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Chapter 1

General Introduction

1.1 Optics in metal surfaces: Plasmonics

We should be more than grateful to optics scientists who, during the running

wheel of history, enabled us to deeply understand optics, face and solve specific

research tasks and design particular optical components and systems.

In antiquity, optics began when Egyptians and Mesopotamians developed

the first lenses with impressive mechanisms based on reflection [1]. However,

the word optics comes from the ancient Greek word Óπτική, which means

“look” or “appearance”. Also the ancient Romans and Greeks made lenses by

filling glass spheres with water, and along with Indian philosophers, theories

of light and vision led to the flowering of geometrical optics. Late after that,

during the Middle Ages, optics was significantly reformed by writers in the

Muslim world. Remarkably, in 984, the Persian mathematician Ibn Sahl de-

scribed a law of refraction equivalent to Snell’s law, in his treatise “On burning

mirrors and lenses” [2].

However, as it happens many times in science, it was in the XVIIth cen-

tury when the mathematical law of refraction, currently known as Snell’s law,

appeared. The principles of reflection and refraction were established at that

time by Descartes, who assumed that light was emitted by objects which pro-

duce it [3]. He also stated that the speed of light was as high as the covered

medium is dense. But Fermat’s principle went further than that attributing

indexes to the media [4]. This principle can be used to derive Snell’s law of

refraction and the law of reflection.

But this more modern progress still dealt only with geometrical optics and

it was considered that light behavior with obstacles could be expressed just in

terms of absorption, reflection and refraction. The effects of diffraction of light
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were first characterized and observed by Grimaldi, whose results regarding a

corpuscular theory were published in 1665 [5]. Only 25 years after, Huygens

proposed a wave theory for light, which a few years later, was displaced by

Newton’s corpuscular theory reported in his Opticks [6]. Probably due to New-

ton’s fame, the nature of light was established and diffraction was understood

as a result of a corpuscular theory.

Newtonian optics was generally accepted until the early XIXth century,

when after some experiments on the colors of thin plates, Thomas Young

observed a wonderful phenomenon which he called “interference” [7]. His ob-

servations in combination with Fresnel’s studies enabled to develop the mathe-

matics of how wave interference can account for diffraction, firmly establishing

light’s wave nature.

In the 1860s, wave optics and electromagnetic (EM) theory were success-

fully unified by Maxwell [8].

Also at the end of the XIXth century, Kirchhoff added a deeper mathemat-

ical basis to the novel diffraction theory established by Huygens and Fresnel,

but a few years later, Sommerfeld and Lord Rayleigh considered Kirchhoff’s

formulation as a first approximation and they advanced what was later called

the “Rayleigh-Sommerfeld diffraction theory”. An additional phenomenon was

added to those concerning the behavior of light in combination with obstacles:

diffraction. Indeed, the definition given by Sommerfeld to diffraction was:

“Diffraction is any deviation of light rays from the initial path which can be

explained neither by reflection nor by refraction” [9].

All these amazing observations, experiments and theories contributed to

the further development of optics in many different disciplines in physics, such

as quantum optics or specialty areas of research which include the study of

how light interacts with specific materials.

In particular, an exciting phenomenon arises when light interacts with met-

als. One interesting example relies on the “Lycurgus Cup”. Probably with-

out Romans’ awareness, the recipe for this cup made of ruby glass contained

a decisive ingredient which makes it particularly interesting [10]: nano-gold

droplets. Due to these gold nanoparticles, the cup shines greenish in daylight,

but it exhibits a ruby colour when it is illuminated from inside. This results

from the interaction of visible light with the metallic particles of that size,

where a surface plasmon resonance takes place.

Some of the scientific studies in which surface plasmons were first observed

appeared at the beginning of the XXth century. Sommerfeld [11] and Zen-

neck [12] described mathematically the propagation of radio waves along con-

ductors, and around that same time, Wood observed unexplained features in
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optical reflection measurements on metallic gratings [13]. From 1904 to 1908,

Maxwell Garnett, Drude, Lord Rayleigh and Mie greatly developed further un-

derstanding of new phenomena in the form of surface plasmons by integrating

optics with Maxwell’s theories of electromagnetism.

Finally, in 1957, Rufus Ritchie discovered Surface Plasmon Polaritons

(SPPs), EM waves trapped at metallic surfaces due to their interaction with

the free electrons of the metal [14]. SPPs have often been regarded as un-

wanted by causing electronic damping effects and radiation losses (half of the

energy they carry diffuses as heat after covering ≈ 0.1 mm). However re-

cent research efforts in nanotechnology have shown that by understanding the

physical sources for such losses and by clever engineering, plasmonic effects are

potentially interesting to develop a wide range of plasmon-based optical ele-

ments and techniques including a variety of active switches, biosensors, lithog-

raphy masks, and more. This growing development in science and technology

of metal-based optics and nanophotonics is known as Plasmonics.

To understand more about these surface waves appearing at the surface of

metallic films, let us start describing the optical properties of metals, which

are largely determined by the behavior of free electrons. Drude Model [15]

describes the dispersion of the dielectric constant of metals (ǫm) with frequency

(ω) based on two parameters: first, the characteristic oscillation frequency of

the free electrons, known as the plasma frequency (ωp), and second, their

damping time (γ), related to energy losses by heating (Joule’s Effect)

ǫm(ω) = 1−
ω2
p

ω(ω + iγ)
(1.1)

For ω < ωp, the dielectric constant is negative. Charges can oscillate in

phase with light, and in the absence of damping, the metal would be perfectly

reflecting. On the contrary, if ω > ωp, the dielectric constant is positive,

charges can no longer oscillate in phase with light and therefore, the material

becomes transparent and behaves as a dielectric. All phenomena related to

these charge oscillations are denominated as plasmons.

Surface plasmons occur at the interface between two materials, one with

a negative dielectric constant (metals), and another with a positive one (di-

electrics) due to the interaction between light and the free electrons of metallic

surfaces. Their properties arise from their dispersion relation which shows that

these metal-dielectric systems support surface plasmon polaritons (SPPs) at

the optical regime. These modes are bound to the surface of the metal like

modes of a waveguide and they are characterized by a surface wave vector

(kspp) that obeys the dispersion relation schematically presented in Fig.1.1.

As can be seen, the red and continuous line corresponding to kspp is always
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Figure 1.1: Right panel: Schematics of the electric field in a metal-dielectric interface

in the optical regime. Left panel: SPP dispersion relation. The light line, in black,

separates propagating modes from evanescent ones. kinc corresponds to the transverse

component of the incident wave, and kR accounts for the momentum needed to couple

to SPP.

beyond the light line (which separates free-space photons from evanescent

ones) and only beyond certain energy values, the SPP dispersion relation is

distinguished from the light line.

Also the decay in the z-component, and propagation lengths (in the plane)

characterize these surface waves. The decay length is related to the penetra-

tion of the electric field into the metal, leading to confined EM fields; whereas

the propagation length gives the distance that SPPs can travel before being

attenuated by the electronic oscillations inside the metal. Since these two

quantities are related one to each other, surface plasmons appear as propaga-

tive and confined EM waves.

At low frequencies, SPPs are hardly distinguished from the light line, they

are weakly bound to the metal surface and this translates into both low energy

losses inside the metal and large decay lengths. However, at high frequencies,

SPPs dispersion relation separates from the light line, the absorption at the

metal surface is boosted up, and therefore, both decay and propagation lengths

decrease leading to confined surface waves.

An important consequence provided by the dispersion relation is that

λspp < λ0, with λ0 the wavelength of free-space photons, and λspp the SPP

wavelength. For a given wavelength, a photon in free space has a wavevector

(or momentum) that is always smaller than the corresponding SPP one. This

means that the momentum (and frequency) conservation required for their

coupling cannot be fulfilled, i.e., the evanescent feature of SPPs implies that

they cannot be excited directly by external light.

In Fig. 1.1 we can see that, to excite and couple external radiation to SPPs
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it is necessary an additional momentum kR to go from the propagating sector

(where external light falls) to the evanescent one (where SPPs “live”). These

surface modes are often excited through prism [16, 17], grating coupling [18]

and near-field coupling.

Other ways to excite SPPs arise when metals are structured at the nanoscale,

giving rise to fascinating effects: on the one hand, periodic structuring of a

metal surface results in the formation of SP Bloch modes which provide the ex-

tra momentum needed to couple the SPP to free space [19], therefore, periodic

structures such as arrays of grooves or dimples, appear exceptionally attrac-

tive to excite surface plasmons. Also holes periodically arranged in a metal

film can be used for coupling SPPs on the two sides of the metal film, leading

to enhanced transmission. On the other hand, when a single hole is made

in a metal film, localized Fabry-Perot (F-P) resonances take place [20] play-

ing an important role when squeezing light efficiently through subwavelength

apertures (apertures whose dimensions are much smaller than the incident

wavelength). By combining the last effects, beaming apertures can be made

where light not only passes through a subwavelength hole, but does not suffer

from the usual diffraction afterwards.

1.1.1 Extraordinary Transmission, Light Harvesting and Field

Enhancement

Transmission and field enhancement along with beaming phenomena have gen-

erated considerable interest not only because of the physics involved but also

because of the potential technological applications. Their properties are indeed

relevant in many areas of science and technology, ranging from pure optics to

chemical sensing.

One of the most obvious applications resides in photonics, opening new

possibilities to enhance emission and photodetection by controlling light at

the subwavelength scale, and paving the way for a new generation of photonic

components where high speed and small sizes are involved. Moreover, going a

step further and exploiting nonlinear optical properties in such nanostructures

would allow the control of light with light.

Next, we will present the concepts of: (a) Enhanced Transmission, (b)

Light Harvesting and Beaming from subwavelength apertures, and (c) Field

Enhancement.

(a) Enhanced Transmission.

One of the simplest optical devices we can imagine is a hole drilled in a
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metallic screen. Hans Bethe in 1944 described theoretically the diffraction of

light at a fixed wavelength, λ, through a circular hole of radius r << λ in an

ideal situation where the screen was considered as a perfect electrical conductor

(PEC) and the thickness was infinitely thin [21]. He found that transmission

(T ) of light at the other side of the metal screen follows T ∝ (r/λ)4. This

means that if the hole radius is much smaller than the incident wavelength,

transmission efficiency is extremely poor. Besides, while for large apertures

light is transmitted in the same direction as the incident one, for subwavelength

apertures the few transmitted light spreads isotropically (see schematic in

Fig.1.2).

Figure 1.2: Diffraction and typical transmission spectrum of visible light through a

subwavelength hole in an infinitely thin perfect metal film [22].

However, in 1998 Thomas Ebbesen and co-workers found experimentally

a new and revolutionary phenomenon called Extraordinary Optical Transmis-

sion (EOT) [23], where transmission of light through an array of subwavelength

apertures drilled in a metal film could exceed unity (when normalized to the

area of the holes), i.e., it could be orders of magnitude greater than that pre-

dicted by standard aperture theory. This Extraordinary Transmission of EM

radiation relies upon the interaction of light with a real-metal periodic struc-

ture of finite thickness with holes on it, resulting in the formation of SP modes

at the metal surfaces. The grating serves to diffract and scatter the incident

light providing the extra momentum needed so that the resulting diffraction

orders of the incident light along the interface match the SP waves with the

external light.

Afterwards, light “tunnels” through the apertures causing an energy trans-

fer towards the exit surface of the film, where the SP modes are in turn excited

and eventually decoupled into freely propagating light.

In this process, the excitation of SPPs enhances the EM field above the

holes, increasing the probability of transmission via tunneling by orders of

magnitude in such a way that the metal becomes “virtually invisible”: a large

fraction of the light impinging directly on the metal surface is transmitted.

Hence, the transmission spectra display peaks whenever a SP mode is excited.
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Figure 1.3: A cylindrical waveguide with radius r much smaller than the wavelength

λ of the incident electromagnetic field milled in a metal film of thickness h [22].

To sum up, the enhanced transmission can essentially be understood as

a three step process: (i) coupling of light to SPPs on the incident side, (ii)

tunneling of light through the apertures, and (iii) decoupling of the surface

plasmon to light on the exit side. The fact that the 3 steps can often be treated

as independent phenomena opens the possibility of optimizing each of them

to maximize the throughput for a given application.

(b) Light Harvesting and Beaming from a subwavelength aper-

ture.

The enhanced transmission can be observed even for a single aperture

when it is surrounded by a periodic corrugation. These systems are of great

interest since the optical transmittance through them can be strongly boosted

up with respect to that of an isolated aperture. In particular, Bull’s Eye

(BE) structures, consisting of a subwavelength aperture surrounded by annular

grooves, and its one dimensional version (1D, a slit flanked by linear grooves),

have stimulated many works to understand how these systems enhance and

focus the transmitted light [24–36]. The principle of light harvesting is based

on the effect of transmitting the same optical power density of an incoming

light beam onto a smaller detection area. This may lead to interesting designs

for photodetectors where SPPs propagating at the metal surface are efficiently

coupled to a detection area that may be located even on the far of the metal

structure (see Fig. 1.4).

In addition, such structures have revealed a new aspect of this phenomenon,

namely, the modification of the intrinsic diffraction pattern of the subwave-

length aperture. According to standard EM theories, like Bethe’s one, a sub-

wavelength hole diffracts light in all directions. In contrast, it is possible to

concentrate the transmitted light into a narrow beam within an angular diver-

gence of a few degrees, by surrounding the hole with an appropriate grating on

the exit face of the metal film (Fig. 1.5). The origin of this directionality has
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Surface plasmon antenna

Load 

resistance

Si mesa

Cathode

Anode

Electrons

Figure 1.4: Ultrafast miniature photodetector. The device consists of a small Si pho-

toelectric element and a bull’s eye structure acting as an antenna where the incoming

light is harvested and then transmitted through the central hole to the underlying

photodetector [22].

been explained in 1D systems by the activation of SPPs on the exit grating

illuminated by SPP surface waves [22,25,37].

Figure 1.5: Experimental angular transmission-intensity distribution at resonance

emerging from the bull’s eye geometry [25].

(c) Field Enhancement.

Periodic structuring also provides additional local enhancement related to

redistribution of SPP energy along the structured surface. This allows to

achieve strong enhancement of the EM field in subwavelength size areas close

to the structured surface. Both the resonant wavelength and the enhancement

value are determined by the shape, size, dielectric constant and surroundings

of the metallic systems. A thorough understanding of the mechanisms which

produce large field enhancement at the surface, along with the interplay be-
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tween plasmon modes on structured films, would lead to some benefits: the

larger the field, the better the photo-detection sensitivity that can be achieved;

and the stronger the confinement, the smaller the volume that can be used

for photodetection. Small sizes translate into faster signal processing speeds,

but also into a limitation in light harvesting, so optimization studies are also

desired.

Field enhancement effects have been successfully used to enhance Raman

scattering [38], second- and third-harmonic generation, Kerr non-linearity [39],

chemical and biological sensing [40], security screening [41], communications [42],

and other optical processes.

Another potential use of surface plasmons related to the phenomena previ-

ously described are the design of Light Emitting Diodes (LEDs). Basically, an

LED is a semiconductor device which emits light when a PN union is directly

polarized and an electric current flows along it. The idea consists of using

periodic metallic hole arrays in contact with high index substrates (semicon-

ductors) working as LEDs or transparent electrodes. The metallic part would

provide the conductive function, while holes would both emit more light due

to Extraordinary Transmission and improve the efficiency since the metallic

film is carved with holes.

A fundamental aim is therefore to gain enough understanding of the indi-

vidual steps of the enhanced transmission and field enhancement, as well as

the collective process to maximize the efficiency when designing devices based

on these phenomena. In fact, many topics have yet to be addressed such as

the study of enhanced transmission structures with high index substrates, the

coupling of guided modes through subwavelength apertures, the reduction of

reflection losses in light harvesting structures, or the study of how light can

be controlled with light, amongst others.

1.2 Annular Holes and Bull’s Eye structures

A real aperture drilled in a screen of finite thickness is characterized by that

thickness, and therefore, it possesses waveguide properties. Transmission of

light through apertures depends on the hole shape. Boundary conditions at

the waveguide edges determine the cutoff wavelength, λc (light does not prop-

agate inside the waveguide at larger wavelengths than the cutoff), delimiting

propagative modes from evanescent ones.

Some hole shapes present special characteristics making them suitable for

different applications: the less decaying mode inside slits is a transverse elec-

tromagnetic (TEM) mode deprived of cutoff and their optical response is de-
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termined just by one parameter (their width), but also rectangular holes may

have their cutoff at very large wavelengths. Both shapes at normal incidence

depend on the polarization of the light. On the contrary, other simple shapes

such as circles do not depend on the incident polarization, whereas triangles

are independent on the angle of incidence for a large range of angles but are

strongly dependent on the direction of the incident electric field [43]. Different

studies showed that transmission through a rectangular hole presents strong

polarization dependencies and higher transmittance than square or circular

holes with the same area [44–47]. Moreover, other more sophisticated shapes

such as gammadion shapes, allows that incident linearly polarized light be-

comes elliptically polarized upon interaction with them, with the same hand-

edness as the gammadion itself (see Fig. 1.6).

Figure 1.6: Several types of subwavelength apertures. From top to bottom and left

to right: slit and linear grooves, single triangle, slit array, Bull’s Eye Structure, single

circular hole, gammadion array, annular hole array, and single rectangular hole.

Annular holes appear as an exceptionally potential shape. These coaxial

apertures are interesting structures because they posses a TEM mode deprived

of cutoff, as slits, and because the next fundamental mode, the TE11 mode,

cutoffs at an unusually long wavelength, as rectangles.

The cutoff of the TE11 mode is given by:

λc =
2πb

χ11
(1.2)

where b is the inner radius of the annular hole, and the quantity χ11 is the
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1st non-vanishing root of the function

J ′
1(x b)Y

′
1(x a)− Y ′

1(x a)J
′
1(x b) = 0 (1.3)

Here, a is the outer radius, and J ′
1 and Y ′

1 the derivatives of Bessel and

Neumann functions of order 1.

Interestingly, for perfect electrical conductors (PECs), it can be approxi-

mated as [48]:

λc ≈ π(a+ b) (1.4)

In Fig. 1.7 we show both the cutoff wavelength (computed exactly and

with the approximation) of a TE11 mode of coaxial waveguides drilled in PEC

with a fixed outer radius a = 0.45 and a variable inner one, r, along with

the cutoff wavelength of a TE11 mode of a circular aperture where the radius

is also labeled as r (in arbitrary units). For annular holes, increasing r en-

tails “narrowing” the openings, whereas for circular holes, increasing r means

“widening” the apertures. From this figure we observe that coaxial waveguides

can support a propagating mode at much longer wavelengths than circular

waveguides of the same outer radius, and that the “narrower” the ring, the

longer the cutoff wavelength.

Remarkably, as we will show throughout this thesis, in annular holes:

• a more confined field (smaller hole), a larger λc

• a smaller hole presents larger transmission

A schematics of the electric field of the two fundamental modes of annular

holes, the TEM and TE11, can be seen in Fig 1.8. Note that (i) the electric

field of the TEM mode is radially polarized and it cannot be accessed by

linearly polarized light impinging at normal incidence, and that (ii) the TE11

mode could be represented with the electric field pointing “vertically” (the

equivalent horizontal mode), making annular holes insensitive to polarization.

Moreover, from the theoretical point of view this shape is interesting be-

cause the exact solution of the modes of an infinite annular hole shaped wave-

guide are analytically known. Explicit expressions can be found in Appendix

A.

Finally, and more obvious, this shape is also the basis for studying bull’s

eye (BE) structures, where a circular aperture is surrounded by concentric

annular grooves (see schematics in Fig. 1.9).
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Figure 1.7: Cutoff wavelength for TE11 modes of an annular hole, computed exactly

(black curve) and approximately (orange curve), and a circular hole (red curve) as

a function of r. For the annular hole, the outer radius is fixed to a = 0.45 and r

accounts for the inner one. For the circular hole, r accounts for the radius.

a

b

a

b

TE11 mode TEM mode

Figure 1.8: Schematics of the electric field of the TE11 and TEM modes inside annular

apertures of inner radius b and outer one, a.

Figure 1.9: Schematics of a Bull’s Eye structure and a SEM image of an experimental

one.
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BE structures are very interesting systems for their potential technological

applications as we showed in the previous summary. However, their study

appears especially difficult. First of all, while in the 1D version all linear

grooves have the same electromagnetic (EM) response, in BE structures the

optical response of each annular groove depends on its radius, and therefore,

it is different from that of other grooves. Hence, we must deal with resonances

related to isolated grooves which will also depend upon the groove depth, but

also with collective resonances which result from the interplay between the

finite set of concentric grooves.

If each annular groove is allowed to vary its width and depth, but also its

position regarding the center of the structure, then the number of parameters

entering the optimization process is too large to handle. As a result, we must

play several tricks to differentiate amongst the diverse mechanisms controlling

the overall optical response in BE structures.

1.3 Thesis Structure

The first part of this thesis is devoted to the theoretical study of optical prop-

erties assisted by surface EM waves in metal films periodically pierced with

annular holes or dimples, together with the EM phenomena arisen in finite

systems where both isolated (circular and annular) holes and BE structures

are considered. In the last part of the thesis we will go a step forward, mov-

ing from linear to nonlinear physics and we will study transmission properties

in nanostructured metal films drilled with slits and combined with nonlinear

Kerr-type dielectrics. In more detail:

In Chapter 2 the theoretical formalisms used along this thesis are described.

First, we present fundamentals of our modal expansion formalism (the Coupled

Mode Method, CMM.). We demonstrate the suitability of this approach for

analyzing the scattering properties of perforated metallic films. We show how

both infinitely periodic and finite systems can be treated within this frame-

work. In the last section, the Finite-Difference Time-Domain (FDTD) method

is briefly described. In this chapter we summarize the most relevant aspects

of these two techniques, emphasizing the personal contribution developed in

the course of this thesis and which, to our knowledge, cannot be found in

literature.

In Chapter 3 we study the optical properties of infinite periodic systems.

In particular, we study the EM modes sustained in the Terahertz (THz) regime

by metallic structures pierced with annular dimples that give rise to high field

enhancement and that allows the system to work as a dual band waveguide.
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Additionally, in this chapter we consider a complex system composed by an

array of annular holes drilled in a metal film and combined with high index

dielectrics (semiconductors). To reach this degree of elaboration, first we study

extraordinary transmission of EM radiation through annular hole arrays where

the metal is taken as a perfect electrical conductor (PEC) in free standing

systems. After that, we consider the metal as a real metal (with finite dielectric

constant), and finally, high index substrates are taken into account.

In Chapter 4 transmission of light through isolated annular holes and BE

structures is described. Due to the complexity of BE systems, several ap-

proaches in the optimization of enhanced transmission are considered. We

start from a simplified optimization procedure guided by physical intuition,

then move to Conjugate Gradient Methods, and finish with a microscopic

study where phenomena controlling transmission of light through these sys-

tems are described. Finally, also the spatial distribution of fields radiated by

isolated annular holes and BE structures is presented.

In Chapter 5 we analyze resonances appearing at unusual wavelengths

beyond the cutoff of the holes. We name this phenomenon Localized Extraor-

dinary Optical Transmission (LEOT). Interestingly, no surface modes are in-

volved; therefore, the physical mechanism is valid for both single holes, and

hole arrays. We give analytical expressions for the LEOT peak position as

a function of film thickness, and all dielectric constants of the environment

(cover, substrate, and inside the holes), for any hole shape, provided they

support large cutoff wavelengths.

In Chapter 6 we go a step forward and move to nonlinear problems. We

study the nonlinear optical response in arrays of subwavelength slits in com-

bination with nonlinear Kerr-type dielectrics. We propose a scheme for both

an optical limiter and a switch of the transmitted light intensity, for operation

at telecom wavelengths. We also investigate the Optical Kerr Effect and the

Third Harmonic Generation undergone by these kind of structures.
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Theoretical Formalism

2.1 Introduction

In this chapter we present the theoretical methods used along this thesis to de-

scribe the optical properties of subwavelength apertures perforated in metallic

films: the Coupled Mode Method (CMM) and the Finite-Difference Time-

Domain (FDTD) Method.

Electromagnetic (EM) phenomena in metallo-dielectric structures are de-

fined by the well established macroscopic Maxwell equations. However, due

to the wide range of length scales appearing in these combined systems, it is

difficult to solve them. For instance, the wavelength of light propagating in

vacuum in the optical regime varies from 400 to 800 nm; typically, the pen-

etration of the EM field in metals is of the order of 30 nm; and the length

scale associated with the periodicity in arrays of dimples and holes in metallic

surfaces generally varies from hundreds of nanometers to a couple of microns.

Therefore, in order to compute the optical properties of the metallo-dielectric

systems here studied, two different methods have been employed. These tech-

niques display special advantages that make them more suitable for solving

certain kind of problems and overcoming different drawbacks.

2.2 Coupled Mode Method

The Coupled Mode Method (CMM) is a general method for solving linear

differential equations based on the modal expansion of the fields: the EM fields

inside the apertures are expanded into waveguide modes and the EM fields in

free space are expanded into an infinite set of plane waves. By imposing the
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appropriate matching conditions at the metal/dielectric interfaces, Maxwell

equations can be solved in all the space. A full description of this method can

be found in Ref. [49] and references therein.

One of the most important advantages of this method is that the same

equations can deal with the physics of very different structures and it is not

restricted by the size of the system under study. Hence, the same equations

are applicable to the analysis of large schemes with either infinite periodic

arrays or finite systems.

Transmission of light through slit arrays [50–52], hole arrays [49, 53–56],

as well as through quasi-periodic hole arrays [57, 58] have been widely inves-

tigated. Also finite systems made up of isolated holes [59–61], finite chains

of subwavelength apertures [62] or Bull’s Eye (BE) structures [63] together

with its 1D version with slit and linear grooves [64] have been studied as well.

Band structures [65], scattering of surface plasmon polaritons (SPPs) by one-

dimensional periodic nano-structured surfaces [66] and by array of holes [67]

are also attainable with the CMM. Even approximate nonlinear properties can

be treated within this approach [68]. And finally, the CMM has been also ap-

plied to other undulatory entities such as cold atoms (matter waves) [69] or

sound (acoustic waves) [70].

This method is fast and does not consume exaggerated computer resources

compared to other numerical methods, and we can easily accommodate for

arbitrary illumination plane waves at non-normal incidence or focused beams.

Another main advantage of this modal expansion arises when we first ap-

proximate the metal as a perfect electrical conductor (PEC), i.e., εm = −∞
which allows, for some geometries, to express analytically the waveguide modes

inside the apertures. The PEC approximation neglects the penetration of the

fields inside the metal, providing a quasiexact model in the terahertz (THz)

or microwave regime where also surface waves (Spoof Plasmons) may appear

when holes are periodically arranged [71]. The finite dielectric constant of

metals at optical frequencies can be incorporated into the formalism using the

Surface Impedance Boundary Conditions (SIBCs) [72], giving semiquantitative

value in the optical regime and providing proper SPPs to the method.

2.2.1 Periodic Systems

2.2.1.1 Perfect Electrical Conductor, PEC

Despite we introduced in Chapter 1 the Extraordinary Optical Transmission

by saying “One of the simplest optical devices we can imagine is a hole drilled

in a metallic screen”, concerning computation it is much simpler to calculate
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the optical properties of an infinite periodic array perforated with holes than

those of an isolated aperture. The theoretical analysis of infinite periodic

arrays is greatly simplified because, with the help of Bloch’s theorem, only

EM fields within one unit cell need to be computed, and a discrete set of

diffracted wavevectors enters into the calculation.

Let us first consider the PEC approximation in a periodic system. In

Fig. 2.1 it is shown schematically a general structure with holes drilled in a

metallic film and periodically arranged in a rectangular lattice. The geometri-

cal parameters defining the metallic system are the film thickness, h (located

at z = 0 and z = h) and the array periods, Lx and Ly along the x and

y axes, respectively. The whole space is divided into three regions: we will

refer to regions I (z < 0) and III (z > h) as the illumination and transmis-

sion regions, respectively, and region II as the holey-metal one. Finally, ǫ1,

ǫ2, and ǫ3 account for the dielectric constants of regions I, II and III, respec-

tively. Unless otherwise stated, we assume that the structure is illuminated

by a normal-incident linearly polarized plane wave coming from region I.

Figure 2.1: Schematic picture of a square array of rectangular holes perforated on a

free-standing metallic film of thickness h. Parameters Lx and Ly define the period

of the array. The system is illuminated by a linearly polarized plane wave at normal

incidence.

Within the CMM we can write the EM fields in a compact format using

Dirac’s notation in terms of the transverse components (parallel to the xy

plane) of the electric and magnetic fields, 〈r|||E〉 = E(r||) = (Ex(r||), Ey(r||))
t

and 〈r|||H〉 = H(r||) = (Hx(r||),Hy(r||))
t, where r|| = (x, y) and the super-

script t stands for transposition. The longitudinal components, Ez and Hz are

obtained straightforward from the transverse ones through the divergence of

the EM fields: ∇ · E = 0 and ∇ · H = 0. We consider Maxwell equations in

the CGS system of units, H = −i
g ∇ × E and E = i

gǫ∇ × H, with g = 2π/λ

and λ the wavelength of the EM incident radiation.
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The EM fields in regions I and III are expressed as plane waves eigenmodes

|k||σ〉, characterized by the in-plane component of the wavevector k|| = (kx, ky)

and the polarization σ = p (transverse-magnetic, TM) or σ = s (transverse-

electric, TE). The temporal dependance is assumed to follow e−iωt.

The representation of the modes in the illumination (I) and transmission

(III) regions reads,

〈
r|| k||| p

〉
=

eik||r||

√
LxLy

1

k ||
(kx, ky)

t

〈
r|| k||| s

〉
=

eik||r||

√
LxLy

1

k ||
(−ky, kx)

t (2.1)

where kz =
√

g2 ǫ1 − k2
|| in region I (or kz =

√
g2 ǫ3 − k2

|| in region III).

According to Bloch’s Theorem, k|| = k0
|| + kR, being kR a reciprocal lattice

vector and k0
|| the incident wave-vector.

In particular, in region I the EM fields can be expressed as an incident

plane wave |k0
|| σ0〉, plus a sum of the reflected Bloch waves |k|| σ〉 weighed

with their corresponding reflection coefficients, ρk||σ,

|E〉 = |k0
|| σ

0〉eik0zz +
∑

k||σ

ρk||σ|k|| σ〉e−ikzz

| − uz ×H〉 = Yk0
||
σ0 |k0

|| σ
0〉eik0zz −

∑

k||σ

Yk||σρk||σ|k σ〉e−ikzz (2.2)

Here the electric and magnetic fields are related one to each other by

means of the admittances Yk||s = kz/g and Yk||p = ǫ1g/kz for TE and TM

modes, respectively. uz is the unitary vector along the z-direction and we

have assumed the normalization 〈k||σ|k||σ〉 = 1.

In the same way, the EM fields in region III are expanded into plane waves

and weighed with their corresponding transmission coefficients, tk||σ:

|E′〉 =
∑

kσ

tk||σ|k|| σ〉eik
′
z(z−h)

| − uz ×H′〉 =
∑

k||σ

Y ′
k||σ

tk||σ|k|| σ〉eik
′
z(z−h) (2.3)

Admittances in region III are primed in order to distinguish them from

those in region I (ǫ1 in region I becomes ǫ3 in region III). Additionally, k2
|| =
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(
2πnx

Lx

)2
+
(
2πny

Ly

)2
, with discrete diffraction orders nx and ny (nx, ny =

−∞, ..0..,∞). Usually, considering just a few of them in the calculations al-

ready provides converged results.

Figure 2.2: Schematics of the coupled mode procedure for the case of hole arrays. The

space is divided into three regions. In region I, EM fields are expressed as a sum of the

impinging plane wave (white arrow) plus reflected waves (red arrows). In region II,

the basis is comprised by waveguide modes propagating back and forth (green arrows)

along z-direction. Finally, EM fields in region III are expanded as a sum of diffracted

waves (blue arrows).

Region II (0 ≤ z ≤ h) comprises the holey-metal region. Despite we

are considering infinite periodic arrays, this formalism is also valid for finite

systems as we will see next in Section 2.2.3. We said before that in infinite

arrays we compute the EM fields within one unit cell, which may contain one

or more cavities. We use a compact notation, denoting as “object” n any

waveguide EM mode in any aperture considered in the expansion (any hole

within one unit cell in the case of infinite arrays). The infinite periodic arrays

considered in this thesis contain just one aperture per unit cell. Therefore, in

arrays, an object is defined by i) the waveguide EM mode, ii) its polarization

(TM or TE modes), and iii) the indices characterizing the waveguide mode

and its position, whereas in finite systems, iv) it will be also characterized

by the indentation it belongs to.

Under PEC approximation, EM fields vanish within the metal except inside

the apertures, where they can be expressed in terms of the waveguide eigen-

modes |n〉 (that can be written analytically for some geometries) propagating

back and forth along the z-direction with a propagation constant knz:
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|EII〉 =
∑

n

(Ane
iknzz +Bne

−iknzz)|n〉

| − uz ×HII〉 =
∑

n

Yn(Ane
iknzz −Bne

−iknzz)|n〉 (2.4)

An and Bn are unknown expansion coefficients that can be calculated im-

posing appropriate continuity conditions to the EM fields at the interfaces of

the system (z = 0 and z = h). Besides, Y s
n = knz/g and Y p

n = ǫ2 g/knz are the

admittances for TE and TM modes, respectively.

Additionally, the function |n〉 defining the eigenmode within an indentation

at a given position rn = (xn, yn) can be written as:

〈rn, z|n〉 = eiknzzΨn(x− xn, y − yn) (2.5)

In Appendix A we provide analytical expressions for the waveguide modes

sustained by annular holes under PEC approximation.

As we showed in Chapter 1, the two fundamental modes in annular holes

are the TEM and the TE11 modes. The propagation constants knz along the

z-direction in PEC can be written as:

kTE
nz =

√
g2 −

(χ11

b

)2
(2.6)

kTEM
nz = g (2.7)

where the quantity χ11 is the 1st non-vanishing root of the function

J ′
1(x b)Y

′
1(x a)− Y ′

1(x a)J
′
1(x b) = 0 (2.8)

with a and b the outer and inner radius of the annular hole, respectively,

and J ′
1 and Y ′

1 the derivatives of Bessel and Neumann functions of order 1.

Once we expand the EM fields into proper eigenmodes in each region,

we must impose matching conditions at both the interfaces z = 0 and z =

h. The transverse resolute of the electric field must be continuous along the

surface, while the transverse component of the magnetic field is required to be

continuous only across the apertures. The use of PEC boundary conditions in

our model leads to the appearance of discontinuities in the parallel components

of the magnetic field at the structure interfaces. Their origin resides in the

formation of induced surface charge densities and currents at the film sides.
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Therefore, for fundamental and technical reasons, EM fields are projected over

different eigenmodes: plane waves
{
|k||σ〉

}
for electric fields, and waveguide

modes {|n〉} for magnetic ones.

From the continuity of the parallel component of the electric field, we

obtain:

δ
k||,k

0
||
δσ,σ0 + ρk||σ =

∑

n

(An +Bn) 〈k||σ|n〉

tk||σ = −
∑

n

(Ane
iknzz +Bne

−iknzz) 〈k||σ|n〉 (2.9)

Whereas from the continuity of the tangential component of the magnetic

field, we get:

〈n|k0
||σ

0〉Yk0
||
σ0 −

∑

k

Yk||σ ρk||σ 〈n|k||σ〉 = (An −Bn)Yn

∑

k

tk||σY
′
k||σ

〈n|k||σ〉 = (Ane
iknzz −Bne

−iknzz)Yn (2.10)

We have defined overlapping integrals of plane waves |k||σ〉 and waveguide

modes |n〉 as

〈k||σ|n〉 =
∫

dr||〈k||σ|r||〉〈r|||n〉 (2.11)

If waveguide modes are known analytically, these integrals may also be

known analytically. In Appendix B, expressions for these overlaps are given

for the particular case of annular holes.

It is convenient to define the following quantities:

En = An +Bn

E′
n = −(Ane

iknzz +Bne
−iknzz) (2.12)

which are the modal amplitudes of the transverse electric field at the en-

trance (En) and the exit (E′
n) of the apertures.

Therefore, we can explicitly write reflection and transmission coefficients

as:
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ρk||σ = −δk||,k
0
||
δσ,σ0 +

∑

n

〈k||σ|n〉En

tk||σ = −
∑

n

〈k||σ|n〉E′
n (2.13)

Interestingly, in periodic systems, divergencies in ρk||σ provide the eigen-

modes of the system (finite fields at infinitesimal excitation). This property

will be used in Chapter 3, when studying an array of annular dimples in a

metal film.

Finally, we can also rewrite Eqs. 2.9 and 2.10 as a set of linear equations for

En and E′
n which describes the behavior of the EM fields at the illumination

and transmission regions:

(Gnn − Σn)En +
∑

n 6=m

GnmEn −Gν
nE

′
n = In

(G′
nn − Σn)E

′
n +

∑

n 6=m

G′
nmE′

n −Gν
nEn = 0 (2.14)

where, for holes

In = 2Y
k0
||
σ0〈n|k0

||σ〉

Σn = Yn
eiknzh + e−iknzh

eiknzh − e−iknzh

Gν
n =

2Yn

eiknzh − e−iknzh

Gnm =
∑

k||σ

Yk||σ〈n|k||σ〉〈k||σ|m〉 (2.15)

In the case of dimples or grooves, h must be substituted by the indentation

depth (hg) in the expression given for Σn. Besides, the continuity of the parallel

component of the electric field imposes E′
n = 0, which leads to Gν

n = 0.

The different terms above can be interpreted as follows (see schematics

in Fig. 2.3): In is the direct illumination impinging over aperture n; Σn is

related to the bouncing back and forth of the EM fields inside object n, and

the coupling between the two sides of the aperture is accounted for Gν
n.

Finally, the “propagator” or “effective admittance”Gnm unveils how aper-

tures are coupled through the EM field. This propagator takes into account
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Figure 2.3: Schematics of the physical interpretation of the terms appearing in

Eq.2.14.

that the EM field emitted by each point within object m can be collected

by object n. Once again, Gnm and G′
nm differs one from each other through

the dielectric constant of each media, since Gnm belongs to region I and G′
nm

to region III (ǫ1 and ǫ3, respectively). As we will see next in Section 2.2.3

where finite systems are considered, Lx and Ly will define an artificial super-

cell with periodicity Lx,Ly → ∞ which allows to replace the previous sums

over Bragg diffraction modes by integrals in k||, i.e.,
∑
k||σ

→∑
σ

∫
d2k||, and can

be computed semi-analytically.

Note that for p-polarized modes and for any nx and ny, when knz = 0, a

singularity in Yk||p takes place, which translates into Gσ=p
nm = ∞. The last has

been reported [71] to be the origin of the existence of geometrical induced EM

waves bounded at both sides to the PEC metal surfaces (Spoof Plasmons). In

Chapter 3 we will extend our work to the study of these Spoof Plasmons in

arrays of annular dimples in the THz regime.

The EM field everywhere in space can be obtained from the set of modal

amplitudes {En, E
′
n}. Therefore, the CMM reduces the computation of any

EM property to determination of the EM field distribution just at the aperture

openings. This is extremely efficient, especially for subwavelength apertures,

where convergence is quickly reached with the number of waveguide modes

considered. In fact, in this regime, accurate results for transmittance can be

achieved by considering only the fundamental waveguide mode inside each

aperture [56].

For the cases of either a single aperture or an infinitely periodic array,

the single-mode approximation allows a quasianalytical treatment of the set

of equations given by Eq. 2.14, that then transforms into a set of just two

linear equations. Actually, along this thesis we will fit to this minimal model
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and, despite annular holes posses two fundamental modes, all calculations will

be done considering just the TE11 mode (see Appendix A for further details).

The reason is that, as we said in Chapter 1, the electric field of the TEM

mode is radially polarized so it cannot be accessed by linearly polarized light

impinging at normal incidence, which is the illumination source we will use

in this thesis. However, in Chapter 3 we will study the dispersion curves of

annular dimples and the TEM mode will be also considered.

In order to know the transmittance of light at the other side of the metal

film we must calculate the ratio between the transmitted EM power and the

incident one, T ′ = Pt/Pi, by integrating the time-averaged z-component of the

Poynting vector in each region within one unit cell. The EM energy carried

by an the incident plane wave is

Pi =
1

2

∫
dr||Re(E×H∗)

=
1

2
Re

∫
dr||(ExH

∗
y − EyH

∗
x) =

1

2
Re(〈−uz ×H|E〉)

=
1

2
Re(〈E| − uz ×H〉) = 1

2
Y
k0
||
σ0 (2.16)

In the same way, the corresponding EM power transmitted through the

structure in the far field in region III, can be written as

Pt =
1

2
Re


∑

k||σ

Yk||σ

∣∣∣tk||σ

∣∣∣
2


 =

1

2
Im

(
∑

nm

E′∗
mE′

nG
′
nm

)
(2.17)

therefore,

T ′ =
Pt

Pi
=

1

Yk0
||
σ0

p∑

k

Yk||σ|tk||σ|2 =
1

Yk0
||
σ0

Im

(
∑

nm

E′∗
mE′

nG
′
nm

)
(2.18)

where the sum is done over propagative modes and we have used Eq. 2.13.

Additionally, we can compute the EM power transmitted through the

structure by integrating the z-component of the Poynting vector associated

to EM fields through the holes, in region II:
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TII =
1

Y
k0
||
σ0

Re
∑

nm

Y ∗
n

[
A∗

ne
−ik∗nz −B∗

ne
ik∗nz

] [
Ane

−iknz −Bne
iknz

]

=
1

Y
k0
||
σ0

Im

(
∑

nm

E′∗
mEnG

ν
n

)
(2.19)

where we have used Eq. 2.12.

And finally, we can do the same in region I, getting:

T = 2Re
∑

n

En〈k0
||σ|n〉 −

1

Y
k0
||
σ0

∑

nm

E∗
mEnG

p
nm (2.20)

These three expressions are especially useful to check our results since in

the PEC approach there are no absorption losses and therefore, the law of

conservation of energy entails T ′ = TII = T . Additionally, all geometrical

parameters and wavelengths can be scaled because none of these expressions

depend on them.

2.2.2 Surface Impedance Boundary Conditions and wavevec-

tor of a real metal waveguide

2.2.2.1 Surface Impedance Boundary Conditions, SIBCs

Proper surface plasmon polaritons (SPPs) appear as a new ingredient in our

formalism by incorporating Surface Impedance Boundary Conditions (SIBCs),

where the finite dielectric constant of metals is considered.

In our implementation, electromagnetic fields vanish inside PECs, whereas

in the surface impedance approach the effect of the penetration of the fields

is taken into account just at the horizontal metallic surface, i.e., vertical walls

where apertures are opened are still considered PECs, and therefore, analytical

expressions for waveguide modes still hold. As we will see next, this approach

is valid whenever the skin depth is less than any other lengthscale entering the

problem.

Within SIBCs, the conditions on continuity of EM fields are different,

establishing for the tangential components (at the horizontal surfaces) that:

E = +ZsH× un (2.21)

where un is a unitary vector normal to the surface and points to the interior

of the metal, and
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Zs = 1/
√

εm(ω) (2.22)

is the surface impedance [67, 72]. This surface impedance approach is an

excellent approximation in the THz and microwave regime, but it also serves

reasonable results in the telecom and optical regime. The approach may be

understood as if we used a finite number of terms (first order truncation) of

the series to approximate the function ε
−1/2
m .

Importantly, the system of linear equations given by Eqs. (2.14) is still

valid, but with some minor modifications in the constitutive elements which

now depend on the surface impedance Zs [73, 74].

For holes, we now get:

In =
2Y

k0
||
σ0

f+
k0
||
σ0

〈n|k0
||σ

0〉

Σn = Yn
f+
n eiknzh + f−

n e−iknzh

f+2

n eiknzh − f−2

n e−iknzh

Gν
n =

2Yn

f+2

n eiknzh − f−2

n e−iknzh

Gnm =
∑

k||σ

Yk||σ

f+
k||σ

〈n|k||σ〉〈k||σ|m〉 (2.23)

being f± = 1± ZsY .

Once again, for the case of dimples or grooves of finite depth (hg) we set

Gν
n = 0, and Σn reads:

Σn = Yn
f−
n eiknzhg + f+

n e−iknzhg

f+
n f−

n (eiknzhg − e−iknzhg)
(2.24)

Transmission formulae appearing in Eq. 2.18, 2.19, and 2.20 are not

modified, however, the expression of Gnm in those equations becomes:

GT
nm =

∑

k||σ

Yk||σ∣∣∣f+
k||σ

∣∣∣
2 〈n|k||σ〉〈k||σ|m〉 (2.25)

As for PECs, within SICBs also surface EM waves appear whenever Gσ=p
nm

diverges, but now the new resonant condition turns into 1+ZsYk||σ = 0. This
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condition describes the appearance of proper SPPs through SIBC approxima-

tion.

To further improve our theoretical approach where vertical walls inside

holes are still taken as perfect conductors, we can:

• Compute exactly the propagation constant inside the waveguide, knz.

Considering the propagating constant along the z-direction inside an

infinite annular hole made of real metal, knz, provides an exceptional

improvement for both resonant positions and intensity in transmission

spectra. In Appendix C we present all details concerning the computa-

tion of knz of a coaxial waveguide made of real metal.
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Figure 2.4: Calculation of knz as a function of the wavelength for an infinite coaxial

waveguide with inner radius a = 200nm and inner radius b = 50nm in gold. Squares

depict calculation for a PEC, circles for a real metal, and triangles correspond to the

exact calculation done with the FDTD method (performed by Sergio G. Rodrigo).

Figure 2.4 shows knz versus the wavelength of an infinite coaxial wa-

veguide with outer radius a = 200nm and inner radius b = 50nm in

gold. To further corroborate this calculations, FDTD numerical simu-

lations were conducted. The gold dielectric constant is taken from the

experimental data appearing in Ref. [75]. In the figure, squares depict

calculations for a PEC (following the expression given by Eq. 2.6); circles

correspond to the modified propagation constant of a gold waveguide,

and triangles correspond to the exact calculation done for the real part

of knz with the FDTD method. This FDTD calculation was performed
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by Dr. Sergio. G. Rodrigo. It can be demonstrated that within this

non-absorbing approximation, knz is pure real when λ < λc (where λc is

defined as the wavelength at which knz = 0), and pure imaginary when

λ > λc [76]. Remarkably, in the optical regime the cutoff wavelength of

a waveguide made of real metal is much longer than that of a perfect

electrical conductor.

• Effectively enlarge the dimensions of the apertures.

This would take into account the effect of the penetration of the fields

within the apertures by increasing the nominal parameters ∼ 2 skin

depths. In the case of annular holes, we would enlarge the outer radius

∼ 1 skin depth, and reduce the inner one also ∼ 1 skin depth. However,

we did not find any systematic improvement in intensity and spectral

location of transmission features when CMM and FDTD calculations

were compared. Therefore, calculations along this thesis will always

consider the nominal values of the inner and outer radius.

• Define the surface impedance as Z̃s = 1/
√
εm + ε.

For a flat metal-dielectric surface without holes, where the metal is char-

acterized by a dielectric constant εm, and the dielectric by ε, SIBC ap-

proximation is valid whenever qzm >> qz, q||, being qzm =
√

εm − q2||

and qz =
√

ε− q2|| (with q = k/g). This enables to neglect the parallel

components of the derivatives in the EM fields, being faster the varia-

tions along the component normal to the surface. Consequently, SIBC

approach is a good approximation when εm >> ε.

Additionally, for a vacuum-metal flat surface, the appearance of surface

plasmons within SIBC is associated to divergencies in the impedance

Zs = 1/
√
εm, that is, εm = 0. However, the dispersion relation of SPPs

can be exactly taken into account if we define the surface impedance as

Z̃s = 1/
√
εm + 1, that is εm = −1, where 1 accounts for the dielectric

constant of vacuum.

As it is schematically shown in Fig. 2.5, this approximation where SPPs

are described by either εm = 0 or εm = −1 is pretty much the same

(red and green curves). However, for any dielectric-metal flat surface,

the previous condition becomes εm = −ε. Therefore, the larger the

value of ε, the worse the impedance approximation, as it is also shown

schematically with the blue curve in the same figure.

Regarding the PEC approximation inside the apertures, we must also

bear in mind that the spatial profile of the fundamental mode is obtained
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Figure 2.5: Schematics of the dispersion relation of a dielectric-metal flat surface,

when the dielectric is taken as vacuum (ε = 1) or as any other material with ε > 1.

through this approximation. The penetration of the field as a decaying

exponential is taken as zero, or equivalently, the skin depth is δ = 0. In

this situation if FDTD and CMM calculations are compared, the results

are exactly the same.

Also if the skin depth is δ > 0, but small enough compared to the

dimensions of the aperture, the approach of the fundamental mode and

its coupling with external radiation still holds, and FDTD and CMM

results look very similar. This result where the PEC approach is still

valid, that is, for δ small enough, is precisely the limit where SIBC

approach does not fail.

However, if the skin depth cannot be neglected compared to the dimen-

sions of the apertures, then, the approximation we are doing for the

fundamental mode of a waveguide made of PEC is not valid anymore,

and CMM results fail.

As a result, when considering real metals in combination with high refrac-

tive index dielectrics (ε >> 1) in the optical regime and small apertures,

we will use the exact FDTD method.

In Fig. 2.6 it is shown the transmittance of light as a function of the

wavelength in a silver array with annular holes deposited on a glass substrate

(ε3 = 2.25). The periodicity is taken Lx = Ly = 900nm, film thickness

h = 140nm, outer radius a = 290nm and inner one b = 230nm. Comparing

CMM and FDTD simulations, we observe that exceptional improvements for

both transmittance intensity and peak position are found when both SIBCs

and knz of a real metal are taken within the CMM. If absorption was considered

in the computation of knz, the spectral band-width of transmission resonances
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would be wider and the intensity would further decrease.
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Figure 2.6: Zeroth order transmission as a function of the wavelength of a silver array

with annular holes drilled in it, on a glass substrate. The periodicity is Lx = Ly =

900nm, film thickness h = 140nm, inner radius a = 290nm and inner one b = 230nm.

2.2.3 Finite Systems

As we previously said, finite systems can also be investigated within the CMM.

The only difference with infinite systems relies on the computation of the prop-

agator Gnm, while the rest of magnitudes and expressions remain invariable.

When dealing with a finite set of cavities, the limit Lx, Ly → ∞ must be taken.

Within SIBC, the latter leads to an integral over diffraction modes:

Gnm = lim
LxLy→∞

LxLy

2π

∑

σ

∫
d2k||

Yk

f+
k

〈n|k〉 〈k|m〉 (2.26)

Note that the product LxLy exactly cancels the normalization factor of

plane waves. To retrieve the expressions for PECs we must just take Zs = 0 in

the corresponding quantities. It is important to remark that, for finite systems,

subscripts n and m may label either the object (aperture) or the mode we are
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considering inside the cavity. However, as we said before, throughout this

thesis we will apply the minimal model for subwavelength apertures and we

will just consider the TE11 mode (except in Chapter 3 where a TEM mode is

also taken). Therefore, except otherwise stated, in finite systems n and m will

always refer to an aperture, not a mode.

As for infinite systems within SIBC, Gσ=p
nm diverges whenever 1+ZsYk||σ =

0. If we rewrite this object in terms of the normalized wavevector q, where

k =
√
ε g q, it is easy to find out that Gσ=p

nm presents a branch point at q = 1,

and a pole at qp =
√

1− Z2
s very close to the real axes which contains the

contribution of the surface plasmon. These two singularities must be treated

specially when computing Gσ=p
nm . Full details for the computation of these

integrals can be found in Appendix B.

2.3 Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain (FDTD) method and related space-grid

time-domain techniques are direct solution methods for Maxwell’s equations.

Both the basic FDTD space grid and time-stepping algorithm trace back to a

seminal 1966 paper by Kane Yee [77]. The time-dependant Maxwell’s equa-

tions (in partial differential form) are discretized using central-difference ap-

proximations to the space and time partial derivatives.

As Allen Taflove [78] foresaw in 1975, the electromagnetics community

seized upon the marvelous Yee algorithm and applied it to just everything.

As a result, the FDTD technique turns out to be one of the most extensively

developed and used method in computational electromagnetism [79].

In this thesis we will use the FDTD method to solve very specific problems

not attainable with the CMM, and also as a tool to check the range of validity

of the results obtained with the last CMM approach. In particular, the FDTD

method will be used in Chapter 3 to investigate the Extraordinary Optical

Transmission phenomenon through arrays of annular holes in combination with

high index dielectrics, and also to study the Dispersion Relation in the THz

regime of a system with annular dimples periodically arranged; in Chapter 4

we will employ FDTD calculations to validate the results obtained within the

modal approximation when studying EOT through Bull’s Eye Structures. And

finally, this method will be the fundamental tool for studying exactly optical

properties in nonlinear systems, in Chapter 6.

We do not aim here to fully explaining this technique since it is impossible

to cover all aspects of the FDTD method in an introductory section, but

instead, we limit to briefly present the general ideas behind this method as
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well as some of its advantages compared to the CMM. Nevertheless, a full

description of this algorithm can be found in Ref. [80], and more importantly,

the details of the proper “homemade” FDTD here used can be found in Dr.

Sergio G. Rodrigo’s thesis [81], who developed the code.

Let us start by mentioning some of the advantages and available options of

the use of FDTD method: first, different material properties can be conducted

with the FDTD method, so dielectrics, metals and nonlinear materials can be

considered. Additionally, several illumination sources such as plane waves,

dipole sources or gaussian beams can be employed. Finally, optical properties

can be easily described by means of transmission and reflection coefficients,

dispersion relation curves, field maps in frequency domain and, actually, any

other quantity which depends on the EM fields.

Next, we will give some tips on the FDTD algorithm itself.

Maxwell’s equations must be brought from the “continuous” space to the

“discret”’ space, and although it can be handled in different ways, it must be

properly carried out so that the results provided are accurate, free of diver-

gencies and also free of numerical instabilities. In the MKS system of units,

the curl Maxwell’s differential equations for isotropic, homogeneous and lineal

media read:

∂ ~H(~r, t)

∂t
= − 1

µ0µ
∇× ~E(~r, t)

∂ ~E(~r, t)

∂t
=

1

ε0ε
∇× ~H(~r, t) (2.27)

It can be seen that the change in time of the E-field (the time derivative)

depends on the change across space of the H-field (the curl) and viceversa.

The base of the FDTD algorithm consists of 6 independent equations obtained

by replacing the curl of both the E-field and H-field with their corresponding

derivatives, that is,

∇× ~F =

∣∣∣∣∣∣∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣
=

=

(
∂Fz

∂y
− ∂Fy

∂z

)
~i+

(
∂Fx

∂z
− ∂Fz

∂x

)
~j +

(
∂Fy

∂x
− ∂Fx

∂y

)
~k (2.28)

being ~F (~r, t) = ~E(~r, t) or ~F (~r, t) = ~H(~r, t).
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In 1966, Kane Yee propounded a distribution in space for the EM field

components. Figure 2.7 shows an illustration of a standard Cartesian Yee’s

cell used for FDTD, and how electric and magnetic field vector components

are distributed [77]. Visualized as a cubic box, the E-field components form

the edges of the cube, and the H-field components form the normals to the

faces of the cube.
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Figure 2.7: Illustration of a standard Cartesian Yee cell used for FDTD.

A three-dimensional space lattice is comprised of a multiplicity of such Yee

cells. A given structure is mapped into the space lattice as it is schematically

shown in Fig. 2.8, by assigning appropriate values of permittivity to each

electric field component, and permeability to each magnetic field component.

As a result, this method is based upon volumetric sampling of the unknown

electric field and magnetic field within and surrounding the structure of interest

(and over the period of time), whose coordinates can be written as:

(i, j, k) = (i∆x, j∆y, k∆z) (2.29)

with ∆x, ∆y, and ∆z the spatial increment or mesh size. Additionally,

each function in space and time can be written as

F (i∆x, j∆y, k∆z, n∆t) = Fn(i, j, k) (2.30)

being ∆t the time step.

The spatial and temporal derivatives will be implemented in terms of an

approximation in finite difference both centered and evaluated in consecu-

tive/overlapping cells:
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Figure 2.8: Schematics of a metal-dielectric structure studied within the FDTD

method, in 3D (left hand side) and a cross section of it (right hand side).

∂Fn(i, j, k)

∂x
=

Fn(i+ 1/2, j, k) − Fn(i− 1/2, j, k)

∆x

∂Fn(i, j, k)

∂t
=

Fn+1/2(i, j, k) − Fn−1/2(i, j, k)

∆t
(2.31)

Overall, FDTD technique is a marching-in-time procedure which allows

that the resulting finite-difference equations are solved in a leapfrog manner:

the electric field vector components in a volume of space are solved at a given

instant in time; then the magnetic field vector components in the same spa-

tial volume are solved at the next instant in time; and the process is repeated

time and time again until the desired transient or steady-state electromagnetic

field behavior is fully evolved. Once all the components are calculated, this

algorithm allows us to simulate propagation of EM waves through isotropic,

homogeneous and lineal media, defined by the dielectric constant ε, and the

magnetic permeability µ.

But our algorithm must also satisfy some criteria in order to be numerically

stable. The FDTD method has been proven to be very memory and CPU-

time intensive and consequently it is not suitable for large-scale problems.

Such intensive memory and CPU time requirements come from two reasons:

i) the spatial increment steps must be small enough in comparison with the

wavelength in order to make the numerical dispersion error negligible, and ii)

the time step must be small enough to satisfy the following stability condition

(Courant condition):

c∆t/L ≥ 1 (2.32)
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Here c is the maximum wave phase velocity within the model, L is a

lineal quantity such as the grid width or length, and ∆t the time step. For 3

dimensions, Courant criterium can be generalized as

∆t ≤ 1

c
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

(2.33)

Therefore, the mesh size and the time step are related one to each other by

means of the above equation. Moreover, for a given structure, the mesh size

is also subject to two more constraints: i) when the structure of interest does

not fit properly in cartesian coordinates, then the mesh size should be fine

enough to ensure that the discrete structure represents the actual one, and ii)

since the EM field decays in length scales of the order of 25nm within metals,

the faithful representation of such fast variations is a great challenge forcing

the mesh size to be usually of the order of 5nm.

Next, concerning implementation, here I present my personal contribu-

tion done to this “homemade” FDTD algorithm, previously developed by Dr.

Sergio G. Rodrigo.

The FDTD method appears as an exceptional tool for studying optical

properties in nonlinear materials. In Chapter 6 we study the nonlinear op-

tical response in arrays of subwavelength slits in combination with nonlinear

Kerr-type dielectrics. In particular, we investigate the Third Harmonic (TH)

Generation and the Optical Kerr Effect (OKE) undergone by these kind of

structures. The former describes processes in which light at frequency 3ω is

generated from an applied field at frequency ω, whereas OKE processes pro-

duce a variation of the local dielectric constant which has an effect at the

incident frequency ω, through a variation of the local dielectric constant. The

last effect appears exceptionally attractive so as to design optical limiters and

switchings.

One of the key numerical issues concerns the updating of EM fields within

the leapfrog FDTD algorithm.

We use the FDTD method to treat both the linear optical properties of

metals and the nonlinear third order response of dielectrics [80]. The third

order nonlinear dielectric is considered isotropic, homogeneous and disper-

sionless in frequency, so the relationship between the displacement ( ~D) and

the electric field ( ~E) is

~D = εo ~E + ~P

~P ⋍ εoχ
(1) ~E + εoχ

(3)( ~E. ~E) ~E (2.34)

in the MKS system of units, where “.” denotes the scalar product, εo is the
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dielectric constant of vacuum, χ(1) the linear susceptibility and χ(3) the third

order one.

In the particular case of harmonic fields, that is, ~E = ~Eo(~r)e
−iωt, and

taking into account that EM fields must be defined as real numbers, it can be

easily found that [39]

~PR = εo{χ(1) ~ER +
3χ(3)

4
|E|2 ~ER +

χ(3)

8
[ ~E3 + ( ~E∗)3]}

~DR = εo

[
ε+

3χ(3)

4
|E|2

]
~ER +

εoχ
(3)

8
[ ~E3 + ( ~E∗)3] (2.35)

being ~ER =
(

~E+c.c
2

)
, ε = 1 + χ(1), and where c.c. stands for “complex conju-

gate”. Note that the local change of the dielectric constant associated to OKE

is given by the term ∆ε = 3χ(3)

4 |E|2, whereas εoχ(3)

8

[
~E3 + ( ~E∗)3

]
describes TH

Generation processes.

In what follows we sketch how these expressions are implemented within a

FDTD nonlinear algorithm. A full description of this algorithm can be found

in Ref. [80].

Let us start from the relation given by Eq. 2.34. Within the FDTD method,

at each position inside the nonlinear medium, the displacement vector at in-

stant n + 1, ~Dn+1, is obtained from its value at the previous instant n, and

from the curl of the magnetic field at n − 1/2. From Eq. 2.34, once ~Dn+1 is

known, the electric field at n+ 1 must satisfy:

~En+1 =
~Dn+1

εo(ε+ χ(3)| ~En+1|2)
(2.36)

Taking the modulus of this expression, a cubic polynomial in | ~En+1|2 must be

solved at each FDTD iteration. Because both ε and χ(3) are taken positive,

there is only one real and positive root which must be chosen to ensure that

| ~En+1|2 is real and positive.

In the FDTD method, illumination and data processing for retrieving the

optical properties are key issues. We use p-polarized light sources at normal

incidence (wavevector along the z-direction). Let us consider a gaussian wave

packet (GW), centered at a carrier frequency ωo. We are interested in nonlinear

optical responses at a fixed wavelength, hence long standing pulses (narrow

in frequency) must be launched. Such pulses have a wide spread in space at

t = 0, requiring a very large and inefficient computational box.

To avoid this constraint we implemented the Total Field Scattered Field

(TFSF) [78] technique, which allows the incorporation of almost monochro-

matic sources. The system is divided into two regions: one is the Total Field
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(TF) region (where the EM field is the sum of the scattered and the incident

field), and the Scattered Field (SF) region (where only the scattered field is

computed). The incident EM wave is launched into the system precisely at

the boundaries defined by the TF/SF regions.

The GW is defined as:

Ex(z, t) =
1

2
(Eo

xe
ıωo

c
se−(

s
σ )

2

+ c.c.) (2.37)

where s = z−zo−ct/n1, being zo the position where the gaussian field reaches

its maximum at t = 0, and n1 =
√
ε1 corresponds to the refractive index of

the illumination region. The parameter σ controls both the spectral width

and the pulse duration. Without lack of generality Eo
x is chosen to be a real

number. This wave-packet carries an instantaneous intensity:

I(z, t) = n1ǫoc |Eo
x|2 cos

(ωo

c
s
)2

e−2( s
σ )

2

(2.38)

In the case of linear calculations (χ(3) = 0), σ is chosen so that the wave-

packet contains all the frequencies of interest. To calculate transmission (TL)

and reflection (RL) as a function of the wavelength of the incoming light, we

project onto diffracted modes in each dielectric half-space, so we can distin-

guish among the different diffracted orders (see Ref. [82] for further details).

Additionally, the TFSF method enables the calculation of transmitted and

reflected currents within a single simulation: the reflection region is chosen

to be the SF region; and the structure along with the transmission half-space

cover the TF one. These quantities are calculated integrating the Poynting

vector flux through a unit cell, in the frequency domain.

In the nonlinear case, transmittance and reflectance, for both the Funda-

mental Harmonic (FH) and the Third Harmonic (TH), are easily obtained by

integrating the transmitted and reflected power in a frequency range around

the different harmonics, and normalizing to the power of the incident field.

The width of the frequency window used in the integration is not important,

provided that it is both much smaller than the fundamental frequency and

larger than the spectral width of the incident wavepacket.

Further details of the specific calculations and system studied will be given

in Chapter 6.





Chapter 3

Infinite Periodic Systems

3.1 Introduction

The interaction of light with a metal surface is dominated by the free elec-

trons that behave like a plasma with a dielectric function εm = 1 − ω2
p/ω

2,

which is negative below the plasma frequency, ωp. As a consequence, metals

support surface plasmons (SPs) [14], responsible for a host phenomena unique

to metals [49] (and references therein), as we introduced in Chapter 1. For

instance, an interesting effect of light interacting with structured metals in

the optical regime is that the transmission of light through subwavelength

hole arrays made in a metal film can be orders of magnitude larger [23] than

expected from standard aperture theory [21]. This is the so called Extraordi-

nary Optical Transmission (EOT), that we also explained in the introductory

chapter.

There has been also recent interest in surface electromagnetic (EM) modes

for possible applications in guiding and sensing at terahertz (THz) frequencies.

Pendry et al. [71] outlined how the dispersion of surface EM modes can be en-

gineered even in perfectly conducting surfaces by texturing the surface. They

showed that these surface modes resembling surface plasmons (thus their name

Spoof Surface Plasmons), have an effective plasma frequency completely de-

termined by the geometry of the structure. Periodic structuring also provides

additional local field enhancement related to redistribution of SPP (or spoof)

energy along the structured surface. This induces strong field enhancement in

subwavelength size areas close to the surface.

Surface structuring thus facilitates an extension of visible plasmonic con-

cepts for subwavelength localization of EM energy to frequencies significantly

lower than the intrinsic plasma frequency of the conductor. In the technolo-
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gically emergent THz regime, this creates opportunities for planar waveguides

with high out-of-plane confinement and added functionality such as focusing,

guiding and sensing. Therefore if large field enhancement is obtained, then

the sensitivity of our systems acting as photodetectors will be much better,

and if strong confinement is also attainable, the volume of the sample needed

to be analyzed or detected will be significantly reduced.

Clearly, fascinating possibilities are offered by metallic surfaces corrugated

with periodic apertures. However, every hole shape provides singular and spe-

cial properties not attainable with others, so...which shape should we choose

and why? Well, as we said in Chapter 1, coaxial circular apertures were pro-

posed as an extension of circular apertures in plasmonic films [83,84]. Initially,

these coaxial structures were deemed interesting due to the TEMmode without

cutoff [85] that they support. This property was expected to provide greater

transmission intensity than the observed through hole arrays. Additionally, as

we also showed in Chapter 1, they also posses a TE11 mode that cutoffs at an

unusually long wavelength [85]. This allows the design of structures able to

guide in 2 independently variable and relatively low loss frequency bands [86],

useful in biochemical sensing, for instance.

The optical properties of annular hole arrays have been studied theoret-

ically and experimentally in depth using perfect conductors and real met-

als [26, 48, 83, 87–90]. It was shown that the cavity resonances formed by

(plasmonic or photonic) waveguided modes in a finite thickness metal film are

the reason of strongly enhanced transmission. In the first experiments, the

enhanced transmission was demonstrated in the visible spectral range up to

around 17% for annular apertures periodically arranged in a gold film [90]. Af-

ter that, it was demonstrated experimentally that these systems may present

transmission around 90% when they are arranged in Ag films in the optical

regime [91].

Also near-infrared properties have been studied for coaxial apertures and

strongly localized fields in the apertures were found both experimentally and

numerically [92].

Coupled to SP modes on metal film interfaces, the modes of annular aper-

tures provide the possibility to achieve high transmission, field enhancement as

well as high extraction efficiency of light trapped in the substrate. The latter

is especially important for high-refractive index substrates with small angles

of total internal reflection. Such nanostructures are thus promising candidates

in a wide range of applications for light extraction such as LEDs, organic

LEDs or vertical-cavity surfaceemitting lasers (VCSELs) [93–95], despite the

fact that studies of the enhanced optical transmission through the plasmonic

structures on high-refractive index substrates are virtually absent [96, 97] in
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the literature.

Along this chapter we will summarize the results obtained during the course

of this thesis when studying the optical properties of periodic arrays with

annular dimples and holes drilled in a metal surface [86,96]. In particular,

• in Section 3.2, we describe experiments and numerical simulations to

study dual band THz spoof plasmon propagating on a copper surface

textured with an array of blind annular holes. The 2 fundamental modes

in annular structures (the TEM and TE11 modes) will provide 2 differ-

ent bands that we can control at will just by varying the geometrical

parameters. The experiments were performed at the University of Bath

(United Kingdom) within the group headed by Prof. S.R. Andrews,

and at the Imperial College of London (United Kingdom) by Prof. S.A.

Maier. For the theoretical simulations we used both the Finite-Difference

Time-Domain (FDTD) method and the Coupled Mode Method (CMM)

(see Chapter 2 for further details).

• in the following sections, we will study the optical properties of a hole

array acting as a transparent electrode or LED. The system consists of

a periodic array of annular holes drilled in a metal film and in combi-

nation with semiconductors. We will follow the next steps to achieve

this degree of complexity: (i) first, we study transmission properties of

free standing systems (ε1 = ε3 = 1.0) of arrays of annular holes where

the metal is taken as a perfect electrical conductor (PEC); (ii) next, we

add dielectric covers and substrates of either low- or high-refractive in-

dex; (iii) and finally, Surface Impedance Boundary Conditions (SIBCs)

are incorporated into the model, where the finite dielectric constant of

metals is considered and proper SPs appear as an ingredient in our stud-

ies. The limitations of the CMM, when SIBC and high refractive index

dielectrics are combined, will be analyzed.

In particular, in Section 3.5 we will present systematic studies of the en-

hanced transmission in hole arrays on high refractive index substrates,

and the dependance of the geometrical parameters. Also the role played

by the central nanopillar in annular holes [96] periodically arranged will

be studied. This work was done in collaboration with the experimen-

tal group headed by Prof. A. V. Zayats at the Queen’s University of

Belfast(QUB) (United Kingdom). To study theoretically the optical re-

sponse of those annular hole arrays we used the FDTD method.
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3.2 Dual band terahertz waveguiding on a planar

metal surface patterned with annular holes

The THz regime is conventionally taken to be between about 0.1 − 10 THz

(λ = 3− 0.03mm) and lies between the domains of microwave electronics and

mid infrared optics.

Developments in the THz band are strongly motivated by applications in

fundamental science and the quest for higher bandwidth signal processing and

new imaging and sensing modalities [98]. Examples of current or emerging

applications include the dielectric characterization of materials [99], medical

imaging [100], pharmaceutical quality control [101], communications [42], se-

curity screening [41], and chemical and biochemical sensing [40].

Potential sensing applications, for example in label free genetic testing,

often involve small volumes of material. In this case it is desirable to enhance

the sensitivity by confining the probing radiation in the region of the sample

on a wavelength scale or better in at least one dimension.

Other important considerations are whether guiding can be achieved over

a frequency range sufficient for spectroscopic discrimination and whether there

is easy access to the guided mode. Various approaches to sensing have been

suggested, including the use of stripline resonators [102], parallel plate waveg-

uides [103], attenuated total internal reflection [104], and plasmonic metama-

terials [105].

It is well known that every molecule has a set of own frequencies, and that

for molecules of the same family, some of these own frequencies are repeated

among them, that is, they resonate at the same frequency. Every set of these

own frequencies is a kind of “fingerprint” for each one. Figure 3.1 shows the

absorbance spectra of two different saccharides [106], Myo-inositol and D-

ribose. Both molecules resonate at 1.58 THz. The aim of our work is the

design of a detector able to differentiate 2 different frequencies at the same

time in the THz regime.

Next we will show how annular dimples of finite depth may provide two

different planar bands that can be tuned in order to make them coincide with

the own frequencies of the molecule to be detected. This tunability is made

just by choosing the suitable groove depth, and outer and inner radius of the

rings.

The study of the dispersion relation of a system with two semi-infinite

media, a dielectric and a metal, reveals that this system supports surface

modes in the optical regime (SPPs). This is because at those frequencies,

the electric field may penetrate into the metal, leading to confined EM fields.
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Different Molecules vibrate with the same frequency

Saccharides ‘FINGERPRINTS’

Myo-inositol D-ribose

Figure 3.1: Absorbance spectra for two different saccharides, Myo-inositol and D-

ribose [106].

However, in the THz regime, where metals behave as PECs, the electric field

does not penetrate into them, and no tight surface modes are allowed.

Nevertheless, as we already shown, the periodic corrugation of an infinite

metallic media with an array of holes allows the penetration of the electric

field “through” the holes, by means of the least decaying eigenmode inside

the apertures. This fact enables the appearance of tight surface modes in the

THz regime, the Spoof Surface Plasmons, with similar characteristics to the

canonical SPPs.

In particular, in 2004 it was demonstrated that an array of square holes in

PEC under the approximation of a single mode inside the apertures, provided

that the wavelength is much larger than the period of the array and the side

of the squares, λ > p > a, could be understood as an effective media [71] with

an effective dielectric constant and a magnetic permeability given by a Drude

Model:

εeff (ω) ∝
(
1−

ω2
p

ω2

)

µeff = cte (3.1)

The plasma frequency of this effective system is given by the cutoff of the

apertures, i.e., ωp = ωc, meaning that the geometry of the system controls the
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properties of the induced surface modes.
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Figure 3.2: (Top) Schematics of the effective media related to an array with square

holes drilled in a metal film. (Bottom) Schematics of the effective media related to

an array with slits drilled in a metal film
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Figure 3.3: Schematics of the effective media related to an array with slit-grooves of

finite depth drilled in a metal film.

Concerning the dispersion relation of these systems (with rectangular holes)

when ω < ωc, then εeff < 0, so the media “effectively” behaves as a metal,

and surface modes can exist (see upper panel in the schematics in Fig. 3.2).

In contrast, other geometries such as slit arrays, present different effective

behaviors. The fundamental mode inside slits is a propagative TEM mode

(with no cutoff). In this case, εeff > 0, so the media behaves as a dielectric,

and therefore, a slit array does not support surface modes (see lower panel in

the schematics in Fig. 3.2).
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However, slit grooves of finite depth can be considered effectively as a

dielectric layer over a PEC where guided modes can exist [54]. Interestingly,

TEM modes differentiate between waveguides of finite or infinite depth, while

evanescent modes do not (see schematics in Fig. 3.3).

Based on these results, it is clear then, that using coaxial apertures of finite

depth that support both TE11 and TEM modes will provide two bands that

we can control geometrically.

To reach our goal, we consider a PEC drilled with annular dimples of finite

depth, hg, with outer radius a and inner radius b, periodically arranged with

periodicity p. The PEC approximation considers εm = −∞, and it is an

excellent approximation in the THz regime. It allows to express analytically

the waveguide modes inside the apertures. Within the CMM, considering just

the fundamental TE11 and TEM modes provides accurate results [56]. Details

of the expressions for these modes can be found in Appendix A.

As we said in Chapter 1, the cutoff of the TE11 mode can be approximated

in the PEC approach as λTE
c ≈ π(a + b). Though propagative TEM modes

do not have a cutoff wavelength, these annular grooves of finite depth support

Fabry-Perot resonances at λTEM = 2hg/n, with n = 1, 2, 3.. [37]. In terms of

frequencies, we can write these resonant wavelengths as fTE
c = c/π(a+ b) and

fTEM = c/(4hg), with c the speed of light.

As an example, we will design our system in order to have planar bands at

two frequencies that coincide with two of the own frequencies of the tartaric

acid, f = 1.06 THz and f = 1.8 THz. This molecule is a natural preservative

(E-334) used to improve and correct wine acidity, also as a flavouring, and at

industrial scale to prepare soft drinks as well. It can be applied in photography

and as a varnish, and even as a fertilizer in some laboratories.

The set of parameters providing planar bands at 1.06 and 1.8 THz are the

following: the period is taken p = 80µm, and the hole depth is approximately

hg = 60µm. For the annular dimples, the inner and outer radius are b =

10µm and a = 30µm, respectively. This system supports spoof plasmons

with local field patterns similar to those of the TEM and TE11 modes of the

infinite guides. The dispersion curves of these TEM-like and TE11-like spoof

plasmon modes were calculated in the PEC approximation using both FDTD

simulations and, with very similar results, with the CMM (see Fig. 3.4). In

particular, for the set of geometrical parameters considered, TM and higher

order TE modes have frequencies above 7 THz and can be neglected. The

TEM-like spoof plasma frequency is determined by the hole depth and lies at

fTEM = 1.06 THz. However, the TE11 waveguide cutoff lies near 5 THz and

is above the free space frequency at the zone boundary so that the effective

TE11-like cut off is instead determined by the period of the structure. A Gap
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is opened due to diffraction and the planar band then appears at fTE∗
c = 1.8

THz.
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Figure 3.4: Metamaterial dispersion curves calculated using both CMM simulations

(black dots) and FDTD calculations (red dots). kinc is the wavevector parallel to

the surface in the direction of propagation. With dashed lines it is depicted the

spoof plasma frequencies fTEM = 1.06 THz and fTE∗
c = 1.8 THz. The geometrical

parameters of the dimple array with annular apertures are: b = 10µm, a = 30µm,

hg = 60µm and p = 140µm.

Interestingly, the TEM-like spoof plasma frequency could be tuned between

roughly 1.7 and 0.3 THz by varying hg, as it can be seen in Fig. 3.5, where

theoretical results using the CMM are shown. In that figure, p = 140µm,

a = 60µm and b = 50µm.

The theoretical design of the system was also investigated experimentally

at the University of Bath. The structure was made using photolithography,

and an electron micrograph of the top surface and cross section of it can be

seen in Fig. 3.6.

Figure 3.7 shows the measured difference between kx and g, ∆kx (with

g = 2π/λ), together with that calculated using the CMM. This calculation

provides information about the confinement of the TEM and TE11 modes.

The agreement between calculations and experiments for the TE11 mode is

excellent, and the noticeably worse agreement for the TEM mode is probably

due to the variation in hg across the sample.
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Figure 3.5: Metamaterial dispersion curves calculated using CMM simulations. kinc is

the wavevector parallel to the surface in the direction of propagation. The geometrical

parameters of the dimple array with annular apertures are: inner radius b = 50µm,

a = 60µm and p = 140µm, and we let vary hg.

Figure 3.6: (a) Electron micrograph of the metamaterial top surface. (b) Cross section

along the dotted line in (a). The white area at the bottom of (b) is the pyrex substrate.
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Figure 3.7: Deviation of spoof plasmon dispersion curves from the light line. Red and

black points are from experiment, continuous curves are calculated using the CMM.
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As a technical note, it is worth remarking that we can only analyze theo-

retically this region so close to the light cone with the CMM approach, but not

with the FDTD method. The reason is that due to the strong out-of-plane

confinement of the fields, the system to be implemented within the FDTD

method in order to analyze the optical properties, was too large. However, in

order to further check the experimental and CMM results, we did calculations

for asymptotic values for the TEM mode (far from the light cone) with the

FDTD method, finding the same tendency as the CMM results.

The dispersion results shown in Fig. 3.7 allow us to estimate the out of

plane extent of the guided waves. In the experiments, the amplitude of the

signal is maximum at 0.90 THz for the TEM mode [86]. We estimate the

exponential field decay length, Lz = 1/
√

k2x − g2, to be 620 ± 40µm (∼ 2λ).

For the TE11 mode at 1.50 THz we obtain Lz = 500± 50µm (∼ 2.5λ). These

values are a hundred times smaller than expected for a fully evolved SPP on

a flat copper surface, known as a Zenneck wave [107]. The narrow frequency

window where the group velocity of the TEM mode is very small and over

which Lz theoretically approaches λ/8 at the band edge, was not accessible in

the measurements. This is because of poor field overlap with the THz beam,

higher attenuation, and the broadband nature of time domain spectroscopy.

Notably, since the bands are so planar, there is a strong confinement of

the EM fields (k >> g → |kz| >> g). This fact along with the large density of

states, lead to a strong absorption of the reflected beam. Therefore, in order

to detect the presence of tartaric acid in a sample, a small volume of it would

be needed. We expect that, despite the measurements were performed without

the sample itself, the small volume of the sample to be analyzed would not

affect the optical properties of the whole system.

3.3 Free-standing Periodic Arrays with Annular Holes

Let us now explore the properties of hole arrays as transparent contacts in

LEDs. The structure consists of periodic annular hole arrays in combination

with high refractive index dielectrics.

First, we consider a PEC pierced by periodic arrays of subwavelength an-

nular holes. Unless otherwise stated, we illuminate the system with a normal-

incident plane wave with the electric field pointing along one of the axes of the

array. We consider a minimal model where just the fundamental TE11 mode

inside the apertures is taken into account, because the coupling with the TEM

mode at normal incidence is zero (see Appendix A for further details).

For PECs, all geometrical lengths can be scaled since the expressions for
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transmission appearing in Chapter 2 (Eqs. 2.18, 2.19, and 2.20) do not depend

on them.

Let us first consider the theoretical situation in which the dielectric con-

stant of the cover and the substrate are the same and equal to unity, ε1 =

ε3 = 1.

Figure 3.8 shows the transmission spectrum in an array (lattice parameter

p = 1µm) of annular holes with outer radius a/p = 0.45 and inner radius

b/p = 0.40 in a metal film of thickness h/p = 0.40. Typically, for these

calculations the number of diffraction orders considered are nx = (−10, 10)

and ny = (−10, 10), for both TE and TM modes, what provides converged

results. Transmission is normalized to the intensity that impinges in a unit

cell, so in the absence of losses, T = 1 entails that all the incident light is

transmitted.
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Figure 3.8: Transmission spectrum for a perfect electrical conductor pierced by an

annular hole array (with periodicity p = 1µm), with outer radius a/p = 0.45, inner

radius b/p = 0.40 and film thickness h/p = 0.40).

In Fig. 3.8 we observe a sharp drop in transmission with T = 0 exactly

when the wavelength approaches the period, λ/p = 1. This is known as

the Rayleigh condition wavelength, λR =
√
εp, when the (nx, ny) = (1, 0)

diffraction order changes its character from evanescent to radiative. In general,

there will appear minima in transmission whenever k|| for any of the diffraction
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orders satisfies: k2|| = (g
√
ε)2, that is,

(
2πnx

p

)2
+
(
2πny

p

)2
=
(
2π

√
ε

λ

)2
.

These minima are accompanied by a strong peak arising slightly redshifted

compared to λR, which is connected to the excitation of surface modes. More

precisely, this peak is related to the spectral location of the surface plasmon

polaritons (SPPs) of the corrugated structure [108–110]. Note however that

PECs do not support SPPs, but surface modes geometrically induced (spoof

plasmons) hold when the metal surface is structured [71, 111]. Therefore,

transmission peaks appearing in PECs close to λR =
√
εp will characterize the

equivalent Extraordinary Optical Transmission (EOT) in real metals.

Additionally, Fig. 3.8 presents another resonance at λ/p = 2.67. Several

works have shown that the shape of the subwavelength apertures is of great

importance since they influence both the resonant wavelength and the po-

larization in the transmission spectra [44–46, 112, 113]. Essentially, these are

Fabry-Perot (F-P) resonances. In fact, it has been experimentally and theoret-

ically demonstrated that for a symmetric and uniform dielectric environment

(the dielectric constant is the same in all non-metallic regions), the spectral

location of this resonance occurs at approximately the cutoff wavelength of

the apertures, λc [44–47,59,76,112–115].

Their appearance is related to the vanishing of the group velocity inside the

hole. Therefore, photons spend a long time in the system, and transmission

resonances could eventually take place. We will denote these cutoff resonances

as Zero-order Fabry-Perot in order to distinguish them from higher order

F-P resonances. The equation defining a F-P is given by [20]

2 knz z + 2φR = 2mπ (3.2)

being φR the scattering phase at the interface, which can be neglected for

resonances appearing close to λc. Since at cutoff, knz = 0, in order to fulfil

the above expression m must be zero. That is why we will denote resonances

appearing at ∼ λc as Zero-order F-P.

To demonstrate that the resonances appearing close to λR/p = 1 and

λc/p = 2.67 correspond to the excitation of SPPs and Zero-order F-P modes

inside the aperture, respectively, we can (for instance) vary the periodicity of

the array and modify the inner radius of the annular holes and observe how

these resonances behave.

Figure 3.9 (a) depicts transmission of light for the same system as before,

with p = 1µm and p = 0.75µm. We observe that minima in transmission occur

at both λR = 1µm and λR = 0.75µm in each case, and that these zeroes in

transmission are followed by sharp maxima. These are typical EOT resonances
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Figure 3.9: (a) Transmission spectra for the same parameters as those in Fig. 3.8

with p = 1µm and p = 0.75µm. (b) Transmission spectra for the same system as

in Fig. 3.8 for several inner radius b/p = 0.30, 0.20, 0.15 and 0.02. Dashed magenta

curve accounts for the transmittance of an equivalent grid of circular holes.
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appearing when surface modes are excited.

Panel (b) shows transmission spectra for the same geometrical parameters

as in Fig. 3.8 for several b/p values, which cover the circular hole case and

annular holes of high aspect ratio (b → a). Whereas the resonance emerging

at λR/p = 1 remains invariable, when we vary b, the localized resonance follows

λ/p ≈ λc/p, making evident that these are localized resonances associated to

the λc of the TE11 mode. Since λc ≈ π(a+ b), the more redshifted resonances

correspond to those annular holes of higher aspect ratio. The magenta curve

in this figure accounts for the transmission of light through a grid of circular

holes with radius rc/p = 0.45, equivalent to that with annular holes when

b/p = 0.02.
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Figure 3.10: Transmission of light, absolute values of |G− Σ| and |Gν | (in logarithmic

scale) for a hole array (with p = 1µm) and a single annular hole.

From Eq. 2.18 given in Chapter 2, it can be demonstrated [59] that maxima

and minima in transmission occur when |G− Σ| = |Gν |, for both single holes

and hole arrays (for λ >
√
εp). In Fig. 3.10 we show, for the same geometrical

parameters as those in Fig. 3.8, transmission of light through a hole array

(p = 1µm), the term |G− Σ| for the same hole array, but also for a single hole,

together with |Gν |. Remember that for single holes, the sum over diffraction

orders in G must be substituted by an integral (see Appendix B). Inset in

that figure is a zoom in wavelengths to highlight what happens around the

periodicity. On the one hand, the condition |G− Σ| = |Gν | with hole arrays
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is fulfilled in two cases, that coincide with resonances in transmission maxima

related to the excitation of surface plasmons at λR and Zero-order F-P modes

at λc. On the other hand, |G− Σ| = |Gν | is only fulfilled at λc for single holes,

throwing further evidence in the fact that transmission features around the

periodicity of the array are connected to the excitation of surface waves, and

that the other resonances already occurs in isolated apertures.

3.4 Dielectric covers and substrates in periodic ar-

rays with Annular Holes

Actually, any real grid containing annular holes must be supported by a sub-

strate (or cover, indicating in that case that the dielectric is placed at the

illumination region), because otherwise, the central metallic part would fall.

Since the final goal in this chapter is the study of the optical properties of

hole arrays acting as transparent electrodes, we must consider high refractive

index dielectrics that will account for semiconductors (ε ∼ 10) in our system.

Going on with the PEC approximation, we differentiate between symmetric

configurations, where the cover and the substrate have the same dielectric

constant (ε1 = ε3), and asymmetric ones (ε1 6= ε3). In particular, we are

interested on the effect of a dielectric environment in peak intensities and

peak positions.

Figure 3.11 shows transmission spectra for the same geometrical param-

eters as those considered in Fig. 3.8, but adding different dielectrics in both

symmetric (left panel) and asymmetric configurations (right panel). For the

sake of clarity, first we consider low refractive index dielectrics with ε = 1, 2, 4

and 6.

In asymmetric systems where the dielectric is placed as a substrate, the

most obvious qualitative effects when ε increases, are:

• the (1, 0) Wood anomaly related to the metal-dielectric at λR =
√
εp

redshifts, whereas the metal-air anomaly (λR = p) remains the same.

• the Zero-order Fabry-Perot transmission peak red shifts.

• this peak broadens.

• the intensity of this peak decreases.

For symmetric configurations, the above effects also happen, but
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Figure 3.11: Transmission of light for the same system as in Fig. 3.8 for symmet-

ric systems (top panel) where the cover and the substrate have the same dielectric

constant, and for asymmetric systems (bottom panel), where they are different.
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• there is no transmission decrease in the Zero-order Fabry-Perot reso-

nance, since the amount of diffraction orders to couple with in the illu-

minated and transmission regions are exactly the same.

A further study of these results found for F-P resonances in combination

with dielectric environments and thin films will be discussed in detail in Chap-

ter 5.
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Figure 3.12: Transmission of light for the same system as in Fig. 3.11 for asymmetric

systems where the dielectric is placed either as a substrate (panel (a)), ε3 = 13, or as

a cover (panel (b)), ε1 = 13.

Additionally, we study these annular hole arrays in combination with high

refractive index dielectrics in asymmetric systems where the dielectric is placed

either as a substrate (ε3) (panel (a) in Fig. 3.12), or as a cover (ε1) (panel (b)

in Fig. 3.12). We choose ε = 13, a typical value for semiconductors.

First, we observe that in both cases, transmission spectra show several

minima that correspond to different diffraction orders satisfying
(
2πnx

p

)2
+

(
2πny

p

)2
=
(
2π

√
ε

λ

)2
.

Besides, we observe that at λ/p >
√
ε = 3.60, transmission spectra are

identical since there is only one diffraction order to couple with. However, at

λ/p < 3.60, intensity in transmission features when the dielectric is placed as

a substrate (panel (a)) is larger than in the case when the dielectric is places

as a cover (panel (b)).

The main difference between these two panels is associated to the trans-

mission intensity at λ/p ≈ 1. When the dielectric is placed as a substrate,

T ≈ 1, whereas if the dielectric is placed as a cover, then T << 1.

This is related to the different amount of available diffraction orders to

couple with in the illuminated and transmission regions, as it is schematically
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shown in the inset of the figure. When the dielectric is placed as a substrate,

transmission coefficients take priority to the detriment of reflection ones, and

the other way around occurs when the dielectric is placed as a cover.

These results suggest that, in order to obtain maximum transmission tak-

ing advantage of the localized resonance, symmetric configurations are desired,

where wide resonances and T = 1 are obtained; whereas, if EOT resonances

are our target, then, asymmetric systems with ε3 > ε1 seem to be the best

configurations.

Let us now consider real metals by including Surface Impedance Boundary

Conditions (SIBCs) in the horizontal surfaces. We also calculate the propa-

gation constant of an infinite coaxial waveguide made of real metal, knz, as it

is explained in Chapter 2 and Appendix C. As we showed in Chapter 2, the

combination of SIBC and high refractive index dielectrics within the CMM

may reduce the range of validity of this CMM approach.

In Fig. 3.13 we show the comparison between CMM (SIBC+knz) and

FDTD calculations of the transmittance of light as a function of the wave-

length in periodic arrays with annular holes drilled in a gold film of h = 100nm

thickness on a glass substrate (ε3 = 2.25). The gold dielectric constant is

taken from the experimental data appearing in Ref. [75]. The periodicity is

p = 600nm, and for annular holes the outer radius is fixed to a = 175nm.

We consider several inner ones (see inset in the figure). Both peak position

and intensity in transmission spectra agree very well when the two methods

are compared. Nevertheless, since the spatial profile of the fundamental mode

is obtained considering the PEC approach in the waveguide (what provides

analytical expressions for the overlap with plane waves), and based on the

experience of our group, we expect that the use of the PEC approximation

provides slightly larger intensity values, and blue-shifts in transmission spectra

of ≈ 50nm compared to the results obtained with the FDTD mehod.

However, Fig. 3.14 shows CMM and FDTD calculations of the transmission

of light through a similar array to that in Fig. 3.13, but with smaller annular

holes of outer radius a = 100nm, and a semiconductor placed as a substrate

ε3 = 13. This time, although the results obtained with the two methods agrees

very well for transmission features emerging at long wavelengths (in both in-

tensity and peak position), this is not the case for the general appearance of

transmission spectra at shorter wavelengths, λ < 1000nm. This has to do with

the fact that SIBC approach is only valid when the dielectric constant of the

metal surface is much larger than the dielectric constant of the environment,

εm >> ε, and when the skin depth is δ > 0 but small enough compared to the

dimensions of the apertures. This was thoroughly explained in Chapter 2.

Additionally, in order to gain physical insight, we analyze near field maps
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Figure 3.13: CMM and FDTD calculations of the transmission of light as a function

of the wavelength in square arrays with annular holes drilled in a gold film of h =

100nm thickness on a glass substrate (ε3 = 2.25). The periodicity is p = 600nm, and

annular holes with different inner radios are considered (with outer radius fixed to

a = 125nm. (a) CMM calculations within SIBC and the modified wavevector. (b)

FDTD calculations (performed by Dr. Sergio G. Rodrigo).
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Figure 3.14: CMM and FDTD calculations of the transmission of light as a function

of the wavelength in square arrays with annular holes drilled in a gold film of h =

100nm thickness on a substrate with ε3 = 13. The periodicity is p = 600nm, and

annular holes with different inner radios are considered (with outer diameter fixed to

rout = 100nm. (a) CMM calculations within SIBC and the modified wavevector. (b)

FDTD calculations.
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Figure 3.15: Modulus of the electric field in the zx plane for circular and annular

holes, together with calculations in the xy plane at the entrance (c), in the middle

(b) and at the exit (a) of the apertures. The geometrical parameters are: gold arrays

with p = 600nm and film thickness h = 100nm, on a GaP substrate (ε3 = 12.88).

Left panels correspond to circular holes with outer radius rout = 100nm, and right

panels to annular holes with outer radius a = 100nm and inner one b = 75nm.
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with the FDTD method for these systems with annular holes. Figure 3.15

shows contour plots of the modulus of the electric field
∣∣∣ ~E
∣∣∣ in the zx plane

for circular and annular holes for a unit cell, together with calculations in

the xy plane at the entrance (c), in the middle (b) and at the exit (a) of the

apertures. The geometrical parameters are: arrays in gold with p = 600nm,

film thickness h = 100nm, on a Gallium Phosphide (GaP) substrate (ε3 =

12.88). Upper panels correspond to circular holes with radius rc = 100nm,

and lower ones to annular holes with outer radius a = 100nm and inner one

b = 75nm. As expected, for circular holes perforated in a metal film, the

E-field is highly concentrated near the edges of the hole, whereas for annular

holes, high field enhancement is found inside the apertures. Since the field is

also more intense and spreads at the exit of annular holes, it also spreads more

in the transmission region where the GaP substrate is placed.

3.5 Optical transmission of periodic annular aper-

tures in a metal film on high-refractive index

substrate: The role of the nanopillar shape

Next, we present systematic studies of the enhanced transmission through

periodic arrays drilled with annular holes and the dependence on the size,

shape, and period on high refractive index substrates emulating plasmonic

structures on LED chips. Also experimental measurements carried out at

QUB are presented. The influence of nanofabrication tolerances on the optical

properties of these plasmonic annular aperture arrays on high-index substrates

is also investigated.

Figure 3.16: (a) SEM image of a typical array of the FIB-milled annular apertures.

(b) The cross-sections of AFM images showing the annular apertures profile for 100

nm inner diameter and 200 nm outer diameter apertures in the 600 nm period array

milled with different FIB parameters.
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The experimental samples consist of a 100nm thick gold film on a GaP

substrate (n = 3.14, 3.59 in the visible spectral range). Four different types

of arrays of annular holes with a constant outer diameter of 200nm and four

different inner diameters: 0 (circular holes), 50, 75, and 100nm are considered.

Also three different lattice periods are investigated 600, 650, and 700nm. The

structures were fabricated using a focused ion beam (FIB) milling on mag-

netron sputtered Au films. The measurements confirmed good correspondence

between the designed and actual parameters of the structures in terms of lat-

eral sizes (Fig. 3.16 (a)). The profiles of the central pillar were, however,

strongly dependent on the FIB milling parameters, so ideal annular apertures

were difficult to obtain on the required length scales (Fig. 3.16 (b)).

Figure 3.17: Experimental transmission spectra of the aperture arrays fabricated in

the 100 nm thick Au films on the GaP substrate for different periods of the array: (a)

600, (b) 650, and (c) 700nm. The outer diameter of the apertures is 200nm, the inner

diameters are indicated in the legends. (d) Experimental transmission spectra of the

annular hole array with different profiles of the central nanopillar, corresponding to

the AFM images of Fig.3.16 (b).

In order to compare with experiments, the zeroth order transmission is

computed. The calculations were made taking into account a substrate with
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n = 3.59 coated with 100nm of Au. The Au dielectric constant is taken from

the experimental data appearing in Ref. [75]. The dispersion of the refractive

index and absorption of GaP substrates were neglected for technical reasons,

but the comparison with experiments shows that this is not an important

effect for wavelengths longer than 550nm. Due to the spectral range and high

refractive index dielectric here considered, all calculations are performed with

the FDTD method, not attainable with the CMM and SIBCs approximations,

as we previously showed. Additionally, since characterizing the experimental

samples led to some problems and most of these samples had annular holes of

extremely high aspect ratio but with a central cylindrical pillar far from being

cylindrical (as it can be seen in Fig. 3.16), the actual experimental profiles of

the annular holes were implemented also within the FDTD method.

The experimental transmission spectra of the systems described above are

presented in Fig. 3.17 for different annular apertures and lattice periods. Note

that the strong extinction for wavelengths shorter than 550nm is due to the

strong absorption of GaP substrate in this spectral range [116]. In general,

the transmission spectra exhibit one dominating resonance with a period-

dependent spectral position. Increasing the diameter of the inner pillar leads

to a significant increase in transmission despite the reduction in the total area

of the openings. This is accompanied by a small redshift of the transmission

peak position. The maximum transmission was experimentally observed for

annular holes with inner diameters of approximately 100nm.

The spectra of the annular holes milled with different parameters and there-

fore featuring differently shaped central nanopillars (Fig. 3.16 (b)) are shown

in Fig. 3.17 (d). The two nanopillar types are designated “A” (tall) and “B”

(short); they have different heights and while the aperture outer diameter is

approximately the same, the effective diameter is different for each nanopil-

lar. While exhibiting a similar spectrum defined by the SPP Bloch mode of

the crystal, the resonant transmission of sample B is redshifted and slightly

smaller than for the array with taller nanopillars.

Simple analysis of plasmonic modes supported by the nanostructures under

consideration shows that SPPs are not supported on the GaP/Au interface in

the visible spectral range, since εAu + εGaP > 0 for λ < 620nm. Although

SPPs exist at lower frequencies, their wavelength is much shorter than that at

the Au/air interface and the propagation length is small in the visible spectral

range due to the high-refractive index of the GaP. This considerably simplifies

the discussion of the transmission mechanisms that, therefore, mainly involve

waveguided modes in annular apertures and SPP Bloch modes on the air/Au

interface of the plasmonic crystal [110,117].

The efficiency with which the waveguided modes transmit energy depends
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on the thickness of the film as well as the inner and outer diameters of the

annular apertures as the propagation constant of the mode depends on these

parameters. These waveguided modes are then hybridized with SPP Bloch

modes of the crystal lattice which are then coupled to photons. Therefore, the

modification of the lattice period leads to the modification of the spectral po-

sition of the available SPP Bloch states and their overlap with the waveguided

modes. This translates into both a redshift of the transmission peaks and

the reduction in the absolute transmittance as the period increases. Numeri-

cal modeling reproduces not only the experimental transmission spectra with

good agreement but also the trends observed when the inner diameter and

the pillar heights are varied (Fig. 3.18 and Fig. 3.19). The spectra obtained

with the ideal apertures show that transmission increases in the dominating

resonance with an increase in the nanopillar diameter. The position of the

peak is strongly sensitive to nanopillar diameter and exhibits a strong redshift

when the nanopillar diameter becomes close to the aperture diameter. Since

the absorption in the substrate is neglected, the second resonance is observed

on the short-wavelength side of the SPP band gap. A good agreement between

theory and experiment is observed for the position of each transmission peak

as well as the relative transmitted intensity for each structure. Note also that

the experiment and modeling are compared for zeroth-order transmission; the

calculated total transmission can be up to 20%.

The transmission spectra modeled for different heights of the central pillar

are shown in Fig. 3.19. Again, increasing the nanopillar height leads to an

increase in the transmission of the annular hole array. Initially, the resonance

redshifts in comparison to the simple hole resonance until the nanopillar height

is half of the film thickness; for taller nanopillars the opposite trend, a blueshift

of the resonance, is observed. However, the resonance on the short-wavelength

side of the band gap behaves monotonically.

Finally, modeling the transmission spectra using the experimentally ac-

quired profiles almost perfectly recovers the observed experimental spectra

(Fig. 3.19). In these spectra, the short wavelength peak near the absorption

edge of the GaP is not resolved, clearly as a result of the nanopillar profile

and not the dispersion of the optical properties of the substrate is the reason.

In both the experiment and model, it is also clear that this peak is present

as a broad shoulder. The interplay between variations in both the effective

diameter and pillar height, having opposite trends, minimizes the shift of the

resonant wavelength but has an impact on the absolute transmission.
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Figure 3.18: Calculated transmission spectra of the annular hole array in Au film for

different diameters of the inner nanopillar. GaP substrate is considered dispersionless

and lossless in the calculations. The film thickness is 100nm, the period is 650nm,

and the outer diameter of the apertures is 200nm. The inner diameters are indicated

in the legends. The dashed vertical lines indicate the cutoff wavelengths for holes and

annular apertures of several inner diameters.

Figure 3.19: Calculated transmission spectra for the same system as in Fig. 3.18 with

the inner diameter 100nm. The transmission spectra calculated for real nanopillar

shapes, as in Fig. 3.16 (b) are also presented.
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3.6 Conclusions

In conclusion we have shown that periodic arrays with annular holes or dimples

present special features that enables the design of potential sensing detectors

and transparent electrodes.

In particular, we have demonstrated that the use of coaxial apertures of

finite depth that support both TE11 and TEM modes, provide two planar

bands that can be controlled geometrically. This enables the experimental and

theoretical design of detectors able to differentiate 2 frequencies at the same

time in the THz regime. We have presented experimental results and numerical

simulations showing propagation of tightly bound and relatively low loss spoof

plasmon-THz waves on a metamaterial surface containing annular cavities.

Guiding in two independently variable frequency bands can be supported and

geometrically controlled. Together with efficient end-fire coupling, this could

be useful in waveguide-based chemical or biochemical sensing where the ability

to ratio responses in at least two distinct frequency bands with high dynamic

range is desirable for quantitative analysis. In this particular case, the array

was design so that it could distinguish 2 frequencies of the tartaric acid.

Finally, we have considered high refractive index dielectrics to explore the

properties of holes arrays as transparent contacts in LEDs. We have studied

the influence of the nanopillar shape on the resonant transmission through

annular holes in Au film on a high-refractive index substrate. High-refractive

index substrates prevent the efficient use of the SPP modes on Au/substrate

interface for tailoring the transmission properties. However by varying the

nanostructure parameters, some degree of tunability may be achieved. At the

same time, simplification of the available SPP Bloch mode spectrum leads

to the observed spectral response which is robust over a range of fabrication

tolerances, although the absolute transmission is significantly influenced.
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Finite Systems

4.1 Introduction

A subwavelength aperture is a key element in near-field optical devices and

many recent photonic structures. When the lateral dimensions of such aperture

is smaller than half the wavelength, light cannot propagate through the hole

and the transmission is typically very weak. Hans Bethe in 1944 stated that

transmission scaled as the fourth power of the aperture diameter [21], when

he analyzed the transmission through a small hole in an infinitely thin per-

fectly metal screen. However, a real subwavelength aperture is very different

because the thickness and the finite conductivity of the metal has significant

consequences in transmission.

The invention of the scanning near-field optical microscope (SNOM) in the

1980s [118,119], and the discovery of the Extraordinary Optical Transmission

(EOT) phenomenon [23] stimulated new experimental and theoretical studies

on both the total intensity and the spatial distribution of the light transmitted

through a small hole [27,56,120–124].

These works mostly indicated that there is a resonance that stems from the

excitation of a localized surface plasmon at the edges of the hole. Addition-

ally, FDTD calculations revealed that the spectral position of the transmission

maximum through a circular hole, redshifts with increasing hole diameter, and

blueshifts with increasing film thickness. Interestingly, it was also reported

that this resonance in a free standing system is spectrally located “close” to

the cutoff wavelength, λc, of the lowest-order mode [59]. It has been attributed

to the tunneling of light through the fundamental waveguide mode inside the

holes and its appearance could be expected since the modulus of the propa-

gating constant of such mode is almost negligible close to λc. Therefore, the



68 Chapter 4

field inside the holes does not experience a strong decay, photons spend a long

time in the system, and transmission resonances can eventually take place.

However, further theoretical investigations are still needed in order to re-

veal the physics behind this resonance appearing for isolated holes and its

relation to the cutoff of the apertures.

As it was previously discussed, the main ingredient for the appearance of

EOT resonances in periodic arrays of subwavelength holes is the presence of

surface electromagnetic (EM) modes that couple to the incident light. This

idea suggested that the EOT phenomenon should also occur in single aper-

tures if they were surrounded by a finite periodic array of indentations. This

hypothesis was experimentally verified [24,25] in both a 1D slit flanked by a fi-

nite array of linear grooves, and in Bull’s Eye (BE) structures, a 2D cylindrical

hole surrounded by concentric annular trenches.

Despite in the 1D version the dependence of the optical transmission with

the geometrical parameters such as the period of the array or the depth of

the grooves, has been extensively analyzed experimentally and theoretically,

in the case of BEs, this dependance is not that clear [30, 32–37, 125]. The

reason is that, in contrast to the 1D version, the optical response of each

annular groove depends on its radius, and therefore, it is different one from

each other [24–29,63,126–128]. Experiments have also revealed that the total

transmission through a BE structure can be understood as the product of

three distinct contributions: the coupling efficiency on the input surface, the

transmission or cutoff function of the aperture, and the decoupling efficiency

of the output surface [27].

Unexpectedly, when the periodic corrugation is placed at the output sur-

face of the aperture, the angular distribution of the transmitted radiation may

be strongly modified [25], and at some resonant wavelengths light emerges

from the structure as a strongly collimated beam controlled by the corruga-

tions of the output surface. These results were observed in both BE structures

and its 1D version.

Nevertheless, there are also questions that remain, notably about how to

optimize these BE structures for different optical functionalities, which need

to be elucidated.

In the following sections, we will characterize and optimize transmission of

light through,

• A single (circular and annular) hole

• Bull’s Eye Structures
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4.2 Extraordinary Optical Transmission

4.2.1 Single Holes

In order to investigate the optical properties of BE structures, we first charac-

terize the resonance of an isolated circular and annular hole, since these will

be the kind of apertures that will be placed at the centre of the structures.

Circular Holes

To gain physical insight in how transmission through isolated apertures can be

optimized at a fixed wavelength (λR), let us first consider a single circular

hole, whose dimensions depend on just one parameter (its radius), in a free

standing system, with ε2 = 1.

Subwavelength apertures may behave as effective apertures whose optical

cross section, rR(ε2 = 1), is represented by a radius which can be different

from the nominal parameters, r(ε2 = 1) (see Fig. 4.1).

A single hole is at resonance when it is at cutoff, i.e., when λc = λR. In

the case of circular apertures: λc = 2πr
1.84 ≈ 3.5r. As a result, the effective

dimension will be determined by the cutoff wavelength.

Let us then characterize an empty circle by its:

• cutoff wavelength λc(1)

• nominal radius r(1)

• effective radius rR(1) = (1/3.5)λc(1) ≈ 0.3λc(1)

• Area(1) = πr(1)2

Interestingly, we have found that an empty circle (ε2 = 1) presents TR(ε2 =

1) ≈ 1 at λR = λc (as it can be see in Fig. 4.4, for instance). This important

result entails that for circular holes, the nominal and effective parameters are

the same:

rR(1) ≈ r(1) (4.1)

However, when the single hole is filled with ε2 > 1, then, the above pa-

rameters become [59,129] (see Fig.4.1):

• λc(ε2) = λc(1) ·
√
ε2
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r( 2), ( 2>1)

r(1), ( 2=1)

rR (1), ( 2=1)

rR(1) > r (1) > r( 2)

Figure 4.1: Schematics of the different areas involved described in the text.

• r(ε2) =
r(1)√
ε2

• rR(ε2) =
rR(1)√

ε2
= 1√

ε2
0.3λc(1)

• Area(ε2) =
1
ε2

Area(1)

That is, if a circular hole is filled with ε2, the radius of an empty circle must

be reduced a factor
√
ε2 to still operate at λR = λc. Therefore, transmission

normalized to the area of the new smaller and filled hole, becomes:

TR(ε2) = ε2 · TR(1) (4.2)

The last expression indicates that if we fill up the circle with, for instance,

a dielectric constant ε2 = 25, then, TR(25) = 25 (since TR(1) ≈ 1). We have

found that Eq. 4.2 also holds for annular holes.

We can further corroborate these findings using the general analytical ex-

pression given in Ref. [59] for transmission at resonance:

TR ≈ |I0|2
4Im(G)

(4.3)

where I0 accounts for the direct illumination impinging on the system, and

Im(G) is the imaginary part of the effective admittance (or Green function),

G (see Chapter 2 for further details). This expression only holds for resonant

systems like rectangles, annular holes or circular holes filled with ε2 >> ε1, ε3.

Results for Eq. 4.2 and 4.3 are shown with an illustrative example in

Fig. 4.2. There, transmission of light (normalized to the area of the radius,

A = πr2(ε2)) as a function of the radius is calculated with the Coupled Mode

Method (CMM) (extensively explained in Chapter 2). The system is illumi-

nated by a normal-incident linearly polarized plane wave, and we consider a
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Figure 4.2: Transmission of light at a fixed wavelength, λ, for a single circular hole, as

a function of its radius, r/λ. The film thickness is h/λ = 0.4. The hole is filled with a

dielectric constant ε2 = 4, 7.13, 9 and 25, corresponding to green, red, pink and blue

curves. The black curve represents the condition TR ≈ |I0|
2

4ImG
.

minimal model where just the fundamental TE11 mode inside the apertures is

taken into account.

The metal is considered as a perfect electrical conductor (PEC), and all

geometrical parameters are normalized to the resonant wavelength, λR: the

film thickness is h/λR = 0.4, and the hole is filled with several dielectric

constants: ε2 = 4, 7.13, 9 and 25. The black curve represents the condition

given by Eq. 4.3.

We observe several Fabry-Perot resonances emerging at different r/λR val-

ues. The narrowest ones are Zero-order Fabry-Perot resonances related to λc,

and they fulfil both Eq. 4.2 and 4.3. Wider peaks correspond to other higher

order F-P modes. Note that, the larger the value of ε2, the higher the value

of TR, and the narrower the resonances become.

Annular Holes

Let us now move to annular holes, whose optimization at a fixed wavelength

will be more complex since their dimensions depend on two parameters, the

inner (b) and the outer (a) radios.
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In this case, within the minimal model, we just consider the fundamental

TE11 mode inside the apertures, because as said before, the coupling with

the other fundamental mode, the TEM mode, carries no energy at normal

incidence.

We take the metal as a PEC, so all lengths (geometrical parameters and

wavelengths) can be given in arbitrary units, or normalized. As we showed in

Chapter 3, transmission spectra in annular hole arrays present Zero-order F-P

resonances appearing at wavelengths close to the cutoff of the lowest-order

mode (the TE11 mode), which under PEC approach can be approximated as

λc ≈ π(a+ b).

In order to compare with the studies developed in Chapter 3 about how the

dielectric environment affects transmission spectra in hole arrays, in Fig. 4.3

we show the transmission of light calculated with the CMM, through both

hole arrays and single holes in asymmetric systems where ε1 = ε2 = 1.0, and

ε3 varies from 1 to 9. The metal film thickness is taken h = 100, and it is

drilled with annular holes with a = 125 and b = 100 (in arbitrary units).

Transmission is normalized to the area of the equivalent circular hole of

radius a, A = πa2, and it appears in logarithmic scale to highlight the features.

In the figure it is observed a resonance at λ ≈ λc = 705 emerging in both

hole arrays and single holes when ε3 = 1. This is the Zero-order F-P reso-

nance associated to the cutoff of the holes. When the dielectric constant of

the substrate is increased, this resonance redshifts and decrease in intensity

as it is also observed in hole arrays. Due to the localized nature of this res-

onance, it appears in both single holes and hole arrays at the same spectral

position. However, only in arrays, transmission spectra are affected by the

Rayleigh condition which provokes sharp deeps in transmission spectra of zero

transmission whenever k2|| = (g
√
ε)2.

A detailed study of these results found for Zero-order F-P resonances in

combination with dielectric environments and thin films will be discussed in

detail in Chapter 5.

We can also study how this resonance related to the cutoff of the less

decaying TE11 mode varies in intensity and position with the inner radius

of the annular hole. In Fig. 4.4, transmission spectra are shown for isolated

annular holes drilled in a PEC of 100 thickness, with a fixed outer radius

a = 200 and several inner one b = 1, 50, 100 and 150 (in arbitrary units), in a

free standing system (ε1 = ε3 = 1).

In this figure we observe those remarkable properties of annular holes in-

dicated in the introductory chapter:
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c = 705

Figure 4.3: Transmission spectra in logarithmic scale for arrays (with periodicity

p = 600) and single holes pierced in a PEC with annular holes with outer radius

a = 125, inner radius b = 100, and film thickness h = 100 (in arbitrary units). The

dielectric constants are ε1 = ε2 = 1.0, and ε3 varies from 1 to 9. For isolated holes,

the transmission is normalized to πa2.
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Figure 4.4: Transmission spectra as a function of the wavelength of isolated annular

holes pierced in a h = 100 PEC film thickness with outer radius a = 200, and

different inner radius b, in a free standing system. All lengths are in arbitrary units

and transmission is normalized to A = πa2
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• a more confined field (smaller hole), a larger λc

• a smaller hole presents larger transmission

Since λc ≈ π(a + b) in PEC, when the inner radius increases, so does

the resonant wavelength. Usually, obtaining more transmission translates into

narrower resonances. Notably, compared to circular apertures, transmission

of light (normalized to the area of the external circle) in annular holes can be

enhanced by a factor ∼ 3. If transmission is normalized to the area of the

annular hole, A = π(a2 − b2), it can be booted up a factor 6.

With this framework, one can ask her/himself, for instance, which is the

optimum annular hole with highest transmission at a fixed wavelength, since

several pairs {a, b} provide a resonance at the desired wavelength.

Let us consider a single annular hole drilled in a PEC of h/λ = 0.35

thickness in a free standing system. In the contour plot appearing in Fig. 4.5

we look for the optimum annular hole with highest enhanced transmission at

a fixed wavelength, λ, by varying both the inner (b/λ) and outer radius (a/λ)

at the same time. In this case we obtain maximum transmission normalized

to A = πa2 for the pair a/λ = 0.20 and b/λ = 0.13.
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Figure 4.5: Transmission normalized to A = πa2 of isolated annular holes pierced in

a h/λ = 0.35 PEC film thickness in a free standing system. We vary both the inner

(b/λ) and the outer radius (a/λ) of the annular holes.

This result also points out that optimizing a BE structure with concentric

annular grooves will be a difficult task, because the EM properties of each

element will be different one from each other as the average radius is varied.
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4.2.2 Bull’s Eye Structure

Our theoretician group was part of the European Project “PLEAS” (Plasmon

Enhanced Photonics) from 2006−2010, in which, amongst other research tasks,

was the design and optimization of BE structures working as photodetectors.

Several experimental groups also participated in PLEAS, and the collabo-

ration with them was very close. In particular, concerning BE structures, our

collaboration was done with the experimental groups at University of Stras-

bourg (ULP) (France), headed by Prof. Thomas Ebbesen, and also at Centre

Suisse d’Electronique et de Microtechnique (CSEM) (Switzerland), headed by

Prof. Ross Stanley.

As the project advanced due to the research and findings developed by both

theoreticians and experimental groups, some of the design criteria changed,

and therefore, several optimizations were performed regarding the size, the

operation spectral wavelength, and other special characteristics of the pho-

todetector. Moreover, also our theoretical studies led to different optimizations

according to the degree of understanding we got by studying and tackling the

problem from different points of view.

The final goal of the PLEAS project was to obtain maximum transmission

with BE structures at λ = 850nm with some technological limitations for the

film thickness, h = 250nm, and pixel size (that translates into a limitation in

the number of grooves we can consider). Therefore, the parameters to optimize

are the radius of the central circular hole, rc, the number of grooves, N , and

for each groove, its width wg, depth hg, and distance to the centre of the

structure ri.

Next, we will present 3 optimizations of Bull’s Eye structures at different

wavelengths:

• The First Optimization is done in the infra-red regime, guided by phys-

ical intuition.

After optimizing a regular structure where all grooves have the same

geometrical parameters and are periodically distributed, an optimized

irregular system (where we let vary for each groove its depth, width

and distance to the centre) is obtained through the Conjugate Gradient

Method (CGM).

• The Second Optimization is done in the optical regime, for regular BEs,

and simple optimization scaling laws are given.

• The Third Optimization is also done in the optical regime, and a Micro-

scopic Model containing the main mechanisms controlling the enhanced



76 Chapter 4

transmission is presented.

4.2.3 First Optimization in the infra-red regime

Bearing in mind PLEAS constraints, let us first consider a detector that con-

sists of a circular aperture of radius rc surrounded at the illuminated side by

annular grooves drilled in a gold film of thickness h = 250nm. The system is

deposited on a glass substrate (ε3 = 2.25).

We consider regular structures where both hg and wg are the same for

all the grooves, and we let vary the distance of each groove to the centre of

the structure, ri. We denote as object 1 the central hole, object 2 the first

annular groove, and so forth, so the total number of annular grooves is N +1.

Therefore, r2 accounts for the distance of the first annular groove, r3 for the

second one, and so on (see schematics in Fig. 4.6).

h
r2r3r4rN+1

hg

wg
rc

234N+1

GOLD

AIR

ILLUMINATION

Figure 4.6: Schematic representation of the structure under study. It consists of a

gold metal film of thickness h deposited on a glass substrate. The film is structured

by annular grooves of width wg, depth hg, separated a distance ri (i = 2, 3, ..) from

the central hole of radius rc.

1. Steps to find the optimized structure:

We have to optimize an enormous space of parameters, so there will be

necessary strategies to simplify this space. The most important parame-

ter to delimit is the number of annular grooves, since as we already said,

we must optimize both hg and wg, in addition to the distances ri. In

all cases, and as we will see next, dimensions characterizing grooves and

the central hole are in the subwavelength regime.

To start with, in this first study we have chosen 2 different cases for

wg, 3 different values for hg, and 5 different distances of each annular

groove to the centre of the structure, ri. It means that the number of

parameters to optimize np is:

np = N × (2× 3× 5N ) (4.4)
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Just to gather a first idea on how these systems behave when we vary

these parameters, we first choose the number of grooves equal to N = 3

and then, we extend this study to N = 5 grooves, a typical number

that fulfills the compromise between small structure size and high field

enhancement [63].

Systems with 3 grooves

First of all, we optimize the radius of the central circular hole, rc, re-

garding that we must find high normalized-to-area transmittance.

After that and for simplicity, we consider periodic structures, where the

distance groove-to-groove is the same for all of them. This will enable to

find the suitable groove depth (hg) for all grooves. In order to do it, we

study the properties of the propagating wavevector knz of each annular

groove, and we get conditions to achieve our aim: maximum normalized-

to-area transmittance at λ = 850nm. These conditions will account for

the optimum period and groove depth when 3 trenches are considered.

Finally, our periodic system becomes an aperiodic one by varying the

distance of each groove to the centre of the structure, ri.

2. Validating the Coupled Mode Method:

We treat the problem with the Coupled Mode Method (CMM). Since the

target wavelength in this optimization is λ = 850nm, and the perfect

electrical conductor (PEC) approximation neglects the penetration of

the fields inside the metal, considering the finite dielectric constant of

metals is essential here and it can be incorporated into the formalism

using the Surface Impedance Boundary Conditions (SIBCs) ( [72] and

Chapter 2). This impedance approach gives semiquantitative value in

the optical regime and provides proper SPPs to the method.

However, SIBC is only applied at the horizontal surfaces, but not at

the vertical walls (inside the cavities), where we still consider perfect

electrical conductor (PEC). To improve this approximation, inside the

cavities we compute the propagating constant along the z direction of

an infinite annular hole made of real metal, knz. Further details of this

computation can be found in Appendix C. Additionally, having PEC

inside the cavities allows the analytical computation of the waveguide

eigenmodes. In our calculations we consider just the fundamental mode,

TE11, since the coupling of light at normal incidence with the TEMmode

is strictly zero.

To check the validity of our formalism when it is applied to a BE geom-

etry, we compared FDTD and CMM simulations, for similar structures
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to those investigated within the PLEAS framework. In the comparison,

the number of annular grooves was 3 since considering more grooves

made the system too large for the FDTD simulations. Figure 4.7 shows

CMM calculations (left panel) and FDTD ones (right panel) for a BE

with 3 annular grooves drilled in a gold film with period p = 600nm,

h = 280nm, hg = 90nm and wg = 220nm, and for a central circular hole

with rc = 125nm. The gold dielectric constant is taken from the exper-

imental data appearing in Ref. [75]. Additionally, we vary the distance

of the first annular groove r2, from 300 to 500nm. Transmission is nor-

malized to A = πr2c . The good agreement found between the FDTD and

CMM results, both in the position (with a difference of approximately

25nm), and the relative magnitude of transmission peaks, justifies the

use of the CMM model for larger systems.
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Figure 4.7: CMM calculations (left panel) and FDTD ones (right panel) of the trans-

mission of light normalized to A = πr2c of BEs with 3 annular grooves drilled in a gold

film of h = 280 thickness, on a glass substrate (ε3 = 2.25). The rest of geometrical

parameters are p = 600nm, h = 280nm, hg = 90nm and wg = 220nm, and for a

central circular hole with rc = 125nm. The distance of the first annular groove r2
is varied from 300 to 500nm. FDTD calculations were performed by Dr. Sergio G.

Rodrigo.

3. Optimization of the radius of the central circular hole, rc:

Next, we further check our method comparing our calculations with the

experimental results obtained at ULP. This comparison will, in turn,

enable the optimization of rc.

In this case, the structure considered consists of 5 annular grooves peri-

odically distributed around a central circular aperture drilled in a gold

film, with p = 650nm, h = 250nm, wg = 300nm and hg = 100nm for all

the 5 grooves. Transmission spectra for several rc values are shown in

both Fig. 4.8 and Fig. 4.9. In order to compare with the experimental re-

sults appearing in the inset of Fig. 4.8, transmission is not normalized to
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A in that figure, but instead, in the theoretical calculations we normalize

all the curves to the transmission maximum obtained with rc = 260nm.

We observe the good agreement in both the spectral location of the

maximum transmission and the trend for the transmission spectra: as rc
increases, so does the intensity. The difference between this figure and

Fig. 4.9 is that, in Fig. 4.9, transmission is actually normalized to A, and

this enables us to optimize rc. In this case, for values of rc larger than

200nm, the transmission of light starts decreasing. Therefore, from now

on we will consider rc = 200nm for the circular aperture.
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Figure 4.8: Transmission spectra in arbitrary units (and normalized to maximum

transmission at rc = 260nm), for a BE structure in gold on a glass substrate (ε3 =

2.25) with 5 annular grooves periodically distributed (p = 650nm) around a central

circular aperture. The geometrical parameters are h = 250nm, wg = 300nm and hg =

100nm, and several rc values are considered. Inset corresponds to the experimental

results for the same geometrical parameters.

4. Optimization of the groove depth (hg) (Resonant Grooves):

In general, the condition for transmission resonances in a very narrow

slit in PEC is given by 2knzhg = (2m + 1)π, with m = 0, 1, 2, ... In the

limit of annular structures with large average radius, these systems must

behave like slits. However, as we are considering real metals through the

SIBC approach, this condition can vary.
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Figure 4.9: Normalized-to-area transmission of the same system appearing in Fig.4.8.

In Fig. 4.10 we show the dependence of knz of a single annular hole as

a function of its distance to the centre of the structure (average annular

radius) in gold at a fixed wavelength, λ = 850nm, and for two wg values:

150 and 300nm. Surprisingly, annular grooves with the same width but

extremely different average radius have practically the same propagation

constant in a wide range of average annular radius.

For wg = 150nm, when the distance to the centre is smaller than ∼
2000nm, knz ≈ 0.0086 nm−1, and when wg = 300nm, knz ≈ 0.0080

nm−1 for distances smaller than ∼ 3000nm. Additionally, when this

distance is further increased, knz tends to that of slits (see inset).

This result strongly simplifies the optimization of regular BE struc-

tures, where all grooves have the same wg, as we can choose the same

groove depth (hg) for all annular grooves in order to look for the resonant

condition (maximum transmission associated to the product knz · hg).
This is illustrated in Fig. 4.11 for a periodic BE with 3 grooves. Here we

show a contour plot of the transmission of light at λ = 850nm through

BEs with wg = 150nm (left panel) and wg = 300nm (right panel). We

vary at the same time the period of the structure p and the groove depth

(at a fixed knz chosen from Fig. 4.11 for each wg value). In Fig. 4.11 it

is observed that maximum transmission is obtained for p = 750nm, very
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annular holes in gold. Inset depicts the same calculations for larger values of the

distance to the centre.
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Figure 4.11: Transmission of light through annular holes with wg = 150nm (left panel)

and wg = 300nm (right panel) as a function of the period of the structure and the

groove depth. Calculations are for a fixed wavelength value, λ = 850nm.
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close to the target wavelength of maximum transmission. Additionally,

at that period, resonant conditions are found for:

knz(r̄) · hg(r̄) ≈ 0.9, (wg = 150nm)

knz(r̄) · hg(r̄) ≈ 0.8, (wg = 300nm) (4.5)

with r̄ the average annular radius. These conditions translates into hg ≈
100nm. Therefore, we will study three cases for the groove depth: hg =

80, 90, 100nm, equal for all the grooves.

5. Distance to the centre of the structure, ri:

We build an aperiodic structure from a periodic one (with period p =

750nm), by varying the distance of each groove to the centre of the

structure, δr (nm). It is important to recall that the first groove is

denoted as object 2, the second one as object 3, etc, so their distances

are denoted as r2, r3, and so on.

Again, we conduct calculations for wg = 150, 300nm, and hg = 80, 90, 100nm.

As we said before, we consider 5 different cases of the distance of each

annular groove to the centre of the structure, that is, we will consider

ri ± δr, with δr = (0, 25, 50) (nm). It means 2 × 3 × 53 = 850 spectra,

so we will show here only one example of them.

For a fixed r2 = 750 ± 0, 25, 50nm (corresponding to the first annular

groove), r3 and r4 are varied as: r3 = 2 · r2 ± 0, 25, 50nm and r4 =

3 · r2 ± 0, 25, 50nm. In other words, we fix r2 = 700nm, and we vary

at the same time, both r3 and r4, drawing contour plots as the one

appearing in Fig. 4.12. Then, we fix r2 = 725nm, and vary r3 and r4
again. After covering all the options for r2 = 750 ± 0, 25, 50nm; r3 is

then fixed to r3 = 2 · 700 = 1400nm, and r2 and r4 are varied following

the same procedure as before.

In the case of the illustrative map appearing in Fig. 4.12, a maximum

transmission occurs at r3 = 1565nm and r4 = 2300nm, when r2 is fixed

at 725nm. From this kind of calculations, we will find all the optimum

ri values.

Once all the calculations are analyzed, we finally obtain maximum trans-

mission at λ = 850nm with 3 annular grooves surrounding a circular

aperture with rc = 200nm, h = 250nm and taking for all the grooves

wg = 150nm and hg = 90nm. Concerning ri:

• Periodic Structure:

p = 750nm, TP
max = 12.4.
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Figure 4.12: Transmission at λ = 850nm. We fix r2 = 725nm and vary r3 and r4 some

nm from a periodic structure of period p = r2. The rest of parameters are N = 3,

hg = 90nm, and wg = 300nm.

• Aperiodic Structure:

r2 = 750nm, r3 = 1525nm, and r4 = 2300nm, TAP
max = 13.0.

where the superscript P stands for Periodic, and AP for Aperiodic.

Systems with 5 grooves

6. First optimized parameters with 5 annular grooves at λ = 850nm:

When we extend the previous study made for BEs with 3 grooves to

a BE with N = 5 grooves, the “first” optimized parameters we find at

λ = 850nm are rc = 200nm, h = 250nm, wg = 300nm, hg = 90nm, for

an

• Aperiodic Structure:

r2 = 750nm, r3 = 1550nm, r4 = 2350nm, r5 = 3150nm, and

r6 = 3925nm, T
(1)AP
max = 27.9.

The corresponding transmission spectrum appears in Fig. 4.13. It is

interesting to note that, considering the same geometrical parameters

but with periodic structures (p = 750nm), we obtain T
(1)P
max = 18.1.

Additionally, despite the study of a 3−groove BE provides some physical

insight about the behavior of these structures and about the dependance

on the geometrical parameters, when 5 grooves are considered, things

change considerably.
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Figure 4.13: Transmission spectrum for an optimized BE in gold and a glass substrate,

with maximum enhanced transmission at λ = 850nm. The geometrical parameters are

N = 5, rc = 200nm, h = 250nm, wg = 300nm, hg = 90nm, for aperiodic structures

with r2 = 750nm, r3 = 1550nm, r4 = 2350nm, r5 = 3150nm, and r6 = 3925nm.
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This first result suggests that the study of BEs can be divided into the

study of BEs with “many” (N > 5) or “few”(N 6 5) grooves.

7. Final optimized parameters with 5 annular grooves at λ = 850nm. Con-

jugate Gradient Method:

Once we have optimized BE structures guided by intuitive physical ideas,

next we can scan systematically the parameter space with help of the

Conjugate Gradient Method (CGM) [130] .

The CGM is the most prominent iterative method for solving sparse sys-

tems of linear equations, and it can be used to solve unconstrained opti-

mization problems. Basically, this algorithm finds minima in quadratic

functions from a given starting point or seed. We will use it to look

for maximum transmission in irregular BEs, that is, BEs where wg, hg
and ri can be different for each groove. As starting configurations we

try different seeds based on the previous periodic and aperiodic opti-

mized BEs described in the previous subsection 6. As we will show next,

the results we obtained suggest that the space of parameters looks like

an “egg box”, with several local minima of similar transmission values.

Therefore, according to each starting point, one of these local minima

are found.

In the calculations within the CGM, we must be careful and take into

account that annular grooves cannot overlap, or that the groove depth

cannot be larger than the film thickness. Indeed, we keep fixed the

following parameters: layer thickness h = 250nm, number of grooves

N = 5, central circular hole radius rc = 210nm, and wavelength centred

at 850nm; while the following parameters are led to vary: inner and

outer radius of the grooves, (written in terms of the average radius ri,

and groove width wg), and also each groove depth, hg.

We assume a precision of our simulation step in any length scale equal

to 5nm.

Schematics and final parameters of two different BE structures optimized

through CGM appear in Fig. 4.14. In both cases, the groove depth

increases for the outer radios, whereas the groove width does not seem

to follow any particular rule.

The corresponding transmission spectra to the schematics appearing in

Fig. 4.14 are shown in Fig. 4.15. These transmission spectra present

a transmission maximum at λ = 850nm, which, in the best theoretical

case (structure 1), gets T
(2)
max = 41.6. If we compare the results for the

previous regular BE with T
(1)AP
max = 27.9 we increase the efficiency of the

system by at least ∼ 50% (calculated as (T
(2)
max − T

(1)AP
max )/T

(1)AP
max · 100).
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Figure 4.14: Schematics and final parameters of two different BE structures optimized

through CGM.
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Figure 4.15: Transmission spectra for the parameters appearing in Fig. 4.14. Inset

corresponds to experimental results obtained at CSEM for Structure 1 together with

the results obtained for a periodic structure.
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Experimental results obtained at CSEM for structure 1 together with the

results obtained for a periodic structure, appear in the inset of the figure.

The behavior and profiles of the experimental results are in agreement

with the theoretical ones.

However, it is very important to emphasize that, if in Structure 1, for

instance, hg of the first groove is taken just 10nm less (i.e., hg = 45nm)

instead of the optimized 55nm, then T
(2)
max = 35.6. This is extremely

important because, despite CGM provides large values of the transmis-

sion, in real experiments it is a challenge fitting properly to the precise

theoretical optimized parameters. Moreover, to obtain converge results

in the minimization within CGM is a very time consuming task.

The results provided by the CGM can be taken as theoretical limits, and

CGM appears as an interesting tool for solving very specific problems

such as the target transmission values and Figures Of Merit required in

PLEAS, for instance.

However, since these systems are very sensitive to possible experimental

imperfections, we find more convenient and efficient to consider regular

systems (where all grooves have the same width and depth) and look for

simple and effective scaling laws to optimize BE structures.

4.2.4 Second Optimization: Scaling Laws in the Optical regime

In order to study different wavelength ranges, also an optimization in the

optical regime (λ ≈ 650nm) was considered. These studies were performed

in collaboration with the experimental group at ULP, and for the theoretical

calculations we used the same approximation as that in Section 4.2.3.

Next, we present an exhaustive exploration of the parameter space defining

the optical properties of BE structures. By studying the resonance intensity

variations associated with the different geometrical features, several parame-

ters are seen to be interlinked and scaling laws emerge. From the results it

is possible to give a simple recipe to design a BE structure with more than 5

grooves (all with the same width and depth) with optimal transmission prop-

erties at a given wavelength range in the visible.

Since it is known that the efficiency of the transmission intensity is con-

trolled mainly by the input corrugation and the hole depth (i.e. film thick-

ness), we concentrate here on varying all the geometrical parameters on the

input surface, keeping the hole depth constant. As demonstrated earlier, the

transmission intensity is an exponential function of the hole depth in the sub-

wavelength regime [27]. We compare experimental results and theoretical sim-

ulations to validate our findings. For the experimental studies, the structures
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were milled in a h = 280nm thick gold film deposited on a glass substrate

using an FEI DB 235 focused ion beam (FIB).

In order to find the optimal transmission intensity the following geometrical

parameters, were varied: number N of grooves, groove width wg, groove depth

hg, periodicity p of the grating, hole diameter d, and the distance between the

first groove and the hole aperture, a. The actual values that are explored are

confined to those giving rise to transmission resonances in the visible and near

IR regions that can be detected by the experimental setup.

Figure 4.16 (c) shows the experimental transmission spectra for BEs with

three different corrugation periods. A strong transmission peak, resulting from

the excitation of SPs, is evident around a wavelength slightly larger (ca. 10%)

than the period of the structures. This shift is due to the slight increase in

the effective index at the interface which in turn defines SP wavelength λSP

roughly equal to the period.

The presence of localized modes in or at the aperture can enhance the

transmission but the contribution of such modes to the overall transmission is

small compared to that of the SP mode provided by the concentric grooves.

The difference in the transmission intensities for the 3 different resonance

wavelengths in Fig. 4.16(c) can be explained by a combination of two opposite

effects. First, the dielectric constants of the gold in the wavelength range con-

sidered becomes increasingly unfavorable to SPs as the resonance wavelength

decreases and approaches the gold interband transition at 550nm [131]. Sec-

ondly as the resonance wavelength increases with p for a fixed hole diameter,

the aperture will cut the transmission more strongly.

In other words, we expect that the effect of the hole diameter is sensitive

to the resonance wavelength since the diameter defines the cutoff wavelength

of the aperture. Therefore we have studied the maximum transmission as a

function of d/p for a series of BEs with different periods in which we change

only the hole diameter and keep the other parameters fixed. In Fig. 4.16(a)

and (b) are plotted both the calculated and experimental results and, as can

be seen, the transmission intensity (corrected for hole area) versus d/p gives a

maximum for d/p ∼ 0.5 for all the curves. This can be understood as follows:

at diameters smaller than half the period, and therefore half the resonance

wavelength, the cutoff function of the hole becomes significant and reduces

rapidly the transmission. Beyond the cutoff, the transmission is mainly defined

by the area of the aperture as compared to the field distribution on the surface.

The absolute transmission increases but the intensity normalized to the hole

area (as plotted in Fig. 4.16(a) and (b)) decreases because the field is maximum

in the center of the structure.

Note that the structures analyzed in Fig. 4.16 can give rise to transmission
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Figure 4.16: Effect of the hole diameter on the transmission of a BE (N = 7,

hg = 90nm, wg = 220nm, h = 280nm). (a) Experimental results for the relative

transmission intensities versus the ratio of hole diameter d and groove periodicity p,

for the three series periods (the transmissions have been normalized to the hole area).

(b) Theoretical simulations for same systems as in (a). (c) Relative transmission

spectra of a BE at three different periods (p = 580, 660, 760nm) d = p/2.
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intensities normalized to the hole area greater than 1, or in other words, the

flux per unit area through the hole is greater than the corresponding incident

beam, demonstrating unequivocally the antenna effect of the grooves. When

compared to that of a single hole without corrugation, the enhancement at

resonance is even greater.

Figure 4.17: Experimental relative transmission intensities as a function of the number

of grooves for three different periods (p = 500, 600, 700nm with d = 250nm, hg =

90nm, wg = 220nm, h = 280nm).

As mentioned above, the role of the periodic corrugation is to couple the

incident light to SPs which concentrate the electromagnetic fields above the

aperture leading to very high transmissions. The efficiency of the coupling

is directly linked to the geometrical parameters of these grooves. Period p

and number of grooves N are two geometrical parameters that directly define

the dimension of the structure and play a key role in miniaturization of the

active area. Both parameters were first varied in order to understand their

interdependence and effect on the transmission enhancement. In Fig. 4.17, the

experimental results obtained for spectral maxima are plotted as a function

of N for three different values of p. As can be seen, the intensity saturates

at a given N for all three curves. The saturation limit is defined by the SP

propagation length in the corrugated surface, where it is significantly reduced

due to radiation losses as compared to a flat metal surface. The saturation

point and therefore the SP propagation length is seen to increase with period.

This apparent period dependence is mainly due to the fact that the other

parameters, such as groove depth, were kept constant as we will see further

down.

When considering just the groove width wg, the maximum transmission
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wg / p

Figure 4.18: Experimental relative transmission intensities as a function of the ratio

wg/p for a series of three periods (p = 500, 600, 700nm) with hg = 90nm, d = 250nm,

N = 8.
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intensity has been found experimentally for wg close to half the period (wg/p ∼
0.5) [132] which is confirmed in the present study for 3 different periods as can

be seen in Fig. 4.18. This optimal ratio defines a profile in which the power

spectrum is peaked at the SP resonance condition determined by the period.

In addition, wg is interlinked to the groove depth hg of the corrugations as

shown in Fig. 4.19 where hg was varied for three different values of wg, the

other parameters being constant. All the curves show an optimum at the

same hg/wg ratio around 0.4, in agreement with theoretical predictions [133].

It indicates a competition of light coupling to SPs and scattering by the grooves

versus the damping of the SPs in the grooves [73,134,135]. The fact that the

maximum intensity is found for the hg/wg curve corresponding to wg = 300nm

is probably due to the existence of a mode in the grooves in resonance with

the SP mode which has been observed in slit and groove structures [37].

In order to complete the study of the groove parameters, we investigated

separately the relationship between hg and wg as a function ofN . The resulting

experimental curves shown in Fig. 4.20 all exhibit a saturation with increasing

N . As can be seen in Fig. 4.20(a), the deeper the groove the earlier the sat-

uration intensity occurs in agreement with the hg/wg dependence. Note that

with hg = 80nm we obtained a better efficiency because this value is close to

the optimal shape ratio (i.e. hg/wg = 0.4). Interestingly the saturation occurs

approximately at the same value of N for different groove widths (Fig. 4.20(b))

indicating that in the parameter range studied, wg does not influence much

the SP propagation length. Again the highest intensity is obtained for the

structure closest to the optimal hg/wg.

The last parameter that we consider is a, defined as the distance between

the center of aperture to the center of the first groove. As can be seen in

Fig. 4.21, the maximum intensity is obtained when a is close to the period as

might be expected since the aperture is then in phase with the surrounding

grating. There is a good agreement between the experimental and the calcu-

lated spectra despite a slight shift which we attribute to possible imperfections

of the fabricated structures, but also to the approximations done within the

CMM formalism regarding the boundary conditions at the groove and the hole

walls. From a practical point of view, the more important information is that

the shape and the position of the resonance changes quite significantly with a.

It is therefore a parameter that can be used to tweak the resonance once the

other features have been optimized.

From the above results it is clear that the geometrical parameters con-

trolling the transmission efficiency of BEs are strongly interlinked. Neverthe-

less the basic optimization criteria for these systems can be formulated in a

straightforward manner:
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Figure 4.19: (a) Effect of shape ratio of the groove hg/wg on the experimental trans-

mission (a = 600nm, d = 230nm, p = 600nm, N = 7, h = 280nm). (b) Theoretical

simulations for the same system than (a).
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hg = 40nm
hg = 80nm 
hg = 120nm

wg = 125nm
wg = 200nm 
wg = 350nm

Figure 4.20: Experimental results of the effect of the number of corrugations for

different values of hg and wg. (a) Relative transmission intensities as a function of

the number of grooves for a series of three groove depths (hg = 40, 80, 120nm with

p = 600nm, wg = 220nm). (b) Relative transmission intensities as a function of the

number of grooves for a series of three groove widths (wg = 125nm, 220nm, 350nm

with p = 600nm, hg = 80nm).
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Figure 4.21: Effect of distance a on the transmission (p = 600nm, wg = 220nm,

hg = 80nm, N = 6). (a) Experimental data: the distance a is varied. (b) Theoretical

simulations for the same system than (a).
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• The first item to define is the desired range of resonant wavelengths

which in turn determines the period of the structure.

• The choice of the hole diameter will then be determined whether one

would like optimal efficiency as normalized to hole area or highest abso-

lute transmission.

For the former, the diameter should be about half the period:

d/p = 0.5 (4.6)

but for the latter the aperture size can be increased. It should be noted

that as the hole size increases relative to the period the spectrum will

eventually broaden which is a trade-off.

• The groove width should also be around half the period with an optimal

depth to width ratio at 0.4:

wg/p = 0.5

hg/wg = 0.4 (4.7)

• The number of grooves should be just enough to reach saturation which

is typically around 6 to 10 grooves depending on the geometrical param-

eters and which reflects the SP propagation length in such optimized

structures.

This simple optimization recipe should be useful for many applications

that can be envisaged for these structures.

The main differences between this optimization and the one studied in

Section 4.2.3 is that these rules work for BEs with N > 5 grooves. Moreover,

whereas in the previous optimization λ was fixed to a value in the infrared, this

new optimization is in the visible and it is based on the maximum transmission

obtained in a spectral range of finite width, that is, λ±∆λ, with ∆λ ∼ ±50nm

and λ = 650nm.

Nevertheless other refinements have been conceived that can be useful in

certain specific applications, always bearing in mind that improvements in

transmission are got only with an exquisite control in the geometrical param-

eters defining the system, since these are very sensitive to imperfections. For

instance, geometrical features such as sharp ridge and groove profile [128],

different hole shapes [26] and non-periodic grooves [136], groove depth gra-

dients [137] or phase shifts for polarisation control [138] have been used or
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proposed to modify the field distribution and therefore the properties of the

BE.

In order to check the validity and transference of these scaling laws to other

range of wavelengths, and within the European Project “PLAISIR”, similar

to the “PLEAS” project where the termination “IR” stands for Infra Red, we

optimized a BE structure at λ = 1350nm. Actually, the following optimization

is preliminary and it is done without considering the GCM. Anyways, this

is a good opportunity to test our previous findings at different wavelengths,

bearing in mind the main differences previously said.
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Figure 4.22: Transmission of light through a BE structure optimized at λ = 1350nm.

Geometrical parameters are: 6 annular grooves drilled in a gold film of 250nm

thickness (ε1 = ε2 = ε3 = 1), with hg = 140nm, wg = 580, p = 1270, and

a = 1290. Squares depict calculations when the central aperture is a circular hole

with rc = 400nm, and circles when it is an annular hole with rout = 230nm and

rin = 130nm.

As a first approximation, we consider a free standing system (ε1 = ε2 =

ε3 = 1) with 6 annular grooves drilled in a gold film of 250nm thickness.

Transmission of light is normalized to A = πr2c , with rc, the radius of the

central hole. Grooves are considered periodically (p) arranged, but the distance

of the first groove to the centre of the structure, a, is let to vary.

The previous scaling laws predict maximum transmission at hg/wg ≈ 0.4,

a ≈ p and, 2rc/p ≈ 0.5.
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Concerning the last law, we have found a resonant circular hole at λ =

1350nm for rc = 400nm. We have seen along this thesis that, in the optical

regime, the cutoff of a waveguide made of real metal is larger than that of

a perfect metal (λRM
c > λPEC

c ), whereas, λRM
c ≈ λPEC

c in the micro- or

THz-regime. This fact entails that optimum rc values may be not directly

transferable amongst different wavelength regimes, and they will have to be

optimized again.

In Fig. 4.22, transmission spectra through the optimized BEs at λ =

1350nm, are presented. The geometrical parameters found are: hg = 140nm,

wg = 580nm, p = 1270nm, and a = 1290nm, providing a maximum transmis-

sion TCH
max ≈ 36 (where superscript CH stands for Circular Hole).

Additionally, since we already know that annular holes present higher

transmission than circles of the same area, and because the groove structure

can be optimized irrespective of the central aperture (provided that the cross-

section of the hole is much smaller than those of the grooves), we also consider

a central annular hole in the centre of the structure, keeping the rest of param-

eters constant. In this larger spectral range, considering annular holes makes

sense because experiments can be now performed since the required dimen-

sions of the annular apertures should be attainable. In particular, we obtain

an optimized annular hole with rout = 230nm and rin = 130nm, providing

TAH
max ≈ 100. Note that TCH

max is normalized to πr2c , and TAH
max to πr2out.

About the validity of the previous scaling laws, it is clear that the set of

optimized parameters we found fulfil both a ≈ p, and 2rc/p ≈ 0.5 (in the case

of circles), whereas for hg/wg, we obtain a ratio of 0.25 instead of 0.4.

In Fig. 4.23, it is shown transmission at λ = 1350nm as a function of wg for

different hg values and with the same geometrical parameters as those of the

optimized structure in Fig. 4.22 (considering an annular hole in the centre with

rout = 230nm and rin = 140nm). We observe that very similar transmission

intensities are obtained for several wg and hg pairs: wg = [300 − 600]nm and

hg = [120 − 140]nm, with almost planar curves of similar transmission.

This is also in accordance with the results obtained in Fig. 4.19, where

curves around the ratio hg/wg = 0.4 are also planar. Therefore, the scaling

laws obtained in the optical regime for the grooves of BE systems with more

than 5 annular trenches seem to be easily transferred to the middle infrared.

4.2.5 Third Optimization: Microscopic Model

Up to now we have scanned systematically the parameter space by physical

intuition, following previous ideas and studies related to slit and linear groove
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Figure 4.23: Transmission at λ = 1350nm for the same system as in Fig. 4.22 but

with rin = 140nm, as a function of wg for several hg values.

structures. However, we can go a step further and provide a detailed descrip-

tion and analysis of BE transmission properties.

As we said before, we will consider just regular BEs where all grooves have

the same depth and width, since these structures are very sensitive to possible

experimental imperfections.

By considering the interfering contributions of the direct transmission

through the hole and the SP component in the transmission process, we will

reveal both theoretically and experimentally how the two contributions de-

termine the transmission spectra of a BE. By means of the CMM, analytical

expressions for the most relevant parameters that determine the optical be-

havior of the BE can be given. The analytical capacity eventually leads to

understanding the fundamental mechanisms involved in the physics of the BE

structure: we find that the mechanism to enhance transmission is related to

constructive interference at the central hole of standing SP waves emitted

by the grooves. Furthermore, we find a simple phenomenological model that

gathers the main mechanisms to enhance transmission.

A schematic of a BE structure is displayed in Fig. 4.24(a). The following

experiments are also performed at ULP using the same technique described in

Section 4.2.4. The structure is milled in a h = 280nm thick Au film deposited

on a glass substrate (ε3 = 2.25). In order to obtain EOT in the optical regime,

the distance between consecutive grooves (the “period”), is chosen p = 600nm.
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Figure 4.24: (a) Schematic representation of a BE structure, consisting of a metal film

of thickness h deposited on a glass substrate, perforated by a central hole with radius

rc and N concentrical circular grooves (all with the same width wg and depth hg)

separated by a period p. The variable distance between the hole the nearest groove

is a1. (b) SEM image of a experimental structure milled by FIB lithography. The

scale bar corresponds to 2 µm. (c) Sketch of the re-illumination SP component as

implemented in the phenomenological model described in the text.
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Figure 4.25: (Left panel) Experimental optical transmittance, normalized to hole area,

for a bull’s eye with N = 6 annular grooves, h = 280nm, hg = 90nm, wg = 220nm,

p = 600nm, and rc = 125nm, drilled in a gold film of 250nm thickness on a glass

substrate (ε2 = 2.25). The spectra are acquired as a function of both distance between

the hole and the first groove, a1, and incident wavelength λ. (Right panel) CMM

calculations.

Dimensions characterizing grooves and hole are in the subwavelength regime:

all grooves have hg = 90nm depth and wg = 220nm width, and the radius

of the central hole is rc = 125nm. We consider N = 6 annular grooves, a

typical number that fulfills the compromise between small structure size and

high field enhancement [63]. The sample was illuminated from the corrugated

side with collimated white light.

The experimental transmission spectra of Fig. 4.25 (left panel), measured

as a function of the incident wavelength λ, show the expected resonances at

wavelengths λR slightly larger than the period (in this case λR ≈ 630nm)

[25, 30]. However, considering the possibility that additional coherent effects

can modulate the optical enhancement associated with these resonances, we

have explored further the transmission dynamics by changing also the distance

a1 between the central hole and its nearest groove. When the spectra are

displayed in the λ− a1 parameter space, they clearly show that the resonant

profile is modified as the distance a1 is varied. As we saw in Chapter 2, within

the CMM, the EM fields are expanded in terms of eigenmodes in each different

region in space (plane waves in the semi-infinite regions and waveguide modes

inside the hole and grooves) and imposing the appropriate matching conditions

leads to a coupled system of equations for the modal amplitudes of the electric

field at the entrance, E, and at the exit, E′, of the cavities. In the case of

subwavelength holes or grooves, considering only one mode per cavity (the

TE11 mode in both the hole and the grooves [84]) already provides a good

approximation to the transmission properties [49,67]. In this case, the modal

amplitudes are governed by:
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Figure 4.26: Electric Field Amplitude for the sixth groove, E6, as a function of a1
and the wavelength with (a) and without (b) a central hole, for the same geometrical

parameters as in Fig.4.25.
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where n is an index that labels cavities (n = 0 for the hole, and n = 1....N

for the grooves). Again, in the simulations we apply SIBC at the horizontal

surfaces for the dielectric response of the metal, and for each cavity (groove

or hole) the propagation constant along the vertical direction knz is computed

exactly. The spatial profile of the fundamental waveguide mode is obtained

considering PEC approach in the waveguide since, in this case, the overlap

with plane waves is known analytically [84]. Based on our experience on 1D

structures, we expect that the use of this approximation blue shifts the trans-

mission spectra by ≈ 50nm compared to virtually exact numerical simulations.

Figure 4.25 (right panel) renders the transmittance (normalized to the hole

area) computed within the CMM for the nominal parameters of the experi-

mental setup. The dielectric constant of gold is taken from Ref. [15]. The

simulations also present stripes of enhanced optical transmission in the λ− a1
parameter space, appearing around λR = 630nm, i.e., within the expected

accuracy of the model.

One of the main advantages of the CMM formalism is that it allows to dif-

ferentiate amongst different mechanisms involved in the transmission process.

For instance, we can consider BE structures with and without a central hole.

Figure 4.26 shows the computed maps for the amplitude of the electric field

at the entrance of the sixth groove, |E6|, which is taken as a representative

illustration of the field at the surface, when the system has (left panel) or does
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not have (right panel) a central hole in the middle, as a function of a1 and the

wavelength. We find that En is not affected by the presence of the central hole,

making evident that, for the range of parameters considered, the cross-section

of the hole is much smaller than those of the grooves. This result reenforces

the finding that, at a given wavelength, it is possible to analyze separately the

optical responses of the array and the central hole.

Bearing in mind the last result, and that the central hole modulates the

transmission response (as we showed in both Section 4.2.3 and Section 4.2.4),

we now consider different central apertures (annular holes and circular ones

filled with ε2 > 1) and study how transmission can be enhanced through BE

structures.

In Fig. 4.27 we show transmission panels as a function of the wavelength

and a1 values for (a) the same system as that considered in Fig. 4.25, (b) the

corresponding maps when an annular aperture is taken in the centre, (c) the

circular hole considered in panel (a) is now filled with a dielectric constant

ε2 = 4.5, and (d) the circular hole is filled with ε2 = 1.8. This modification of

the central aperture translates into a change of the cutoff of the aperture from

(a) λc ≈ 590nm, to (b) λc ≈ 760nm, (c) λc ≈ 1100nm, and (d) λc ≈ 760nm.

White lines in each case render the spectral dependence of the transmittance

through the corresponding single hole (×1000). All maps have the same scale

in order to highlight how transmission is boosted up by properly optimizing

the central hole. In panels (b), (c), and (d) the transmittance through the

single aperture in each case presents a Fabry-Perot resonance whose spectral

location are designed to coincide with λR = 630nm. Depending on the central

hole we choose, transmission can be enhanced from Tmax ≈ 15 to Tmax ≈ 54.

Moreover, in panel (c) at λ ≈ 850nm and λ ≈ 1050nm, it is also seen some

enhancement in transmission (lighter to that observed at λR), since other

Fabry-Perot resonances emerge in the transmission spectrum of the isolated

central hole. Notably, in all cases, the response of the array appears at λR.

Interestingly, both panels in Fig. 4.26 present “hot spots” around λR for

similar a1 values as those appearing in transmission in Fig. 4.25. Therefore,

in order to obtain additional insight on these findings, Fig. 4.28 shows the

computed maps of the amplitude of the electric field at the entrance of all the

grooves, |En|.
In the spectral band close to λR all panels present hot spots with locations

in the λ− a1 plane that coincide with those of the transmittance in Fig. 4.25.

However, for wavelengths larger than the cutoff of the hole, |En| present spec-
tral features that are not observed in the total transmittance in Fig. 4.25, as

the latter is strongly suppressed by the small transmittance of the central hole.

In particular, all maps present an even stronger resonance in the field ampli-
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Figure 4.27: Transmission maps as a function of a1 and the incident wavelength for

(a) the same geometrical parameters as in Fig. 4.25, (b) the same as (a) but with

a central annular hole with rout = 125nm and rin = 55nm, (c) the same as (a)

but with a dielectric constant filling the circular hole ε2 = 4.5, and (d) the same as

(c) with ε2 = 1.8. White lines in each case render the spectral dependence for the

transmittance through a single hole (×1000).
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Figure 4.28: For the geometrical parameters in Fig. 4.25, amplitude of the electric

field at the entrance of the grooves |En| as a function of a1 and λ.
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Figure 4.29: For the geometrical parameters in Fig. 4.25, amplitude of the electric field

at the entrance of the sixth groove |E6| as a function of a1 and λ, for (a) hg = 30nm,

(b) hg = 90nm, (c) hg = 150nm.
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Figure 4.30: Amplitude of the electric field in the sixth groove, |E6| for the same

geometrical parameters as in Fig. 4.25 at a = 600nm, as a function of the period and

the incident wavelength. White line represents the condition λSP = p.

tude at λ ≈ 800nm than at λR, pointing to a collective behavior. However,

this resonant field does not lead to enhanced transmission.

So, can these resonant effects appearing at λR and at λ ≈ 800nm be

combined? We found that when the groove depth increases, the collective

resonance enhances and red-shifts, whereas the one at λR also increases in

intensity but its spectral position remains invariable, as it is shown in Fig. 4.29.

This figure contains panels of the amplitude of the electric field at the entrance

of the sixth groove, |E6| for (a) hg = 30nm, (b) hg = 90nm, (c) hg = 150nm.

We can also study how this collective resonance varies with p. In Fig. 4.30

it is shown |E6|, as a function of p and the incident wavelength for the same

system as before with a1 = 600nm. Note that since the collective resonance
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Figure 4.31: For the geometrical parameters in Fig. 4.25, computed re-illumination

from the grooves in the central hole (panel (a)) and amplitude of the electric field at

the entrance of the fourth annular groove |E4| (panel (b)), as a function of a1 and λ.

Panels (c) and (d) show the same as panels (a) and (b), respectively, but for a system

of “disconnected” grooves, i.e. by setting Gnm = 0 for n 6= m. Grey lines depict the

condition 2an = mnλSP for each annular groove. The white line in panel (a) renders

the spectral dependence for the transmittance through a single hole (×1000).

for deep enough grooves does not depend on a1, this map would be valid for

any other a1 value. In the figure, the condition λSP = p is depicted for each

period with white lines. This map shows that there is no case where these two

resonances coincide, and we did not find a way to combine these two effects,

neither by modifying hg, nor by varying p.

To find out why the resonance at λ = 800nm does not appear in transmis-

sion panels, we calculate the light going from the groove array to the central

hole, IG, and compare with En panels. This reillumination term is defined as:

IG =
∑

n

Gn0En (4.9)
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Figure 4.32: Schematics of a BE when grooves are connected (left panel) and are not

(right panel).

with n = 1, 2, .., N .

These calculations appear in panels (a) and (b) in Fig. 4.31.

To understand the origin of the “hot stripes” in IG and En that lead to

EOT, we now consider the response of a set of isolated annular grooves (by

simply setting Gnm = 0 for n 6= m, see schematics in Fig. 4.32). Panels

(c) and (d) in Fig. 4.31 show the same calculations as in panels (a) and (b),

respectively, but when grooves are “disconnected”. The re-illumination map

when grooves do not interact presents a similar pattern to that of IG when

the full interaction is considered: there are high intensity features at λR ≈
630nm only for some values of a1. This result clearly shows that maxima in

IG originate from the constructive interference at the hole of the EM fields

radiated by each groove (Ig) which, at those wavelengths, can be considered

as isolated. The comparison between |E4| in the connected (Fig. 4.31(b))

and isolated cases (Fig. 4.31(d)) reenforces this interpretation: in the spectral

region close to λR, where the resonance in both IG and T occur, |E4| is similar

for both an isolated and a“connected”groove. In contrast, these two situations

lead to very different |E4| in the resonance appearing at λ ≈ 800nm, adding

further evidence to the association of this resonance to a collective behavior.

The previous analysis shows that, at λR = 630nm, the grooves can be

considered as independent of each other. So let us now consider a single

groove with hg = 90nm depth, and wg = 220nm width drilled in a gold film.

Figure 4.33 shows the amplitude of the electric field of this annular hole as

a function of its average radius, or equivalently, its distance to the centre, a1,

and the incident wavelength. As in panel (d) in Fig. 4.31, this contour plot

presents enhanced stripes that almost follow the grey lines also shown there.
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Figure 4.33: Electric field amplitude |E1| for an annular groove drilled in gold with

hg = 90nm and wg = 220nm, as a function of the distance to the centre of the

structure, a1, and the incident wavelength. Grey lines depict the condition 2a1 =

mλSP.

These grey lines represent the condition to have an integer number of plasmon

wavelengths inside the cavity originated by the annular groove: 2a1 = mλSP.

In general, we find that an isolated shallow groove (with hg << λ, as those

considered in this work), re-illuminates the centre of the structure maximally

when an integer number of SP wavelengths fits inside each ring cavity, that

is, 2an = mnλSP, where mn is an integer and an is its average radius. This is

consistent with the fact that, in the optical regime and at distances larger than

2 − 3λ, SP are the main contribution to the EM field at the surface radiated

by a surface defect [66,139].

Figure 4.34 shows at the same time the previous (a) panel of Fig. 4.25

and (c) panel of Fig. 4.31. The condition 2an = mnλSP is represented as a

collection of straight lines in Fig. 4.34(a), one for each groove (n = 1, ..., 6).

Notice that all lines cross at several points, where the re-illumination from each

groove is maximal simultaneously. For a collection of grooves with average

radius an = a1 + (n− 1)p, where n does not necessary have to be consecutive

(eventually providing aperiodic structures), these maximal points are given by
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Figure 4.34: Comparison of panel (c) from Fig. 4.31 and panel (a) from Fig. 4.25 to

highlight that resonances appearing in the λ − a1 plane coincide. Grey lines depict

the condition 2an = mnλSP for each annular groove.

the conditions

λSP ≈ p

l
(4.10)

a1 ≈ m
λSP

2
(4.11)

where m and l are integers. Moreover, all partial re-illuminations interfere

constructively in that case. This explains the maximum in IG that occurs in

both the disconnected case (Fig. 4.31(c)) and the connected one (Fig. 4.31(a)).

The small deviation between the actual values of a1 and λ for maximum

IG and those given by Eq. 4.10 and Eq. 4.11 are due to the influence of both

groove width and, principally, groove depth which are not taken into account

in the simple model outlined above. Actually, a finite hg enlarges the optical

path length that light travels, due to incursions inside the groove, which even-

tually translates into a larger effective ã1. Therefore, grey lines in Fig. 4.34

intersect at larger a1 values than those where actual hot spots in the reillumi-

nation process, occur. In the limit of very shallow grooves, hot spots and the

intersection of grey lines coincide.

Figure 4.35 shows IG for the same system as before but in the limit of very

shallow grooves with hg = 10nm. In this case, for IG, hot spots in the λ− a1
plane actually coincides with the points where grey lines intersect.

Additionally, Fig. 4.36 shows the transmission of light through an aperiodic

system where all grooves are located so that they fulfil the condition 2an =

mnλSP. In this particular case the position of the grooves is indicated in the

schematics in that figure: a1 = a1, a2 = a1 + 2p, a3 = a1 + 5p, a4 = a1 + 6p,

a5 = a1 + 9p, and a6 = a1 + 11p, with p = 600nm. We observe a resonance

appearing in the same a1 − λ plane as in the case of periodic structures in
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Figure 4.35: Reillumination, IG, for the same geometrical parameters as in Fig. 4.25

with hg = 10nm. Grey lines depict the condition 2an = mnλSP for each annular

groove.

both T and IG. At λ ≈ 780nm, there is another resonance less intense in both

T and IG panels for other a1 values, very close to the secondary points where

less grey lines intersect. However, our simple scaling laws do not explain the

secondary resonances and this finding would require more research.

Within the CMM and to get physical insight, we also study how transmis-

sion and reillumination are affected when grooves are not illuminated directly

at the same time, just by setting In = 0 in each case. Figure 4.37 and Fig. 4.38

show transmission of light and the corresponding reillumination panels for the

same system as in Fig. 4.25, but with ε2 = 4.5, when grooves are illuminated

successively, as it is schematically shown on top of each panel. One of the most

clear results is that, as more grooves are illuminated, the resonance appearing

at λ = 630nm gets stronger, and the resonance related to the Zero-order F-P

of the single hole at λ ≈ 850nm slightly fades away.

Besides, as more grooves are illuminated, the width of the “hot stripes”

along the grey lines (corresponding to resonances in the field of the first annular

groove) starts narrowing to eventually become “hot spots” at λR. It is also

seen that the slope of these stripes, follows first the slope of the grey lines

corresponding to resonances in the field of the first annular groove, and then, as

the outer grooves are illuminated, these slopes increase and follow the slopes of

the grey lines corresponding to the outermost grooves (i.e., with larger average

radius).
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Figure 4.36: (a) Transmission of light through an aperiodic BE with the same geo-

metrical parameters as in Fig. 4.25 and where all grooves satisfy 2an = mnλSP.

This is a result arising from the the fact that, the nearest grooves send light

to the central hole more“easily”than the outer ones (with less radiation losses),

but the outer ones collect more light due to the dimension of their average

radius. Therefore, there exists a trade-off between efficiency of reradiating

light into the central hole, and the capacity to collect more light. Moreover,

maximum transmission varies from about 8.5 to 55 as grooves are illuminated,

but in order to highlight transmission features, all panels are saturated to

Tmax = 15. The corresponding Tmax values for each case appear explicitly in

each panel.

The scaling laws given by Eq. 4.10 and Eq. 4.11 are also in good cor-

respondence with experimental results. Main resonances shown in Fig. 4.25

appear at λR = 630nm, as it is predicted by Eq. 4.10 for l = 1, but they

also obey Eq. 4.11, with m = 1, 2, 3, 4, in the range of parameters here stud-

ied. In order to stress the importance of following this set of simple equations

when designing BE structures, the experiments appearing in Fig. 4.39 were

also conducted.

This figure shows transmission spectra and the expected resonant wave-

lengths λR for BE structures with different geometrical parameters (see cap-

tion) with a1 = p for different periods. Again the small difference between the

simple prediction and the experiment is attributed mainly to the influence of

groove depth. Note that these λR values are calculated from Re[ksp[λR]] =

2π/(p/l), being l = 2, and that a1 values are properly selected with m = 4.

This draws a straightforward analogy with periodic hole arrays where higher

order SP modes can be excited at specific wavelength in agreement with a
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Figure 4.37: Transmission of light for the same geometrical parameters as in Fig. 4.25

with ε2 = 4.5. Grey lines depict the condition 2a2 = mnλSP for the first annular

groove. The red line corresponds to the transmission of a single circular hole with

rc = 250nm, and ε2 = 4.5, multiplied by 1000, and the black line corresponds to the

propagation length of the plasmon.
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Figure 4.38: Reillumination IG for the same geometrical parameters as in Fig. 4.25.

Continuous grey lines depict the condition 2a2 = mnλSP for the first annular groove,

and the dashed ones to the outmost one. The red line corresponds to the transmission

of a single circular hole with rc = 250nm, and ε2 = 4.5, multiplied by 1000, and the

black line corresponds to the propagation length of the plasmon.
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Figure 4.39: Transmission spectra measured through BE structures with N = 5,

h = 280nm, hg = 90nm, wg = 330nm, rc = 170nm, and different periods (see

label) being a1 = p. For each period, the predicted location of λR is indicated. These

wavelengths follow Eq. 4.10, so that Re[ksp[λR]] = 2π/(p/l), being l = 2, and Eq. 4.11

with m = 4.
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Figure 4.40: Transmission spectra as a function of a1 measured through BE structures

with N = 6, h = 250nm, hg = 90nm, wg = 220nm, rc = 125nm, filled with ε2 = 4.5,

and different periods (see label) (a) p = 600nm, (b) p = 800nm, and (c) p = 1100nm.

grating law of the kind of Eq. 4.10.

Additionally, Fig. 4.40 shows theoretical calculations of the transmission

of light through periodic BEs with (a) p = 600nm, (b) p = 800nm, and (c)

p = 1100nm, so that Fabry-Perot resonances related to the central hole filled

with ε2 = 4.5 coincide with those predicted by the scaling laws. Note that

transmission can be enhanced from Tmax = 55 to Tmax = 252, and that new

a1 resonant values arise as predicted by the scaling laws.

In order to have a first understanding of this rather complex landscape, the

experimental group at ULP developed a simple phenomenological model that

captures the main mechanisms playing a role at λR. To confront the model

to actual experiments, it is considered the most simple situation of a normal

incidence illumination of the BE. In its form, the model:

• treats the groove array as a resonant“black box”(see schematics in panel

(c) in Fig. 4.24) with an EM response characterized by a general complex

coupling coefficient, γ, which gives the fraction of normally incident field

amplitude that the groove array locally couples into SP,

• considers the central hole being illuminated by the incident EM field and

re-illuminated by light coming from the array via SP,

• accounts for hole re-illumination as an SP-assisted two-path scattering

process: (i) one direct path from the array to the hole and (ii) and a

secondary path corresponding to SP back reflected by the groove array

to the central hole with complex reflection amplitude r (see a schematic

representation in Fig. 4.24(c)),

• assumes that the hole is sufficiently small so that the illumination of the

hole (by either the incident EM field or the light coming from the array)

depends only on the field amplitude and not on the parallel wavevector.

In this case, the transmittance through the hole can be expressed as
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Figure 4.41: (a) Data points collected at λR ≃ 630 nm as a function of a1 for the

same system at that appearing in Fig. 4.25. The continuous line is a fit from the

phenomenological model of Eq. 4.12 with fitting parameters discussed in the text. (b)

Modulation and suppression of the transmittance over a smaller region of a1 values.

T = TSH |Farray|2, where TSH is the transmission of light through a

single hole, and Farray is the field at the hole in the presence of the array

divided by that for an isolated hole.

Under these conditions, the re-illumination term can be expressed in terms of

the (complex valued) SP wavevector ksp as

Farray ≈ 1 + γ
√
a1 e(ikspa1) + rγ

√
a1 e(3ikspa1) (4.12)

The first term represents the incident EM field, the second one accounts for

the light mediated by SP going directly from the groove array to the central

hole, whereas the third term represents the light that goes from one side of the

“black box” to the other one, and then is reflected back to the central hole. In

principle, the parameters γ and r are expected to depend smoothly on a1 and

λ but, as the exact dependence is unknown, they will be initially considered

as constants. Only a full numerical calculation will be able to define these

parameters properly and to evaluate their exact dependencies, along with the

role played in enhanced transmission by the different EM couplings between

BE elements. In Eq. 4.12, the cylindrical symmetry has been accounted for

by considering the SP as planar cylindrical waves. For a propagation over

a distance x, the field amplitude associated to a SP locally launched at the

level of the cylindrical groove is proportional to e(ikspx)/
√
x. The total field

amplitude will scale as
√
x after integrating over the whole cylindrical groove,

explaining the
√
a1 dependency in Eq. 4.12.

Figure 4.41(a) shows a fit of the transmittance obtained at 630 nm ≃ λR

with this phenomenological model for |γ| = 0.02 and |r| = 0.7. This fit allows

interpreting the observed spectral resonances which arise from the interference
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between (i) the field directly re-routed by the grooves into the hole and (ii)

the field re-routed by one side of the array that, before reaching the hole, suf-

fers a reflection at the other side of the array. The contribution (i) essentially

selects a1 values corresponding to the transmission resonances that dominate

the transmission spectra in a standing-wave pattern (c.a. every λSP/2) while

(ii) is responsible for the secondary transmission peak at a1 ∼ 959nm. In

other words, the optical spectra acquired in the λ − a1 parameter space are

revealing unambiguously the coherent character of the BE structure which

can therefore be envisioned as a genuine sub-micron SP cavity. Controlling

the optical transmission is therefore possible through the choice of a1 val-

ues. Figure 4.41(b) demonstrates a selective modulation of the transmission

of about 2 orders of magnitude. The dephasing between the SP component

and the direct transmission through the hole is thus directly related to the

cavity radius. At a specific value of a1, the two components can destructively

interfere, leading to a strong suppression of the transmission signal as dis-

played in Fig. 4.25(b). In this context, it has been realized that BEs can be

carefully designed as to suppress any bright background in sensitive darkfield

detection and imaging -so called SWEDA microscopy [140,141]. When the pe-

riodic surrounding grating is designed as a Bragg reflector for the illumination

wavelength, the BE structure behaves as a plasmonic micro-cavity around the

hole, with strong potential in nanolithography and data storage [142]. The re-

cently shown SWEDA effect is based on the same discussion we propose with

similar interference effects at play within the BE cavity [140].

It is possible to find a qualitative microscopic model with the CMM rather

than the previous phenomenological model. As said before, the CMM provides

analytical expressions for all objects appearing in Eq. 4.8 which, in principle,

have to be evaluated numerically. However, we find that, to a very good ap-

proximation, the elements Gnn and G0n (related to how a groove re-illuminates

itself or the central hole, respectively) satisfy:

G0n(an) = σ(an) e
ikspan

Gnn(an) = β(an) + Γ(an) e
2ikspan (4.13)

where σ(an), β(an), and Γ(an) are fitting complex coefficients that de-

pend smoothly on an. Equation 4.13 can be interpreted physically in the

following way: the groove re-illuminates the hole via SP while, for the self

re-illumination, the groove can be considered as composed by two parts (left

and right). These parts re-illuminate themselves (leading to the β(an) contri-

bution) and one another (the Γ(an) term).
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Figure 4.42: For the geometrical parameters in Fig. 4.25 and λ = 630nm, comparison

between the exact values for |G0|, |G| and those obtained by Eq. 4.13, as a function

of a. The inset shows |σ(a)|, |β(a)|, and |Γ(a)| values as a function of a.

Since the previous analysis indicates that the array response can be un-

derstood as the response of isolated grooves, let us now consider an isolated

groove with the same hg and wg as before and of average radius a. To simplify

the notation, we write G0n = G0(a) and Gnn = G(a). As an illustration of the

validity of Eq. 4.13, Fig. 4.42 shows |G0(a)| and |G(a)| calculated both exactly

and fitted through Eq. 4.13, together with |σ(a)|, |β(a)|, and |Γ(a)| obtained
from the fit. This illustration is for the geometrical parameters considered in

Fig. 4.25, panel (a), and at λ = 630nm, but we have checked that the validity

of Eq. 4.13 is not restricted to these particular case.

Equation 4.13 also allows for a simplified analysis of the re-illumination

process of a single groove, Ig(a) = G0(a)E(a), which can be written in the

language of the Huygens-Fresnel model [143]. Equation. 4.8 in combination

with Eq. 4.13 gives

E(a) =
I(a)

G(a) + Σ(a)
≈ I(a)

β(a) + Σ(a)
· 1

1− r(a)e2ikspa
(4.14)

where

r(a) ≡ −Γ(a)

β(a) + Σ(a)
(4.15)
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CMM

Figure 4.43: Reillumination of a single groove, |Ig|, as a function of a. The black

curve represents the exact calculations. The blue and red curves show the result after

fitting α(a) and r(a) and truncating the sum in Eq. 4.17 to jmax = 1 and 2 terms,

respectively. Geometrical parameters as those in Fig. 4.25 and λ = 630nm.
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Expanding the denominator we get:

E(a) =
I(a)

β(a) + Σ(a)

∞∑

j=0

[
r(a) e2ikspa

]j
(4.16)

Notice that this expression contains the “multiple scattering” between the left

and the right side of the annular groove. Finally, if we substitute the latter in

Ig(a) = G0(a)E(a), we obtain:

Ig(a) = α(a)eikspa
∞∑

j=0

[
r(a) e2ikspa

]j
(4.17)

with

α(a) ≡ σ(a)I(a)

β(a) + Σ(a)
(4.18)

Figure 4.43 shows the exact results for Ig(a) and the fitted curve replacing

α(a) and r(a) in Eq. 4.17. The excellent agreement between the two calcu-

lations confirms the validity of the approximations involved in the derivation

of the simplified model. Note also that considering just the first two terms

(jmax = 1) in the sum in Eq. 4.17 already provides a good approximation.

In Fig. 4.44 we graph the coupling and reflection coefficients for the groove

parameters previously considered (continuous black curves). Additionally, we

present results for other representative geometries still in the subwavelength

regime, which result from the ones considered throughout this section by in-

creasing and decreasing some geometrical parameters (and, in each case, for

the corresponding values of λR). These results show that, in all cases, the

coupling amplitude α increase with groove radius, while the reflection ampli-

tude r is practically independent of a. The dependence of α with a can be

approximately fitted to α(a) ∝ a2/3. This result, which is relevant to stud-

ies in BE structures based on the Huygens-Fresnel approach, can be traced

back to arise from the exact a1/2 dependence of I(a) (i.e., the illumination of a

groove is proportional to its area), plus an additional dependence with a of the

coefficients entering Eq. 4.13 (see inset in Fig. 4.42). The computed reflection

coefficient turns out to be smaller than the one given by the phenomenological

model ∼ 0.7 (which can only be helpful in an interpretation context). These

studies also suggest that the width of the groove is not a parameter with a

strong influence on the results (provided it is in the sub wavelength regime).

In the spectral region where transmission resonances occur (where grooves

can be treated independently), we can obtain the total re-illumination at λR

provided by an array of grooves placed at an as IG =
∑

n Ig(an). Thus,

following Eq. 4.17
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Figure 4.44: Calculation (within the CMMmodel) for α(a) (panel (a)) and r(a) (panel

(b)) for different set of parameters. The black curve is for the system considered in

Fig. 4.25, which is taken as the reference. For the other cases, the labels give the

parameters that are different from those in the reference.
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Figure 4.45: Calculation (within the CMM model) in logarithmic scale for αarray as

a function of a1 for the same geometrical parameters as in Fig. 4.25 at λR = 630nm.

The black curve represents calculations from Eq. 4.20 and the red one, the fitting curve

where |αarray| ∼ a1
x with x = 0.45. The inset shows the corresponding calculations

for |rarray|.
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IG = αarray e
ikspa1

(
1 + rarray e

2ikspa1
)

(4.19)

with

αarray =
∑

n

α(an)e
iksp(n−1)p

rarray = r ·
∑

n α(an)e
3iksp(n−1)p

∑
n α(an)e

iksp(n−1)p
(4.20)

where, according to Fig. 4.43 and Fig. 4.44, the reflection coefficient r is

assumed to be independent of a1, and jmax = 1. Additionally, if the condition

p ·Re[ksp] ≈ 2πl (being l an integer) is fulfilled, which is also the condition for

validity of the independent-groove model, rarray ≈ r and αarray ≈∑n α(an).

In the CMM formalism, Farray = 1 + IG/I0, so Eq. 4.19 recovers the phe-

nomenological model given by Eq. 4.12. Moreover, in Fig. 4.45 we show |αarray |
as a function of a1 for the same geometrical parameters considered in Fig. 4.25

at λR = 630nm. Notably, we find for large a1 values that |αarray| behaves as
a0.451 ∼ √

a1, as predicted by the simple phenomenological model. Note also

that, despite the slow dependance of αarray with a1, the reillumination at the

centre of the hole strongly oscillates with a1, due to the exponential terms in

Eq. 4.19. Additionally, inset in Fig. 4.45 shows that |rarray| hardly depends

on a1, as it was expected from Fig. 4.44.

4.3 Beaming

Light usually diffracts in all directions when it emerges from a subwavelength

aperture, which puts a lower limit on the size of features that can be used in

photonics. This limitation can be overcome by creating a periodic texture on

the exit side of a single aperture in a metal film. The transmitted light emerges

from the aperture as a beam with a small angular divergence (approximately

±3o) whose directionality can be controlled. This finding was experimentally

verified for the first time considering the 1D system with a slit flanked at both

sides of the metal film by linear grooves [25], and it is especially surprising

considering that the radiating region is mainly confined to an area with lateral

dimensions comparable to the wavelength of the light.

Optical characterization of a single hole is a delicate experimental task

due to the finite width of the angular distribution for the emission pattern [47,

131, 144, 145]. Therefore, great care must be taken in measuring single holes

to obtain the correct spectral data due the finite collecting angle of the setup.
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From the theoretical point of view, we should mention that, up to now,

there are theories only on how a single hole perforated in a perfect electrical

conductor (PEC) radiates [146, 147]. From the practical point of view, it is

interesting to measure the whole current going through a single hole. This

is a difficult task because it is necessary to integrate over 2π steradians. If

there was an analytical formula, it would be enough measuring in the normal

direction and use the analytical expression to integrate.

Next, we will show how this analytical expression can be obtained, and we

will use it to calculate the far-field angular intensity distribution of isolated

circular and annular holes made of real metal, and also for BE structures

where both the illumination and transmission sides of the metal surface are

corrugated with annular grooves. These are preliminary studies.

The specific quantity we compute is the scattering cross section, defined

as the radiated power, P , by unit of solid angle, Ω,

σ(θ, φ) =
∂P

∂Ω
= r2Sr (4.21)

where Sr is the radial component of the Poynting vector, S = E ×H∗/2,
at an arbitrary observation point, r.

An analytical expression for σ(θ, φ) within the CMM was derived by Dr.

F. de Leon-Perez in our group [148]. This final expression has the following

form:

σ(θ, φ) =
kεkz

√
ε

8π2

[
kε
kz

∣∣tp(k||)
∣∣2 + kz

kε

∣∣ts(k||)
∣∣2
]

(4.22)

with k2|| = k2ε ·sin2 θ, kz = kε ·cos θ, and kε = 2π
√
ε/λ. Besides, ts and tp are

the transmission coefficients related to the s and p polarization, respectively,

that can be written as:

ts = − sin(φ)

1 + Zs cos(θ)

∑

n

〈n|s〉E′
n

tp = − cos(φ)

1 + Zs

cos(θ)

∑

n

〈n|p〉E′
n (4.23)

In these expressions, θ measures angles with respect to the normal to the

surface, and φ is the azimuthal angle (π = 0 for observation points with

in-plane projection parallel to the incident field). For further details of the

definitions of these magnitudes, see Chapter 2 and Appendix A.
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For convenience, we measure the normalized quantity:

Σ(θ, φ) =
σ(θ, φ)

σ(0, φ)
(4.24)

This will allow us to compare our results with other calculations performed

for circular holes by Dr. F. de Leon-Perez using the CMM, and by Dr. J. Ale-

gret using the Green Dyadic (GD) method. The GD method is capable of

treating the optical response of an arbitrary object embedded in a layered

background, which makes it very suitable for hole calculations. It has been

recently used to simulate single holes and hole pairs [149], yielding very good

agreement with reported experimental results. The GD method is exact, in

the sense that it is derived directly from Maxwell’s equations with no ap-

proximations. Its accuracy depends only on the mesh chosen to represent the

objects we want to study, and also on the machine precision of the computer

performing the calculations. We utilize the TEMA prescription [150] for the

hole mesh, which gives a good balance between calculation speed and precision

of the results.

In Fig. 4.46 there is a comparison for the spatial distribution of fields

radiated by circular holes as a function for different hole radius, rout. Σ(θ, φ)

is calculated for a single circular hole perforated in an Al film with thickness

h = 100nm, at λ = 630nm. Panels (a) and (b) present calculations done with

the CMM for annular holes in the limit when the inner radius rin = 0nm, and

rout = 190nm, for φ = 0o and φ = 90o, respectively. Panels (c) and (d) present

the corresponding GD results, represented with solid lines, and CMM ones

for circular holes, with dashed lines, along with a different calculation with

rout = 30nm. The comparison amongst the three calculations is excellent,

finding that Σ(θ, φ) is more anisotropic (narrower) when the aperture size

increases.

Once our calculations are checked, and before going on with the study

of annular holes and BE structures, it is interesting to study the difference

between PECs (Zs = 0) and real metals (RMs).

A fraction of the energy power radiated by an aperture in a real metal is

scattered into SPPs that propagate along the metal surface. These modes,

only excited by p-polarized light, are confined to the metal-air interface and

do not contribute to the far-field radiation. There are not surface modes in a

flat metal surface and its p-radiation is practically isotropic as function of θ.

The normalized scattering cross section, Σ(θ, φ), for a gold layer and PEC

are compared in Fig. 4.47 at λ = 630nm, for the same system as before. In

Fig. 4.47 (top panel) it is represented the p-contribution to Σ(θ, φ), i.e. at
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Figure 4.46: Σ(θ, φ) of a single circular hole perforated in a Al film with thickness

h = 100nm, at λ = 630nm. (a) and (b) panels correspond to CMM calculations for

annular holes in the limit when the inner radius rin = 0nm, for φ = 0o and φ = 90o,

respectively. Panels (c) and (d) present the corresponding GD results, with solid line,

and CMM ones for circular holes, with dashed lines.
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φ = 0o, for both a PEC (in black) and a RM (in red). These quantities are

practically equal for small zenithal angles, θ ≈ 0o, while its difference diverges

as function of θ, being maximal at θ = 90o. However, in the s-contribution

to Σ(θ, φ), i.e. at φ = 90o where SPPs are not excited, there is practically no

differences between RM and PEC (see lower panel in Fig. 4.47).

Next we present similar calculations for annular holes. In Fig. 4.48 we study

the evolution of the radiation pattern from a circular to an annular hole. In the

subwavelength regime, the external radius is fixed to rout = 190nm, and the

internal one is varied. In this case, annular holes are drilled in a 100nm gold

film, and the wavelength is fixed at λ = 600nm. The upper panel considers

φ = 0o, and the lower one φ = 90o. We find that, for φ = 0o, the larger the

inner radius, the more anisotropic Σ(θ, φ) is; whereas calculations for φ = 90o

do not change either with θ or rin.

We can also study the evolution of the radiation pattern from a circular

to an annular hole, in larger systems. In Fig. 4.49, similar studies as those

appearing in Fig. 4.48 are shown. Now, the external radius is fixed to rout =

1600nm, and the inner one varies as rin = 500, 1000, 1500nm. On the one

hand, for φ = 0o, we find that Σ(θ, φ) oscillates with θ, presenting maxima

and minima that decrease in amplitude with θ. Moreover, the larger the inner

radius, the more oscillations Σ(θ, φ) presents. On the other hand, for φ = 90o,

Σ(θ, φ) does not change with rin, and for θ ≥ 10, Σ(θ, φ).

It is also interesting to study annular holes with very large average radius,

since grooves surrounding the central aperture in BEs will behave as these

ones. In Fig. 4.50 the evolution of Σ(θ, φ) from a small to a large annular

hole is presented. For a fixed groove width, wg = 150nm, the average radius

is varied as a = 145, 350, 550, 750nm. We find again that, at φ = 0o, the

larger the ring, the more anisotropic and more oscillations Σ(θ, φ) presents.

In contrast, for φ = 90o, the larger the ring, the less the dependance with θ.

Finally, we can study Σ(θ, φ) for BE structures where the input corrugation

is replicated in the output region, as a function of both the distance of the

first annular grooves to the centre of the structure, a, and the wavelength.

In particular we choose the same geometrical parameters as those studied in

Fig. 4.25 in Section 4.2.5: a gold system with N = 6 grooves, wg = 220nm,

hg = 90, h = 280nm, central circular hole with radius rout = 125nm, and p =

600. In this case we consider a free standing system (ε1 = ε2 = ε3 = 1.0). The

a values are chosen so that transmission is maximum (a = 800nm), minimum

(a = 600nm), and of an intermediate value, (a = 700nm). It is clear that the

oscillations related to single annular holes previously found for φ = 0o appear

as a sum when a BE structure is built up. Finally, in Fig. 4.52 it is shown the

dependance with the wavelength for a = 800nm.
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Figure 4.47: Σ(θ, φ) of a single hole of radius rout = 190nm perforated in a Au film

with thickness h=100 nm as the zenithal angle at λ = 630nm. We compare the results

for a PEC approximation (black line) and a real metal (RM, red line).
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Figure 4.48: Σ(θ, φ) of a single annular hole perforated in a Au film with thickness

h = 100nm, at λ = 630nm. The external radius is fixed to rout = 190nm, and the

internal one is varied, rin = 0, 50, 100nm. (a) φ = 0o and (b) φ = 90o.
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Figure 4.49: Σ(θ, φ) of a single annular hole perforated in a Au film with thickness

h = 100nm, at λ = 630nm. The external radius is fixed to rout = 1600nm, and the

internal one is varied, rin = 500, 1000, 1500nm. (a) φ = 0o and (b) φ = 90o.
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Figure 4.50: Σ(θ, φ) of a single annular hole perforated in a Au film with thickness

h = 100nm, at λ = 630nm. The hole width is fixed to w = 150nm, and the average

radius is varied, a = 145, 350, 550, 750nm.
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Figure 4.51: Σ(θ, φ) bull’s eye with N = 6 annular grooves, h = 280nm, hg = 90nm,

wg = 220nm, p = 600nm, and rc = 125nm, drilled at both sides of a gold film of

250nm thickness in a free standing system, at λ = 630nm. The dependance with the

distance of the first annular groove to the centre of the structure, a, is presented.
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Figure 4.52: Σ(θ, φ) for the same system as in Fig.4.51 at a = 800nm, as a function

of the wavelength.
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4.4 Conclusions

We have studied single annular and circular holes in order to get physical

insight in the optical properties of these systems. We have found that annular

holes present a Zero-order Fabry-Perot resonance related to the TE11 mode

whose intensity may be 3 times the intensity of a circular hole with the same

outer radius. Filling these systems with a dielectric constant ε2 > 1 enhances

the normalized-to-area transmittance a factor ε2, since the cross section of the

hole remains invariant but the area can be reduced by a factor ε2.

Also BE structures have been analyzed and optimized in different spectral

wavelengths, for different number of grooves, and tackling the problem from

different points of view. Despite the EM properties of each annular groove

depend on its average radius, we have found scaling laws to design optimized

BE structures where all the geometrical parameters defining the system are

contained.

In particular, we have studied the optical transmission in BE structures

as a function of the distance between the central hole and its nearest groove,

a1, in the case when all groove depths and widths are subwavelength. We

have shown that the transmittance presents maxima for given values of a1 and

wavelength, which are due to constructive interference of the light reemitted

by grooves (which in that case behave almost independently) into the central

hole. This reemitted light is in the form of surface plasmons. Furthermore,

each groove acts as two connected cavities and, for fully explaining the trans-

mittance spectra, the reflection by one cavity of the surface plasmon radiated

by the other cavity must be taken into account. We have shown that the am-

plitude for coupling of incident radiation into a groove increases with groove

radius, while the reflection coefficient of a groove for surface plasmons does

not. These ingredients have been combined to give a simple Huygens-Fresnel

view of the total coupling and reflection of light by the groove array. Our

results show that there is not a direct correspondence between field enhance-

ment at the surface and transmission enhancement, as there are resonances in

the groove array that do not lead to strong re-illumination at the central hole.

Finally, the far-field angular intensity distribution of a single aperture and

BE structures where the exit side is also corrugated have been studied as well.
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Localized Extraordinary

Optical Transmission

5.1 Introduction

During the last decades, there has been an increasing interest in transmission

resonances through holes drilled in metal films. Broadly speaking, we can sort

them into two kinds of resonances, those associated to surface modes, and

those identified with localized modes.

The first ones appear in hole arrays and lead to Extraordinary Optical

Transmission (EOT) [23], as we have seen in Chapter 3. These resonances

appear close to the periodicity of the array, λR ≈ p, in optically thick metal

films (that is, when the skin depth (δ) is smaller than both the film thick-

ness (h) and the incident wavelength: δ < h < λ). They were theoretically

described as a resonant interplay between Surface Plasmon Polaritons (SPPs)

at each side of the metal surface evanescently coupled through the holes [108].

Also EOT in optically thin metal films (h ≥ δ), where transmission may occur

through both the holes and the metal layer, has been reported as well. In this

case, the coupling of light with Short-Range Surface Plasmons red-shifts the

EOT peak to wavelengths larger than the periodicity of the array [151].

The second kind of resonances can be identified with localized modes. Es-

sentially, these are Fabry-Perot resonances, and we have also characterized

them in the case of annular holes in Chapter 3 and Chapter 4. For a symmet-

ric and uniform dielectric environment (the dielectric constant is the same in

all non-metallic regions), the spectral location of λR occurs at approximately

the cutoff wavelength of the apertures, λc [44–47, 59, 76, 112–115]. They have

been attributed to the tunneling of light through the fundamental waveguide
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mode inside the holes (the least decaying one), and their appearance could be

expected since the modulus of the propagating constant of such mode is almost

negligible close to λc. Therefore, the field inside the holes does not experience

a strong decay, photons spend a long time in the system, and transmission

resonances could eventually take place. This localized resonance forms the ba-

sis for Frequency-Selective Surfaces (FSSs), which are designed for operating

close to this resonance [152]. FSSs are 2D arrays of planar metallic scatter-

ers or slots (usually with complex shapes) drilled in very thin metal screens,

δ < h << λ, so the thickness dependance of λR is not an issue. It is the shape

and size of the planar scatterers/slots what control the frequency dependence

of transmission and/or reflection coefficients. It has been demonstrated as well

that ultranarrow plasmonic waveguide channels operating near λc may sup-

port an anomalous transmission resonance, almost independent of the total

length or shape of this channel [153]. This result is originally inspired from

systems filled with Epsilon Near Zero (ENZ) [154].

However, the precise spectral position of this localized resonance is not

known. Recent studies and experiments of near field enhancement [155, 156]

and enhanced transmission [157, 158] through isolated apertures in combina-

tion with dielectric substrates, have been developed in the terahertz (THz)

regime, showing unexpected red-shifts of the near field and transmission res-

onances. In particular, the influence of a dielectric substrate in the electric

near-field resonance of a small aperture have been numerically and experimen-

tally studied [155, 156], and also the effect of a substrate on the transmission

resonance of a rectangular aperture in a thin metal film has been theoretically

reported as well [155–158].

In this chapter we go beyond the numerical study, providing a detailed

description and analytical expressions for the location of this transmission res-

onance by localized modes, for both hole arrays and single holes. We will

show that the position of the maximum is controlled by a new length-scale,

λ0, associated to all apertures of any shape provided they support large λc. In

particular, to show the phenomenon, we will study annular and rectangular

holes. Both symmetric dielectric configurations (where the dielectric constant

of the cover, ε1, and the substrate, ε3, are the same), and asymmetric ones

(ε1 6= ε3), are considered. We also show that different combinations of the

dielectrics outside and inside the apertures (ε2) may blue- or red-shift the

transmission resonance. Calculations are performed with the Coupled Mode

Method (CMM) (described in Chapter 2) under the perfect electrical conduc-

tor (PEC) approach. Therefore, our results are exact in the THz and mi-

crowave regime, but we will also demonstrate that they are qualitatively valid

in the optical regime as well (where Finite Difference Time Domain (FDTD)

calculations have been conducted to validate our analytical results).
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Figure 5.1: Transmission spectra through a metal film of h = 0.2µm, pierced with

single annular holes of inner (rin), and outer (rout) radius defined in the labels, in

an asymmetric configuration with ε1 = ε2 = 1.0, and ε3 = 11. Vertical dashed lines

represent the cutoff wavelength, λ1 = 282µm, λ2 = 439µm, and λ3 = 596µm.

5.2 Motivation

Let us first introduce the phenomenon with several calculations. We consider

different hole shapes, symmetric and asymmetric dielectric environments, iso-

lated apertures and arrays of holes. In all cases we consider a PEC in the THz

regime drilled with holes (see schematics on top of Fig. 5.2), and illuminated

at normal incidence (the electric field points parallel to the x-direction).

Figure 5.1 shows transmission spectra for isolated annular holes drilled in

a metal screen of h = 0.2µm thickness, in an asymmetric configuration with

ε1 = ε2 = 1.0, and ε3 = 11, for different inner and outer radius (see labels

in the figure). For all the rings, it is found a resonance strongly red-shifted

compared to the cutoff wavelength, indicated with dashed lines in each case.

Panels (a) and (b) in Fig. 5.2 depict transmission calculations through

a h = 1µm thin film drilled with rectangular holes (ax = 10µm and ay =

350µm), as a function of the dielectric constant, in symmetric configurations

(with ε1 = ε3 = ε and ε2 = 1.0), for both hole arrays (with period p = 400µm)

(a), and single holes (b). In the contour plots, we observe in both panels a

resonance that neither follows the Wood’s anomaly condition (
√
εp) in the case

of the array, nor the cutoff wavelength (λc = 2ay = 700µm), and indeed, for
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Figure 5.2: Panels (a) and (b) depict transmission of light through a metallic film of

h = 1µm, pierced with rectangular holes (ax = 10µm and ay = 350µm) with ε2 = 1.0,
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shows
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the set of parameters considered, these resonances appear beyond λc. The fact

that these transmission resonances appear in both hole arrays and single holes

indicates that the EM modes responsible for the resonances are localized.

5.3 Theoretical Formalism

Once the phenomenon is introduced, and in order to study the origin of this

strong red-shift of λR, we briefly remindthe fundamentals of the CMM (ex-

tensively described in Chapter 2). We we will fit to a minimal model where

accurate results for transmittance can be achieved by considering only the

fundamental waveguide mode inside each aperture [56].

We remind here the set of linear equations for the modal amplitudes En

and E′
n, which describes the behavior of the EM fields at the illumination and

transmission regions:

{
(GI − Σ)E −GνE

′ = I0

(GIII − Σ)E′ −GνE = 0
(5.1)

The solution is given by:





E =
(GI − Σ)

(G+ −Σ)2 −G2
ν − (G−)2

I0

E
′
=

Gν

(G+ −Σ)2 −G2
ν − (G−)2 I0

(5.2)

We also remind that, in the above expressions, I0 accounts for the exter-

nal illumination impinging directly on the holes and it measures the overlap

between the incident plane wave and the fundamental mode inside the hole;

Σ represents the light that comes back to the aperture after bouncing back

and forth inside the cavities, and the term Gν is linked to the coupling of EM

fields at the two sides of the film through the holes. Analytical expressions for

all these quantities can be found in Chapter 2.

Green’s functions GI(λ, ε1) and GIII(λ, ε3) represent effective admittances

(in regions I and III, respectively) that account for the EM coupling between

the aperture and the external radiation as seen by the holes. We have defined

G+ =
(
GI(λ, ε1) +GIII(λ, ε3)

)
/2 and G− =

(
GI(λ, ε1)−GIII(λ, ε3)

)
/2.

The general expression for hole arrays can be written as

GI,III = i
∑

kσ

Y I,III
kσ |Skσ|2 (5.3)
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where Y I,III
ks = kz/g, Y

I,III
kp = g ε1,3/kz , kz =

√
g2 ε1,3 − k2||, and g = 2π/λ is

the modulus of free space wavevector. The overlaps are defined as an integral

over the hole shape Skσ =
∫
dr||~Vσ · ~E||(r||) · ei

~k||~r|| , being the bi-vectors ~Vp =

(kx, ky)/k||, ~Vs = (−ky, kx)/k|| and k2|| = k2x + k2y .

In the expression of G for hole arrays, k runs over the reciprocal lattice

vectors, whereas for isolated holes the sum over k must be substituted by

an integral 1/(2π)2
∫
dk. The imaginary part of the Green’s function (Gi)

originates from the coupling with radiative modes, whereas the real part (Gr)

is related to the coupling of the aperture with evanescent modes.

An important property of the Green’s function is how it transforms when

the radiation region has ε > 1 [60]:

G(λ, ε = 1) = G(
√
ελ, ε)/

√
ε (5.4)

Finally, transmission can be written in terms of the modal amplitudes of

the electric field as [56,59,60,62]:

T =
1√
ε1

GνIm
[
E∗ ·E′

]
=

1√
ε1

GI
i

∣∣∣E′
∣∣∣
2

(5.5)

5.4 Symmetric Configurations, ε1 = ε3

Due to the fact that the phenomenon here investigated is found in both hole

arrays and single holes (i.e., the EM modes responsible for the resonance are

localized), for simplicity we will concentrate on the study of isolated apertures,

since then we do not have the lattice resonance.

Let us now investigate the spectral location of maximum transmission in

symmetric configurations (ε1 = ε3 = ε).

In this case, GI = GIII = G and G− = 0. We can first develop Eq. 5.5

to find an explicit expression for the transmittance. We rewrite the modal

amplitudes as:

E =
I0
2
(A+ +A−) (5.6)

E
′

=
I0
2
(A− −A+) (5.7)

where we have defined A+ ≡ 1/(G−Σ+Gν) and A− ≡ 1/(G−Σ−Gν). With

this new nomenclature,
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[
E∗E

′
]
=

|I0|2
4

·
[
|A−|2 − |A+|2 − 2iIm(A+A

∗
−)
]

(5.8)

so that:

T = − |I0|2
2
√
ε1

[
Im(A+A

∗
−)
]
Gν (5.9)

Finally, replacing the expressions of A+ and A−, we obtain:

T =
|I0|2√
ε1

Gi |Gν |2[
|G− Σ|2 − |Gν |2

]2
+ 4G2

i |Gν |2
(5.10)

It has been already demonstrated that for resonant systems such as aper-

tures with large λc [48, 59, 88, 129] (e.g., rectangles, annular holes, or circular

holes filled with ε2 > ε1, ε3, systems that fulfil the condition λc >
√
Area),

transmission maxima associated to Fabry-Perot modes, appear when the EM

energy at the entrance and exit sides of the apertures are equal [59], i.e.,

|E| =
∣∣∣E′
∣∣∣, or equivalently, |G− Σ| = |Gν |.

For resonant holes, Gr >> Gi, since Gi ∝ Area/λ2 and Gr ∝ λ/Area (see

Ref. [60] for further details). Therefore, when Gr >> Gi, Eq. 5.10 has the

same form as that of a damp oscillator where the resonant frequency is hardly

affected by the damping. If we now replace the last condition in Eq. 5.10,

we retrieve the expression appearing in Ref. [59] for transmission at λR with

ε = 1:

TR =
|I0|2
4Gi

(5.11)

Interestingly, Gi controls the intensity of transmission resonances, and Gr

their spectral location, as it was also demonstrated in the same reference:

2Gr =
|G|2 − Y 2

TE

YTE
tan(qzh) (5.12)

Here YTE = qz/g and qz is the propagating constant inside the apertures.

Note that in this reference it was reported that transmission maxima associ-

ated to Fabry-Perot modes (qz = 0) occurred at around the cutoff wavelength

irrespective of the geometrical parameters and h.

Now we go a step further and study the spectral location of λR as a function

of h and with a dielectric environment ε > 1, two elements that, as we will
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see next, originate the strong red-shifts observed in both Ref. [157, 158], and

in the illustrative studies appearing in Fig. 5.1 and Fig. 5.2in this paper.

In order to get deeper physical insight, it is convenient to define the fol-

lowing change of variables:





ES =
1√
2

(
E − E

′
)

EA =
1√
2

(
E + E

′
) (5.13)

so that Eq. 5.1 can be written as an equivalent system of uncoupled equa-

tions in terms of two well defined transmission channels, one symmetric (ES),

when the electric field at the entrance and at the exit of the apertures point

at the same direction (E = −E
′
); and one antisymmetric (EA), in different

directions (E = E
′
):

{
(G+ YS)ES = Ĩ

(G+ YA)EA = Ĩ
(5.14)

Here YS ≡ −(Σ−Gν) and YA ≡ −(Σ+Gν) are effective admittances, and

Ĩ = I/
√
2.

It is important to remark that Σ and Gν depend on the product (qzh) as

Σ = i
qz
g

· e
iqzh + e−iqzh

eiqzh − e−iqzh

Gν = 2i
qz
g

· e2iqzh

e2iqzh − 1
(5.15)

Within the new formulation, the resonant condition [59] (qz → 0) provides

YA → ∞. This means that, except in “extraordinary” cases (close to the

Rayleigh wavelength, when G → ∞), EA is not excited. In fact, it is in the

limit of very thin films, when only the symmetric transmission channel ES

remains, whereas the asymmetric one EA → 0.

This is easy to understand because, taking into account that the asymmet-

ric channel is characterized by electric fields at the entrance and at the exit of

the apertures pointing at opposite directions, in thin films, there is no enough

optic path for the EM field to flip direction.

Therefore, the limit for thin films (h → 0) is equivalent to the limit qzh →
0, or more importantly, equivalent to qz → 0, that is, close to λc. Consequently,
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Figure 5.3: (Top) Transmission spectra of an isolated annular hole (rin = 90µm,

rout = 100µm) drilled in a PEC of different film thickness h (see labels in the figure),

in a symmetric configuration with ε1 = ε3 = 9 and ε2 = 1. (Bottom) For the

same system as in the upper panel, the dashed line depicts Gr as a function of the

incident wavelength, and straight lines correspond to the condition 2πh
λ2
c

(√
ε2λc − λ

)

in Eq. 5.17, for each h value.
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for thin metal films and/or close to the cutoff wavelength, provided that G does

not diverge, only the equation for the symmetric channel remains (G+YS)ES =

Ĩ, and since ES/
√
2 = E, transmission can be written as:

Tapprox ≈ |I0|2
4
√
ε

Gi

|G+ YS |2
(5.16)

with YS = −hq2z
2g .

Clearly, resonances in transmission will be given by minima in the de-

nominator of Eq. 5.16. Because Gi << Gr and Im(YS) = 0, zeroes in the

denominator occur at Re(G+ YS) = 0.

Close to the cutoff, the propagation constant is qz ≈
√

ε2(g − gc) and

replacing this value in YS we obtain an implicit equation for the resonant

wavelength (λR = 2π/gR) that can be solved graphically:

−Gr(λR) ≡
2πh

λ2
c

(
√
ε2λc − λR) (5.17)

Note that in the expression above, λc is the cutoff wavelength of an empty

hole (ε2 = 1.0), we are considering ε = 1.0, and we have taken g2R − g2c ≈
2gR(gR − gc). Adding a dielectric constant different from unity in the cover

and substrate, and using Eq. 5.4, eventually leads to an implicit equation of

the same form as that given by Eq. 5.17.

Let us now solve graphically Eq. 5.17 with ε ≥ 1:

An essential ingredient entering the condition for resonances in Eq. 5.17

appears in the left hand side of the equation, Gr(λ). This function can take

either negative or positive values. The sign and values of Gr depend on the

relative contribution of p-polarized (which is negative and dominates at λ → 0)

and s-polarized (which is positive and dominates at λ → ∞) waves. Therefore,

there exist a wavelength where the two contributions cancel each other, i.e.,

the real part of the effective admittance, cancels. We define this wavelength

as Gr(λ0) = 0 in vacuum, or, using Eq. 5.4, Gr(
√
ελ0) = 0 in a dielectric

environment. In uniform systems, this wavelength usually appears close to λc,

but in general, λ0 6= λc. According to Babinet’s principle, rectangular holes

and its complementary shape resonate at λR ≈ 2ay, but bearing in mind that

Eq. 5.17 is valid for any hole shape, we did not find a general expression for

λ0 ≈ λc.

The right hand side of the equation represents straight lines whose slopes

are given by the film thickness, h. According to Eq. 5.17, the intersection of

these straight lines with Gr(λ) gives the position of the resonant wavelengths,
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λR, for each h value.

As an illustration, we consider a system with a single annular hole drilled in

a PEC. In the lower panel in Fig. 5.3 we show the graphical solution of Eq. 5.17

for different h values, and in the upper one, the corresponding transmission

spectra. In this case, the geometrical parameters are rin = 90µm, rout =

100µm (λc = 596µm), and we have taken ε = 9, ε2 = 1.

As we can see in the graphical solution in Fig. 5.3, in the limit of very

thick films two resonances emerge, one associated to the symmetric channel,

and one to the asymmetric one. For the symmetric mode we observe that

when the slope of the straight line tends to infinity (h → ∞), the intersection

with Gr(λ) occurs at λ
H
R =

√
ε2 λc, where capital H in the superscript stands

for thick films.

In contrast, in the limit of very thin films, only the symmetric channel is

excited and there is just one transmission peak. In this limit, the slope of the

straight line tends to zero (h → 0) and Gr(λ
h
R) = 0, being λh

R =
√
ε λ0. Here,

h stands for thin films. This result where localized resonances are expected to

emerge when the real part of the effective admittance cancels, is in agreement

with the results reported in Ref. [159] where, from a circuit theory perspective,

localized resonances are attributed to the condition of zero admittance.

Note the strong red-shift found for the set of parameters chosen: in the

figure, λc = 596µm, and in the case of h1 = 1µm, the resonance in trans-

mission appears at λR ≈ 1700nm>> λc. This shift may appear surprising,

but in fact, it can be easily understood as if we were considering the hole as

a small perturbation where ε2 is hardly seen by the system. Interestingly, if

a system is designed for operating close to λc, but thin films in combination

with high dielectric constants are involved, the spectral window where the res-

onance actually takes place may be red-shifted several microns compared to

the expected location at λc.

To further illustrate this finding, Fig. 5.4 shows the resonant wavelength of

the symmetric mode obtained through the analytical approximation (λR) given

by Eq. 5.17, and the exact position of the maximum transmission (λMaxT )

calculated with the CMM, as a function of h, for an isolated rectangular hole

(ax = 10µm and ay = 350µm), with ε = 12, and ε2 = 1. Clearly, the

agreement between the two curves indicates that Eq. 5.17 provides the resonant

wavelength for any film thickness, and the analytical expressions in the limit

of thin (h) and thick (H) films are:

λh
R =

√
ε λ0

λH
R =

√
ε2 λc (5.18)
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Figure 5.4: Spectral wavelength of the transmission resonance as a function of the

film thickness of an isolated rectangular hole (ax = 10µm and ay = 350µm) with

ε = 12, and ε2 = 1. The red curve depicts exact calculations with the CMM, and the

green one depicts the result obtained through the analytical approximation given by

Eq.5.17.

From an intuitive picture, we can describe this phenomenon as follows:

for thick films the resonance is governed by the properties of the waveguide

(represented by λc), while for very thin films it is governed by the coupling of

the hole to the radiative regions (characterized by λ0).

Another important feature to consider when dealing with these systems

composed of very thin films and dielectrics is the intensity at λh
R.

Equation 5.16 can be further approximated in the case of extremely thin

films (h << λ/2), providing the intensity at the resonant wavelength for the

symmetric mode (ES):

Tthin ≈ |I0|2
4
√
ε1

Gi

(Gi)2 + (Gr)2
(5.19)

Note that the above expression only contains information of the Green’s

functions. Interestingly, using Eq. 5.4, it is easy to demonstrate that

Tthin(λ; ε2, ε = 1) = Tthin(
√
ελ; ε2, ε) (5.20)

Therefore, the optical response of a perforated metallic thin film can be

“rigidly” (blue- or red-) shifted a factor
√
ε compared to the free standing sys-
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tem if it is embedded into an homogeneous dielectric environment of dielectric

constant ε. In fact, the resonant wavelength will be given by λh
R =

√
ε/ε2λ0,

so that, if ε < ε2, the spectrum will be blue-shifted, whereas if ε > ε2, then

the spectrum will be red-shifted. For ε = ε2, then the transmission peak will

be located at λ0.

This result will be numerically shown in Section 5.6, where hole arrays

periodically arranged instead of single holes, are considered.

5.5 Asymmetric Configurations, ε1 6= ε3

Next, we will consider asymmetric configurations, where ε1 6= ε3. We will

follow the same reasoning as in Section 5.4.

Within this new dielectric configuration, we can develop the theory again,

and with the key observation that G− << G+, the exact expression for the

transmission of light appearing in Eq. 5.10, can be approximated here as:

T ≈ |I0|2√
ε1

GI
i |Gν |2[

|G+ − Σ|2 − |Gν |2
]2

+ 4(GI
i )

2 |Gν |2
(5.21)

Following the same procedure as in Section 5.4, in the limit qzh → 0,

transmission reads:

Tapprox ≈ |I0|2
4
√
ε

GI
i

|G+ + YS|2
(5.22)

And for the location of the resonant wavelength, it is obtained:

−G+
r (λ) ≡

2πh

λ2
c

(
√
ε2λc − λ) (5.23)

The last equation can also be solved graphically to get the peak location as

a function of the film thickness. In Fig. 5.5 it is shown a similar calculation to

that in Fig. 5.4, for the same system but with ε1 = ε2 = 1 and ε3 = 12. Again,

the resonant wavelength obtained through Eq. 5.23 and the exact calculations

obtained with the CMM agrees very well.

Nevertheless, it is interesting to get analytical expressions for λR in the

limits of thin and thick films, as we got for symmetric configurations. Clearly,

for thick enough films, the resonant wavelength is also given by λH
R =

√
ε2λc.
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Figure 5.5: Similar calculations as those in Fig. 5.4 with ε1 = ε2 = 1 and ε3 = 12,

considering Eq. 5.23.

For thin films the resonant wavelength is also given by the condition

G+
r (λ

h
R) = 0, but getting an analytical expression for λh

R is not that easy.

The main problem arises because G+
r does not transform with ε as Gr does in

symmetric configurations:

G+(λ; ε1; ε3) =
GI(

√
ε1 λ)√
ε1

+
GIII(

√
ε3 λ)√

ε3
(5.24)

The knowledge of λ0 for a single interface is not sufficient to get the zeroes

of G+, so we need to know the whole dependance of GI and GIII .

Fortunately, from the above property we can still obtain approximate ex-

plicit expressions for λh
R.

To do it, we first approximate linearly GI and GIII around λ0, what pro-

vides a simple analytical expression for the spectral location of transmission

maximum as a function of ε1, ε3 and λ0:

λ
(1)h
R =

(
√
ε1 +

√
ε3)

2
λ0 (5.25)

Interestingly, λ
(1)h
R does not depend on the slope of Gr.

The result given by Eq. 5.25 is in agreement with the values reported by

some authors working with FSSs [152]. In Fig. 5.6, we show in red the position
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Figure 5.6: Position of transmission maximum as a function of ε3 of an isolated

rectangular hole (ax = 10µm and ay = 350µm) with h = 1µm and ε1 = ε2 = 1.

The red curve corresponds to the exact calculations provided by the CMM, the green

one shows the condition G+
r (λMaxT ) = 0, the black curve depicts calculations of λR

obtained through Eq. 5.25, and the blue curve through Eq. 5.26.

of the maximum transmission calculated exactly with the CMM (λmaxT ), the

condition G+
r (λmaxT ) = 0 (green curve), and λ

(1)h
R obtained through Eq. 5.25

(black curve) in a rectangular hole (ax = 10µm and ay = 350µm), with

ε1 = ε2 = 1, and h = 1µm, as a function of the dielectric constant of the

substrate, ε3. Clearly, the condition G+
r (λR) = 0 represents the condition

of the maximum transmission, since both red and green curves in Fig. 5.6,

coincide.

However, we observe that the linear approximation is rather good for small

values of ε3. This is because, as we can check in Fig. 5.3, Green’s functions

behaves almost linearly at λ ≈ λ0. But, the large shifts when high dielectric

constants are considered, may bring λR very far from G+
r (λ0), i.e., in princi-

ple, we should need all G+
r (λ) dependence and consider the curvature of this

function at larger wavelengths.

We can improve this approximation and get some information from fitting

G+
r (λ) to a quadratic function close to λ0, with the form G+

r (λ, 1) ≈ A(λ −
λ0)+B(λ−λ0)

2. After some algebra, we obtain a better analytical expression

for the peak location that now depends on two constants, C and λ0, as follows:
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λ
(2)h
R =

(
√
ε1 +

√
ε3)

2
λ0

[
1− (

√
ε1 −

√
ε3)

2

√
ε1ε3

(Cλ0)

]
(5.26)

being C = Gr
′′(λ0;ε=1)

2Gr
′(λ0;ε=1)

and with Gr(λ0; ε = 1) = 0.

Note that, since C ≡ A/B < 0, Eq. 5.26 predicts larger shifts of λ0 than

Eq. 5.25. Additionally, C does not depend on either ε1 or ε3, but only on the

geometry of the hole.

The blue curve in Fig. 5.6 depicts the calculations obtained for λ
(2)h
R using

Eq. 5.26. On the one hand, from the theoretical point of view, Eq. 5.26 is an

analytical expression that predicts the position of the maximum transmission

that depends on two constants, λ0 and C, that can be calculated numerically.

On the other hand, from the experimental point of view, the performance of

two different experiments allows to fit these two constants that in turn, let

predict the position of λh
R for any pair of ε1 and ε3 values, for a given hole

shape. Remember that λ0 is defined as the spectral location of transmission

maximum in a thin film in a free standing system.

Therefore, the whole dependance with h, ε1, ε2, and ε3 for transmission

resonances can be obtained through Eq. 5.23 once λ0 and C are known.

Finally, the same approximation done in Section 5.4 for extremely thin

films can be taken for asymmetric systems, finding:

Tthin ≈ |I0|2
4
√
ε1

GI
i

(G+
i )

2 + (G+
r )2

(5.27)

5.6 Hole arrays

In this section we will show how the previous results found for isolated holes

can also be applied to hole arrays. This theory will be valid provided that the

localized resonance does not interfere with the excitation of surface modes,

i.e., λR >>
√
εp. In particular, in Fig. 5.7 we consider an array (p = 400µm)

of rectangular holes (ax = 10µm, ay = 350µm) in a symmetric configuration

(ε1 = ε3 = ε), drilled in a thin perfect metal of h = 25µm thickness. In this

case we take ε2 = 4.0, so λc = 2ay
√
ε2 = 1400µn.

Upper panel shows three different transmission spectra for ε = 2, 4, 6 calcu-

lated using the expressions of T , Tapprox, and Tthin given by Eq. 5.5, Eq. 5.16,

and Eq. 5.27, respectively. The agreement of the three transmission curves

confirm the validity of the approximations done.

Moreover, here it can be seen that the resonant wavelength can be blue-
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Figure 5.7: (Top) Transmission of light using Eq. 5.5, Eq. 5.16, and Eq. 5.19 (see

labels) through a hole array (p = 400µn) with rectangles (ax = 10µm, ay = 350µm)

drilled in a perfect metal of thickness h = 25µm and filled with ε2 = 4.0. Symmetric

configurations are considered: black curves corresponds to ε = 2.0, red curves to

ε = 4.0, and green curves to ε = 6.0. (Bottom) For the same system as in the upper

panel, Gr(λ) for ε2 = 2.0, 4.0, 6.0, and the condition 2πh
λ2
c

(√
ε2λc − λ

)
in Eq.5.17.
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or red- shifted compared to λ0 as a result of the combination of ε2 and ε since

λh
R =

√
ε/ε2λ0.

Finally, in the lower panel it is also shown the graphical solution of Eq.5.17

for these hole arrays where the divergencies in Gr that account for the excita-

tion of surface modes appear at λ << λR.

5.7 Optical Regime

Finally, we show that the previous description in the THz regime, is quali-

tatively valid in the optical regime. Taking into account the finite dielectric

constant of metals in the optical regime makes the analytical study with the

CMM too complex to find compact expressions for λR.

Therefore, as an example and using the FDTD method, Fig. 5.8 shows the

position of the maximum transmission of a single rectangular hole (ax = 50nm,

ay = 400nm) drilled in a gold film, as a function of the film thickness. We

observe that, as in the case of PECs, for thick enough films, transmission

resonances appear close to the cutoff wavelength, whereas for thin enough

films the peak position appears red-shifted compared to λc. Interestingly,

once h ≈ 2 skin-depths (∼ 60nm), the resonant wavelength eventually blue-

shifts as a result of the typical decaying behavior due to the direct transmission

through the metal film. Note also that Short-Range Surface Plasmons are not

here involved, since we are considering an isolated aperture.

5.8 Conclusions

We have developed a theory for transmission resonances aided by localized

modes in the THz, for both hole arrays and single holes, and for any hole shape

of large cutoff. We have shown that the maximum transmission presents large

shifts as a function of both the metal thickness and the dielectric constants of

the cover and the substrate. We provide analytical expressions for the peak

position, which is controlled by the effective admittance of the cover and the

substrate as seen by the holes, GI and GIII . Finally, we have demonstrated

that there are two different length scales related to thick or thin films that

control the spectral wavelength, λc and λ0, respectively. The first one repre-

sents the properties of the waveguides and it governs transmission resonances

in thick films, while the second one characterizes the coupling of the hole to

the radiative regions and it governs in thin films.
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Chapter 6

Non Linear Phenomena

6.1 Introduction

Nonlinear optics is the study of phenomena that occurs as a consequence of

the modification of the optical properties of a material system by the presence

of light. Typically, only laser light is sufficiently intense to modify the optical

properties of a material system. Nonlinear optical phenomena are “nonlinear”

in the sense that they occur when the response of a material system to an

applied optical field depends in a nonlinear manner upon the strength of the

optical field. In order to describe more precisely what we mean by an optical

nonlinearity, let us consider how the dipole moment per unit volume, or po-

larization P (t), of a material system depends upon the strength E(t) of the

applied optical field. In the case of conventional or linear optics, the induced

polarization depends linearly upon the electric field strength in a manner that

can be often be described by the relationship [39]:

P (t) = χ(1)E(t) (6.1)

where the constant of proportionality χ(1) is known as the linear susceptibility.

In nonlinear optics, the optical response can often be described by general-

izing Eq. 6.1 by expressing the polarization P (t) as a power series in the field

strength E(t) as:

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (6.2)

The quantities χ(2) and χ(3) are known as the second- and third-order nonlinear

optical susceptibilities, respectively. For simplicity, here in this introductory

section we have taken the fields P (t) and E(t) to be scalar quantities in writing

Eq.6.1 and Eq.6.2.



156 Chapter 6

Let us now present a brief qualitative description of a number of nonlinear

optical interactions.

• Second Harmonic Generation (SHG)

The process of second-harmonic generation is illustrated schematically

in Fig. 6.1 (a). Here, a laser beam is incident upon a crystal for which

the second-order susceptibility χ(2) is nonzero. The nonlinear polariza-

tion that is created in such a crystal is given according to Eq. 6.2 as

P (2)(t) = χ(2)E2(t). We see that the second-order polarization consists

of a contribution at zero frequency and a contribution at frequency 2ω,

that leads to the generation of radiation at the second-harmonic fre-

quency.

)2(

2

)3(

3

2

3

(a)

(b)

Figure 6.1: (a) Geometry of second-harmonic generation and energy-level diagram

describing it. (b) Third-harmonic generation: geometry of interaction and energy-

level description.

• Third Harmonic Generation (THG)

The process of third-harmonic generation describes a response at fre-

quency 3ω that is due to an applied field at frequency ω (see schematics

in Fig. 6.1 (b)).

• Optical Kerr Effect (OKE)

A different term in Eq. 6.2 may describe a nonlinear contribution to the

polarization at the frequency of the incident field; this term leads to

a nonlinear contribution to the refractive index experienced by a wave

at frequency ω. The refractive index in the presence of this type of

nonlinearity can be represented as

n = n0 + n2 · I (6.3)
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where n0 is the usual refractive index, n2 is an optical constant that

characterizes the strength of the optical nonlinearity, usually known as

the Kerr coefficient, and where I is the intensity of the incident wave.

One of the phenomena occurring when OKE is present is Self-Focusing

phenomenon: this process can occur as a result of the intensity-dependent

refractive index. It may appear when a beam of light having a nonuni-

form transverse intensity distribution propagates though a material in

which n2 is positive. Under these conditions, the material effectively acts

as a positive lens, which causes the rays to curve toward each other.

• Two-Photon Absorption

In the process of two-photon absorption, an atom makes a transition

from its ground state to an excited state by the simultaneous absorption

of two laser photons.

• Stimulated Raman Scattering

In stimulated Raman scattering, a photon of frequency ω is annihilated

and a photon at the Stokes shifted frequency ωs = ω − ωv is created,

leaving a molecule or atom in an excited state with energy ~ωv. The

excitation energy is referred to as ωv because stimulated Raman scatter-

ing was first studied in molecular systems, where ~ωv corresponds to a

vibrational energy.

Along this chapter we will study the optical properties of systems composed

by nonlinear dielectrics in combination with slit arrays in metal films.

In particular, we first propose a scheme for an optical limiter and switch

of the transmitted light intensity in an array of subwavelength metallic slits

placed on a nonlinear Kerr-type dielectric substrate of finite thickness, where

the geometrical parameters are designed for operation at telecom wavelengths.

This work is done in collaboration with the group headed by Yuri S. Kivshar,

at the Australian National University, in Canberra (Australia).

Next, a theoretical study on the nonlinear optical properties of both gold

and nickel slit arrays inlaid with a third order nonlinear dielectric medium is

presented. We investigate again the Optical Kerr Effect (OKE) but also Third

Harmonic (TH) Generation. The geometrical parameters, along with the opti-

cal properties of each metal, determine the electromagnetic environment near

the slits and, in turn, the nonlinear optical response. The Optical Kerr Effect

is only seen for slit arrays in gold, where the transmitted and reflected currents

are modified with the incident intensity, while nickel slit arrays behave linearly

within the same range of input intensities. However, Third Harmonic emission
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occurs for both systems, unveiling third order nonlinearities taking place also

in nickel structures.

6.2 Nonlinear Phenomena: PEC, CMM and FDTD

In order to start with this new nonlinear physics, we decided to consider first

one of the simplest landscapes: 1D structures (slits) made of perfect electrical

conductor (PEC) in combination with nonlinear Kerr-type dielectrics. This

would enable us to, first, work with the Coupled Mode Method (CMM) (de-

scribed in Chapter2) what provides analytical expressions and physical insight

in the mechanisms here involved; second, check energy conservation; and third,

compare CMM results and those calculated with the Finite Difference Time

Domain method (FDTD) (also described in Chapter2).

Following a previous work developed by Porto et al. [68], we used the same

algorithm to study the optical response of metallic gratings with nonlinear

media embedded within their subwavelength slits made of PEC. An optical

Kerr effect (OKE) is considered. Within the algorithm, just the fundamental

mode is considered inside the slits, and in order to account for the nonlinear

response of the dielectric, an iterative self-consistent method is used. The

slit region is divided into N thin slices perpendicular to the z direction (it is

schematically shown in Fig. 6.5). For a given iteration, the magnetic field in

the nth slice is expressed as:

Hy =
1√
a
(Ane

i
√
εnk0z +Bne

−i
√
εnk0z) (6.4)

where k0 is the wavevector of the incident light in vacuum, εn is the dielectric

constant in the nth slide, An and Bn are the modal expansion coefficients, and

a is the slit width. Within each slide, we can compute the electric field Ex by

means of Maxwell’s equations, and after matching Ex and Hy, the coefficients

of the modal expansion in two consecutive slices can be related by a 2 × 2

matrix (see Ref [68] for more details).

In order to check our first calculations, we considered a slit array with

periodicity p = 1350nm, film thickness h = 200nm, and a = 300nm, having

vacuum at both the illuminated and transmission regions. The slits are sup-

posed to be filled with a Kerr nonlinear media, whose dielectric constant at

point r depends on the intensity of the electric field at this point |E(~r)|2,

ε(~r) = εl +
3

4
χ(3) |E(~r)|2 (6.5)

where εl = 7.84 is the value of the dielectric constant at low intensities, and

χ(3) = 3.04385e−19(V/m), following Miller’s rule [39] (see Fig. 6.2). Figure 6.2
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shows several calculations of χ(3) and n2 as a function of n0 given by Miller’s

rule, together with similar experimental results obtained in Ref. [160].
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Figure 6.2: Miller’s Rule: relation between χ(3) (or n2) and n0 for several materials.

Note that some theoretician authors use pairs of n0 and n2 that are not

realistic and do not follow this rule (one example is highlighted with a pink

circle in the figure). In all our calculations we will consider values following

Miller’s rule in order to design devices attainable in real experiments.

Since the change of the dielectric constant is not very large, it is common

to approximate the refractive index as n(I) = n0 + n2I, retrieving the same

expression as that described in the previous “Optical Kerr Effect” section.

In Fig. 6.3, it is shown the linear spectrum associated to the previous

set of parameters. We compare CMM calculations for transmission of light,

and zeroth order transmission FDTD results. As expected, a transmission

minimum at λ = p = 1350nm followed by a resonant transmission peak, is

obtained. Inset in the same figure shows a zoom around the maximum, finding

that λmax ≈ 1460nm.

In Fig. 6.4, we plot nonlinear calculations performed with both the CMM

and the FDTD method, at a fixed wavelength (which is chosen to be the

spectral location of the maximum in the linear spectrum in each case), as a

function of the incident power. We can see that, at low incident intensities,

the nonlinear transmission follows T = 1, as in the linear case, and when the

intensity is increased, transmission deviates from the linear behavior giving

T < 1. As the incident intensity is increased, the dielectric constant filling

the slits increases as well. This effect could be understood as an induced

“rigid” shift of the linear spectrum to larger wavelengths, what would translate

into a decrease in transmission, as it is schematically shown in Fig. 6.5. As
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Figure 6.3: Linear transmittance through a PEC drilled with an array of slits with

P = 1350nm, a = 300nm, h = 200nm) inlaid with a dielectric constant with εl =

7.84. The black curve corresponds to CMM calculations, the red one to zeroth order

transmission calculated with the FDTD method, and the blue one are also FDTD

calculations with a small step in wavelengths around the maximum. Inset shows a

zoom of the blue curve.
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said before, nonlinear calculations are performed considering slightly different

wavelengths that correspond to maximum in linear transmission curves done

with the CMM and FDTD method. Otherwise, although this difference is

∼ 1nm, nonlinear curves would be a bit difference.
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Figure 6.5: Schematics of linear and nonlinear transmission in a slit array filled with

a Kerr-type dielectric. Left panel represents how a linear spectrum is redshifted when

the dielectric constant filling the slits is increased. Right panels shows nonlinear

schematics at λ = λmax (blue vertical dashed line in the linear scheme), as a function

of the incident intensity.

These calculations were very useful to us since we checked that our two

home-made CMM and FDTD codes produced the same results, and because

they helped us to understand some of the physics underneath.

For instance, some remarks about illumination sources and their effect in

OKE and THG must be done before going on.

For an isotropic, homogeneous and dispersionless material the optical re-

sponse due to a third-order nonlinear susceptibility is described by the relations

of both displacement ( ~D) and polarization (~P ) vectors with the electric field,

( ~E) [39]:

~D = ε0 ~E + ~P

~P ≃ ε0

[
χ(1) ~E + χ(3)( ~E · ~E) ~E

]
(6.6)

Considering a plane wave of the form E = Eo
(e−iωt+eiωt)

2 = Eo cos(ωt),

and after some algebra, we can find the nonlinear contribution for different

harmonics:

• 0: Optical Rectification → P 0 = εoχ(2)E2
o

2
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• ω: OKE → Pω = εo[χ
(1)Eo +

3χ(3)E3
o

4 ] cos(ωt)

• 2ω: SHG→ P 2ω = εoχ(2)E2
o

2 cos(2ωt)

• 3ω: THG→ P 3ω = εoχ(3)E3
o

4 cos(3ωt)

Within the CMM, we have explicitly considered just the OKE term (Pω),

without taking into account THG. Then, polarization reads P = PL + PNL =

εoχ
(1)E+ 3

4χ
(3)E3 and it is implemented in the code as we described previously.

However, within the FDTD method, things can be a bit different. As we

showed before, the relation between the displacement vector ~D and the electric

field ~E is given by:
~D = εo[ε+ χ3( ~E · ~E)] ~E (6.7)

In Chapter 2 we described how to implement these fields within the FDTD

method: the displacement vector at instant n+1 is obtained from itself at the

previous instant and the curl of the magnetic field at n − 1/2. Once ~Dn+1 is

known, the electric field at n + 1 is nothing else than the solution of Eq. 6.7

in terms of |E|2. Thus it is finally found:

~En+1 =
~Dn+1

εo(ε+ χ(3)| ~En+1|2)
(6.8)

Depending on the illumination source we use (plane waves, gaussian pulses,

or complex plane waves, for instance), we can just consider the OKE or also

THG.

A plane wave pulse can also be defined as a complex function ∝ eiωt.

Despite this source has no physical meaning because realistic sources must

be real numbers, within the FDTD method a source like that is useful to

discriminate between effects due to OKE and THG ones. In the right side

of denominator of the Eq. 6.8 the electric field at n + 1 step is expressed

in terms of its modulus, so if the electric field is proportional to a complex

exponential, then the term associated to THG appearing in Eq. 6.6, is equal

to zero. Additionally, in order to get the same nonlinear response when real-

valued plane waves are considered, we must take χ(3) → (3/4)χ(3) .

These kind of tricks were very useful to discriminate amongst different

processes, and to validate CMM and FDTD calculations.

Once the codes were checked, we decided to go a bit further and consider

the optical properties of real metals (instead of PECs, as we did up to now)

and study THG as well. As a result, next calculations will be performed by

using the FDTD method.
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But, before going on with these studies, we must answer the following

question arising when nonlinear effects in these systems are studied: why do

not we consider Second Harmonic Generation (SHG)?

Well, one of the symmetry properties that some, but not all, crystals pos-

sess is inversion symmetry. For a material system that is centrosymmetric

(i.e., possesses a center of inversion) the χ(2) nonlinear susceptibility must

vanish identically. Although the result that χ(2) vanishes for a centrosymmet-

ric medium is general in nature, we shall demonstrate this fact for the special

case of second harmonic generation in a medium that responds instantaneously

to the applied optical field, as those considered in our studies.

We assume that the nonlinear polarization is given by

P (t) = χ(2)E2(t) (6.9)

where the applied field is given by

E(t) = Eo cos(ωt) (6.10)

If we now change the sign of the applied electric field E(t), the sign of

the induced polarization P (t) must also change, because we have assumed

that the medium possesses inversion symmetry. Hence the relation given by

Eq. 6.9 must be replaced by

−P (t) = χ(2)[−E(t)]2 (6.11)

which shows that

−P (t) = χ(2)E2(t) (6.12)

By comparison of this result with Eq. 6.9, we see that P (t) must be equal

−P (t), which can occur only if P (t) vanishes identically. This result shows

that

χ(2) = 0 (6.13)

However, in the surfaces of both dielectrics and metals, the system is not

centrosymmetric, and SHG may occur. Nevertheless, due to the symmetry

of the problems we treat (normal incidence, slits,...), this generation is very

weak. If, for instance, we would like to study nonlinear effects with angular

incidence, neglecting the contribution in the second harmonic could be a bad

approximation since symmetry reflection around the plane that divides the
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unit cell is broken and emission of second harmonic may become very efficient.

Additionally, since this is a second order process, this emission should be higher

than the third harmonic generation.

However, this is not our case, and bearing in mind that processes occurring

at 2ω or 3ω will not affect each other, the fact of not considering SHG when

studying TH emission is justified.

6.3 Optical switching in metal-slit arrays on nonlin-

ear dielectric substrates

Nanostructuring of metal surfaces appears exceptionally attractive for novel

nonlinear photonic applications due to a strong enhancement of the electro-

magnetic (EM) field near corrugated surfaces. As we said before, prominent

examples include the surface enhanced Raman scattering [38] and plasmon-

enhanced high-harmonic generation [161].

However, the drawback of using metallic elements is the introduction of

strong loss. Therefore, when metals are involved, only schemes utilizing short

device lengths can be tolerated in practice to observe noticeable nonlinear

phenomena, while any schemes relying on phase accumulation are intrinsically

excluded.

A proposed platform for enhanced nonlinear optical manipulation is the ar-

ray of sub-wavelength apertures in metal films [162,163]. Nonlinear properties

of sub-wavelength metallic apertures in combination with nonlinear dielectrics,

have been studied for their potential uses in enhanced nonlinear beam manipu-

lation [164,165], optical bistability [68,166], and switching [167,168]. Such ge-

ometries rely on the phenomenon of enhanced optical transmission [23,49,169]

associated with distinct resonances in the linear transmission spectrum.

Here we present a proposal for i) an optical limiter (OL) of the transmit-

ted intensity, in which the output intensity decreases when the incident one

increases, and ii) an optical switch (OS), where the output intensity increases

abruptly under a small change of the incident power. These two operating

modes are found in an array of metallic slits placed on a nonlinear Kerr-type

dielectric layer, at the telecom regime. The inset of Fig. 6.6 shows schemati-

cally the structure analyzed as well as the direction of illumination considered.

We assume air at the illuminated and transmission regions, and also inside the

slits.

We study the nonlinear optical response at a fixed wavelength close to

the transmission minimum (see Fig. 6.6(top)), where sharp variations in the
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spectrum take place within a short wavelength range.

We assume nonlinear response only in the dielectric layer, while the nonlin-

ear susceptibility in the metal [170] is neglected. In the MKS system of units,

the optical response of the dielectric material due to a third-order nonlinear

susceptibility is described by the relations of both displacement ( ~D) and po-

larization (~P ) vectors with the electric field, ( ~E) [39]: ~D = ε0 ~E + ~P , where
~P ≃ ε0

[
χ(1) ~E + χ(3)( ~E · ~E) ~E

]
, and ε0 is the dielectric constant of vacuum.

The scalar quantities χ(1) and χ(3) represent the linear and third-order non-

linear susceptibilities, respectively. Since the change of the dielectric constant

yielded by the local EM field is percentually small, it is common to approxi-

mate the refractive index as n = n0 + n2I, where I = n0cε0 |E(~r)|2 /2, n0 is

the linear refractive index, and n2 =
3χ(3)

4n2
0c

[39] is the Kerr coefficient.

We have employed the Finite Difference Time Domain method to simu-

late both the linear [78] and nonlinear optical response of the structure [80]

(see Chapter2 for further details of this implementation). The system is il-

luminated with a normal incident p-polarized plane wave. Unless otherwise

stated, the duration of the pulse is τ ∼ 2.4 ps. This pulse is slowly switched on

and off, so it has a smooth Fourier transform (in this case with spectral band-

width of ∼ 3 nm). We have checked that under such excitation the process

of third harmonic generation forms less than 1% of the total output energy,

and therefore only the optical properties at the fundamental frequency are

considered. A more detailed explanation of illumination and data processing

for retrieving the optical properties of this kind of problems within the FDTD

method, can be found next in Chapter 2.

The dielectric constant of gold (εm) is obtained from the experimental val-

ues tabulated in Ref. [15] and fitted to a Drude-Lorentz model [82]. The non-

linear dielectric is assumed to be isotropic, homogeneous and dispersionless.

Furthermore, absorption in the dielectric is neglected in our simulations. The

linear refractive index is chosen to be n0 = 2.8, a typical value for materials

with large Kerr coefficients, following Miller’s rule [39] (see Fig. 6.2).

To illustrate our proposal, we have chosen the following set of parameters: a

1650nm thickness dielectric slab, array period p = 520 nm, metal film thickness

h = 350 nm, and slit width a = 300 nm. The precise values of these parameters

are arbitrary but are chosen in order to i) be within the range accessible to

experiments and ii) provide a sharp transmission minimum at near infrared,

in this case, λmin = 1451 nm [Fig. 6.6 (top)]. The spectral position of this

minimum depends on the geometrical parameters in a complex way. We tried

to find an analytical expression for λmin, but we were not able to do it.

It is well known that for arrays of very “narrow” slits (a << p) the mini-
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Figure 6.6: Linear transmittance through a gold slit array (P = 520nm, a = 300nm,

h = 350nm) on a dielectric substrate of finite thickness (n0 = 2.8 and d = 1650nm).

(a-c) Modulus of the electric field, | ~E|, evaluated at the xz plane for two unit cells at

λmax = 1437nm, λmin = 1451nm and λ1 = 1465nm, respectively. The dashed white

lines mark the end of the dielectric layer.

mum in transmission is given by the surface plasmon polariton (λmin = λspp)

that can be excited by the grating. However, the system we are studying here

is more complex, as the slits cover a large percentage of the unit cell and, more-

over, they are placed on a dielectric substrate of finite thickness. We tried to

relate transmission features (maxima and minima) to the EM modes supported

by the structure. Figure 6.7 shows the transmittance (in logarithmic scale)

together with the wavelengths for the bound modes in both the corrugated

(vertical blue line) and uniform structure, with (red line) and without (green

line) the metal film (these modes are obtained from additional calculations of

the band structure (BE) for each structure). Note that for these “wide” slits

there is a good correspondence between the spectral position of transmission

maxima and that of the modes in the noncorrugated systems (at k = 2π/d).

However, the spectral position of the transmission minimum is not given by

any of these modes.

Thus, the consideration of other ranges of working wavelengths would re-

quire a fine tuning of geometrical parameters (i.e. other λmin) through com-

putation of the linear transmittance. In Fig. 6.6(a-c) we plot the modulus of

the electric field, | ~E| (evaluated at the xz plane for two unit cells) for three

different wavelengths: λmax = 1437 nm, λmin, and λ1 = 1465 nm, respectively.

For λ1 and λmin we observe field enhancement inside the slits and around their
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Figure 6.7: In black, linear transmittance in logarithmic scale through a gold slit array

(P = 520nm, a = 300nm, h = 350nm) on a dielectric substrate of finite thickness

(n0 = 2.8 and d = 1650nm). Blue lines depict the spectral position of the EM modes

supported by the corrugated structure. Red and green lines accounts for the EM

modes supported by a metal-dielectric and dielectric structures without corrugation,

respectively.
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corners, while at λmax a guided mode appears inside the dielectric layer. In-

terestingly, the linear transmission spectrum at shorter wavelengths present

several maxima and minima, that in some cases, maxima are related to the

formation of guided modes of higher order (with high electric fields inside the

slab), and in other cases, they seem to be associated to Fabry-Perot modes

inside the metallic slits (high electric fields inside the slits).

Next, we study the changes in the transmission through the metal slits

with increase of the light intensity for four different wavelengths red-shifted

compared to λmin. We scale both the incident (I in) and transmitted (Iout)

intensities by n2, so our results are valid for different (current or future) non-

linear materials. Also, n2I
out reflects the average change of the refractive

index, ∆n, in the dielectric film (we will discuss spatial distribution of ∆n

later on).

Figure 6.8 presents with solid symbols the results for n2I
out as a function

of n2I
in, together with the corresponding linear results (n2I

out
Lin). As expected,

at low input intensities the transmission follows the linear dependence. How-

ever, as the intensity is increased the transmission saturates and then drops.

This behavior corresponds to nonlinear intensity limiter. For higher I in, the

transmission exhibits a steep rise, switching to a high-transparency state. This

can be heuristically understood by noting that, nonlinear effects correspond

to an increase of n and that, in the linear regime, the increase of n shifts the

transmission spectrum to longer wavelengths. In the OL regime, as the inci-

dent intensity increases, the linear transmittance decreases. Eventually, after

the minimum transmittance is reached, the output intensity would be boosted

by both the increase of the incident intensity and the corresponding increase

in linear transmittance, leading to a large increment of Iout within a narrow

range of incident intensities.

Clearly, the incident intensity to achieve OL or OS strongly depend on

the incident wavelength. The vertical scale in Fig. 6.8 breaks in the region

n2I
out = (8−12)·10−4 in order to mark up the features visibility at low output

intensities. In Fig. 6.8 the switching is seen for two wavelengths λ1 = 1465 nm

and λ2 = 1475 nm, in the range of intensities chosen, being the final Iout much

larger than IoutLin . Precisely, OL occurs for all considered wavelengths (and also

OS, although this is not shown in the figure for the two largest wavelengths),

but the input intensities for minimum output increase as the working wave-

length separates from λmin. Figure 6.8 also shows that the considered nonlinear

effects are still present for shorter pulses (τ ∼ 500 fs, although the OL is less

pronounced and the OS occurs within a wider range of I in) which in real ex-

periments would reduce the influence of the free carrier absorption or thermal

effects.
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Figure 6.9: Local change in the refractive index, ∆n, within the dielectric slab for the
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In Fig. 6.9, panels (a − d) show the local change in the refractive index

within the nonlinear dielectric slab (evaluated at the xz plane for two unit

cells) for the structure in Fig. 6.6 and for four different input intensities at

λ1 = 1465 nm at a moment just before the plane wave is switched off (∼ 2.4ps).

The intensity values cover both the linear regime as well as the intensity range

when the OL and the OS occur. Importantly, the variation of the refractive

index is not uniform and resembles the profiles of the modulus of the electric

field in the linear regime (Fig. 6.6(a-c)) at the related wavelengths.

Let us finally discuss possible materials to operate the OL and OS. Chalco-

genide glasses like As2Se3 posses n0 ≈ 2.8 and high n2 ≈ 1.1× 10−4 cm2/GW

[171], featuring low linear and two photon absorption at infrared wavelengths.

However, in real experiments dielectric slabs made of these materials support

a maximum change in the refractive index, ∆nmax ≈ 0.0001 before being dam-

aged, a threshold much smaller than the change of the refractive index here

obtained when metals are involved (∆nmax ≈ 0.1 in some regions of Fig. 6.9).

Nevertheless, semiconductors could appear as better candidates since they

have similar linear and nonlinear refractive indexes to that of chalcogenides,

but support a much higher ∆nmax ≈ 0.1 as it is reported in Ref. [172, 173].

In any case, appropriate candidates for real experiments must have both high

∆n and n2, and also must behave as Kerr-type materials with low absorption

in a wide range of local intensities.

6.4 Metallic slit arrays filled with third order non-

linear media: Optical Kerr Effect and Third

Harmonic Generation

As we said in the introductory section in this chapter, interaction of light

with matter gives rise to a great number of nonlinear optical phenomena,

like Raman scattering, Photo-Luminesce in metals, Second Harmonic (SH)

Generation, Four Wave Mixing (FWM), Third Harmonic (TH) Generation

or Optical Kerr Effect (OKE) [39]. The nonlinear response of dielectrics has

been long exploited in technological applications. In general, dielectrics in

bulk present weak nonlinear response at moderately low laser powers. On

the contrary, if metallic inclusions are present, the electric field can be ef-

ficiently enhanced and nonlinear effects in metallo-dielectric structures may

occur at lower laser powers [166, 174]. Different configurations of metal slit

arrays combined with nonlinear dielectrics have been widely investigated for

their potential uses in optical bistability [68,175,176], nonlinear beam manip-

ulation [177, 178] and switching [168, 179]. As we showed before, among the

possible arrangements, an interesting example is a slit array deposited over a
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nonlinear dielectric slab of finite thickness, but also a slit array filled with it,

investigated in Ref. [68, 176,178], where the non- linear phenomena described

originates from OKE, and in Ref. [180], where several aspects of harmonic gen-

eration has been analyzed. However, the physical mechanisms behind these

two effects have not been correlated and to our knowledge, OKE and TH

Generation have not been investigated within the same theoretical framework

(and for the same system) so far. Furthermore, the influence of absorption

of metals in combination with nonlinear dielectrics and the relation to field

enhancement have not been described either.

Next, we will investigate theoretically the optical response of metallic slit

arrays inlaid with a Kerr-type nonlinear medium (see Fig. 6.10), where both

TH Generation and OKE phenomena are present. The former describes pro-

cesses in which light at frequency 3ω is generated from an applied field at

frequency ω, whereas OKE processes, as we saw before, have an influence on

the fundamental harmonic through a variation of the local dielectric constant.

We will also describe how the absorption of metals and slit widths affect the

EM field near subwavelength slits which, in turn, determines the overall non-

linear response.

These studies are organized as follows: In Section 6.4.1 we provide the

geometrical and material parameters used for both the linear and nonlinear

numerical simulations in Section 6.4.2 and Section 6.4.3, respectively. The

later contains results for OKE (Section 6.4.4) as well as TH Generation (Sec-

tion 6.4.5).

6.4.1 Geometrical and material properties

The geometrical parameters of the slit arrays (See top panel of Fig. 6.10)

are selected so that a transmission resonance appears at telecom wavelengths

(∼ 1500nm). The location of this resonance is mostly dictated by the period

(which is chosen to be P = 1200nm), and the film thickness [20] (in this case

h = 185nm). We consider free standing systems (ε1 = ε3 = 1). As we did

in the previous study of the OL and OS, we use the FDTD method [78] to

treat both the linear optical properties of metals and the nonlinear third order

response of dielectrics [80].

Since the nonlinear material filling the slits is chosen to be isotropic, homo-

geneous and dispersionless in frequency, the EM field responds instantaneously.

Materials with high ε values usually possess also large values of χ(3), follow-

ing Miller’s rule [39]. Chalcogenide glasses such as As2Se3 fit well the later

requirements [171,181–184] at telecom, and additionally, these glasses feature

low linear and two photon absorption (TPA) at infrared wavelengths, where
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they are transparent. However, as we remarked in Section 6.3, in real ex-

periments these materials support a maximum change in the refractive index

∆n ≈ ∆ε/2
√
ε ∼ 0.0001 before being damaged. This value is too small for

nonlinear applications based on a strong change of the local dielectric constant,

as the OKE considered here. As an alternative to chalcogenides, semiconduc-

tors such as GaAs appear as good candidates, with an index change threshold

four orders of magnitude higher than the one for chalcogenides [172,173], while

still featuring high χ(3). In any case, appropriate candidates for real exper-

iments must have both high ε and χ(3), and also must behave as Kerr-type

materials with low absorption in a wide range of local intensities and wave-

lengths. For the sake of illustration in what follows we take ε = 10.0 and

χ(3) ≈ 3.682 · 10−19(m2/V 2) (from Miller’s rule) which are typical semicon-

ductor values.

Concerning metals, both gold and nickel are considered, because they are

representative cases of low- and high- absorbing metals, respectively. The

dielectric constant, εm, is taken from the experimental values tabulated in

Ref. [15,116], and conveniently fitted into Drude-Lorentz formulas [82,185]. In

this work, we neglect the non-linear response of metals. Note that the change

in the metal dielectric constant due to OKE would be orders of magnitude

lower than the dielectric constant of metals at telecom, making a noticeable

OKE related effect unlikely. In contrast, if the considered dielectric presents a

strong nonlinear coefficient, TH generation and emission from the metal itself

is expected to be hidden by the high-index medium response, according to

recent FWM experiments by Renger et al. [186].

6.4.2 Linear response

Let us start with the linear optical response (χ(3) = 0). Fig. 6.10 depicts

the zeroth order transmittance (TL), reflectance (RL) and absorbance (AL),

through gold slit arrays [upper panels] and nickel ones [lower panels]. Two

different slit widths have been considered: w = 300nm and w = 100nm (left

and right panels, respectively).

For gold systems, panels (a) and (b) in Fig. 6.10, show resonances emerging

at λ ≈ 1550nm, while the simulations for nickel present an almost flat spectra

(panels (c) and (d)). Resonances in gold originate from the hybridization of

Surface Plasmon Polaritons, and a localized Fabry-Perot resonance [20,49]. As

we will see next, the nonlinear response is determined by both the intensity

and width in frequency of the different spectral features in the linear regime.

For slit arrays, transmission features strongly depend on both the width of the

aperture and the optical properties of the metal (like in two-dimensional arrays
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of holes [82, 109]). In particular, absorption reduces the time photons stay

inside the apertures, and this is evidenced in the full-width at half-maximum of

the transmission peaks, ∆λ. The fact that peaks in nickel are much wider than

those in gold for the same geometrical parameters, suggests that absorption

losses are dominant in the former case. In the same way, radiation losses

are expected to depend mainly on the width of the opening. Hence, when

studying ∆λ for slit arrays in gold where actual transmission resonances take

place, we find wider transmittance peaks for wider openings because coupling

with radiation is easier in them. Additionally, as photons stay less time inside

wide apertures, absorbance is also lower in systems with wider openings, as

can be seen in panels (a) and (b) in Fig. 6.10.

6.4.3 Nonlinear response

Next, we will characterize the nonlinear response of the slit arrays investigated

in Fig. 6.10. We describe the nonlinear behavior for wavelengths fixed at

transmittance maxima for gold, where intense EM fields are expected to occur.

As slit arrays in nickel do not show resonant behavior, for a given slit width

the same wavelengths are chosen for nickel and gold (see inset in each panel

of Fig. 6.11) .

6.4.4 Optical Kerr Effect

Unless otherwise stated, we employ in our calculations a gaussian wave packet

(GW), centered at a carrier frequency ωo. All details concerning illumination

sources can be found in Chapter 2. We are interested in nonlinear optical

responses at a fixed wavelength, hence long standing pulses (narrow in fre-

quency) must be launched. For these nonlinear calculations we illuminate

the structure with a 820fs GW (σ ≈ 84µm), so that the spectral width is

∆λ ≈ 10nm. Left panels in Fig. 6.11 and Fig. 6.12 show the results of the

First Harmonic (FH) transmitted and reflected intensities as a function of the

maximum instantaneous input intensity (Iin), for gold and nickel systems, re-

spectively. Two slit widths are considered: (a) w = 300nm and (c) w = 100nm.

In the same figures thin lines represent transmitted, reflected and absorbed

intensities obtained from extrapolation of the linear case. In arrays in gold

(Fig. 6.11), when Iin increases the transmitted output intensity decreases to

values lower than those expected from the linear transmittance. This reduction

is more clear for w = 100nm. Interestingly, this transmitted output “limita-

tion” occurs mostly at expense of the reflected current, so the absorption levels

are restrained to values < 10 GW/cm2 within the input intensity range here

studied. This reduction in transmitted output can be understood as follows:
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Figure 6.10: Panels (a) and (b) render transmission, reflection and absorption through

gold metal films pierced by slits periodically arranged, as a function of wavelength.

Two different slit widths w = 300nm and w = 100nm are chosen in panels (a) and

(b), respectively. The slits are filled with a dielectric constant ε2 = 10.0. The rest

of geometrical parameters are P = 1200nm and h = 185nm. Panels (c) and (d)

correspond to nickel. Figure top: schematic of the system.
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Figure 6.11: Slit arrays in gold (P = 1200nm, h = 185nm). Panels (a), (c) depict

the calculated FH non-linear transmitted and reflected intensities, along with the

absorption (symbols), as a function of the maximum instantaneous input intensity,

at λ ∼ 1495nm and λ ∼ 1578nm, respectively. Additionally, the corresponding linear

curves are depicted with thin lines. Panels (b) and (d) show TH emission (double

logarithm scale), at λ ∼ 498nm and λ ∼ 526nm, respectively. The empty symbols in

(c) renders the results for a plane wave.
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OKE increases the dielectric constant of the Kerr-type dielectric filling the

slits [Eq. (2.35)]. Therefore, the effect of increasing the input intensity can, in

a first approximation, be understood by a rigid redshift of the linear spectrum.

As we consider wavelengths for maximum transmittance in the linear case, the

intensity-induced shift reduces the differential transmittance.

Figures 6.12(a) and (c) depict FH emission for nickel systems with w =

300nm and w = 100nm, respectively. Notice that, for nickel, T and R hardly

deviate from their values in the linear regime. As we will show later, for the

considered intensities the induced change of the dielectric constant inside the

slits is much smaller than for gold. Moreover, as the linear transmission and

reflection spectra present very smooth variations, the small non-linear induced

change in the dielectric constant translates into an even smaller change in the

scattering coefficients.

Phenomena related to OKE occur due to local variations of the refractive

index modulated by the average of the electric field intensity [Eq. (2.35)]. Since

this change in the refractive index is not very large, for nonlinear dielectrics

in bulk it is common to approximate it as ∆n = n2Iin, where n2 = 3χ(3)

4n2cε0
is the Kerr coefficient, with n =

√
ε, and c the speed of light. However, this

approximation assumes that no field enhancement takes place in the structure.

If a nonlinear dielectric filling a slit array behaved as a dielectric in bulk, then:

i) the electric field intensity should be homogeneous inside the slits, and ii) the

field enhancement should be constant and close to unity for all wavelengths.

Let us investigate if the above postulations are fulfilled in the chosen struc-

tures. First, we consider another case where the illumination source is a plane

wave (PW). To simulate this PW source (eıωos/c), an exponentially increasing

function is employed to switch on the source from zero to the stationary state

at the Total Field Scattered Field boundaries (described in Chapter 2). This

smooth“switching on” is necessary because otherwise there would be EM fields

different from zero at t = 0 along these boundaries, provoking instabilities in

the FDTD time evolution. Once the stationary state is reached, this source

carries an instantaneous intensity identical to that of a GW at maximum. For

comparison, Fig. 6.11(c) renders with empty symbols the FH intensity ob-

tained with this source. We get slightly different results, which highlights an

important consequence when dealing with nonlinear materials: the nonlinear

optical response not only depends on the geometrical parameters, materials

and intensity of the impinging light considered, but also on the spatial profile

of the beam and its temporal dependence. These differences may be attributed

to“memory effects”, precisely related to the particular EM field time evolution.

Next, Fig. 6.13 and Fig. 6.14 show a field enhancement coefficient defined

as α = | ~E(x, z)|/| ~E0| (left panels) and the corresponding local change in the
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Figure 6.12: Slit arrays in nickel (P = 1200nm, h = 185nm). Panels (a), (c) depict

the calculated FH non-linear transmitted and reflected intensities, along with the

absorption (symbols), as a function of the the maximum instantaneous input intensity,

at λ = 1495nm and λ = 1578nm, respectively. Additionally, the corresponding linear

curves are depicted with thin lines. Panels (b) and (d) show the corresponding TH

calculations, at λ ∼ 498nm and λ ∼ 526nm, respectively.
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Figure 6.13: For a slit array in gold (P = 1200nm, h = 185nm, w = 100nm) illu-

minated with a PW (λ ∼ 1578nm), panels (a), (b), (c) display | ~E(x, z)|/| ~E0| for an

unit cell, for three different values of Iin: 8GW/cm2, 20GW/cm2 and 32GW/cm2,

respectively. The corresponding local change in the refractive index inside the slits,

∆n(x, z), is depicted in panels (d), (e) and (f).
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refractive index only inside the slits, ∆n(x, z) (right panels), for slit arrays in

gold and in nickel, respectively. Three different instantaneous input intensi-

ties are considered, and the slit width is chosen to be w = 100nm. The local

change of the refractive index inside the slits is computed from the values of

the electric field amplitude at the stationary state. These figures show that for

gold systems both the field enhancement coefficient and ∆n(x, z) strongly de-

pend on the incident intensity (where different patterns are obtained for each

incident intensity), whereas the panels for nickel systems present negligible

changes in the pattern for any Iin. Additionally, both metals present inhomo-

geneous α(x, z) field enhancements with high intensity lobes at the entrance

and at the exit of the slits, and a field decrease through the middle.

For a slit array in gold (P = 1200nm, h = 185nm, w = 100nm) illuminated

with a PW (λ ∼ 1578nm), panels (a), (b), (c) display | ~E(x, z)|/| ~E0| for an unit

cell, for three different values of Iin: 8GW/cm2, 20GW/cm2 and 32GW/cm2,

respectively. The corresponding local change in the refractive index inside the

slits, ∆n(x, z), is depicted in panels (d), (e) and (f).

These results indicate that OKE in gold systems arises from two effects: i)

linear transmission spectra depend on the incident wavelength and ii) α(x, z)

are inhomogeneous spatial coefficients that depend on the incident intensity.

Therefore, when the incident intensity increases, so does the field enhancement

coefficient, and this translates into an increase of ∆n(x, z). As an increase of

the dielectric constant in the linear regime produces a rigid redshift of the

linear spectrum, only for gold systems where sharp transmission features take

place, the nonlinear response deviates rapidly from the linear regime. On the

contrary, in nickel systems, neither the linear spectra depend on the wave-

length, nor the field enhancement coefficient depend on the incident intensity,

and as a result, the nonlinear optical response associated to the OKE hardly

deviates from the linear regime.

6.4.5 Third Harmonic Generation

In this section we investigate Third Harmonic (TH) emission arising from the

nonlinear dielectric filling the slits. As in Section 6.4.4, Fig. 6.11 corresponds

to calculations for slit arrays in gold, and Fig. 6.12 to nickel systems. Panels

(b) and (d) correspond to TH calculations. For gold systems we observe that

TH currents are several orders of magnitude smaller than either the input

intensity or the corresponding FH values (depicted with full symbols in panels

(a) and (c)). For nickel systems, despite FH transmission does not deviate

from what would be expected if the system responded linearly [panels (a) and

(c)], the appearance of TH radiation unveils third order nonlinear processes
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Figure 6.14: Similar study to the one shown in Fig. 6.13 but for a slit array in nickel

(P = 1200nm, h = 185nm, w = 100nm) illuminated with a PW (λ = 1578nm).
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taking place inside the slits.
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Figure 6.15: Electric field amplitude in a slit array at λ = 1578nm (FH) and λ =

526nm (TH). Panels (a) and (b) are for gold and (c) and (d) for nickel. The incident

intensity is Iin = 32GW/cm2, w = 100nm and the rest of geometrical parameters as

in Fig. 6.10.

Interestingly, despite RL in the linear regime at the corresponding wave-

length where TH emission takes place, λ = 526nm, is orders of magnitude

larger than TL, nonlinear calculations in Fig. 6.11 and Fig. 6.12 show almost

identical TH radiated currents. For instance, in the linear regime for slits in

gold and w = 100nm, RL = 0.67 and T ≈ 2.4 · 10−4 at λ = 526nm, while in

the nonlinear regime emission into the reflection region is only 1.3 times larger

than the one emitted into the transmission half-space. Because TH emission

goes as the cubed local intensity, it is expected to be a function of both time

and space. Figure 6.15 shows the electric field amplitudes for the w = 100nm

slits at Iin = 32GW/cm2. Panels (a) and (b) depict near field in the case of

gold at λ = 1578nm (FH) and λ = 526nm (TH), respectively. The bottom

panels, (c) and (d), show the same but for nickel. This figure suggests that

if the structure is designed so that FH is efficiently transmitted, the field at

the exit of slits must be comparable to the fields at the entrances. In that
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case, transmission coefficients at the wavelength where TH generates do not

play an important role because light is generated directly close to the slit ex-

its. Besides, although gold and nickel show similar distributions of the electric

field amplitudes, local intensity is much higher in gold slits than in nickel ones

(compare panels (a) and (c)).

6.5 Conclusions

In Section 6.3 we have theoretically studied the nonlinear response of a metallic-

slit structure deposited on a dielectric substrate with Kerr nonlinearity. We

have described both a nonlinear intensity limiter and an optical switch, at the

telecom range. The physical mechanism of both operation modes is based on

sharp variations in the linear transmission close to the transmission minima

present in arrays of sub-wavelength apertures in metal films.

In Section 6.4, we have theoretically analyzed the nonlinear optical re-

sponse of arrays of slits, drilled on either gold or nickel films, filled with a

third order nonlinear material. A priori all of them should display optical

effects related to OKE and TH Generation. However, these effects strongly

depend on the material properties of both the dielectric filling the slits and

the metal chosen. We attribute to OKE the behavior found in the transmitted

and reflected currents calculated for the slit arrays in gold. However, in nickel

OKE is not strong enough for boosting noticeable modifications in the optical

spectra. This shows that the efficiency of the nonlinear response strongly de-

pends on the intrinsic losses, and that losses due to absorption play the most

important role in these systems. Furthermore, TH Generation is observed for

both metals.
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Annular hole waveguide modes

In this Appendix, we provide analytical expressions appearing in our Coupled

Mode Method for the waveguide modes sustained by annular holes with outer

radius a and inner radius b under PEC approximation.

The transverse electromagnetic mode (TEM) using cylindrical polar coor-

dinates is given by

〈r|T (r, θ)〉 = 1√
2πLn(c)

1

r
ûr (6.14)

The transverse-electric modes (TE) are distinguished by a subscript s = 1

and are expressed in terms of the Bessel-Neumann combination

In(χ
′
nm

r

b
) =

√
πǫn
2

Jn(χ
′
nm

r
b )Y

′
n(χ

′
nm)− Yn(χ

′
nm

r
b )J

′
n(χ

′
nm)

{[
J ′
n(χ

′
nm)

J ′
n(cχ

′
nm)

]2 [
1−

(
n

cχ′
nm

)2]
−
[
1−

(
n

χ′
nm

)2]}1/2
(6.15)

where the quantity χ′
nm is the mth non-vanishing root of the function

I ′n(cx),
′ stands for derivative and c = a/b.

In describing TM (s = 2) modes, it is convenient to introduce the combi-

nation

Zn(χnm
r

b
) =

√
πǫn
2

Jn(χnm
r
b )Yn(χnm)− Yn(χnm

r
b )Jn(χnm)

[
J2
n(χnm)

J2
n(cχnm)

− 1
]1/2 (6.16)

where χnm is the mth root of the function Zn(cx)



186 Appendix A

The roots χnm and χ′
nm are determined numerically using the Bisection

method. A fourth index, l, is required to distinguish those modes having

zero azimuthal component of Et along the aperture diameter defined by θ =

0, π from those having zero radial component of Et along the same diameter

(vertical modes). Then, the TE and TM modes are given by

〈r|Ψ1nm1(r, θ)〉 =
n

r
In(χ

′
nm

r

b
) sin(nθ)ûr +

χ′
nm

b
I ′n(χ

′
nm

r

b
) cos(nθ)ûθ (6.17)

〈r|Ψ1nm2(r, θ)〉 = −n

r
In(χ

′
nm

r

b
) cos(nθ)ûr +

χ′
nm

b
I ′n(χ

′
nm

r

b
) sin(nθ)ûθ (6.18)

〈r|Ψ2nm1(r, θ)〉 = −χnm

b
Z ′
n(χ

′
nm

r

b
) sin(nθ)ûr −

n

b
Zn(χ

′
nm

r

b
) cos(nθ)ûθ (6.19)

〈r|Ψ2nm2(r, θ)〉 = −χnm

b
Z ′
n(χ

′
nm

r

b
) cos(nθ)ûr +

n

b
Zn(χ

′
nm

r

b
) sin(nθ)ûθ (6.20)

The above set of modes, 〈r|Ψsnml(r, θ)〉, together with the TEM mode,

forms a complete orthonormal set on the aperture region, b ≤ r ≤ a and

0 ≤ θ ≤ 2π. The dependance along the z direction is taken eikzz, where

kz =

√
g2 − χ2

nm

b2
for TM modes, and with the corresponding χ′

nm for TE ones.

Note that g = 2π/λ.

In particular, as we said along Chapter 2, for subwavelength holes good

convergency is attained only considering the less decaying TE mode (the fun-

damental waveguide mode). We will label this mode as TE11-mode. In this

case,

〈r|TE11〉 = 〈r|Ψ1111(r, θ)〉 =
1

r
I(χ′ r

b
)sin(θ)ûr +

χ′

b
I ′(χ′ r

b
)cos(θ)ûθ (6.21)
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Overlapping integrals between Bloch waves and an-

nular hole waveguide modes

As we stated in Chapter 2, overlapping integrals between Bloch waves and

annular hole waveguide modes 〈k||σ|n〉 are known analytically [85]. And as

we also said in that Chapter, every compact “object” n denotes any wave-

guide EM mode considered in the expansion, characterized by the indices

n = (r, s, n,m, l) where r denotes the position of the aperture, and the other

four ones are defined in Appendix A.

Let us then define 〈k||σ|n〉 = Sσ for the TEM mode, and also 〈k||σ|n〉 =
Sσ
snml where σ = 1 denotes s-polarization, and σ = 2 p-polarized light. With

pq indexes we will define tan(θpq) =
ky/|k|||
kx/|k||| , and k|| =

√
k2x + k2y in the xy

plane.

By using

ûx = cos(θ)ûr − sin(θ)ûθ

ûy = sin(θ)ûr + cos(θ)ûθ (6.22)

and

x = r cos(θ)

y = r sin(θ) (6.23)

we can write for the TEM mode:

S(1) = 0

S(2) =
2πi√
2πLnc

J0(k||a)− J0(k||b)

k||
(6.24)
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and for TE and TM modes:

S1
1nm1 = 2πχ

′2
nmb(−i)n−1 cos(nθpq) ·

[
In(χ

′
nm)J ′

n(bk||)− cIn(cχ
′
nm)J ′
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]

(b2k2|| − χ′
nm)

S1
1nm2 = − tan(nθpq) · S1

1nm1
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1nm1 = 2π(−i)n−1 sin(nθpq) ·
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In(cχ
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′
nm)Jn(bk||)

]

k||

S2
1nm2 = − cot(nθpq) · S2

1nm1

S2
2nm1 = −2πχ2

nmb(−i)n−1 sin(nθpq) ·
[
cZn(cχnm)Jn(ak||)− Z ′
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2nm2 = cot(nθpq) · S2

2nm1 (6.25)

For the sake of clarity, let us remark that only S1
1111, S

2
1111 and S(2) will

be used along the thesis within the minimal model approach (accounting for

the overlaps with the TE11, and the TEM, respectively).

Green Function for Finite Systems

In this section we provide full details for the computation of Gnm when dealing

with finite systems. As it was said in Chapter 2, Gσ=p
nm , within SIBC, diverges

whenever 1 + ZsYk||σ = 0.

If we rewrite this object in terms of the normalized wavevector q, where

k =
√
εgq, it is easy to find out that Gσ=p

nm presents a branch point at q = 1,

and a pole at qp =
√

1− Z2
s very close to the real axes which contains the

contribution of the plasmon. These two singularities must be treated specially

when computing Gσ=p
nm .

These integrals can be calculated both in real axes and in complex plane,

and therefore, Cauchy integral theorem in complex plane must be fulfilled.

This theorem in complex analysis establishes that if two different paths connect

the same two points, and a function is holomorphic everywhere ’in between’

the two paths, then the two path integrals of the function will be the same.

For the sake of clarity, Fig. 6.16 schematically presents different paths along

real axes and complex plane to show that if Cauchy theorem is fulfilled, the

results integrating along any of these paths will be the same. Moreover, at long

distances, only the plasmon contribution must remain, hence some strategic

paths in the complex plane may separate this contribution.
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Figure 6.16: Illustration of (a) the branch point with a dashed curve close to q = 1,

and the plasmon pole at q = qp, (b) the possible integration path along the real axes,

(c) the possible integration paths in the complex plane where Cauchy theorem must

be fulfilled, and (d) the integration path considered in our calculations.

We conducted three different calculations to check the results. First, I de-

cided to start with the integral in the real k-axes simply because I understood

this case better. Next, I checked its validity by implementing the integral

in the complex plane without splitting off the plasmon contribution in order

to compare that both integrals provided the same results. Moreover, I used

Cauchy integral theorem by choosing different paths in the complex plane.

Finally, I also obtained the proper plasmon contribution at large distances.

1. Real Axes

Let us start by treating the branch point and the pole with the integral

along real axes (schematics in panel (b) of Fig.6.16). Apart from a

function F (q) which contains the overlaps that depend upon some linear

combinations of J1(x) and Y1(x), we must pretty much calculate the

following integral for Gσ=p
11 :

∫ ∞

0
dq

1√
1− q2 + Zs

(6.26)

The linearity of integration allows us to break this complicated integral

into simpler ones around the branch point and the pole:
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∫ ∞

0
=

∫ 1−δ1

0
+

∫ 1+δ1

1−δ1

+

∫ qp−δ2

1+δ1

+

∫ qp+δ2

qp−δ2

+

∫ 10qp

qp+δ2

+

∫ qmax

10qp

(6.27)

where 2δ1 and 2δ2 in the 2nd and 4th terms are small intervals around q =

1 and q = qp where the integrals must be treated specially, whereas the

other ones as well as Gσ=s
11 can be computed numerically. Additionally,

since the integrand oscillates for large qp values, we divide the last part

of the integral into two to obtain numerical convergency. Here qmax is

the value which provides converged results.

Panels in Fig. 6.17 show a representative case of the real and imaginary

parts of the TE and TM components of an integrand. In particular, this

is the integrand of G12 as a function of q|| at λ = 630nm in a system with

a circular hole of radius rc = 125nm, and a concentric annular groove

at a distance a = 5000nm whose width and depth are wg = 220nm and

hg = 90nm, respectively, drilled in a 280nm gold film thickness on a

glass substrate. In this system, at λ0 = 630nm we excite a plasmon

with kp/k0 = 1.04 + 0.0052 i. It can be seen in panel (a) and inset in

panel (b) that the TE-integrand presents an abrupt behavior at q = 1.

Moreover, panel (b) also shows that this integrand still oscillates for large

q values. Panels (c) and (d) show the TM-integrand with different colors

corresponding to the six simpler integrals appearing in Eq. 6.27. Again,

both panels show abrupt changes at q = 1, but also at q = qp = 1.04.

To calculate the 2nd term:

∫ 1+δ1

1−δ1

=

∫ 1

1−δ1

+

∫ 1+δ1

1
(6.28)

If we make the substitution q = 1+x, where x << 1, we obtain dq = dx

and the proper integration limits:

∫ 1

1−δ1

dq
1√

1− q2 + Zs

=

∫ 0

−δ1

dx
1√

−2x+ Zs

=
√

2δ1 + ZsLn

(
Zs√

2δ1 + Zs

)
(6.29)

In the same way:
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Figure 6.17: Real and Imaginary parts of the TE- and TM-integrand of G12 as a

function of q|| at λ = 630nm in a system with a circular hole of radius rc = 125nm,

and a concentric annular groove at a distance a = 5000nm whose width and depth

are wg = 220nm and hg = 90nm, respectively, drilled in a 280nm gold film thickness

on a glass substrate.
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∫ 1+δ1

1
dq

1√
1− q2 + Zs

= −i

∫ δ1

0
dx

1√
2x− iZs

= −i
√

2δ1 − ZsLn

(
Zs

i
√
2δ1 + Zs

)
(6.30)

Finally:

∫ 1+δ1

1−δ1

dq
1√

1− q2 + Zs

=
√

2δ1(1− i) + ZsLn

(
Zs +

√
2δ1

Zs + i
√
2δ1

)
(6.31)

where F (q) must be evaluated at q = 1.

Next, to calculate the 4nd term where a pole is involved, we first define

qp from
√

1− q2 + Zs = 0 −→ qp =
√

1 + |Zi|2, where Zs = Zr + iZi,

and then we operate on integrand:

∫ qp+δ2

qp−δ2

dq
1√

1− q2 + Zs

=

∫ qp+δ2

qp−δ2

dq
1

i
√

q2 − 1 + Zs

=

∫ qp+δ2

qp−δ2

dq
−i
√

q2 − 1 + Z∗
s

(
√

q2 − 1 + Zi)2 + Z2
r

(6.32)

If we make the substitution q = qp + x, where x << qp and x << Z2
i /2,

the root becomes

√
q2 − 1 ≈ (q2p − 1 + 2qpx)

1/2 ≈ Zi

(
1 +

2qpx

2Z2
i

)
≈ |Zi|+

qpx

Zi
(6.33)

By replacing the latter in Eq. 6.32, then:

∫ qp+δ2

qp−δ2

dq
−i
√

q2 − 1 + Z∗
s

(
√

q2 − 1 + Zi)2 + Z2
r

≈
∫ δ2

−δ2

dx
−i|Zi| − i

qpx
|Zi| + Zr − iZi

q2px
2

|Zi|2 + Zr

= −i
|Zi|
qp

Ln

(
δ2 − iα

δ2 + iα

)
(6.34)

where we have defined α = Zr |Zi|
qp

and F (q) must be evaluated at q = qp.

Once we compute the whole integral we must ensure its convergency

with qmax. As an example, in Fig. 6.18 we calculate G11, G12 and G22

at λ = 630nm for the same system as in Fig. 6.17. We observe that

convergency is attained at very low values of qmax.
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Figure 6.18: Real and Imaginary parts of G11, G12, and G22 as a function of qmax at

λ = 630nm for a system with a circular hole of radius rc = 125nm, and a concentric

annular groove at a distance a = 5000nm whose width and depth are wg = 220nm and

hg = 90nm, respectively drilled in a 280nm gold film thickness on a glass substrate.

2. Complex Plane

To calculate the same integral but in the complex plane we first choose

the path appearing in panel (d) in Fig. 6.16, avoiding both the branch

point and the pole at the same time, so the plasmon contribution is not

extracted analytically. With the same qmax that provides convergency in

the real axes (qmax ≈ 20), in the upper panel in Fig. 6.19 we depict the

results obtained for the same system as in Fig. 6.18 but just for G12, as a

function of the distance of the annular groove to the central hole, a. As

expected, both results are equivalent. Additionally, varying the values of

β1 (see schematics in Fig. 6.16(a)) we also checked that Cauchy integral

theorem is fulfilled. Finally, we know that at large distances only the

plasmon contributes. As we said before, in this system at λ0 = 630nm we

excite a plasmon with kp/k0 = 1.04+0.0052 i. Taking Fourier transform

of G12, in the lower panel in Fig. 6.19 we find an isolated resonance which

verifies the fact that at large distances only the plasmon contributes.
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Figure 6.19: (Top) Real and Imaginary parts of G12 at λ = 630nm for a system with

a circular hole of radius rc = 125nm, and a concentric annular groove whose width

and depth are wg = 220nm and hg = 90nm, respectively, drilled in a 280nm gold film

thickness on a glass substrate, as function of the distance of the annular groove to the

central hole, a. (Bottom) Fourier transform showing the plasmon contribution of the

same system as in left panel.
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Wavevector of a real metal waveguide, knz

To improve the approximation where PEC is taken at vertical walls inside the

apertures, we can consider inside them the propagating constant along the

z direction of an infinite annular hole made of real metal, knz. The corre-

sponding calculation for circular cylinders applicable to circular holes can be

found in some electromagnetic books [187]. In that case, the continuity of the

tangential components of the EM fields leads to a homogeneous system that

admits a nontrivial solution only in case its 4 × 4 determinant is zero. The

expansion of this determinant gives rise to a transcendental equation whose

roots are the allowed values of the propagation factor. In contrast, the result

for the corresponding calculation in annular holes does not appear explicitly in

literature (to our knowledge) and, although the study is straight forward, the

roots of an 8× 8 determinant need to be compute. In Fig.6.20 it is schemati-

cally presented a transverse section of the system under study. Regions i and

e correspond to the interior and exterior metallic regions, and the region in

the middle m, corresponds to the aperture. Finally, a and b are the outer and

inner radius, respectively.

a

b

i

m

e

Figure 6.20: Schematics of an annular aperture. Regions i and e correspond to the

interior and exterior metallic regions, respectively, and the region in the middle m, to

the aperture. a and b are the outer and inner radius, respectively.
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We are dealing with solutions of the Helmholtz equation in cylindrical coor-

dinates, so amongst the ingredients in our study there will be Bessel functions

of integer order n, Jn(x); of the second kind, Yn(x); and also linear combina-

tions of the last two, Hankel functions, H
(1)
n = Jn(x)+ iYn(x). Within regions

i and e every EM field component can be represented by linear combinations

of the elementary wave functions:

〈r|Ψi〉 = einθJn

(√
k2iz − k2nz · r

)
eiknzz (6.35)

〈r|Ψe〉 = einθH(1)
n

(√
k2ez − k2nz · r

)
eiknzz (6.36)

where Ψ are auxiliary functions from which the electric and magnetic fields

can be computed. Jn(x) are finite at the origin (x = 0), and H
(1)
n (x) must

be employed at great distances because it reduces asymptotically to a wave

traveling radially outward. As a technical note let us point out that Bessel

functions admitting complex arguments have to be computed. Additionally,

in some cases, large values of the argument are obtained, and asymptotic

expansion in Hankel functions must be taken:

H(1)
n (z) =

√
2

πz
ei(z−(n+ 1

2
)π
2 )(Pµ(z) + iQµ(z)), −π < arg(z) < 2π (6.37)

with

Pµ(z) ≈ 1− (µ − 1)(µ − 9)

2!(8z)2
+

(µ− 1)(µ − 9)(µ − 25)(µ − 49)

4!(8z)4
− ...

Qµ(z) ≈ (µ− 1)

1!(8z)
− (µ− 1)(µ − 9)(µ − 25)

3!(8z)3
+ ... (6.38)

and µ = 4n2.

Due to the fact that the propagation constant in metallic regions (i.e., i

and e regions) is the same, then kiz = kez = gǫm (remember that g = 2π/λ

and εm is the dielectric constant of metals).

In the same way, modes in region m can be expressed as:

〈r|Ψm〉 = einθ
(
Jn

(√
k2mz − k2nz · r

)
+ Yn

(√
k2mz − k2nz · r

))
eiknzz (6.39)

with kmz = gε2 (with ε2 the dielectric constant inside the aperture).
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We shall suppose that the time variable enters only in the harmonic factor

e−iωt. Then, the field components of a transverse-magnetic (TM) field are:

Er = ±iknz
∂Ψ
∂r Eθ = ± iknz

r
∂Ψ
∂θ Ez = (k2 − k2nz)Ψ

Hr = ±−ik
ωr

∂Ψ
∂θ Hθ = ± ik

ω
∂Ψ
∂r Hz = 0

(6.40)

and for a transverse-electric (TE) field:

Er = ± iω
r

∂Ψ
∂θ Eθ = ±− iω ∂Ψ

∂r Ez = 0

Hr = ±iknz
∂Ψ
∂r Hθ = ± iknz

r
∂Ψ
∂r Hz = (k2 − k2nz)Ψ

(6.41)

While for perfect metals the EM fields can be separated into TE and TM

independent wave functions, when initial conditions are prescribed for real

metals, the solution for the EM field in cylindrical coordinates can be built

by superposition of the previous elementary TM and TE wave functions as

follows [187]:

Er = iknz

∞∑

n=−∞
an

∂Ψn

∂r
− ω

r

∞∑

n=−∞
nbnΨn

Eθ = −knz
r

∞∑

n=−∞
nanΨn − iω

∞∑

n=−∞
bn

∂Ψn

∂r

Ez =
(
k2 − k2nz

) ∞∑

n=−∞
anΨn (6.42)

Hr =
k2

ωr

∞∑

n=−∞
nan

∂Ψn

∂r
+ iknz

∞∑

n=−∞
bn

∂Ψn

∂r

Hθ =
ik2

ω

∞∑

n=−∞
an

∂Ψn

∂r
− knz

r

∞∑

n=−∞
nbnΨn

Hz =
(
k2 − k2nz

) ∞∑

n=−∞
bnΨn (6.43)

Here an and bn are coefficients to be determined from initial conditions.

With the above description we can write now the EM field components in
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each region. For the interior region, i, (r < b):

Ei
r =

∞∑

n=−∞

(
iknz
λ1

J ′
n(λ1r)a

i
n − ωn

λ2
1r

Jn(λ1r)b
i
n

)
Fn

Ei
θ =

∞∑

n=−∞

(
nknz
λ2
1r

Jn(λ1r)a
i
n +

iω

λ1
J ′
n(λ1r)b

i
n

)
Fn

Ei
z =

∞∑

n=−∞

(
Jn(λ1r)a

i
n

)
Fn (6.44)

H i
r =

∞∑

n=−∞

(
nk2iz
ωλ2

1r
Jn(λ1r)a

i
n +

iknz
λ1

J ′
n(λ1r)b

i
n

)
Fn

H i
θ =

∞∑

n=−∞

(
ik2iz
ωλ1

J ′
n(λ1r)a

i
n − nknz

λ2
1r

Jn(λ1r)b
i
n

)
Fn

H i
z =

∞∑

n=−∞

(
Jn(λ1r)b

i
n

)
Fn (6.45)

In the same way, for the middle region, m, (b < r < a):

Em
r =

∞∑

n=−∞

(
iknz
λ2

(
J ′
n(λ2r)a

m
n + Y ′

n(λ2r)b
m
n

)
− ωn

λ2
2r

(Jn(λ2r)c
m
n + Yn(λ2r)d

m
n )

)
Fn

Em
θ = −

∞∑

n=−∞

(
nknz
λ2
2r

(Jn(λ2r)a
m
n + Yn(λ2r)b

m
n ) +

iω

λ2

(
J ′
n(λ2r)c

m
n + Y ′

n(λ2r)d
m
n

))
Fn

Ei
z =

∞∑

n=−∞
(Jn(λ2r)a

m
n + Yn(λ2r)b

m
n )Fn (6.46)

Hm
r =

∞∑

n=−∞

(
nk2mz

ωλ2
2r

(Jn(λ2r)a
m
n + Yn(λ2r)b

m
n ) +

iknz
λ2

(
J ′
n(λ2r)c

m
n + Y ′

n(λ2r)d
m
n

))
Fn

Hm
θ =

∞∑

n=−∞

(
ik2mz

ωλ2

(
J ′
n(λ2r)a

m
n + Y ′

n(λ2r)b
m
n

)
− nknz

λ2
2r

(Jn(λ2r)c
m
n + Yn(λ2r)d

m
n )

)
Fn

Hm
z =

∞∑

n=−∞
(Jn(λ2r)c

m
n + Yn(λ2r)d

m
n )Fn (6.47)
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And finally, for the exterior region, e, (r > a):

Ee
r =

∞∑

n=−∞

(
iknz
λ1

H ′(1)
n (λ1r)a

e
n − ωn

λ2
1r

H(1)
n (λ1r)b

e
n

)
Fn

Ee
θ =

∞∑

n=−∞

(
nknz
λ2
1r

H(1)
n (λ1r)a

e
n +

iω

λ1
H ′(1)

n (λ1r)b
e
n

)
Fn

Ee
z =

∞∑

n=−∞

(
H(1)

n (λ1r)a
e
n

)
Fn (6.48)

He
r =

∞∑

n=−∞

(
nk2iz
ωλ2

1r
H(1)

n (λ1r)a
e
n +

iknz
λ1

H ′(1)
n (λ1r)b

e
n

)
Fn

He
θ =

∞∑

n=−∞

(
ik2iz
ωλ1

H ′(1)
n (λ1r)a

e
n − nknz

λ2
1r

H(1)
n (λ1r)b

e
n

)
Fn

He
z =

∞∑

n=−∞

(
H(1)

n (λ1r)b
e
n

)
Fn (6.49)

In these relations, λ2
1 = k2iz − k2nz, λ

2
2 = k2mz − k2nz, Fn = einθeiknzz−ωt,

and the prime above a cylinder function denotes differentiation with respect

to the argument λjr (j = 1, 2). The 8 coefficients of the expansions and the

propagation constant knz are yet undetermined. However, at the boundaries

r = b and r = a, the tangential components of the EM fields (Eθ, Ez ,Hθ,Hz)

must be continuous and these conditions imposes a relation between the coef-

ficients. After imposing continuity conditions, we get a homogeneous system

of linear relations which depend on both knz and the wavelength, and that are

satisfied by the eight coefficients ain, b
i
n, a

m
n , bmn , cmn , dmn , aen and ben given by

the following determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

AJn(u) A
′

J ′
n(u) −CJn(s) −CYn(s) −C

′

J ′
n(s) −C

′

Y ′
n(s) 0 0

Jn(u) 0 −Jn(s) −Yn(s) 0 0 0 0

0 0 BJn(v) BYn(v) B
′

J ′
n(v) B

′

Y ′
n(v) −DH

(1)
n (t) −D

′

H
′(1)
n (t)

0 0 Jn(v) Yn(v) 0 0 −H
(1)
n (t) 0

A
′′

J ′
n(u) −AJn(u) −C

′′

J ′
n(s) −C

′′

Y ′
n BJn(s) BYn(s) 0 0

0 Jn(u) 0 0 −Jn(s) −Yn(s) 0 0

0 0 B
′′

J ′
n(v) B

′′

Y ′
n(v) −BJn(v) −BYn(v) −D

′′

H
′(1)
n (t) −DH

(1)
n (t)

0 0 0 0 Jn(v) Yn(v) 0 −H
(1)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6.50)

being
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A = nknz

u2 , B = nknz

v2
, C = nknz

s2
, D = nknz

t2

A
′
= iω

u , B
′
= iω

v , C
′
= iω

s , D
′
= iω

t

A
′′
=

ik21
uω , B

′′
=

ik22
vω , C

′′
=

ik22
sω , D

′′
=

ik21
tω

(6.51)

with u = λ1b, v = λ2a, s = λ2b, t = λ1a and ω = ck.

The system admits a nontrivial solution only in case its determinant is zero.

Therefore, the unknown propagation constant, knz, is determined for each

wavelength when the above determinant shall vanish. Besides, for each n value

there are infinite solutions. However, we restrict our study to a unique solution

for knz with n = 1, since we will apply the minimal-model for subwavelength

apertures where a single mode (the less decaying one) is considered inside the

apertures. The roots are determined numerically using the Bisection method.

The resolution of this system is easier by neglecting absorption in the metal,

and we have checked that this provides good agreement with FDTD results.
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Moreno, F. J. Garćıa-Vidal, Collimation of sound assisted by acoustic

surface waves, Nature Phys. 3 (2007) 851–852.

[71] J. B. Pendry, L. Mart́ın-Moreno, F. J. Garćıa-Vidal, Mimicking surface
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[73] F. López-Tejeira, F. J. Garćıa-Vidal, L. Mart́ın-Moreno, Scattering of

surface plasmons by one-dimensional periodic nanoindented surfaces,

Phys. Rev. B 72 (16) 161405.

[74] F. de Leon-Perez, G. Brucoli, F. J. Garcia-Vidal, L. Martin-Moreno,

Theory on the scattering of light and surface plasmon polaritons by

arrays of holes and dimples in a metal film, New J. Phys. 10 (2008)

105017.

[75] P. B. Johnson, R. W. Christy, Optical constants of the noble metals,

Phys. Rev. B 6 (12) (1972) 4370–4379.
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su esṕıritu luchador. A mi grupo de Zaragoza, Alexey, los 3 Fernandos, Sergio

y Gianni, por todo lo que me han enseñado y por compartir tantos buenos
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con todo mi corazón. Papá, esta tesis, es también la tuya. Espero que la hayáis
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