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Abstract. In this survey we present some significant bounds for the number of maximal subgroups

of a given index of a finite group. As a consequence, new bounds for the number of random generators

needed to generate a finite d-generated group with high probability which are significantly tighter

than the ones obtained in the paper of Jaikin-Zapirain and Pyber (Random generation of finite and

profinite groups and group enumeration, Ann. Math., 183 (2011) 769–814) are obtained. The results

of Jaikin-Zapirain and Pyber, as well as other results of Lubotzky, Detomi, and Lucchini, appear as

particular cases of our theorems.

1. Introduction

All groups in this survey will be finite. Let G be a d-generated group. The motivating question of

this paper is: How many elements one should expect to choose uniformly and randomly to generateG?

Let us call this number ε(G). The first reference we have of this problem is due to Netto [18, page 90],

who conjectured that the probability that a randomly chosen pair of elements of Alt(n) generates

Alt(n) tends to 1 as n tends to infinity, and that the probability that a randomly chosen pair of

elements of Sym(n) generates Sym(n) tends to 3/4 as n tends to infinity. Dixon proved in [10] that

this conjecture is true, by showing that the proportion of generating pairs for Alt(n) or Sym(n) is
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greater than 1 − 2/(ln lnn)2 for sufficiently large n, where ln denotes the natural logarithm. He

also conjectured that the proportion of pairs (x, y) of elements of a simple group G that generate G

also tends to infinity as |G| tends to infinity. Kantor and Lubotzky [14] and Liebeck and Shalev [15]

proved the validity of Dixon’s conjecture: if G is an almost simple group with socle S, the probability

that a pair of elements of G generates a subgroup containing S tends to 1 as |G| tends to infinity.

Pomerance [20] analysed the expected number ε(G) of random generators of an abelian group G

and proved that ε(G) ≤ d(G)+σ, where d(G) denotes the minimum cardinal of a generating set of G

and σ = 2.118456563 · · · is obtained from the Riemann zeta function. For abelian groups, this bound

is optimal. Pak [19], motivated by potential applications for the product replacement algorithm,

useful to obtain random elements in a finitely generated group, studied a related invariant.

Definition 1.1. Given a group G, ν(G) denotes the least positive integer k such that the probability

of generating G with k random elements is at least 1/e.

Pak proved in [19, Theorem 2.5] that

1

e
ε(G) ≤ ν(G) ≤ e

e− 1
ε(G)

and conjectured that ν(G) = O(d(G) log log|G|). Here the symbol log is used to denote the logarithm

to the base 2, with the convention that log 0 = −∞.

Let {x1, x2, . . . , xk} ⊆ G. Then we have that ⟨x1, x2, . . . , xk⟩ ̸= G if, and only if, there exists a

maximal subgroup M of G such that ⟨x1, x2, . . . , xk⟩ ≤ M . This shows the relevance of maximal

subgroups in the scope of probabilistic generation of finite groups. Moreover, if the elements x1,

x2, . . .,xk are chosen independently and at random with a uniform distribution and M is a maximal

subgroup of G, then

Prob(⟨x1, x2, . . . , xk⟩ ≤ M) =
k∏

i=1

Prob(xi ∈ M) =

(
|M |
|G|

)k

=
1

|G : M |k
.

Therefore the number mn(G) of maximal subgroups of G of a given index n is also relevant in this

context. Lubotzky [16], by considering the number of chief factors in a given chief series, and Detomi

and Lucchini [8], with the help of the number λ(G) of non-Frattini chief factors in a given chief series

of G and by means of their associated crowns, proved independently that Pak’s conjecture is valid.

Theorem 1.2 (Lubotzky, [16, Corollaries 2.6 and 2.8]). If G is a group with r chief factors in a

given chief series, then

mn(G) ≤ r(r + nd(G))n2 ≤ r2nd(G)+2.

Furthermore,

ν(G) ≤ 1 + log log|G|
log i(G)

+ max

(
d(G),

log log|G|
log i(G)

)
+ 2.02,

where i(G) denotes the smallest index of a proper subgroup of G.
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The proof of Theorem 1.2 depends on some results of Mann and Shalev [17] about the number

of maximal subgroups of a given index of a group G and on some structural results about primitive

groups.

Theorem 1.3 (Detomi and Lucchini [8, Theorem 20]). There exists a constant c such that, for any

group G, ν(G) ≤ ⌊d(G)+ c log λ(G)⌋ if λ(G) > 1, otherwise, ν(G) ≤ ⌊d(G)+ c⌋, where λ(G) denotes

the number of non-Frattini chief factors in a given chief series of G.

Here the symbol ⌊x⌋ is used to denote the defect integer part of x, that is, the largest integer

number n with n ≤ x. The proof of this result depends on some results of Dalla Volta and Lucchini

[6] and Dalla Volta, Lucchini, and Morini [7] about the number of generators of powers of certain

diagonal-type subgroups of direct products of copies of a monolithic group.

The invariant ν(G) is related to the following invariant.

Definition 1.4. Given a group G let

M(G) = max
n≥2

lognmn(G) = max
n≥2

logmn(G)

log n
.

Here logn x denotes the loarithm to the base n of x, that is, logn x = log x/ logn = lnx/ lnn.

Theorem 1.2 depends on the following interesting result.

Theorem 1.5 (Lubotzky, [16, Proposition 1.2]).

M(G)− 3.5 ≤ ν(G) ≤ M(G) + 2.02.

Jaikin-Zapirain and Pyber have obtained in [12] a remarkable result that gives surprisingly explicit

lower and upper bounds for ν(G) with interesting applications (see [5, Theorem 3]). Their bounds

depend on the following invariants.

Definition 1.6. Let G be a group. The symbol l(G) denotes the least degree of a faithful transitive

permutation representation of G, that is, the smallest index of a core-free subgroup of G.

Definition 1.7. Let G be a group and let A be a characteristically simple group. The symbol rkA(G)

denotes the largest number r such that G has a normal section that is the direct product of r non-

Frattini chief factors of G that are isomorphic (but not necessarily G-isomorphic) to A.

This invariant was only defined for non-abelian characteristically simple groups, but there is no

problem in extending their definition to elementary abelian groups. The main result of [12] is the

following one.

Theorem 1.8 ([12, Theorem 1]). There exist two absolute constants 0 < α < β such that for every

group G we have

α

(
d(G) + max

A

{
log rkA(G)

log l(A)

})
< ν(G) < β d(G) + max

A

{
log rkA(G)

log l(A)

}
,
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where A runs through the non-abelian chief factors of G in a given chief series of G.

Here rkn(G) denotes the maximum of rkA(G) where A runs over the non-abelian characteristically

simple groups A with l(A) ≤ n. According to private communications with the authors, the maximum

on the right-hand side must be understood to be zero when G is soluble, that is, when G has no

non-abelian chief factors. This result is a consequence of a stronger result.

Theorem 1.9 ([12, Theorem 9.5]). Let G be a d-generated group. Then

max

{
d,max

n≥5

log rkn(G)

c7 log n
− 4

}
≤ ν(G) ≤ cd+max

n≥5

logmax{1, rkn(G)}
log n

+ 3,

where c and c7 are two absolute constants.

The lower bound depends on the following result.

Lemma 1.10 ([12, Corollary 9.3]). Let G be a group. Then mx(G) ≥ rkn(G)/nc7 for some x ≤ nc7.

There was a misprint in the original version, where the bound mx(G) ≥ rkn(G) was stated instead.

This form of this result appears in [13] and so Theorem 1.9 is modified there to the following result.

Theorem 1.11 ([12, Theorem 9.5]). Let G be a d-generated group. Then

max

{
d,max

n≥5

log rkn(G)

c7 log n
− 5

}
≤ ν(G) ≤ cd+max

n≥5

logmax{1, rkn(G)}
log n

+ 3,

where c and c7 are two absolute constants.

The aims of this survey are:

(1) to give an interpretation of the invariant rkA(G) for a non-abelian characteristically simple

group A,

(2) to improve the bounds for mn(G) and, hence, for ν(G), and

(3) to estimate the values of the constants in [12, Theorem 9.5].

These objectives have been developed in depth in [2]. We refer the reader to this paper for more

details and proofs.

2. Large characteristically simple sections

Recall that a primitive group is a group with a core-free maximal subgroup. The relevance of

primitive groups in the study of the group sturcture is due to the fact that ifM is a maximal subgroup

of a group G, then M/MG is a core-free maximal subgroup of G/MG and so G/MG is primitive. A

detailed study of primitive groups and the crowns associated is presented in [3, Chapter 1]. The

following classical result of Baer gives a classification of the primitive groups.

Theorem 2.1 (Baer, [1], see also [3, Theorem 1.1.7]). Let G be a primitive group and let U be a

core-free maximal subgroup of G. Exactly one of the following statements holds:
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(1) Soc(G) = S is a self-centralising abelian minimal normal subgroup of G, G = US and

U ∩ S = 1.

(2) Soc(G) = S is a non-abelian minimal normal subgroup of G, G = US. In this case, CG(S) =

1.

(3) Soc(G) = A × B, where A and B are the two unique minimal normal subgroups of G,

G = AU = BU and A ∩ U = B ∩ U = A ∩ B = 1. In this case, A = CG(B), B = CG(A),

and A ∼= B ∼= AB ∩ U are non-abelian.

We say that a primitive group is of type 1, of type 2, or of type 3 according to whether G satisfies

one of the statements 1, 2, or 3. A maximal subgroup M of G is said to be of type 1, of type 2, or of

type 3 when G/MG is a primitive group of type 1, of type 2, or of type 3, respectively. The theorem

of O’Nan and Scott (see [3, Theorem 1.1.52]) gives a complete description of all primitive groups of

type 2.

We have the following result.

Theorem 2.2. Let G be a primitive group of type 2 with socle B. Then G/B has no chief factors

isomorphic to B.

With the help of Theorem 2.2 and the precrown associated to a supplemented chief factor and a

maximal subgroup supplementing it, studied in [3, Section 1.2], we can prove the following result.

Theorem A ([2, Theorem B]). Let A be a non-abelian chief factor of a group G and suppose that

in a given chief series of G there are k chief factors isomorphic to A. Then there exist two normal

subgroups C and R of G such that R ≤ C and C/R is isomorphic to a direct product of k minimal

normal subgroups of G/R isomorphic to A. In particular, rkA(G) is the number of chief factors of

G isomorphic to A in a given chief series of G.

An extension of this result to non-Frattini abelian chief factors is also presented in [2].

3. New bounds for the number of maximal subgroups of a given index

We will improve the lower bound in Theorem 1.9 in two ways: by showing that the constant can

be taken to be c7 = 2, and by proving that the result of the original version of the paper is correct

and can even be improved. By the O’Nan-Scott theorem, we see that it is enough to prove the result

for almost simple groups. We prove the following result.

Theorem 3.1. Every almost simple group R with socle isomorphic to the simple group S possesses a

conjugacy class of core-free maximal subgroups of index l(S) or a conjugacy class of core-free maximal

subgroups with a fixed index vs ≤ l(S)2, depending only on S.

Therefore, c7 can be taken as 2. This result depends on an exhaustive analysis of the maximal

subgroups of the smallest index of the simple groups and the associated almost simple groups. As a

consequence, we obtain the following bound.
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Theorem 3.2. Let G be a d-generated group. Then

ν(G) ≥ max

{
d,max

A

log rkA(G)

2 log l(A)
− 2.63

}
.

These bounds can be improved in groups whose non-abelian composition factors are in a certain

class of groups for which every almost simple group with socle isomorphic to S has a conjugacy class

of core-free maximal subgroups of index l(S). For such groups, the constant c7 in the denominator

can be taken to be 1 and the term −2.63 can be replaced by −2.5.

We note that the lower bound is useful only when rkA(G) is large for some A. For instance, if

S = Alt(5), which belongs to the abovementioned class, and G = Sr, with r ∈ N, according to a

result of Wiegold [22] we need r = 604 = 12 960 000 copies of S to obtain useful bounds, greater than

the number of generators 4 + 2 = 6. The result of Jaikin-Zapirain and Pyber, even if we accept that

c7 = 2, requires 6026 copies of S in order to obtain some useful results (ν(G) ≥ 29).

Our upper bound for the number of maximal subgroups of index n of a group will depend on the

following invariants. The first one concerns the maximal subgroups of type 1.

Definition 3.3. Let G be a group and let n ∈ N, n > 1. We denote by crAn(G) the number of

crowns associated to complemented abelian chief factors of order n of G, that is, the number of

G-isomorphism classes of complemented abelian chief factors of G of order n.

It is clear that crAn(G) = 0 unless n is a power of a prime.

The second invariant is useful to obtain bounds for the number of maximal subgroups of type 2.

Definition 3.4. Let n ∈ N. The symbol rk sn(G) denotes the number of non-abelian chief factors A

in a given chief series of G such that the associated primitive group G/CG(A) has a core-free maximal

subgroup of index n.

The following invariants concern maximal subgroups of type 3.

Definitions 3.5. Let n ∈ N.

(1) The symbol rk on(G) denotes the number of non-abelian chief factors A in a given chief series

of G such that |A| = n.

(2) The symbol rk omn(G) denotes the maximum of the numbers rkA(G) for A running over the

isomorphism types of non-abelian chief factors of G with |A| = n.

We must note that the non-abelian chief factors A of G of order n fall into at most two isomorphism

classes. It follows that rk on(G) ≤ 2 rk omn(G). Note also that the invariants rk sn(G), rk on(G), and

rk omn(G) are naturally related to rkn(G).

We can use these invariants to give new bounds for ν(G).
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Theorem B ([2, Theorem A]). Let G be a d-generated non-trivial group. Then

max

{
d,max

A

log rkA(G)

2 log l(A)
− 2.63

}
≤ ν(G) ≤ η(G),

where in the maximum on the left hand side, A runs over the isomorphism classes of non-abelian

chief factors in a given chief series of G and η(G) is a function bounded by a linear combination of

d and the maxima of logn cr
A
n(G), logn rk sn(G), logn rk on(G), and logn rk omn(G).

The determination of our function η, presented in Theorem 3.12, follows from estimating the

number of maximal subgroups of each type and a given index n. For the maximal subgroups of

type 1, we have the following result.

Theorem 3.6. Let U be a maximal subgroup of type 1 of a d-generated group G and let n = |G : U |.
Then the number of maximal subgroups M of G such that Soc(G/MG) is G-isomorphic to Soc(G/UG)

is less than or equal to

nd − n|H1(G/C,A)|
q − 1

,

where A = C/UG is the unique minimal normal subgroup of G/UG and q = |EndG/C(A)|. In

particular, this number is less than nd.

As a consequence, we obtain the following information about the number of type 1 maximal

subgroups.

Corollary 3.7. The number of type 1 maximal subgroups M of index n = pr of a d-generated group

G is less than or equal to (nd − 1)crAn(G).

The proof of this result depends on some arguments of Gaschütz [11] and Dalla Volta and Lucchini

[6].

The following result is useful to give bounds on the number of maximal subgroups of G of type 2

and index n.

Theorem 3.8 (Pyber [21], see [16, Theorem 1.3] or [9, Theorem 21]). There exists a constant b such

that for every group G and every n ≥ 2, G has at most nb core-free maximal subgroups of index n.

In fact, b = 2 will do.

We can apply it to obtain a bound for the number of maximal subgroups of type 2 and index n.

Theorem 3.9. Let G be a group and let n ∈ N. The number of maximal subgroups of G of type 2

and index n is bounded by rk sn(G)n2.

Finally, the number of maximal subgroups of type 3 and index n is bounded in the following

theorem.
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Theorem 3.10. Let G be a d-generated group and let n ∈ N which is a power of the order of a

non-abelian simple group. The number of maximal subgroups of G of type 3 and index n is bounded

by

n2min

{
nd,

rk omn(G)− 1

2

}
rk on(G).

This result depends on the study of the crowns associated to non-abelian chief factors, since the

minimal normal subgroups of G/MG are G-connected.

Denote by T the set of all prime powers and by S the set of all powers of orders of non-abelian

simple groups. Then the elements of T are possible indices of maximal subgroups of types 1 and 2,

the elements of S are possible indices of maximal subgroups of types 2 and 3, and the elements of

N\(S∪T) can appear only as indices of maximal subgroups of type 2. Therefore we have the following

result.

Theorem 3.11. (1) If n ∈ T then

mn(G) ≤ (nd − 1)crAn(G) + n2rk sn(G)

≤ 2max{ndcrAn(G), n2rk sn(G)}.

(2) If n ∈ S, then

mn(G) ≤ n2rk sn(G) + n2min

{
nd,

rk om(G)− 1

2

}
rk on(G).

≤ 2n2max

{
rk sn(G),min

{
nd,

rk omn(G)− 1

2

}
rk on(G)

}
.

(3) If n /∈ S ∪ T, then mn(G) ≤ n2rk sn(G).

As a consequence, we can precise the function η of Theorem B.

Theorem 3.12. Let G be a d-generated non-trivial group. Then, for

η(G) := max
{
d+ 2.02 + max{logn 2 + logn cr

A
n(G)},

4.02 + max{logn 2 + logn rk sn(G)},

4.02 + max
{
min{d+ logn 2, logn rk omn(G)}+ logn rk on(G)

}}
,

we have that

ν(G) ≤ η(G).

4. Discussion

In this section, we will show that Theorem B improves the previously known bounds for ν(G).

First of all, we see that Theorem 1.2 is a consequence of Theorem B. It is a consequence of the facts

that in a non-abelian simple group, |OutS| ≤
√

|S| and in a primitive group of type 3 whose minimal
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normal subgroups have order n, i(G) ≤
√
n, both proved in Section 6 of [2]. Theorem 1.3 is also a

consequence of Theorem B.

One difficulty we find in order to deduce Theorem 1.9 from Theorem B is the fact that the bounds

of Theorem 1.9 depend on some universal constants that are known to exist, but whose values do

not appear in the literature. The analysis of the proofs in [12] shows that these constants appear as

linear combinations of a set of universal constants, some of them without explicit values known to

us. We do this in [2, Section 6].

For instance, Borovik, Pyber, and Shalev [4] presented the following estimation for the number of

isomorphism classes of non-abelian simple subgroups of Sym(n).

Lemma 4.1 ([4]). The number g(n) of isomorphism classes of non-abelian simple subgroups of

Sym(n) for n ≥ 5 is O(n).

We can precise the value O(n).

Lemma 4.2. The number g(n) of isomorphism classes of non-abelian simple groups of Sym(n) for

n ≥ 5 is at most 4.89n+ 1141.33.

We can use this result to precise the known bounds on the number of isomorphism classes of

minimal normal subgroups of primitive groups of type 2 with a core-free maximal subgroup of a

given index.

Lemma 4.3. The number s(n) of isomorphism classes of minimal normal subgroups of primitive

groups of type 2 with a core-free maximal subgroup of index n satisfies the inequality s(n) ≤ n1.266.

Since rk sn(G) ≤ s(n), we obtain that

logn rk sn(G) ≤ 1.266 + lognmax{1, rkn(G)}.

Note also that

logn cr
A
n(G) ≤ c6d+ lognmax{1, rkn(G)},

logn rk on(G) ≤ log2 2 + lognmax{1, rkn(G)}.

We can write in a stronger form Corollary 7.3 of [12].

Theorem 4.4 (cf. Jaikin-Zapirain and Pyber [12, Corollary 7.3]). Let G be a d-generated group.

Then there exists a constant c6 such that the number of irreducible G-modules of size n is at most

nc6dmax{1, rkn(G)}.

This result and the previous bounds can be used to obtain [12, Theorem 9.5] from our results. We

obtain that

ν(G) ≤ (c6 + 1)d+ 3.02 + max lognmax{1, rkn(G)}.

We obtain the following result.
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Theorem 4.5. Let G be a d-generated group. Then

η(G) ≤ cd+max
n≥5

logmax{1, rkn(G)}
log n

+ 3,

where c = 375.06.

This follows from the fact that the constant c6 in Theorem 4.4 can be taken to be equal to 374.06.

A slightly different approach can give a lower bound.

Theorem 4.6. The number of non-equivalent irreducible G-modules of size n = pr, where p is a

prime and r ∈ N, is at most

nmin{ĉ6d+k6+logn max{1,rkn(G)},dr},

where ĉ6 = 183.034 and k6 = 74.

Now we present a construction of d-generated groups with many crowns of abelian chief factors.

Let us start with a d-generated primitive group G of type 1. Let Ω be the set of ordered generating

d-tuples of G, that we decompose in r orbits under the action of Aut(G) on Ω, and take for every

orbit a representative (gi1, . . . , gid). For 1 ≤ i ≤ d, we construct gj =
∏r

i=1 gij ∈ Gr. The group

Ĝ = ⟨g1, . . . , gd⟩ is a subdirect product of Gr and Ĝ has as it socle a direct product of all faithful

and irreducible modules for G whose primitive group is isomorphic to G.

This construction can be extended to many d-generated primitive groups with isomorphic socles,

by making this construction with each of these groups and by constructing a subdirect product of

all of them in a similar way.

For instance, there are three isomorphism classes of 2-generated primitive groups of type 1 with

socle of order 8, namely G1 = [C3
2 ]C7, G2 = [C3

2 ][C7]C3 and G3 = [C3
2 ]GL3(2). We can construct a

2-generated group S with all possible crowns of abelian chief factors of order 8. In this group, the non-

zero relevant invariants are crA3 (S) = 1, crA7 (S) = 9, crA8 (S) = 146, and rkGL3(2)(S) = 57. It follows

that the bound of Theorem 1.9 is ν(S) ≤ 3+2c+log7 57, with 3+2c+log7 57 ≥ 5.07+2c ≈ 755.198,

while the bound of Theorem B is ν(S) ≤ 6.75.
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