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Highlights 

 Biomechanical stress generated by the hindfoot joints arthrodesis was calculated 

 Subtalar arthrodesis is the procedure that contributes least to stress reduction 

 Talonavicular arthrodesis generates a significant stress reduction in hindfoot 

 Calcaneocuboid arthrodesis reduces both the soft tissue and metatarsals stresses 

 Triple arthrodesis generates the least tissue stresses in all the evaluated cases 
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Background: Treatments of adult acquired flatfoot deformity in early stages (I-IIa-IIb) are 

focused on strengthening tendons, in isolation or combined with osteotomies, but in stage 

III, rigidity of foot deformity requires more restrictive procedures such as hindfoot joint 

arthrodesis. Few experimental studies have assessed the biomechanical effects of these 

treatments, because of the difficulty of measuring these parameters in cadavers. Our 

objective was to quantify the biomechanical stress caused by both isolated hindfoot 

arthrodesis and triple arthrodesis on the main tissues that support the plantar arch. 

Methods: An innovative finite element model was used to evaluate some flatfoot scenarios 

treated with isolated hindfoot arthrodesis and triple arthrodesis. 

Results and conclusions: When arthrodeses are done in situ, talonavicular seems a good 

option, possible superior to subtalar and at least equivalent to triple. Calcaneocuboid 

arthrodesis reduces significantly both fascia plantar and spring ligament stresses but 

concentrates higher stresses around the fused joint.  

 

Keywords: Arthrodesis, Biomechanics, FE Modeling, Flatfoot, Tibialis tendon 

dysfunction. 

 

1. Introduction 

Adult acquired flatfoot deformity (AAFD1) causes a progressive flattening of the foot arch, 

which has traditionally been associated with tibialis posterior tendon (TPT) dysfunction 

[1,2,3]. However, some clinical studies have found that the failure or rupture of the plantar 

                                                           
1AAFD: Adult acquired flatfoot deformity, TPT: Tibialis posterior tendon, PF: Plantar fascia, SL: Spring 
ligament, PBT: Peroneus brevis tendon, PLT: Peroneus longus tendon, LPL: Long plantar ligament, SPL: 
Short plantar ligament, FDL: Flexor digitorum ligament, FHL: Flexor hallucis ligament. 
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fascia (PF) or the calcaneonavicular ligament (known as the Spring ligament (SL)) could 

also generate both the collapse of the arch and forefoot abduction, the main signs of AAFD 

[1,4,5]. In the early stages of the disease (Stages I, IIa and IIb), many treatment options 

focus on strengthening the TPT, in isolation or combined with some osteotomies, to 

rebalance the foot structure. However, when the flatfoot deformity is rigid (stage III or IV), 

surgeons need to use more restrictive treatments such as arthrodesis of the hindfoot joints 

(subtalar, talonavicular and calcaneocuboid) in isolation or combined (triple arthrodesis or 

other procedures) [6,7,8].  Isolated posterior subtalar arthrodesis is a well-known 

procedure used to treat AAFD when the foot arch has a rigid deformation or signs of joint 

instability, arthritis and pain [9]. A cadaver model-based study that compares the capacity 

of maintaining the foot arches after applying different hindfoot joint arthrodeses found that 

isolated posterior subtalar arthrodesis was  less effective in supporting both medial and 

longitudinal arches compared to calcaneocuboid and talonavicular arthrodeses [10]. On 

the other hand, some studies show that isolated talonavicular arthrodesis has notable 

advantages, especially in pain control. Harper et al. [11] carried out a follow - up study (26 

months) of 29 patients treated with a talonavicular arthrodesis, finding good results in 

about 86% of the cases. However, this arthrodesis has also been associated with an 

increased risk of malunion, pseudarthrosis and progressive osteoarthritis in adjacent joints 

(in about 3% to 10% of treated patients) [12].  Calcaneocuboid arthrodesis is a procedure 

commonly applied in conjunction with other procedures (including lateral column 

lengthening) and is rarely performed in isolation. Some studies have found that the 

isolated arthrodesis of the calcaneocuboid joint causes degenerative arthritis signs in the 

surrounding joints [13], including also pseudarthrosis, non-union and stress fracture of the 

lateral column of the foot. Additionally, there is also evidence that it affects walking on 
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rough surfaces [13]. Nevertheless, some success cases have also been reported in 

patients with an isolated fusion of the calcaneocuboid joint [14,15].  Finally, triple 

arthrodesis is perhaps one of the most commonly used surgical procedures in AAFD 

correction in both the intermediate and advanced stages [16]. Surgeons may consider  

triple arthrodesis when tendon reinforcement procedures or an isolated hindfoot 

arthrodesis fail [16,17]. Over time, this procedure has proved to be a reliable and 

reproducible alternative for the successful correction of the foot structure deformity with 

good clinical results. However, long-term follow-up of patients has shown that many of 

them develop arthritis around the ankle, and pain in the midfoot and toes [16,17,18]. 

 

All the available information is based on subjective evidence of the side-effects of these 

procedures (especially related with pain and arthrosis), because it is extremely difficult to 

measure tissue stresses in isolation in experimental tests with consistent results [19]. An 

alternative approach nowadays accepted by clinicians and biomedical engineers is finite 

element (FE) modeling. This computational methodology allows the design of complex 

models that adequately represent the biomechanics of the human foot [20,21]. Many 

models have been reported for studying foot biomechanics and the effects of some 

surgical procedures. However, these models are focused specifically on foot structure 

deformation and  plantar pressure measurement [20], simplifying the soft tissue anatomy. 

This strong simplification does not allow the measurement of relevant biomechanical 

aspects such as the tissue traction stress, limiting the information required to understand 

the mechanical consequences of altering the normal foot structure by fusing the hindfoot 

joints [22].  
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The objective of this study was to use a finite element foot model to quantify the 

biomechanical stress caused by isolated complete subtalar, talonavicular or 

calcaneocuboid arthrodeses and triple arthrodesis on both foot bones and the main soft 

tissues that stabilize the longitudinal arch. Our hypothesis is that this analysis strategy 

could identify some hidden biomechanical effects of these arthrodeses, as well as finding 

differences and similarities that might give surgeons new information to decide the best 

treatment option, depending on both the signs and severity of the flatfoot deformity. The 

analysis was performed simulating a TPT dysfunction and a severe case simulated 

combining TPT, PF and SL failures, applying in all cases the arthrodeses mentioned.  

 

2. Material and methods 

2.1. Finite element model design 

This model reconstructs a healthy human unloaded foot, based on CT-images 

(radiographs to 0.6 mm/slide) acquired from the right foot of a 49-year-old man (weight = 

75 Kg, height = 1.70 m). Tissue segmentation and 3-D reconstruction (Bones, PF, TPT, 

Achilles tendon (AT) and peroneus longus tendon (PLT), peroneus brevis tendon (PBT), 

flexor digitorum longus (FDL), flexor hallucis longus (FHL)) were performed using MIMICS 

V. 10 (Materialize, Leuven, Belgium). The model maintains the cartilage morphology as 

well as the differentiation between cortical and trabecular bone. This characteristic is 

important when biomechanical stress is evaluated, even though some authors have 

simplified the bone structure by characterizing the bone tissue as completely cortical or 

considering an average of the mechanical properties of both cortical and trabecular bone 

[23,24,25]. Because of the difficulty of segmenting the SL and both the short plantar 
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ligament (SPL) and the long plantar ligament (LPL) from images, these tissues were 

added to the model through the reconstruction of their anatomy following both body atlas 

and surgeons’ guidance. The complete FE model is shown in fig. 1.   

2.2. Meshing 

The model’s meshing was performed using ICEM CFD V. 15 software (Canonsburg, 

Pennsylvania, United States), generating 28 cortical bone pieces, 24 trabecular bone 

pieces, 26 cartilage segments, 4 tendons, 3 ligaments and the plantar fascia. A trial-error 

approach was employed to optimize the mesh size of each segment, following the 

recommendations of Burkhart et al. [26] who suggest that in all the parameters measured, 

the number of inaccurate elements must be less than 5% (see table 1). All simulations 

and post-processing were performed in Abaqus/CAE 6.14 (Dessault Systémes, Vélizy-

Villacoublay, France) using the Nonlinear geometry solver available.  

2.3. Tissue biomechanical properties and arthrodeses simulation 

Tissue properties (Young’s modulus and Poisson’s ratio) of the cortical bone, trabecular 

bone, ligaments and plantar fascia were assigned in accordance with published data 

[23,19]. The tendons and cartilages were modeled as hyper-elastic materials (Ogden 

model), using the parameters used in specialized articles [27,28]. The tissue failures or 

weakness applied to simulate AAFD development were performed applying the Isotropic 

Hardening theory that generates a progressive tissue weakening. 

To simulate each case of arthrodesis, the cartilage tissues of the fused joint were replaced 

with cortical bone (Fig. 2) in order to emulate a complete joint union. These changes were 

performed before starting the simulations (unloaded foot). No   external fixation elements 

were included.  
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2.4. Loading and Boundary conditions: 

The model was reconstructed from CT-images of an unloaded foot (Internal Moreau-

Costa-Bertani angle (IMCB) of 106°). The first step was to generate a normal standing 

load position (midstance) for use as a reference case and for comparison with all the 

simulated cases of both AAFD and surgical procedures. All simulations were performed 

applying the loading and boundary conditions shown in fig. 3. The load of 720N represents 

the full weight of an adult of about 73Kg, leaning on one foot, which emulates a traditional 

scenario of an AAFD diagnosis assessment.  

 

The load was included in a descending vertical direction and 10 degrees of inclination, 

distributed as follows: Tibia – Talus joint (90%) and Fibula – Talus (10%) [29]. The tendon 

traction force was included as reported by Arangio et al. [30]. All simulations were 

performed maintaining fixed nodes at the lower part of the calcaneus and blocking the Z-

axis displacement (vertical) of the lower nodes of the first and fifth metatarsals. In this 

way, the ground effect in the midstance phase was simulated. 

To obtain the flatfoot deformation, the model was first simulated removing the TPT traction 

force [31]. Then a severe case was simulated, adding the weakening of both PF and SL 

tissues. 

 

2.5. Model Validation 

The model was validated following the recommendations of Tao et al. [32]. They 

measured the vertical displacements of some anatomical points in two different loading 

conditions: light loading and normal stance loading, using lateral Rx images (Sagittal 

plane). The variation of these points in each case allowed us to compare the vertical 
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relative displacements observed in the radiographic images versus those generated by 

the model. The vertical distance from the ground to the highest point of the talus (TAL) 

and the navicular (NAV), the midpoint of the first cuneiform (CUN) and the highest point 

of the first metatarsal head (1MT) was measured, as can be seen in fig. 4. These 

measurements were taken from images of 12 healthy patients, in order to obtain an 

average of normality and a standard deviation (SD). The free software “ImageJ” was used 

to measure the image distances. Each radiological image was obtained at the same 

distance and was aligned using as reference points the highest point of the talus head, 

the posterior extreme of the first distal phalanx and the anterior extreme of the calcaneus. 

Additionally, some foot structural measurements were performed: The IMCB angle, the 

talocalcaneal divergence (TCD) angle and the Forefoot Abduction (FA) angle.  

2.6. Model analysis and evaluation criteria. 

The biomechanical stress was quantified using the field output spectrum available in 

Abaqus/CAE. The parameter used for the evaluation was the maximum principal stress 

(S. Max). These eigenvalues are closely related to the tensile stress that is generated in 

foot tissues during normal stance phase. When a dysfunctional soft tissue was included 

in the simulation, its biomechanical stress was not measured.   

 

3. Results 

3.1. About the model validation 

Results of the validation process can be seen in table 2. The model generates a foot 

structure deformation similar to a healthy patient in a loading test, simulating all the tissues 

in normal and functional conditions.  The evaluation was performed observing the foot 
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anatomy in a sagittal plane under two load conditions: light loading and a normal standing 

loading. 

Additionally, the deformation predicted by the model for a healthy foot generates angles 

within normal values:  IMCB angle of 115 °, an FA angle of 17 ° and a TCD angle of 18° 

[33]. 

 

3.2. About the flatfoot simulation 

 

The foot model developed the main AAFD signs: the too many toes sign, foot arch 

lengthening, hindfoot pronation and increased forefoot abduction (See fig. 5). Additionally, 

the structural angles were measured, obtaining: IMCB = 120°, TCD = 24° and FA = 24°. 

3.3. Soft tissue stress analysis: 

 

As mentioned above, the first simulations were performed removing the TPT traction force 

but maintaining both the PF and SL tissues in healthy conditions. Results of the 

biomechanical stresses of both the PF and SL are shown in fig. 6 and fig. 7, respectively; 

and the maximum stress generated in the plantar ligaments, peroneus tendons, both 

flexors digitorum and hallucis longus tendons, and the Achilles tendon are summarized in 

table 3. Figures shown in this section present a quantification of the stress generated and 

its localization in the tissue anatomy. The color scale is organized in ascending order:  

blue represents low stresses, green represents medium stresses, while orange and red 

represent high stresses. The color scale was normalized to visualize better the differences 

between cases to 20 N/mm2 for PF and 30 N/mm2 for SL.  The maximum stress value 

generated appears in the upper part of the color scale, but in the SL results for both the 
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calcaneocuboid arthrodesis and triple arthrodesis, the maximum value is presented 

explicitly because the stress value is less than 30 MPa. The results of the other tissues 

are summarized in table 3.  

3.4. Bone stresses analysis:  

 

In this case, the flatfoot simulation was performed weakening both the PF and SL tissues 

and removing the TPT traction force. The stresses were measured for hindfoot bones (fig. 

7) and forefoot bones (fig. 8), quantifying the maximum principal stress in N/ N/mm2. 

Results were normalized to 20 N/mm2 (hindfoot bones) and 100 N/mm2 (forefoot), to 

visualize better the stress differences.  

 

It is important to mention that the high stress values generated in the lower part of the 

calcaneus were caused by the fixed nodes, which prevent the structure displacement 

during the loading step and allow the model convergence. This is a common problem of 

stress concentration, a side-effect of the boundary conditions used in the finite element 

modeling. However, although this condition increases the maximum stress values 

presented in the color scale, it does not affect the relationship of differences generated 

between stresses, because this condition is present in all the cases. 

Additionally, the maximum principal stress of all the other soft tissues included in the 

model were calculated. The maximum values are summarized in table 4, presented in 

units of N/mm2. 

4. Discussion 
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This study aimed to quantify the stresses in both soft tissues and bones that are generated 

by isolated arthrodeses (subtalar, talonavicular and calcaneocuboid) and  triple 

arthrodesis, in two pathological scenarios associated to AADF development [1,2], using a  

detailed finite element model [24,25]. This model generates the most notable AAFD signs:  

foot arch lengthening, an increase of forefoot abduction and hindfoot pronation. Some 

authors have proposed computational models to evaluate AAFD. Gefen et al. [34] and 

later Chaung and Zhang [35] developed models that allow the biomechanical 

consequences of a complete and partial removal of the PF to be evaluated. Subsequently, 

Tao et al. [19] developed a detailed FE model with which the contribution of the PF, SL, 

SPL and LPL to the maintenance of the foot arch was calculated. However, in contrast to 

our proposal, these models do not consider the cortical and trabecular bone 

differentiation, nor the tissue geometry needed to perform an accurate stress study. They 

consider tendons and ligaments as simple bar elements (unidimensional) that generate 

similar foot structure deformations, but they cannot accurately measure the biomechanical 

stress values nor their distribution in tissues. There are also computational models used 

to study foot surgeries, but these maintain the soft tissue simplification mentioned above, 

reducing their clinical interest for  AAFD research [30,36,37]. 

 

Experimental studies and patient case reports published in the clinical literature about 

arthrodeses applied as treatment for AAFD generally suggest that these surgical 

techniques generate good results, mainly in terms of pain reduction and foot structure 

correction. However,  some side-effects have also been reported associated with 

pseudarthrosis, metatarsalgia and pain in the joints around the fused region [16,17,38]. 

Some clinical studies show that a well-fixed arthrodesis will result in normal physiological 
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contact pressures and will prevent attenuation of the medial soft tissue and consequent 

degenerative changes [39]. However, inevitably the structural changes caused by the 

arthrodesis generate additional stresses on soft tissues, joints and bones above and 

below the fused areas [38].  

 

The results herein presented show that when a TPT dysfunction occurs and an isolated 

complete subtalar arthrodesis is applied, the PF stress decreases only about 7%, but the 

SL stress was reduced by 40%. In the same scenario, isolated calcaneocuboid 

arthrodesis obtained the best decrease in both the PF and SL stress (21% and 72%, 

respectively). However, the triple arthrodesis obtained the best decrease rates in both PF 

and SL stresses, almost completely discharging the SL tissue (stress reduction of 89%) 

and reducing the PF stress by about 30%. Both subtalar and talonavicular arthrodeses 

were the isolated procedures that obtained the best stress reduction in both FHL and FDL. 

Talonavicular arthrodesis stands out reducing the LPL stress, while calcaneocuboid 

arthrodesis notably reduces the SPL. However, this last procedure generates a high 

increase in both LPL and PLT. Similar results were obtained in the triple arthrodesis 

simulation. None of the analyzed surgical procedures showed any significative effect on 

either AT or PBT stress. These results match  those obtained by Chen et al. [10] in a study 

performed using cadaver foot models and by Wong et al. through a computational study 

[22]. Both found that isolated posterior subtalar arthrodesis is the least effective for 

correcting the plantar arch structure and the forefoot abduction when a TPT dysfunction 

occurs.  
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The second part of this study was focused on an analysis of the biomechanical stress 

generated on the foot bones. The model was simulated weakening the tissue for both the 

PF and the SL and removing the TPT traction force. This severe condition allowed us to 

analyze the stress in all the soft tissues not altered, and also the traction stress differences 

on both the forefoot and hindfoot bones in all the simulated procedures. The results for 

the soft tissues stress in this case are similar to those described above. This means that 

both calcaneocuboid arthrodesis and triple arthrodesis produce a significant reduction in 

the SPL traction stress but increase the LPL stress even more than the flatfoot scenario. 

Again, both subtalar and navicular arthrodeses produce the best reduction in the stress 

on the PLT when TPT weakness was simulated. However, with a failure of PF, SL and 

TPT, triple arthrodesis shows the higher stress reduction for this tissue, as was expected. 

Again, none of the procedures show relevant biomechanical effects on either the PBT or 

the AT because the relationship of these tissues with the plantar arch support is minimal.    

 

The results in fig. 8 show a remarkable stress concentration in the calcaneocuboid joint 

after applying arthrodesis in this area. These results are similar to those reported by Logel 

et al. [40] who found a pressure increase on the calcaneocuboid joint and signs of 

pseudarthrosis and degenerative processes around this area in patients treated with 

calcaneocuboid arthrodesis both isolated and combined with other surgical techniques. 

Both isolated talonavicular arthrodesis and triple arthrodesis generated the lowest stress 

values in hindfoot bones (decreases of 16% and 21%, respectively). Regarding evaluation 

in the metatarsal bones, the stress increase is notable in all the simulated arthrodesis 

cases.  However, both triple arthrodesis and isolated talonavicular arthrodesis stand out, 

reducing the metatarsal stress by about 29% and 34 %, respectively, with respect to the 
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flatfoot case. Summarizing all the results, we observe that isolated calcaneocuboid and 

triple arthrodesis are the procedures that best reduce the stress in the main passive foot 

arch stabilizers; while isolated talonavicular and, again, triple arthrodesis are the 

procedures that generated the least stress in foot bones and joints.  

 

Triple arthrodesis, the results of which stand out in this study, has been demonstrated to 

be a reliable and reproducible option for successfully correcting foot structure deformity 

with good clinical results [18]. However, this is a procedure with some defects. Long-term 

follow-up of patients after triple arthrodesis has shown that many of them develop arthritis 

or pain around the ankle, midfoot and lateral metatarsals [18]. These changes can take 

years or even decades to develop, and indeed may never become evident [17]. This fact 

has motived the search for alternative procedures, a little bit less restrictive. The results 

of this article suggest that if the rigidity of the arch is not too severe, and there is no 

evidence of pain or osteoarthritis around other hindfoot joints, an isolated talonavicular 

arthrodesis might give better results than an isolated subtalar arthrodesis (better stress 

reduction in soft tissues and less stress in foot bones and joints), which could be combined 

with other tendon reinforcement procedures or osteotomies, as an alternative to correct  

flatfoot deformity, keeping  most of the joint movements possible. 

 

Finally, we consider that the main limitation of our model is that all the arthrodeses 

analyzed were simulated in the model "in situ" considering a rigid deformity forefoot which 

represents that we had canceled the motion between the different joints through an 

algorithm. We must state that performing any 3D correction arthrodeses the results 

obtained between the talonavicular and isolated posterior subtalar may be similar in terms 
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of mechanical effect. Each arthrodesis was simulated as a complete joint-fusion before 

starting the simulation (unloaded foot in normal position), without including any external 

support element. However, since our objective was to quantify stress changes generated 

by the surgical procedures and not the structural correction that each procedure is capable 

of generating, the initial position of the foot structure is not a determinant. Additionally, 

although the values of biomechanical stress generated cannot be assumed as true stress 

values for all people (because of inter-subject variability), we can analyze the relative 

differences generated in each case and the location of the stress concentration points. 

Besides, our model was designed from CT-images of an unloaded foot (taken from a 

traditional radiological foot study), and the initial bone shapes come from a healthy person. 

Despite these limitations, mainly related with the methodology applied, our study 

quantified the stresses in foot tissues that cannot be measured in cadavers nor in vivo. 

This information could improve the understanding of the soft tissue and bone stresses 

related with both AAFD development and the surgical treatments applied.   

 

5. Conclusions: 

The results show that in rigid deformities, when arthrodeses are done “in situ”, 

Talonavicular arthrodesis is a good option. It generates significant stress reduction and 

offers an alternative to isolated subtalar arthrodesis and could be combined with other 

surgical procedures in order to correct flatfoot deformity. In this theoretically situation, 

subtalar arthrodesis is the isolated hindfoot arthrodesis that contributes least to stress 

reduction on both the plantar fascia and the spring ligament. In fact, this isolated 

arthrodesis generates the highest stress on both the forefoot and hindfoot of all the 

evaluated isolated procedures. Additionally, although calcaneocuboid arthrodesis 
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significantly reduces the stress in the plantar arch stabilizer tissues, it generates a 

significant stress concentration that could result in arthritis problems around the fused 

zone. Triple arthrodesis was the procedure that best reduces the stresses in both soft 

tissues and foot bones. 
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List of Figure legends:  

Figure 1: Complete FE model. All the foot tissues included in the model and the 

differentiation between cortical and trabecular bone are shown.  

 

Figure 2: Explanation of how the arthrodesis was simulated. The cartilage material 

was changed to a cortical material in each of the fused joints. 

 

Figure 3: Boundary and loading settings applied to the foot model. The foot arch 

of the reconstructed model (unloaded) was measured using the internal Mourean-

Costa-Bertani angle. 
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Figure 4: Model validation schema. Sagittal plane radiographs were used to 

compare the foot deformation in two loading conditions (light loading and normal 

standing load). 

 

Figure 5: Structural deformation obtained after simulating both the healthy foot and 

the Adult acquired flatfoot deformity case. 
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Figure 6: Plantar fascia biomechanical stress (N/mm2) generated after simulating a tibialis 

posterior tendon dysfunction. 
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Figure 7: Spring ligament biomechanical stress (N/mm2) generated after 

simulating a tibialis posterior tendon dysfunction. 
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Figure 8: Maximum principal stress (N/mm2) generated on the hindfoot bones 

(Calcaneus, Talus, Cuboid and Navicular), after simulating a plantar fascia, spring 

ligament and tibialis posterior tendon dysfunction. 

 

Figure 9: Maximum principal stress (N/mm2) generated on forefoot bones 

(Metatarsals and phalanges) after simulating a plantar fascia, spring ligament and 

tibialis posterior tendon dysfunction. 
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Table 1: Summary of the mesh quality measures, following the recommendations of 

Burkhart et al. [26], also used by Morales et al [41]. 

Evaluation metrics Criteria Accurate elements  Inaccurate elements 

Element jacobians > 0.2 99.99% 0.01% 
Aspect ratio < 3 93.5% 5,5% 
Min. Angles > 30° 100% 0% 
Max. Angles < 120° 100% 0% 
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Table 2: Results of the validation process. The values represent the difference between 

each reference point measured in two loading scenarios. 

 

Reference point Model prediction (mm) Patient average (mm) 

TAL - 0.337 - 0.33 (± 0.139) 
NAV - 0.28 - 0.258 (± 0.039) 
CUN - 0.25 - 0.192 (± 0.077) 
1MT - 0.065 - 0.078 (± 0.031) 
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Table 3: Maximum stress (N/mm2) generated after simulating a tibialis posterior tendon 
dysfunction. 
 

 Healthy Flatfoot Subtalar 
arthrodesis 

Talonavicular 
arthrodesis 

Calcaneocuboid 
arthrodesis 

Triple 
arthrodesis 

SPL 24,88 28,92 27,18 26,1 3,8 2,75 
LPL 24,42 35,51 36,66 28,69 64,19 57,87 
PBT 210,77 207,77 209,67 208,89 215,13 216,70 
PLT 183,76 246,2 252,17 237,6 312,7 328,9 
FHL 242,7 247,6 228 225,42 243,9 271,9 
FDL 184,3 191,16 185,18 185,49 191,03 183,89 
AT 104,1 105 105 105 110 109 
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Table 4: Maximum stress (N/mm2) generated after simulating a plantar fascia, spring 

ligament and tibialis posterior tendon dysfunction. 

 

 Healthy Flatfoot Subtalar 
arthrodesis 

Talonavicular 
arthrodesis 

Calcaneocuboid 
arthrodesis 

Triple 
arthrodesis 

SPL 24,88 42,34 39,50 34,98 4,61 3,38 
LPL 24,42 60,67 64,62 41,53 82,33 72,2 
PBT 210,77 210,41 178,91 213,9 219,73 221,58 
PLT 183,76 247,34 241,9 213,75 382,56 354,93 
FHL 242,7 267,2 243,3 247,36 248,09 252,27 
FDL 184,3 182,27 166,12 183,97 183,67 179,16 
AT 104,1 136 121 114 114 112 
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