de 10 µm. 

Además, en la figura 17.B se puede observar que las fibras se encuentran partidas y los 

fragmentos de las mismas no son muy largos ni continuos como era de esperar. Esto 

supone una desventaja para las propiedades mecánicas del material, ya que la resistencia 

a flexión la proporcionan fundamentalmente las fibras utilizadas. 

 
 Por último, en la figura 18 se muestra una imagen SEM a más aumentos con el 

objetivo de conocer cómo se encuentran rodeadas las fibras y las partículas de sílice. 

 

 
 

Figura 18: Imagen de la unión entre matriz y fibras. 

 
 En la figura 18 se puede observar la presencia de micropartículas que rodean las 

fibras utilizadas. Además, en la figura 19 se muestra una imagen tomada a partir de la 

figura 18 a más aumentos, con la que se demuestra que alrededor de las partículas de 

sílice y de las fibras hay pequeños aglomerados de las nanopartículas que proceden del 

silicasol utilizado como medio dispersante. El hecho de que las fibras y las 

micropartículas se encuentren rodeadas de nanopartículas de sílice corrobora la acción 

aglomerante que hace que el silicasol sea muy útil para la consolidación de este tipo de 

materiales. Además, puede observase que no se aprecia interfase entre la matriz y las 

fibras. Esto demuestra que las fibras utilizadas en este proyecto para fabricar el material 

compuesto presentan un alto grado de impregnación. 
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Figura 19: Imagen SEM de aglomerados de nanopartículas de silicasol. 

 
 El microscopio electrónico de barrido, permite además, realizar un análisis 

químico de las diferentes fases que se encuentran presentes en la muestra. Este análisis 

se lleva a cabo mediante rayos X característicos. La forma habitual de trabajar es en 

primer lugar obtener una imagen mediante electrones retrodispersados, posteriormente 

se detiene el barrido de electrones y se deja fijo sobre cada una de las fases que se desea 

analizar registrando los espectros de rayos X característicos que emiten cada fase. La 

proporción se obtiene comparando la intensidad relativa de los picos frente a la de un 

compuesto patrón. En la tabla 13 se muestra la composición, expresada como % de 

óxidos, de 3 fibras analizadas. 

 
Tabla 13: Composición de las fibras expresada como % de óxidos. 

 

 Fibra 1 Fibra 2 Fibra 3 

Na2O 0,41 0,29 0 

MgO 7,02 5,12 4,67 

SiO2 71,79 67,11 67,62 

CaO 20,78 27,47 27,71 

 

 Para determinar de forma semicuantitativa la cantidad de cada uno de los óxidos 

presentes en las fibras se ha realizado un promedio de cada uno de ellos a partir de las 3 

medidas mostradas en la tabla 13. Los resultados indican que hay aproximadamente un 

69 % de SiO2, 25 % de CaO, 5,5 % de MgO y < 0,5 % de Na2O y están dentro de los 

valores proporcionados por el fabricante. 
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7.3.3. Análisis de la precisión del método de fabricación 

 
 La precisión y homogeneidad de las muestras fabricadas es importante de cara a 

la fabricación del material. Por eso, se ha analizado la precisión del método de 

fabricación en cuanto al espesor conseguido en las distintas muestras de material 

compuesto. 

 
 En este proyecto, se han fabricado seis placas de material compuesto cerámico 

de 10x10 cm2 que posteriormente se cortaron en trozos más pequeños para la 

realización de los posteriores ensayos. El espesor de estas probetas se ha medido en seis 

puntos y se ha calculado el valor medio. A su vez, a partir de estos valores se ha 

calculado el espesor medio de cada una de las placas fabricadas. 

 
 En la tabla 14 se recogen los espesores medios de las probetas y de las muestras 

de las que provienen éstas, así como su desviación estándar y desviación estándar 

relativa. 

 
Tabla 14: Espesores medios de las probetas y muestras. 

 

Muestras M1 M2 M3 M4 M5 M6 

4,82 5,48 5,21 6,34 4,80 5,56 

4,89 5,33 5,09 5,85 4,45 5,57 

4,81 5,55 5,15 5,98 4,46 5,63 

4,76 5,64 5,07 6,01 4,82 5,09 

4,83 5,82 5,09 6,16 4,75 5,42 

4,85 5,71 5,04 6,02 4,91 5,60 

4,85 5,68 5,17 5,83 4,78 5,43 

Espesor medio de cada una 
de las probetas obtenidas a 
partir de las muestras (mm) 

4,75 5,80 5,01 6,35 5,04 5,24 

Espesor medio de las 
muestras (mm) 

4,82 5,63 5,10 6,07 4,75 5,44 

Desviación estándar (s) 0,047 0,166 0,068 0,200 0,204 0,191 

Desviación estándar relativa 
(% DSR) 

0,98 2,95 1,33 3,29 4,29 3,51 

 

 En la tabla 14 se observa que para cada una de las láminas se obtienen 

desviaciones pequeñas por lo que el espesor conseguido es bastante constante. La 

desviación estándar relativa se ha calculado como se indica en la ecuación 4. 
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 Los resultados indicados en la tabla 14 sobre la desviación estándar relativa son, 

dentro de cada probeta, inferiores al 5 % en todos los casos, por lo que se puede decir 

que dentro de cada placa el espesor se mantiene constante. Sin embargo, si se comparan 

todos los espesores obtenidos para todas las probetas que han sido procesadas de la 

misma forma se obtiene un valor promedio de 5,30 ± 0,49 y una desviación estándar 

relativa del 9,27 %, este valor es considerablemente superior al obtenido para las 

probetas individuales e indica una mayor imprecisión del método. Estos resultados se 

deben a que el proceso de fabricación es completamente manual y ponen de manifiesto 

la necesidad de la utilización de métodos automáticos o semiautomáticos, así como la 

utilización de una prensa para regular la presión que se ejerce sobre las muestras y por 

tanto se obtendrían espesores constantes.  

  
 Además, se debe señalar también que las láminas se fabrican de dos en dos, es 

decir, las muestras M1 y M2; M3 y M4; y M5 y M6 han sido fabricadas a la vez y 

sometidas, en teoría, a la misma presión. Al comparar los espesores de estas placas entre 

sí se aprecian diferencias mayores de medio milímetro en los tres casos. Esto pone de 

manifiesto que al apretarse los tornillos que sellan el molde de forma manual, la presión 

ejercida sobre el material durante su consolidación no es del todo constante, pudiendo 

quedar unos tornillos más apretados que otros. 

 

7.4. TRATAMIENTOS TÉRMICOS 

 
 La realización de tratamientos térmicos es una etapa habitual en el procesado de 

materiales que permite modificar sus propiedades iniciales. En este proyecto, se ha 

analizado la influencia de la realización de tratamientos térmicos sobre la resistencia a 

flexión y la densidad de los composites procesados. En concreto, se ha estudiado como 

influye la temperatura y el tiempo que esa temperatura permanece constante. El material 

compuesto se ha sometido a tratamientos térmicos a 900, 800, 700, 600 ºC durante 2, 6 

y 12 horas. 
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7.4.1. Efecto sobre la densidad 

 
 En la mayoría de los casos, la realización de tratamientos térmicos supone un 

aumento de la densidad y disminución de la porosidad de las muestras debido a que 

tiene lugar la compactación de las partículas del material cerámico. 

 
 En este proyecto se ha estudiado como influye la temperatura y tiempo de 

permanencia a dicha temperatura de los tratamientos térmicos sobre la densidad de los 

materiales compuestos cerámicos. Para ello se ha determinado la densidad de las 

muestras mediante la determinación directa de la masa y el volumen. Se han medido 4  

probetas de material después de someterlas a los distintos tratamientos de sinterización 

y se ha calculado la densidad como el promedio de las 4 muestras y su desviación. 

Además, se ha determinado la densidad de muestras no sinterizadas.  

 
 Por otro lado, se ha realizado un estudio del efecto de estos tratamientos 

térmicos sobre muestras de un material compuesto fabricado a nivel industrial, 

denominado ZIRCAR, con el objetivo de comparar sus propiedades con el que se 

pretende procesar y validar de esta manera el método de fabricación y los tratamientos 

térmicos. 

 
 En la tabla 15 se recogen los valores de densidad de las probetas y densidades 

medias obtenidas para el material compuesto fabricado en este proyecto. 
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Tabla 15: Densidades del material compuesto fabricado. 
 

Probeta Densidad probetas (g/cm3) Densidad media (g/cm3) 

NoSint. 1,231 1,229 1,273 1,248 1,245 ± 0,020 

S9H2 1,213 1,181 1,199 1,213 1,201 ± 0,015 

S9H6 1,266 1,170 1,288 1,259 1,246 ± 0,052 

S9H12 1,225 1,170 1,209 1,215 1,205 ± 0,024 

S8H2 1,170 1,183 1,099 1,198 1,162 ± 0,044 

S8H6 1,196 1,237 1,283 1,272 1,247 ± 0,039 

S8H12 1,178 1,176 1,158 1,191 1,175 ± 0,014 

S7H2 1,278 1,281 1,211 1,293 1,266 ± 0,037 

S7H6 1,334 1,220 1,204 1,123 1,220 ± 0,087 

S7H12 1,244 1,273 1,217 1,273 1,243 ± 0,023 

S6H2 1,258 1,277 1,255 1,219 1,252 ± 0,024 

S6H6 1,273 1,241 1,296 1,255 1,267 ± 0,024 

S6H12 1,240 1,217 1,151 1,220 1,207 ± 0,039 

 

 En la tabla 15 se observa que todos los valores de densidad están entre 1,20 y 

1,25 g/cm3 y apenas hay diferencia de densidad entre las muestras no sometidas a 

tratamientos térmicos y las muestras sinterizadas. Esto indica que los tratamientos 

térmicos no suponen ningún efecto significativo sobre la densidad de las muestras. Una 

alternativa sería aumentar la temperatura de sinterización, sin embargo para este tipo de 

materiales no es posible porque tendría lugar la degradación de las fibras utilizadas.  

 
 Por otro lado, se ha estudiado la influencia de los tratamientos térmicos sobre la 

densidad del material homogéneo comercial, ZIRCAR. Aquí solo se ha medido una 

probeta en cada caso. Los valores de densidad obtenidos se pueden ver en la tabla 16. 
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Tabla 16: Densidades del material ZIRCAR. 
 

Probeta Densidad 
(g/cm3) 

NoSint.Z 1,482 

S9H2Z 1,479 

S9H6Z 1,416 

S9H12Z 1,461 

S8H2Z 1,466 

S8H6Z 1,462 

S8H12Z 1,452 

S7H2Z 1,423 

S7H6Z 1,432 

S7H12Z 1,418 

S6H2Z 1,420 

S6H6Z 1,406 

S6H12Z 1,447 

 

 En la tabla 16 se observa que este material es ligeramente más denso que el 

material compuesto fabricado en este proyecto, situándose todos sus valores entre 1,40 

y 1,48 g/cm3. Al igual que ocurre con el composite fabricado la densidad final de este 

material es independiente de la temperatura y tiempo de permanencia del tratamiento. 

 
7.4.2. Efecto sobre la resistencia a flexión (σ) 

 
 En este proyecto se han realizado ensayos de flexión a 3 puntos para evaluar la 

resistencia a flexión de todas las piezas procesadas y estudiar como influye sobre ella la 

temperatura y el tiempo de permanencia de los tratamientos térmicos de sinterización. 

 
 En la figura 20 se esquematiza el dispositivo utilizado para realizar el ensayo de 

flexión a tres puntos. La distancia entre apoyos para colocar la muestra se ha fijado en 

30 mm y la velocidad de ensayo es 0,05 mm/min. 
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Figura 20: Esquema del ensayo de flexión a tres puntos. 

 
 En la figura 21 se muestra un ejemplo del comportamiento típico que presentan 

las cerámicas y los materiales compuestos cerámicos. Se puede observar que las 

cerámicas presentan un comportamiento frágil (figura 21.A) y en cuanto la probeta se 

rompe la tensión disminuye inmediatamente. Sin embargo, la incorporación de fibras 

como refuerzo de la matriz cerámica (figura 21.B), hace que el comportamiento de 

flexión cambie, observándose un comportamiento dúctil, es decir, las fibras son capaces 

de soportar la carga aplicada y el material se rompe poco a poco. 

 

 
 

Figura 21: Curva de carga vs. deformación de cerámicas (A) y de materiales compuestos cerámicos (B). 

 
 Para el cálculo de la resistencia máxima a flexión se utiliza la ecuación 5, donde 

FM es la carga máxima aplicada (N), L es la distancia entre apoyos (30 mm), W es el 

ancho de la pieza en (mm), y e el espesor en (mm). 

 

22

3

eW

FL M
f ⋅

⋅
⋅=σ   (5) 

 
 En la tabla 17 se muestran los resultados de resistencia a flexión obtenidos para 

las muestras, de material compuesto fabricado y del material ZIRCAR, analizadas en 



Influencia de los tratamientos térmicos en el procesado de materiales compuestos cerámicos 

  60   

este proyecto. Estos datos se expresan, en el caso de las probetas de material compuesto 

fabricado, como el promedio de 4 medidas ± desviación estándar de las 4 medidas. En 

cuanto al material ZIRCAR sólo se ha realizado una medida para cada tratamiento, 

debido a la gran homogeneidad que presenta. 

 
Tabla 17: Resultados de resistencia a flexión obtenidos. 

 

Probetas σ flexión 
(MPa) 

Probetas σ flexión (MPa) 

NoSint. 4,63 ± 0,551 NoSint.Z 14,97 ± 0,837 

S9H2 6,47 ± 1,252 S9H2Z 23,46 

S9H6 6,35 ± 0,835 S9H6Z 20,81 

S9H12 5,71 ± 0,881 S9H12Z 20,06 

S8H2 6,48 ± 0,457 S8H2Z 23,99 

S8H6 5,62 ± 0,513 S8H6Z 20,31 

S8H12 6,10 ± 0,212 S8H12Z 25,00 

S7H2 5,28 ± 0,966 S7H2Z 19,50 

S7H6 5,10 ± 0,798 S7H6Z 22,58 

S7H12 6,88 ± 0,890 S7H12Z 18,37 

S6H2 6,52 ± 0,456 S6H2Z 21,30 

S6H6 5,76 ± 0,908 S6H6Z 18,76 

S6H12 5,69 ± 0,655 S6H12Z 16,83 

 

 Los resultados mostrados en la tabla 17 se van a comparar más detalladamente 

en función de la temperatura máxima y del tiempo de permanencia a dicha temperatura.  

 
 En primer lugar, se puede observar que sin sinterizar el material ZIRCAR 

presenta una resistencia a flexión mucho mayor que el composite fabricado en este 

proyecto, obteniéndose valores promedio de 14,97 y 4,63 MPa respectivamente. En 

ambos caso se han realizado 4 ensayos de flexión, y en la figura 22, se representa la 

carga en función de la extensión para cada una de estas muestras no sinterizadas.  
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Figura 22: Curva de carga vs. deformación de ZIRCAR (A) y de materiales compuestos procesados (B) 

en verde. 

 
 Como puede observarse en la figura 22, las curvas de las 4 muestras de ZIRCAR 

se solapan y coinciden. Sin embargo, esto no sucede para el material fabricado en este 

proyecto. Esto se debe a la inhomogeneidad que presentan estas últimas muestras lo que 

sugiere que el proceso de fabricación del mismo debe ser mejorado. Debido a la gran 

homogeneidad que presentan las muestras de ZIRCAR en los ensayos siguientes para 

diferentes tratamientos térmicos, se ha realizado una única medida con el objetivo de 

ahorrar tiempo y material. 

 
 A continuación, se van a analizar los resultados obtenidos a cada una de las 

temperaturas y tiempos de permanencia estudiados en este proyecto. 

 
Tratamientos térmicos a 900 ºC 
 

 A continuación puede verse la tabla 18, que recoge los datos de resistencia a 

flexión, en función del tiempo de permanencia, obtenidos después de tratamientos a 900 

ºC. 

 
Tabla 18: Resistencia a flexión a 900 ºC en función de la permanencia.  

 

Probetas σ flexión 
 (MPa) 

Probetas σ flexión 
 (MPa) 

S9H2 6,47 ± 1,252 S9H2Z 23,46 

S9H6 6,35 ± 0,835 S9H6Z 20,81 

S9H12 5,71 ± 0,881 S9H12Z 20,06 

 

 En la tabla 18 se observa, tanto para el composite fabricado como para el 

material ZIRCAR, una ligera disminución de la resistencia a flexión conforme aumenta 

el tiempo de permanencia.  

A B 
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 En la figura 23, se representa el comportamiento de fractura observado para una 

muestra de ZIRCAR y de material procesado a 900 ºC durante 6 horas.  

 

 
 

Figura 23: Curvas tensión-deformación de  muestras tratadas a 900 ºC 6 horas. 

 
 En la figura 23 se observa que la muestra comercial de ZIRCAR y la procesada 

en este proyecto tienen un comportamiento de fractura diferente. La muestra de 

ZIRCAR presenta valores mayores de resistencia a flexión y es dúctil. Sin embargo, la 

muestra procesada manifiesta un comportamiento frágil, propio de las cerámicas no 

reforzadas. Este comportamiento diferente puede justificarse en cuanto a la diferencia 

de composición de las fibras, en el caso del material de ZIRCAR se trata de fibras de 

sílice de elevada pureza y por tanto altamente resistentes térmicamente. En cambio, las 

fibras utilizadas contienen un 30 % de otros óxidos inorgánicos que disminuyen su 

resistencia térmica. Además, en los valores presentados en la tabla 18 se puede observar 

que conforme aumenta el tiempo de permanencia para este tipo de fibras, menor es la 

resistencia a flexión. Esto último podría deberse a que al aumentar el tiempo aumenta la 

degradación de las mismas.  

 
 Con el objetivo de explicar este comportamiento se ha realizado un análisis 

termogravimétrico de una muestra de composite, para analizar si a 900 ºC hay algún 

proceso de degradación en la muestra. Se ha intentado reproducir el tratamiento 

aplicado en el horno en el equipo de termogravimetría. La muestra ha sido calentada 

con una velocidad de 5 ºC/min y se ha mantenido a 900 ºC durante 2 horas. En la figura 

24 se muestran las curvas TG/DTA de una muestra de composite procesado.  
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Figura 24: Curvas TG/DTA de una muestra de composite. 

 
 El análisis termogravimétrico indica que durante la etapa isoterma a 900 ºC hay 

una ligera pérdida de masa y comienza a aumentar el flujo calorífico indicando que la 

muestra está sufriendo alguna transformación que sería la responsable del 

comportamiento frágil que se observa en los ensayos de flexión.  

 
 En conclusión, a 900 ºC las muestras procesadas en este proyecto presentan 

comportamiento frágil de fractura. Cuanto mayor es el tiempo de permanencia menor es 

la resistencia a flexión de las muestras, lo que se traduce en un perjuicio de las 

propiedades mecánicas de las piezas.  

 
Tratamientos térmicos a 800 ºC 

 
 Debido a los resultados no deseados obtenidos a 900 ºC es necesario realizar 

tratamientos térmicos a temperaturas inferiores. En la tabla 19 se pueden ver los datos 

de resistencia a flexión, en función del tiempo de permanencia, obtenidos para muestras 

sometidas a 800 ºC. 

 
Tabla 19: Resistencia a flexión a 800 ºC en función de la permanencia. 

 

Probetas σ flexión 
 (MPa) 

Probetas σ flexión 
 (MPa) 

S8H2 6,48 ± 0,457 S8H2Z 23,99 

S8H6 5,62 ± 0,513 S8H6Z 20,31 

S8H12 6,10 ± 0,212 S8H12Z 25,00 
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 En la tabla 19 se puede ver que, en ambos casos, se obtiene el valor mínimo de 

resistencia a flexión para un tiempo permanencia de 6 horas a 800 ºC. En cuanto a 2 y 

12 ºC los valores obtenidos son similares, obteniéndose un mayor aumento en el caso 

del material de ZIRCAR que en el obtenido experimentalmente. En líneas generales, los 

valores obtenidos a 800 ºC son muy similares a los obtenidos a 900 ºC, por tanto para 

ahorrar costes y energía en un proceso industrial los tratamientos a 900 ºC quedarían 

descartados. Además, el comportamiento de fractura observado para las probetas 

experimentales tratadas a 800 ºC es dúctil frente al frágil que presentadas las sometidas 

a 900 ºC, como puede observarse en la figura 25.  
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Figura 25: Curvas tensión-deformación de 4 muestras y 1 de ZIRCAR tratadas a 800 ºC, 6 horas. 

 
 En la figura 25 se observa que a diferencia de las muestras tratadas a 900 ºC, las 

de 800 ºC, presentan un comportamiento dúctil. Por tanto, se podría corroborar que a 

900 ºC las muestras sufren degradación y que al reducir la temperatura ésta se evitaría. 

Además, puede observar nuevamente la inhomogeneidad de este tipo de muestras.  

 
 Por otro lado, mediante microscopia electrónica de barrido, se ha realizado un 

estudio de la superficie de fractura de muestras sometidas a 800 y 900 ºC durante 6 

horas.  
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Figura 26: Imágenes SEM de superficies de fractura para 800 ºC (A) y 900 ºC (B). 

 
 En la figura 26 se muestra la superficie de fractura de unas muestras tratadas a 

800 y 900 ºC durante 6 horas. En ella se puede observar que la densidad de fibras de la 

figura 26.A es mayor que la de la figura 26.B. Esto podría indicar la diferencia 

observada en el comportamiento durante el ensayo, es decir, en el caso de 800 ºC las 

fibras son las que soportan las tensiones que se generan originando un comportamiento 

dúctil. En cambio en la superficie de la muestra de fractura de 900 ºC no se observan 

tantas fibras y por eso el comportamiento es frágil y se debe a la parte de la matriz 

cerámica.  Además, cabe destacar que en el análisis de la superficie de fractura no se ha 

observado delaminación de las dos capas de fibras lo que permite concluir que hay una 

buena adhesión de ambas capas durante el procesado. 

 
Tratamientos térmicos a 700 ºC 

 
 En la tabla 20 se muestran los datos de resistencia a flexión, en función del 

tiempo de permanencia, obtenidos después de tratamientos a 700 ºC. 

 
Tabla 20: Resistencia a flexión a 700 ºC en función de la permanencia. 

 

Probetas σ flexión 
 (MPa) 

Probetas σ flexión 
 (MPa) 

S7H2 5,28 ± 0,966 S7H2Z 19,50 

S7H6 5,10 ± 0,798 S7H6Z 22,58 

S7H12 6,88 ± 0,890 S7H12Z 18,37 

 

 En la tabla 20 se pueden observar unos valores similares de resistencia a flexión 

respecto de los comentados anteriormente para el caso del composite desarrollado 

experimentalmente, obteniéndose un valor superior para 12 horas. Para el caso del 
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material de ZIRCAR se puede observar una ligera disminución respecto a los valores de 

800 y 900 ºC que indicaría que el tratamiento térmico es menos efectivo a 700 ºC.  

 
 En la figura 27 puede observarse, a modo de ejemplo, una representación de las 

curvas de tensión-deformación obtenidas después de someter las muestras a un 

tratamiento a 700 ºC y 12 horas, donde se observa un comportamiento dúctil para todas 

las muestras.  
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Figura 27: Curvas tensión-deformación de 4 muestras y 1 de ZIRCAR tratadas a 700 ºC, 12 horas. 

 
Tratamientos térmicos a 600 ºC 

 
 Con el objetivo de hallar la temperatura que proporciona el mayor valor de 

resistencia a flexión, se han realizado a temperaturas inferiores. En la tabla 21, se 

recogen los datos de resistencia a flexión, en función del tiempo de permanencia, 

obtenidos después de tratamientos a 600 ºC. 

 
Tabla 21: Resistencia a flexión a 600 ºC en función de la permanencia. 

 

Probetas σ flexión 
 (MPa) 

Probetas σ flexión 
 (MPa) 

S6H2 6,52 ± 0,456 S6H2Z 21,30 

S6H6 5,76 ± 0,908 S6H6Z 18,76 

S6H12 5,69 ± 0,655 S6H12Z 16,83 

 

 En la tabla 21 se puede ver que para ambos materiales se produce una 

disminución de la resistencia a flexión conforme aumenta el tiempo de permanencia del 

tratamiento. Por eso para esta temperatura es recomendable una permanencia de 2 horas. 
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 En la figura 28 puede verse una representación de las curvas de tensión-

deformación obtenidas después de un tratamiento a 600 ºC y 2 horas. 
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Figura 28: Curvas tensión-deformación de 4 muestras y 1 de ZIRCAR tratadas a 600 ºC, 2 horas. 

 
 En la figura 28 se observe un comportamiento dúctil de todas las muestras, 

además de que las del material compuesto fabricado han soportado cargas muy 

similares. 

  
Análisis en función de la temperatura 

 
 Por otro lado, y a modo de resumen, se van a comentar los resultados obtenidos 

en función de la temperatura. Para ello, se han considerado los valores promedio de 

cada una de las temperaturas. 

  
Tabla 22: Resistencia a flexión promedio en función de la temperatura. 

 

Probetas σ flexión 
(MPa) 

Probetas σ flexión 
(MPa) 

S900 6,17 S900Z 22,44 

S800 6,06 S800Z 23,10 

S700 5,75 S700Z 20,15 

S600 5,99 S600Z 18,96 

 

 Los valores de resistencia a flexión en función de la temperatura mostrados en la 

tabla 22 permiten concluir, de forma general, que para el material comercial de 

ZIRCAR al aumentar la temperatura se consiguen valores superiores de resistencia a 

flexión y que todos los tratamientos térmicos aplicados suponen alguna mejora, siendo 

esta mejor a 800 y 900 ºC. Sin embargo, para el material fabricado a lo largo del 

proyecto no se observan grandes diferencias entre los valores de resistencia a flexión 
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obtenidos para las diferentes temperatura, aunque si suponen un ligero incremento 

respecto del valor inicial obtenido para el material no sinterizado. Además, cabe 

destacar que los tratamiento realizados a 900 ºC en ninguno de los casos conllevan a 

mejoras respecto de 800 ºC por lo que es suficiente trabajar a 800 ºC lo que supondría 

un ahorro energético y por tanto económico durante la producción de dicho material.  

 
 Después de analizados todos los datos, se puede concluir que la realización de 

tratamientos térmicos de sinterización supone una ligera mejora de las propiedades 

mecánicas, que está entre un 10 y un 49 % para el material fabricado y entre un 12 y un 

67 % para le material ZIRCAR. Esto pone de manifiesto la necesidad de aplicar 

tratamientos térmicos a las muestras procesadas. Además se observa que los valores de 

resistencia a flexión son ligeramente superiores conforme aumenta la temperatura, pero 

en el material compuesto fabricado en este proyecto están lejos de los valores deseados. 

Por ello, para tratar de incrementar esos valores debería considerarse realizar estudios 

utilizando un mayor número de capas de fibra de refuerzo manteniendo el espesor o 

realizar procesos de infiltración. También se debe destacar el hecho de que a 600 ºC no 

se hayan observado grandes diferencias respecto a 900 ºC. Esto supondría que en caso 

de industrialización del material podría trabajarse a estas temperaturas, lo que se 

traduciría en un ahorro energético y de tiempo. 
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8. CONCLUSIONES 

  
 El principal objetivo de este proyecto ha sido la realización de un estudio de la 

influencia que ejercen los tratamientos térmicos sobre las propiedades de los materiales 

compuestos cerámicos. En concreto, cómo influye la temperatura y el tiempo de 

permanencia de estos tratamientos sobre la densidad y la resistencia a flexión de los 

materiales compuestos cerámicos de matriz de sílice. 

 
 La fabricación del material compuesto se ha realizado mediante un proceso de 

impregnación de las fibras utilizadas con una suspensión estable y homogénea de sílice. 

Para ello, se parte de una suspensión estable del 41 % vol. de SiO2 en silicasol con la 

adición de 1,5 % wt. de Duramax D3005 a pH 9,2. Las muestras procesadas contienen 2 

capas de fibras de silicatos de alicanotérreos de densidad 96 kg/m3 y 13 mm de espesor. 

La consolidación inicial del material tiene lugar bajo presión a 40 y 60 ºC durante 24 

horas. 

 
 En primer lugar, se ha estudiado la reproducibilidad del método de fabricación 

de estos materiales llevado a cabo en el laboratorio. En este proyecto, la presión durante 

la consolidación inicial del material se realiza de forma manual en un molde y 

condiciona por tanto el espesor de cada una de las muestras. Se ha observado que el 

espesor de cada muestra tiene una desviación estándar relativa del  5 %, mientras que si 

se comparan las diferentes muestras fabricadas se llega hasta casi un 10 %, lo que indica 

que el método de fabricación debe ser mejorado para obtener resultados más 

reproducibles.  

 
El análisis de la microestructura del composite revela que las fibras se 

distribuyen de forma bastante homogénea y que algunas de ellas presentan formas no 

cilíndricas.  

 
El análisis termogravimétrico de las fibras indica que los tratamientos térmicos 

de sinterización no pueden realizarse a temperaturas superiores a 1100 ºC para evitar la 

degradación térmica de las fibras y transformaciones de fase de la sílice amorfa de 

partida. Por eso, se ha decidido realizar estos tratamientos a una temperatura a partir de  

900 ºC e ir disminuyendo hasta 600 ºC. Estos tratamientos se han mantenido durante 

periodos de 2, 6 y 12 horas.  
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 Se han obtenido valores de densidad entre 1,20 y 1,25 g/cm3 para el composite 

fabricado y de entre 1,40 y 1,48 g/cm3 para el material comercial. Además, se ha 

observado que apenas hay diferencia de densidad entre las muestras sinterizadas y las 

que no lo han sido, lo que indica que los tratamientos térmicos no suponen ningún 

efecto significativo sobre la densidad de las muestras. 

 
 La realización de tratamientos térmicos de sinterización supone una ligera 

mejora de las propiedades mecánicas, que está entre un 10 y un 50 %. Se ha observado 

que los valores de resistencia a flexión son ligeramente superiores conforme aumenta la 

temperatura. Además, cabe destacar el hecho de que a 600 ºC no se hayan observado 

grandes diferencias respecto a 900 ºC. Esto supondría que en caso de industrialización 

del material podría trabajarse a estas temperaturas, lo que se traduciría en un ahorro 

energético y de tiempo. 

 
Si se comparan los resultados obtenidos para el material fabricado y el utilizado como 

referencia se puede decir que material compuesto fabricado en este proyecto está lejos 

de los valores deseados. Por ello, para tratar de incrementar esos valores debería 

considerarse realizar estudios utilizando un mayor número de capas de fibra de refuerzo 

o realizar procesos de infiltración. 
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