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Abstract

This dissertation is focused on the noninvasive analysis of cardiac and respiratory

signals, aiming at assessing autonomic nervous system (ANS) activity in several clinical

and non-clinical scenarios. The document is structured in three main parts. The first part

consist of an introduction to the physiological and methodological aspects to be covered

in the rest of the thesis. In the second part, heart rate variability (HRV) analysis is applied

in the context of respiratory disorders, concretely in asthma (both in children and adults)

and in sleep apnea. In the third part, some novel applications of cardiorespiratory signals

analysis in the filed of sport sciences are addressed.

The first part is composed of Ch. 1 and 2. In Ch. 1, an extensive physiological frame-

work of the functioning of the ANS and the characteristics of the biosignals analyzed

throughout the thesis is provided. Also the pathophysiology of asthma and sleep apnea,

their relationship with ANS functioning, and their diagnosis and treatment strategies are

discussed. The chapter concludes with an introduction to exercise physiology and to the

interest in the estimation of the tidal volume and the anaerobic threshold in the field of

sport sciences.

Regarding Ch.2, a common framework for the contextualized analysis of HRV is pre-

sented. After a description of the HRV signal assessment and conditioning tools, it fo-

cuses on the effect of ectopic beats, respiratory sinus arrhythmia and respiratory rate in

HRV analysis. Furthermore, the use of an index for the evaluation of how the power is

distributed in the HRV spectra, as well as cardiorespiratory coupling measurements, are

discussed.

The second part is composed of Ch. 3, 4 and 5, all of them covering the analysis of

HRV in respiratory disorders. Whereas Ch. 3 and 4 focus on child and adult asthma re-

spectively, in Ch. 5 sleep apnea is considered. Asthma is a chronic respiratory disease

which is usually accompanied by airway inflammation. It affects people of any age, but it

is prone to start in early ages, and in recent years it has risen as one of the most common

chronic diseases of childhood. However, there is still not a feasible method for the diagno-

sis of asthma in young children. The important role of vagal control in the broncho-motor

tone and broncho-dilation control has pointed to the parasympathetic branch of the ANS

as being involved in the pathogenesis of asthma. In this way, in Ch. 3 ANS assessment

was addressed through HRV analysis in two different datasets composed of pre-school

children classified attending to their risk of developing asthma or their current asthma

condition. The results of the analysis revealed a decreased sympathovagal balance and

a peakier high-frequency spectral component in those children at higher risk of asthma.

Moreover, vagal activity and cardiorespiratory coupling lowered in a group of children

with reduced risk of asthma following treatment for obstructive bronchitis, whereas they

kept unchanged in those children with a worse asthma prognosis.

In difference with children, the assessment of asthma in adults is performed through

a well established clincial routine. However, the stratification of patients attending to

their degree of control of the symptoms is generally based on self-applied questionnaires,

which remain subjective. On the other hand, the evaluation of the asthma severity re-
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quires from a visit to the hospital and cumbersome tests, which can not be applied in a

continuous-time basis. In this way, in Ch. 4 the value of ANS assessment for the strat-

ification of asthmatic adults was studied. Several HRV, respiratory-derived and clinical

features were used for training a set of classification algorithms. The inclusion of ANS

information for classifying the subjects attending to their asthma severity resulted in a

similar performance than using only clinical features, outperforming them in some cases.

Therefore, ANS assessment could represent a potential complement for the monitoring

of asthma.

In Ch. 5, HRV is analyzed in subjects suffering from sleep apnea syndrome (SAS) and

associated cardiovascular comorbidities. SAS has been related with a 5-fold increase in

the risk of developing cardiovascular diseases (CVD), which could rise to 11-fold if not

conveniently treated. On the other hand, altered HRV has been independently related

to SAS and to several conditions that represent risk factors for the development of CVD.

Therefore, this chapter is focused on evaluating whether an imbalanced autonomic ac-

tivity could be related with the development of CVD in patients with SAS. The analysis

revealed a decreased sympathetic dominance in those subjects suffering from SAS and

CVD with respect to those without CVD. Moreover, a retrospective analysis in a dataset

with subjects with SAS that will develop CVD in the future also revealed a reduced sym-

pathetic activity, thus suggesting that an imbalanced ANS could represent an additional

risk for the development of CVD in patients with SAS.

The third part is formed by Ch. 6 and 7, and it covers different applications of the

analysis of cardiorespiratory signals in the field of sport sciences. Ch. 6 is focused on the

estimation of the tidal volume (TV) from the electrocardiogram (ECG). Although a proper

monitoring of the respiratory activity results of great interest in certain respiratory dis-

orders and in sport sciences, the main research effort has focused on the estimation of the

respiratory rate, with only a few studies concerning the TV, most of which rely on ECG-

unrelated techniques. In this chapter, a methodological framework for the estimation of

TV during rest and during a treadmill test using only ECG-derived features is proposed.

Fitting errors lower than 14% in most of the cases and than 6% in some of them suggest

that TV can be estimated from the ECG, even in non-stationary conditions.

Finally, in Ch. 7 a novel methodology for the estimation of the anaerobic threshold

(AT) from the analysis of ventricular repolarization dynamics is proposed. The AT rep-

resents the frontier beyond which the cardiovascular system limits the endurance work,

and whereas it was initially intended to assess the exercise capacity in patients with CVD,

it is also of great interest in the field of sport sciences, in order to design better training

routines or prevent from overtraining. However, the assessment of the AT requires from

invasive tests or cumbersome devices. In this chapter, the AT was estimated from the

analysis of the variations in ventricular repolarization dynamics during a cycle ergome-

ter test. Estimation errors lower than 25 W, corresponding to 1 minute in this study, in a

63% of the subjects (and lower than 50 W in the 74%) suggest that AT can be estimated

noninvasively, using only ECG recordings.



Resumen y conclusiones

La presente tesis está centrada en el análisis no invasivo de señales cardíacas y respi-

ratorias, con el objetivo de evaluar la actividad del sistema nervioso autónomo (ANS) en

diferentes escenarios, tanto clínicos como no clínicos. El documento está estructurado

en tres partes principales. La primera parte consiste en una introducción a los aspectos

fisiológicos y metodológicos que serán cubiertos en el resto de la tesis. En la segunda

parte, se analiza la variabilidad del ritmo cardiaco (HRV) en el contexto de enfermedades

respiratorias, concretamente asma (tanto en niños como en adultos) y apnea del sueño.

En la tercera parte, se estudian algunas aplicaciones novedosas del análisis de señales

cardiorespiratorias en el campo de las ciencias del deporte.

La primera parte está compuesta por los capítulos 1 y 2. El capítulo 1 consiste en

una extensa introducción al funcionamiento del sistema nervioso autónomo y las carac-

terísticas de las bioseñales analizadas a lo largo de la tesis. Por otro lado, se aborda la

patofisiología del asma y la apnea del sueño, su relación con el funcionamiento del ANS

y las estrategias de diagnóstico y tratamiento de las mismas. El capítulo concluye con una

introducción a la fisiología del ejercicio, así como al interés en la estimación del volumen

tidal y del umbral anaeróbico en el campo de las ciencias del deporte.

En cuanto al capítulo 2, se presenta un marco de trabajo para el análisis contextua-

lizado de la HRV. Después de una descripción de las técnicas de evaluación y acondi-

cionamiento de la señal de HRV, el capítulo se centra en el efecto de los latidos ectópi-

cos, la arritmia sinusal respiratoria y la frecuencia respiratoria en el análisis de la HRV.

Además, se discute el uso de un índice para la evaluación de la distribución de la potencia

en los espectros de HRV, así como diferentes medidas de acoplo cardiorespiratorio.

La segunda parte está compuesta por los capítulos 3, 4 y 5, todos ellos relacionados con

el análisis de la HRV en enfermedades respiratorias. Mientras que los capítulos 3 y 4 están

centrados en asma infantil y en adultos respectivamente, el capítulo 5 aborda la apnea

del sueño. El asma es una enfermedad respiratoria crónica que aparece habitualmente

acompañada por una inflamación de las vías respiratorias. Aunque afecta a personas de

todas las edades, normalmente se inicia en edades tempranas, y ha llegado a constituir

una de las enfermedades crónicas más comunes durante la infancia. Sin embargo, todavía

no existe un método adecuado para el diagnóstico de asma en niños pequeños. Por otro

lado, el rol fundamental que desempeña el sistema nervioso parasimpático en el control

del tono bronco-motor y la bronco-dilatación sugiere que la rama parasimpática del ANS

podría estar implicada en la patogénesis del asma. De este modo, en el capítulo 3 se evalúa

el ANS mediante el análisis de la HRV en dos bases de datos diferentes, compuestas por

niños en edad pre-escolar clasificados en función de su riesgo de desarrollar asma, o de

su condición asmática actual. Los resultados del análisis revelaron un balance simpático-

vagal reducido y una componente espectral de alta frecuencia más picuda en aquellos

niños con un mayor riesgo de desarrollar asma. Además, la actividad parasimpática y el

acoplo cardiorespiratorio se redujeron en un grupo de niños con bajo riesgo de asma al

finalizar un tratamiento para bronquitis obstructiva, mientras que estos permanecieron

inalterados en aquellos niños con una peor prógnosis.
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A diferencia de los niños pequeños, en el caso de adultos el diagnóstico de asma se

realiza a través de una rutina clínica bien definida. Sin embargo, la estratificación de

los pacientes en función de su grado de control de los síntomas se basa generalmente

en el uso de cuestionarios auto-aplicados, que pueden tener un carácter subjetivo. Por

otro lado, la evaluación de la severidad del asma requiere de una visita hospitalaria y de

incómodas pruebas, que no pueden aplicarse de una forma continua en el tiempo. De este

modo, en el capítulo 4 se estudia el valor de la evaluación del ANS para la estratificación

de adultos asmáticos. Para ello, se emplearon diferentes características extraídas de la

HRV y la respiración, junto con varios parámetros clínicos, para entrenar un conjunto de

algoritmos de clasificación. La inclusión de características relacionadas con el ANS para

clasificar los sujetos atendiendo a la severidad del asma derivó en resultados similares al

caso de utilizar únicamente parámetros clínicos, superando el desempeño de estos últimos

en algunos casos. Por lo tanto, la evaluación del ANS podría representar un potencial

complemento para la mejora de la monitorización de sujetos asmáticos.

En el capítulo 5, se analiza la HRV en sujetos que padecen el síndrome de apnea del

sueño (SAS) y comorbididades cardíacas asociadas. El SAS se ha relacionado con un in-

cremento de 5 veces en el riesgo de desarrollar enfermedades cardiovasculares (CVD),

que podría aumentar hasta 11 veces si no se trata convenientemente. Por otro lado, una

HRV alterada se ha relacionado independientemente con el SAS y con numerosos factores

de riesgo para el desarrollo de CVD. De este modo, este capítulo se centra en evaluar si

una actividad autónoma desbalanceada podría estar relacionada con el desarrollo de CVD

en pacientes de SAS. Los resultados del análisis revelaron una dominancia simpática re-

ducida en aquellos sujetos que padecían SAS y CVD, en comparación con aquellos sin

CVD. Además, un análisis retrospectivo en una base de datos de sujetos con SAS que de-

sarollarán CVD en el futuro también reveló una actividad simpática reducida, sugiriendo

que un ANS desbalanceado podría constituir un factor de riesgo adicional para el desa-

rrollo de CVD en pacientes de SAS.

La tercera parte está formada por los capítulos 6 y 7, y está centrada en diferentes apli-

caciones del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte.

El capítulo 6 aborda la estimación del volumen tidal (TV) a partir del electrocardiograma

(ECG). A pesar de que una correcta monitorización de la actividad respiratoria es de gran

interés en ciertas enfermedades respiratorias y en ciencias del deporte, la mayor parte de

la actividad investigadora se ha centrado en la estimación de la frecuencia respiratoria,

con sólo unos pocos estudios centrados en el TV, la mayoría de los cuales se basan en

técnicas no relacionadas con el ECG. En este capítulo se propone un marco de trabajo

para la estimación del TV en reposo y durante una prueba de esfuerzo en tapiz rodante

utilizando únicamente parámetros derivados del ECG. Errores de estimación del 14% en

la mayoría de los casos y del 6% en algunos sugieren que el TV puede estimarse a partir

del ECG, incluso en condiciones no estacionarias.

Por último, en el capítulo 7 se porpone una metodología novedosa para la estimación

del umbral anaeróbico (AT) a partir del análisis de las dinámicas de repolarización ven-

tricular. El AT representa la frontera a partir de la cual el sistema cardiovascular limita

la actividad física de resistencia, y aunque fue inicialmente concebido para la evaluación
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de la capacidad física de pacientes con CVD, también resulta de gran interés en el campo

de las ciencias del deporte, permitiendo diseñar mejores rutinas de entrenamiento o para

prevenir el sobre-entrenamiento. Sin embargo, la evaluación del AT requiere de técni-

cas invasivas o de dispositivos incómodos. En este capítulo, el AT fue estimado a partir

del análisis de las variaciones de las dinámicas de repolarización ventricular durante una

prueba de esfuerzo en cicloergómetro. Errores de estimación de 25 W, correspondientes

a 1 minuto en este estudio, en un 63% de los sujetos (y menores que 50 W en un 74% de

ellos) sugieren que el AT puede estimarse de manera no invasiva, utilizando únicamente

registros de ECG.





If you don’t build your dream,

someone else will hire you

to help them build theirs.
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1.7 Structure of the thesis

1.8 Collaborations and research stays

1.1 Motivation

The recent advances in data processing, analysis and acquisition systems have supported

a rapid evolution transversal to a wide variety of fields, including that of medical and

health sciences. The application of signal processing techniques to the analysis of human

body functioning has enabled large research aiming to understand the human physiology

and pathophysiology, which has resulted in new diagnostic approaches and monitoring

devices. However, the relationship between technology and medicine is not unidirec-

tional and the development of new analysis tools must be guided by a deep knowledge of

3



4 Chapter 1. Introduction

human anatomy and physiology, so that the results can be provided with a meaningful

interpretation.

The possibility to manage large amounts of clinical data has facilitated a better phe-

notyping of the patients, which is rapidly evolving in what is known as personalized

medicine, also complemented by the growing interest in the development of noninvasive

approaches, aiming at increasing patients comfort. The noninvasive analysis of biolog-

ical signals constitutes the core of the present dissertation. Concretely, the focus is on

the assessment of autonomic nervous system (ANS) activity through the analysis of car-

diorespiratory signals, applied to different clinical and non-clinical scenarios. The ANS is

thought to be involved in the pathogenesis of several disorders of different nature, so that

the assessment of ANS activity remains of great interest in order to shed some light on

the underlying physiological mechanisms triggering them. Given the possibility to assess

ANS noninvasively, the analysis of ANS activity has been regarded as an interesting ap-

proach for designing new diagnostic and monitoring methodologies. Since the analysis

of heart rate variability is acknowledged as a convenient tool for the analysis of ANS, it

occupies the majority of the research efforts summarized in this thesis, although several

other biosignals such as the electrocardiogram, the respiratory effort or the tidal volume

have been also considered. In order to better understand the nature of the different topics

addressed in the following chapters, a physiological background of the implied human

body systems, biological signals, and scenarios covered in this dissertation is provided

below.

On the other hand, the analysis of biosignals has been also applied to the field of sport

sciences. In this case, the largest interest is in the assessment of differentmarkers of phys-

ical condition, such as the tidal volume or the anaerobic threshold, in a noninvasive way.

The last part of this thesis is focused on the analysis of cardiorespiratory signals for sport

sciences applications and, in the present chapter, an overview of exercise physiology and

the considered applications is provided.

1.2 Autonomic nervous system

The ANS or involuntary nervous system is the division of the peripheral nervous system

which controls the unconscious functioning of several organs and tissues in the body.

It plays a crucial role in the maintenance of homeostasis through the monitoring and

regulation of a series of physiological variables such as heart rate (HR), blood pressure,

respiratory activity, body temperature or gastrointestinal peristalsis. In this way, the af-

ferent fibers of different cranial nerves transmit sensory information to the brainstem

and hypothalamus, where it is processed and integrated. Afterwards, these brain struc-

tures exert their control, which might be influenced by higher areas in the brain, by the

transmission of nerve signals through the efferent fibers [173].

The ANS is divided in three branches: the sympathetic nervous system (SNS), the

parasympathetic nervous system (PNS) and the enteric nervous system. The latter, which
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governs the function of the gastrointestinal tract, will not be considered in this thesis. In

the case of the SNS, it is usually associated with the so called “fight or flight” response,

since its main function is to prepare the body for dealing with a threat. Hence, sympa-

thetic activity is relatedwith an increase in heart rate and force of contraction, respiratory

rate, vasoconstriction, bronchodilation, skeletal muscle strengthen or pupil dilation. On

the other hand, PNS activity is associated with the “rest and digest” state, i.e., with the

relaxation of the body. Therefore, parasympathetic activity induces a decrease in heart

and respiratory rates, vasodilation, bronchoconstriction and pupil constriction [112,242].

Since most of the tissues are innervated by both branches, exerting opposing effects, the

ANS provides a rapid and effective control of organs function. Importantly, both systems

have respective basal discharge rates, which are referred to as sympathetic and parasym-

pathetic (or vagal) tones. In this way, SNS and PNS activity is modulated by changes in

the efferent fibers discharge rate [112]. This mechanism also results in a similar effect

of an increased sympathetic activity or a vagal withdrawal (and vice versa) on several

homeostatic functions, thus yielding to an enhanced precision in their control.

Autonomic pathways are composed by two neurons: a preganglionic neuron, which

originates in the central nervous system and projects to an autonomic ganglion out-

side it, and a postganglionic neuron, which projects from the ganglion to the target

tissue [242]. According to the neurotransmitter that they release, these fibers can be di-

vided in adrenergic, if they secrete noradrenaline (also called norepinephrine), or cholin-

ergic, if they release acetylcholine, although there is growing evidence of the existence

of non-adrenergic non-cholinergic autonomic pathways in the human body [242, 279].

All the preganglionic fibers are cholinergic, both in the SNS and the PNS. On the other

hand, whereas almost all the postganglionic fibers in the PNS are cholinergic, most of

the postganglionic sympathetic fibers are adrenergic, so that acetylcholine and nora-

drenaline are usually regarded as parasympathetic and sympathetic neurotransmitters

respectively [112]. Nevertheless, sympathetic activity is also regulated by circulating cat-

echolamines (adrenaline and noradrenaline), which are secreted by the suprarenal glands

and exert almost the same effects that sympathetic nerve stimulation in the different tis-

sues. Since adrenaline and noradrenaline are directly released into the blood flow, the

effect of a sympathetic activation is more generalized than in the case of a parasympa-

thetic activation, with a more local effect. A schematic of ANS anatomy is depicted in

Fig. 1.1.

1.3 Biological signals

A biological signal or biosignal is any physical change that takes place in a living being

and that is susceptible of being measured. They contain large information about the sta-

tus of an organism and, in the case of human biosignals, their analysis and interpretation

is of great interest in order to identify pathological conditions. In this dissertation, the

focus is on several biosignals accounting for cardiac, respiratory and autonomic activity,
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Figure 1.1: Anatomy of the sympathetic (left) and parasympathetic (right) branches of the autonomic nervous

system. The effect exerted by each branch over the different organs that they innervate is indicated. Reproduced

and modified from [242].

as detailed below. Note that, although heart rate variability is a biosignal, it is described

in a different section, since its analysis remains the core of this thesis.

1.3.1 Cardiac activity

The electrocardiographic signal or electrocardiogram (ECG) describes the electrical activ-

ity of the cardiac muscle, as measured on the body surface through electrodes attached to

the skin. It is composed of the spatio-temporal sum of the action potentials generated by

all the cells in the cardiac tissue (see Fig. 1.2), which generates characteristic wave-forms

whose morphology and timing contain information that is largely used in the diagnosis

of cardiac pathologies. In this way, a cardiac cycle is reflected in the ECG as consecutive

positive and negative deflections that are related with the depolarization and repolariza-

tion of the cardiomyocytes of the different regions of the heart. An example is displayed

in Fig. 1.3, where the typical waves that compose the ECG are depicted. The cardiac cycle
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Figure 1.2: Cardiac electrical conduction system. The morphology and timing of the action potentials gen-

erated in different parts of the heart and the surface electrocardiogram resulting from their spatio-temporal

combination are displayed. Reproduced from [246].

of a normal beat starts with the spontaneous depolarization of the cells in the sinoatrial

(SA) node, located laterally to the entrance of the superior vena cava, in the right atrium.

The electrical impulse first propagates through both atria, and the depolarization of the

atrial cells is reflected in the ECG as the so-called P wave. Afterwards, it is transmitted to

the ventricles through the atrioventricular (AV) node, located in the lower back section

of the inter-atrial septum, which remains the only electrical pathway between the atria

and the ventricles. The electrical impulse is conducted from the AV node to the bundle of

His, from which it rapidly propagates towards the ventricular walls through the Purkinje

fibers. The depolarization of the ventricles is reflected in the ECG as the QRS complex,

usually composed by a negative deflection (Q wave), followed by a positive deflection (R

wave) and another negative one (S wave), although it may be composed by less than three

waves. The end of the S wave is referred to as the J point. To finish the cardiac cycle,

ventricular repolarization, reflected in the ECG as the T wave, prepares the ventricles for

the next beat.

There are also some important time intervals in the ECG. The PQ interval represents

the time required for the transmission of the electrical impulse from the SA node to the

ventricles. On the other hand, the QT interval represents the time that passes from the

onset of ventricular depolarization until the offset of ventricular repolarization, whereas

the ST segment accounts for the time during which the ventricles remain in a depolarized

state. Finally, the time between two consecutive R waves is referred to as RR interval,

and it is often considered as the time between consecutive beats and used for the char-

acterization of arrhythmias and for the study of heart rate variability [246].

In an ECG recording, a lead is the voltage difference between two electrodes (bipolar

lead) or between a single electrode and a reference electrode selected in order to have

an almost constant voltage during the entire cardiac cycle (unipolar lead). The most em-
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Figure 1.3: Characteristic waves and intervals in the electrocardiogram. Reproduced from [246].

ployed recording configuration in the clinical routine is the standard 12-lead ECG, in

which the electrodes are placed as indicated in Fig. 1.4. This configuration accounts for

the electrical activity in the frontal plane, through the standard bipolar limb leads (I , I I
and I I I ) and the augmented unipolar limb leads (aVF , aVL and aVR), and in the hori-

zontal plane, through the six unipolar precordial leads (V1 to V6), as depicted in Fig. 1.5.

Another interesting recording scheme is the orthogonal leads (or Frank’s leads) config-

uration, in which the electrical activity of the heart is captured through three pairs of

electrodes positioned along mutually perpendicular lines, denoted as X , Y and Z . This
configuration is very convenient for tracking the dominant direction of the electrical axis

of the heart.

1.3.2 Respiratory activity

Breathing is the process through which the body meets its oxygen demands and elimi-

nates the excess of CO2. It is divided in two stages: inspiration and expiration. During

the inspiration stage, the thorax and the diaphragm expand, thus creating a negative

intra-thoracic pressure that allows the entrance of oxygenated air into the lungs, where

the gas exchange takes place. Afterwards, during expiration, the inspiratory muscles

in the thorax and the diaphragm relax, so that the lungs are compressed, thus forcing

the exhalation of air rich in CO2. The control of respiration is accomplished by various

respiratory centers located in the brain stem. The nucleus tractus solitarius (NTS), lo-

cated in the medulla, contains an area called dorsal respiratory group, which controls the

inspiratory muscles. The NTS also receives input from chemoreceptors and mechanore-

ceptors, and transmits it to the pontine respiratory group (PRG) in the pons, where it

is integrated. The PRG appears to help in the coordination of the respiratory rhythm.
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Figure 1.4: Electrodes placement in the standard 12-lead ECG. The dispositions for the acquisition of the bipolar

limb leads (I , I I and I I I ), the augmented unipolar limb leads (aVF , aVL and aVR) and the unipolar precordial

leads (V1 to V6) are displayed. Reproduced from [246].
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Figure 1.6: Anatomy of the respiratory centers (NTS: nucleus tractus solitarius, PRG: pontine respiratory group,

DRG: dorsal respiratory group, VRG: ventral respiratory group, CN: cranial nerves). Reproduced and modified

from [242].

On the other hand, the pre-Bötzinger complex, an area of the ventral respiratory group

(VRG), contains spontaneously firing neurons, that may act as the respiratory rhythm

pacemaker. Other areas in the VRG are in charge of the control of the expiratory mus-

cles, and mainly activate during active expiration. A schematic of the respiratory centers

anatomy is displayed in Fig. 1.6.

Apart from the inhaled and exhaled air composition, there are several respiratory

parameters of great clinical interest, being the most important the following:

• Respiratory rate: it is the inverse of the time between consecutive breaths, and

its clinical relevance has been proved in several respiratory disorders [51,105,142],

as well as in cardiorespiratory arrest prediction [85]. It is also known to increase in

response to physical [20] and psychological [121] stress, to increase during sleep

[73], and to decrease rapidly during the first year of life [89].

• Tidal volume: it is the amount of air involved in each inspiration or expiration,

and its value is drastically reduced in obstructive respiratory disorders, such as

chronic obstructive pulmonary disease (COPD), or during asthma exacerbations.

• Minute ventilation: it is the amount of air inhaled or exhaled per minute, and it

is controlled by both the respiratory rate and the tidal volume.

• Lung function tests: several parameters such as the peak expiratory flow or the

forced expiratory volume in one second can be obtained from spirometric tests,

being largely used in the assessment of respiratory disorders.
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The respiratory activity can be captured in several manners and using different tech-

niques. From the above-mentioned parameters, the monitoring of the respiratory rate

has probably resulted in the widest variety of approaches, ranging from contact-based

(acoustic methods, chest and abdominal movement detection, air temperature or humid-

ity sensors, or transcutaneous CO2 or O2 monitoring) to noncontact-based (radar, optical

or thermal sensors) methods [5,170]. From all these options, the approaches used in this

thesis for assessing the respiratory activity are limited to the use of impedance pneumog-

raphy (IP) recordings, respiratory belts and facemasks.

The changes in air volume and composition inside the lungs, in addition to other ef-

fects such as the flow and composition of blood in the chest, lead to variations in thoracic

impedance value and distribution that can be measured through IP. For this purpose, a

known alternating current (composed by one or several frequency components, depend-

ing on the application) is led through the chest of a subject using electrodes, and the

voltage drop is measured so that the thoracic impedance can be estimated following the

Ohm’s law. Despite the fact that its only current clinical application is the measurement

of the respiratory rate, research efforts are being made in order to obtain absolute mea-

surements of the air volume within the lungs [238]. Another possibility relies in the

quantification of the thoracic expansion and contraction along the respiratory cycle, us-

ing respiratory belts. These belts can operate according to different technologies, such

as respiratory inductance plethysmography or piezoelectric sensors. Finally, the respira-

tory flow can be directly acquired using facemasks and devices that are able to account

for the air exchange through the mouth and nose. Whereas respiratory flow assessment

using facemasks can result inconvenient and interfere with natural breathing, the mea-

surements based on IP or respiratory belts are more non-invasive, but they may require

from calibration and obtain relative rather than absolute volume measurements.

Respiratory modulation of the electrocardiogram

Despite the fact that ECG mainly represents the electrical cardiac activity measured on

the surface of the skin, it is known to carry some respiratory information. Essentially,

ECG is modulated by respiration through three different mechanisms: respiratory si-

nus arrhythmia (RSA), changes in the relative position of the recording electrodes, and

changes in thoracic impedance. RSA is an extra-cardiac modulation of the HR which

reflects as a tachycardia during inspiration followed by a bradycardia during expiration.

The origin of RSA is not completely understood, and three main non-exclusive hypothe-

ses have been proposed, suggesting a central [75], baroreflex-mediated [135] or mechan-

ical [42] origin, as well as a combination of them [127]. Also other reflexes, such as those

triggered by chemo- and stretch-receptors are thought to play a fundamental role in the

regulation of RSA [71]. The fact that cardiac vagal preganglionic neurons are thought

to be directly modulated by a central respiratory drive [117, 229] has led to establish a

strong relationship between RSA and cardiac vagal activity, which has been reinforced by

several studies assessing RSA and cardiac parasympathetic tone abolishment following

atropine infusion [7, 176, 233]. Moreover, the extensive overlap between the brainstem
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areas controlling HR and respiration, and the interactions at medullary level between

the respiratory control neurons in the pre-Bötzinger complex and the cardiac control

neurons in the nucleus ambiguus, reveal a close relationship in the neural control of res-

piration and HR [72, 93]. Since RSA has received widespread research interest, the effect

of several confounding variables and scenarios has been addressed in the literature. In

this way, RSA is increased in the supine position and with low respiratory rate or large

tidal volume, whereas it decreases in the upright position, and with high respiratory rate

or small tidal volume [50, 106, 107, 221]. It also decreases with age [87, 141] and during

physical or psychological stress [13,106,107], it increases in relax situations [13,225], and

it is greater during non-rapid eye movement (NREM) than during rapid eye movement

(REM) sleep [52].

Nevertheless, there is still controversy regarding the physiological role of RSA.Whilst

some studies have regarded RSA as a mechanism for increasing gas exchange efficiency

[96, 117, 118], evidence has been provided of a shift in the relative phases of respiratory

and cardiac rhythms at different respiratory rates [259], which is inconsistent with the

former hypothesis. RSA has been also proposed as an energy-saving mechanism, since

the results of mathematical modeling might suggest that it reduces the cardiac workload

for maintaining the blood partial pressure of CO2 [31, 32].

On the other hand, variations in the relative position of the recording electrodes due

to chest movement during respiration result in alterations of the electrical pathway be-

tween them. Moreover, changes in the amount and composition of air inside the lungs

or in the flow or composition of blood in the chest lead to different thoracic impedance

value and distribution. These impedance changes directly affect electrical propagation,

which is reflected as a modulation of the ECG morphology.

In this way, changes in cardiac activity, as synchronized with respiration, have been

exploited by several authors to extract respiratory information from ECG features such

as R or R-to-S waves amplitude [169], the QRS-complex slopes [145] and QRS-complex

area [182] variations, or vectocardiogram rotations [21]. This family of methods is usu-

ally referred to as ECG-derived respiration (EDR), as they allow to extract respiratory

information only from the ECG, without need of additional sensors. In the literature,

EDR has been widely employed for estimating the respiratory rate using only ECG sig-

nals. An example of the extra-cardiac respiratory-related modulation of an ECG signal is

depicted in Fig. 1.7.

1.4 Heart rate variability

In normal conditions, HR is controlled by the SA node, whose depolarization periodic-

ity depends on both SNS and PNS. Far from being constant, HR varies in a beat-to-beat

basis, and this variation, known as heart rate variability (HRV), is subjected to the oppos-

ing effects of sympathetic and vagal activity, which are intended to meet the homeostatic

demands of the body. Whereas increased sympathetic activity or parasympathetic with-
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Figure 1.7: Example of the effect of respiratory activity on the ECG. Red and blue segments corresponds to

inspiration and expiration respectively. Three different effects are displayed in the figure: amplitude changes

(marked with a black dashed line), respiratory sinus arrhythmia (that manifests as decreasing inter-beat inter-

vals during inspiration, t1, which increase again during expiration, t2), and changes in QRS complexmorphology

(reflected, e.g., as variations in the R wave angle from inspiration, �1, to expiration, �2).
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drawal result in an increase in HR, a vagal surge or a reduction in sympathetic activity

lead to a HR deceleration. Hence, HRV analysis has been proposed as a highly interesting

tool for the non-invasive assessment of ANS [252].

1.4.1 Clinical relevance of HRV

HRV has been suggested to vary according to a wide range of demographic, physiologi-

cal and psychological conditions. HRV reduces with age, and differs between males and

females, and among races [12, 153, 268]. Moreover, it has been found to vary from wake-

fulness to sleep, and within the different sleep stages [52]. It modifies during physical

activity [45], and also varies with mental stress [121], and according to the emotional

state [187]. Whereas the described alterations of HRV remain physiological, HRV has

been found to be altered in a large series of pathological conditions in which abnor-

mal ANS behavior (or dysautonomia) is though to be involved. E.g., altered HRV has

been assessed in subjects suffering from several cardiovascular diseases, such as hyper-

tension [126], coronary artery disease [275], late-stage congestive heart failure [57, 113]

or at increased risk of death following a myocardial infarction [139]. Abnormal ANS

function has been also assessed through HRV analysis in respiratory disorders, such as

asthma [131, 240] or sleep apnea [111, 199], in subjects suffering from mental diseases

like major depressive disorder [269] or Alzheimer’s disease [289], and in overtrained ath-

letes [45].

1.4.2 Heart rhythm representations

Heart rhythm representations are intended to accurately reflect the variations in HR, in

order to apply different HRV analysis methodologies [246]. There are several possible

heart rhythm representations, being the interval tachogram (Fig. 1.8 b)) the simplest one,

as it consists in a RR interval series. The inverse interval tachogram (Fig. 1.8 c)) can

be constructed as the inverse of the RR interval series, so that it reflects rate instead of

time. There are also more informative representations, such as the interval function (Fig.

1.8 d)) and the inverse interval function (Fig. 1.8 e)), which are defined in a continuous

time basis. Both of them consist in a train of unit impulses occurring at the times when

a beat takes place and, whereas in the former each unit impulse is scaled by the length

of the preceding RR interval, in the latter the impulses are scaled by the inverse of their

corresponding RR intervals, thus representing rate [246]. It is important to note that the

interval function and the inverse interval function are unevenly sampled by definition.

In this thesis a more complex approach, known as heart timing signal, was employed.

The heart timing signal is defined as an unevenly sampled series that accounts for the

deviation of each beat occurrence time from its expected occurrence time, calculated

according to the time-varying integral pulse frequencymodulation (TVIPFM)model [19].

The TVIPFM model assumes the existence of a modulating signal that alters the mean

heart period due to the combined action of SNS and PNS, and has been widely used in the
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field of HRV analysis. It is this modulating signal which is though to carry information of

ANS activity [19, 27, 34, 171]. A more detailed description of the TVIPFM model is given

in Ch. 2.2.

1.4.3 HRV analysis

The study of HRV can be conducted from different heart rhythm representations, and

attending to several analysis strategies. The most extended approaches are those based

on time and frequency domains, as well as nonlinear analysis. All of them have their own

particularities, and result more appropriate for certain scenarios. A brief description of

the three approaches and the commonly used parameters is provided below.

• Time-domain analysis: it is focused on the first order moments or geometric

properties of the normal-to-normal (NN) interval series. They are computationally

simple, and the most employed indexes are the mean and standard deviation of the

NN interval series (NN and SDNN, respectively), the standard deviation and root

mean square of the difference between adjacent NN intervals (SDSD and RMSSD,

respectively), and the percentage of successive differences of NN intervals differing

by more than 50 ms (pNN50). Whereas NN and SDNN are related with the overall

HRV; SDSD, RMSSD and pNN50 are associated with short-term variations [252].

There is also a subgroup of time-domain measurements which are referred to as

geometric measures, since they are obtained from the RR interval histogram, which

usually presents a triangular shape. In this way, the HRV triangular index is cal-

culated as the integral of the density of the RR interval histogram divided by its

height, whereas the triangular interpolation of the NN interval histogram is ob-

tained as the width of the histogram baseline [239].

• Frequency-domain analysis: it consists in the analysis of the power distribution

in the different frequency components that are present in the HRV. In short-term

analysis, three main frequency bands of interest have been defined: the very low

frequency (VLF) band, ranging from 0 to 0.04 Hz, the low frequency (LF) band,

which extends from 0.04 up to 0.15 Hz, and the high frequency (HF) band, which

goes from 0.15 to 0.4 Hz [252]. Based on studies using pharmacological SNS and

PNS inhibitors and to the application of external stressors, the power content in

the HF (PHF) band has been related with parasympathetic activity, being RSA the

main contributor, whereas the content of the LF band (PLF) has been suggested to

represent both sympathetic and parasympathetic modulation, and is though to be

mainly influenced by baroreflex activity [164,196]. On the other hand, the physio-

logical interpretation of the power in the VLF band (PVLF) is not that direct, although

it has been relatedwith thermoregulation and the rennin-angiotensin system [217].

Apart from these indexes, also the total spectral power (TP), calculated as the sum

of PLF and PHF, the LF to HF power ratio (RLF/HF = PLF/PHF) and the normalized LF

power (PLFn = PLF/(PLF + PHF)) are widely employed. Whereas TP is related with

the total variation of SNS and PNS activity, RLF/HF and PLFn are often interpreted as
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measurements of the sympathovagal balance, and therefore as a quantitative rep-

resentation of the interaction between both branches of the ANS [163,196]. Several

different analysis approaches have been proposed in the literature, ranging from

parametric to non-parametric or from time-variant to time-invariant methodolo-

gies [19, 161, 246, 252].

• Nonlinear analysis: the advances in the theory of nonlinear dynamics have mo-

tivated the extension of the developed techniques to the evaluation of biosignals.

Nonlinear analysis is based on quantitative measurements of the complexity or

regularity of HRV, which are represented by parameters such as the correlation

dimension (D2) [104], the approximate entropy (ApEn) [205] or the sample entropy

(SampEn) [218]. Another well-known nonlinear approach is the Poincarè plot, con-

sisting in reconstructing the phase space of the RR interval series, from where dif-

ferent parameters accounting for the short-term (SD1) or overall (SD2, S) HRV can

be extracted [239].

Also strategies based on information dynamics are recently gaining attention [208].

Further information concerning the different HRV analysis approaches and parameters

can be found elsewhere [1, 228, 239, 252].

1.5 Target respiratory disorders

The clinical focus of this thesis is on two concrete respiratory disorders: asthma and sleep

apnea syndrome. A description of the particularities, diagnostic methods, treatment and

relationship with autonomic control of each of them is provided below.

1.5.1 Asthma

Asthma is a complex and heterogeneous chronic respiratory disease, usually character-

ized by airway inflammation [97]. It produces a series of respiratory symptoms, such as

bronchial hyper-responsiveness, spasmodic contraction of the bronchioles and increased

mucus segregation, thus resulting in variable airway obstruction and expiratory limita-

tion, cough, shortness of breath and chest tightness. Although asthma affects people of

any age, it is prone to start during early childhood [168], with an earliest onset in the

case of boys [166], and its recent increased prevalence [10, 47] has risen it as one of the

most common chronic diseases of childhood [47, 53, 168]. Due to the intrinsic hetero-

geneity of asthma, an actual tendency is to group the asthmatic subjects in clusters or

phenotypes attending to different clinical and pathophysiological characteristics. In this

way, the Global Initiative for Asthma (GINA) [97] distinguishes between several pheno-

types of asthma, such as allergic asthma, non-allergic asthma, late-onset asthma, asthma

with fixed airflow limitation or asthma with obesity. The possibility that different pheno-
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types have distinct underlying mechanisms could lead to more effective and personalized

treatments [11].

Diagnosis

In the case of adults, diagnosis and later clustering of the patients in phenotypes is often

based on the clinical history, assessment of inflammatory markers and single-time lung

function measurements, being spirometry the most extended test. However, lung func-

tion tests remain inappropriate for young children, since they are very effort dependent

and require cooperation [97]. Despite that some studies have suggested that children

can perform acceptable flow-volume curves from an age of 3 years [40, 79], measure-

ment criteria need to be standardized, since differences in the relative size of children

airways and lungs with respect to adults make the most common measurements unsuit-

able for this population [40,203]. Moreover, the training of those children for performing

the maneuvers is time-consuming. Other lung function testing methods, such as rapid

thoracoabdominal compression (RTC) and raised volume RTC, have been found to dis-

criminate between health and disease [158, 285], although reference values are not yet

available to be used in clinical settings [159].

For these reasons, diagnosis of asthma in young children is very dependent on the

clinical history, which is retrospective in nature and could be even incomplete. This,

together with the high percentage of children with recurrent viral-induced wheezing

[166], result in a less strict diagnosis than in the case of adults. In this way, the common

practice consists in the definition of a current asthma status, which is usually confined

to a higher or lower risk of having/developing asthma in the future, or the presence or

absence of asthma-like symptoms. In the literature, several clinical history-based indexes

have been proposed for the assessment of the current asthma status in young children,

e.g., the modified asthma predictive index (mAPI) [108]. Essentially, mAPI assigns a score

according to several risk factors for asthma (such as parental asthma, atopy or peripheral

eosinophilia) and if the resulting score is greater than zero the children are classified as

high risk of developing asthma, whereas they are classified as low risk otherwise. Other

studies (Isle of Wight [143], PIAMA [59]) have employed different criteria for risk of

asthma stratification, and although they share a high specificity with mAPI, very low

sensitivity is also a common feature [58], which might lead to a lot of missing diagnoses.

Treatment

Inhaled corticosteroids (ICS) remain the standard medication for the prevention of the

symptoms of asthma. Depending on the severity degree, ICS therapy needs to be com-

bined with long-acting �2-agonists (LABA) for a proper control of the symptoms. Despite

the use of high-doses of ICS and LABA, the symptoms remain uncontrolled in certain sub-

groups of subjects, which has motivated the search of alternative treatments that target
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concrete inflammatory mediators [82]. Nevertheless, these therapies are neither effective

in all the cases.

In the case of young children, there is some controversy regarding the possible nega-

tive effects that ICSmay exert during childhood. In this way, ICS have been pointed as the

origin of growth reduction during the first weeks of treatment, as well as hypothalamic-

pituitary-adrenal suppression [60, 69, 119]. This, together with the low perceived risk,

have contributed to a low adherence to asthma treatment [46]. However, early interven-

tion remains crucial, as lung function increases up to 20-fold during the first 10 years

of life [248], so that absence of treatment when needed could lead to permanent airway

remodeling [2]. In this way, a proper monitoring of the symptoms is needed in order to

decide whether continuing or interrupting the ICS treatment.

The inflammatory response

A schematic of the inflammatory response in asthma, referred to as type 2 inflammation

since it is triggered by type 2 helper (Th2) cells, is depicted in Fig. 1.9. When an aller-

gen is detected by the dendritic cells, they release cytokines that attract Th2 cells. The

Th2 cells orchestrate the inflammatory response by secreting several interleukines (IL):

IL-13 and IL-4 stimulate B cells growth and differentiation, as well as immunoglobulin

E (IgE) synthesis, IL-5 stimulates eosinophils production and IL-9 stimulates mast cell

growth. All of this cells are thought to play an important role in asthma. The B cells

release allergen specific IgE which binds to IgE receptors in other inflammatory cells,

inducing the release of pro-inflammatory substances such as major basic proteins and

eosinophil cationic proteins in the case of eosinophils, or histamine and heparin in the

case of mast cells. The combined action of these substances is known to produce local

blood vessel dilation, increased capillary permeability, local smooth muscle contraction,

increased mucus secretion and edema. All these factors produce airway obstruction in

asthmatics subjects. However, the role of the different pro-inflammatory substances in

the development of airway hyper-responsiveness is not that clear.

Histamine is a well known inflammatory mediator that produces contraction of local

smooth muscle, and has been related with decreased spirometry performance in asth-

matics [65]. Nevertheless, other studies have found no differences in the smooth mus-

cle contraction of asthmatics and non-asthmatics when subjected to different histamine

doses [101], aswell as a limited bronchodilation after anti-histamine administration [261].

In the case of heparin, it is a powerful anti-coagulant, and inhaled heparin has been

suggested to prevent from exercise-induced bronchoconstriction [3] and to act as a pro-

tective agent in asthma [33], so it does not represent a likely cause of bronchial hyper-

responsiveness. Local eosinophilia has also been considered as a possible underlying

cause of hyper-responsiveness, although no increase in the risk of asthma has been ob-

served in eosinophilic subjects [140]. Moreover, in a recent cohort study which enrolled

995 asthmatics, a 57% of themwere non-eosinophilic [174]. On the other hand, the results

of using anti-interleukines for IL-4, IL-5, IL-9 and IL-13 for controlling asthma symptoms
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Figure 1.9: The inflammatory response in asthma. When the presence of an allergen in the airways is detected,

the dendritic cells release cytokines to attract Th2 cells, which triggers a complex inflammatory response. The

Th2 cells secrete several interleukines which stimulate B cells and mast cells growth, as well as eosinophils and

IgE production. The binding of IgE to specific receptors in the eosinophils and mast cells cause the release of a

series of pro-inflammatory substances, whose combined effects lead to airway inflammation.
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are not consistent [92, 137, 193], and also other studies analyzing the effect of additional

substances involved in the inflammatory response, such as IL-17 or inducible nitric ox-

ide, are controversial [62, 154]. Finally, there is a large subgroup of asthmatics who do

not respond to Th2-targeted therapies [276]. All this facts suggest the existence of other

underlying mechanisms in asthma, apart from the type 2 inflammatory response.

The role of ANS in asthma

The ANS controls the smooth muscle tone in the airways through three different path-

ways: adrenergic, cholinergic and non-adrenergic non-cholinergic (NANC). Adrenergic

innervation is sparse or absent in human airways, although it is found in submucosal

glands, bronchial blood vessels and airway ganglia. Nevertheless, there is a high den-

sity of �2-adrenoreceptors in airway smooth muscle that mediate bronchoconstriction

through circulating catecholamines, which have been suggested to play a protective role

in asthma [247]. However, adrenergic control is not the most likely source of airway

hyper-reactivity, since non-asthmatics do not develop it after �-adrenergic blockade or
adrenalectomy [185]. Regarding the cholinergic control, two types of acetylcholine (ACh)

muscarinic receptors are present in the airways: M2, which do not play a role in smooth

muscle contraction but limit the excess release of ACh from vagus nerves (see Fig. 1.10

a), c) and e)), and M3, which mediate smooth muscle contraction, although no evidence

of changes in the number or functionality of M3 receptors have been found in asthmat-

ics with respect to non-asthmatics [84, 90]. Notwithstanding, the study of the role of M2

receptors in asthmatics has revealed a consistent reduced functionality with respect to

non-asthmatics [90, 179]. One possible explanation is the presence of eosinophils [90].

The rationale relies in the several proteins that eosinophils release during the inflamma-

tory response, which are positively charged. Since M2 receptors are particularly prone to

blockade by positively charged proteins, the presence of eosinophilic proteins results in a

dysfunction of the M2 receptors, thus inhibiting the negative feedback that they provide

after an ACh discharge, and resulting in an excessive and uncontrolled ACh release (see

Fig. 1.10 b), d) and f)) [90]. In this way, M2 receptors dysfunction appears to be a major

component of airway hyper-responsiveness, although the fact that there is a large sub-

group of asthmatics that are persistently non-eosinophilics [174] suggests the existence

of othermechanisms that may contribute to the altered operation ofM2 receptors. Finally,

the NANC pathway represents the dominant relaxant innervation in human airways, and

vasoactive intestinal peptide and nitric oxide have been proposed as its possible neuro-

transmitters [23, 279], although the role of NANC control in the pathogenesis of asthma

has not been yet elucidated.

The suspicion that the ANS plays an important role in the pathogenesis of asthma,

and the difficulties for asthma diagnosis (especially in children) and continuous monitor-

ing, have motivated large research aiming to assess ANS activity in asthmatics. Under

the assumption that altered control in airway caliber may be reflected in parallel alter-

ations in the regulation of HR, HRV analysis has been considered for the characterization

of autonomic activity both in adults [94, 131, 240, 287] and in children [80, 257] suffering
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Figure 1.10: An example of the effect of M2 receptors dysfunction in the presence of eosinphils is displayed. In a)

and b), a vagal stimulus triggers the secretion of acetylcholine (ACh) from the vagus nerve. In c), the ACh binds

to the M2 and M3 receptors, which inhibit the further release of ACh and contract the airway smooth muscle

respectively, as in e). During an inflammatory response, the eosinophils release positively charged proteins,

such as major basic proteins, which bind to the M2 receptors (b)), thus blocking the binding of ACh, as in d).

This leads to an uncontrolled ACh release (f)), which may result in excessive smooth muscle contraction. This

figure has been adapted and modified from [90].
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Figure 1.11: Two different interpretations of the pathogenesis of asthma. In a), inflammation is the direct

cause of airway obstruction and hyper-responsiveness. However, this scheme is not enough to explain certain

phenotypes of asthma in which inflammation is not a likely underlying cause of hyper-responsiveness. In b),

ANS dysfunction (e.g., M2 receptors dysfunction) is presented as the cause of airway hyper-responsiveness,

and it can be originated either by inflammation or by any other cause, thus providing a more complete frame.

from asthma. Whereas some authors have reported increased vagal tone [257,287] or an

increased vagal dominance [94] in asthmatics than in controls, others report increased

parasympathetic reactivity to autonomic control tests [80,131,240], such as HR response

to deep breathing or Valsava maneuver. Moreover, the measured increased vagal ac-

tivity presented a positive correlation with asthma severity in children [80]. Hence, as

PNS is involved in bronchoconstriction [151] and bronchomotor tone control [184], an

altered PNS activity has been pointed as a possible underlying factor in the pathogen-

esis of asthma, thus coinciding with the hypothesis of M2 receptors dysfunction as the

main cause of airway hyper-responsiveness. In this way, the traditional picture of in-

flammation as the main cause of airway hyper-responsiveness could evolve towards a

more complete frame in which ANS dysfunction is presented as the main cause, whereas

it can be a consequence of inflammation or of other mechanisms (see Fig. 1.11).

1.5.2 Sleep apnea syndrome

Sleep apnea syndrome (SAS) is a complex sleep-disordered breathing (SDB) that mani-

fests as a repetitive partial (hypopnea) or total (apnea) cessation of airflow into the lungs,

which is usually terminated with the arousal of the subject. Despite the fact that there is

no consensus in the prevalence of SDB, with numbers varying from 24 to 49.7% in males

and from 9 to 23.4% in females [120, 201, 286], it has experienced an increase during the

last decades [201].

Apneas and hypopneas can originate due to an upper-airway collapse (obstructive

sleep apnea, OSA), an absence of respiratory drive (central sleep apnea, CSA) or a com-

bination of both (mixed sleep apnea). In the case of OSA, pharyngeal collapse occurs

posterior to the tongue, soft palate or uvula, as displayed in Fig. 1.12. Since the inter-

mediate portion of the pharynx has little rigid support, the diameter of its lumen largely
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Figure 1.12: An example of obstructive sleep apnea and hypopnea is dysplayed. In a), the upper airways remain

open, thus enabling normal breathing. When a partial (b)) or total (c)) obstruction of the respiratory flow takes

place, the interruption of normal breathing is referred to as obstructive hypopnea or apnea, respectively.

depends on muscle activity. During wakefulness, pharyngeal patency is maintained by

a reflex-driven activation of pharyngeal dilator muscles. However, this reflex activity is

reduced during sleep. Hence, an anatomically small pharynx (e.g., due to genetic rea-

sons or obesity), a dysfunction in pharyngeal muscles or nerves structure or activity, or

an altered ventilatory control due to a misbehavior of the chemoreceptors feedback loop,

result in increased risk of OSA [245,278]. Regarding CSA, altered ventilation control does

not have a single cause, and so a series of syndromes have been identified. Some exam-

ples of CSA manifestations are the Cheyne-Stokes respiration, the idiopatic CSA or the

congenital central hypoventilation syndrome. Whereas the two formers may have their

origin in alterations of the chemorecptors feedback loop gain, Cheyne-Stokes respiration

can be also due to long systemic circulation delays, so it is generally seen in patients with

congestive heart failure [76, 278]. The congenital central hypoventilation syndrome, on

the other hand, has a likely genetic origin, without a clear anatomic pathology [76].

Immediate effects of apneic episodes include recurrent hypoxia, fragmented sleep and

large fluctuations in intrathoracic pressure, blood pressure and sympathetic activity. This

acute effects might evolve in chronic sequels such as hypertension or other cardiovas-

cular comorbidites associated with an increased risk of stroke or heart failure [202, 245].

Moreover, SAS usually produces excessive daytime sleepiness, and has been linked to
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decrements in cognitive function [138,283], as well as to depression disorders [200]. SAS

has been also independently related with increased risk of car accident [253, 258].

Diagnosis

Full night polysomnography (PSG) remains the current gold standard for the diagno-

sis of SAS. PSGs are usually conducted in sleep laboratories attended by sleep experts,

and they consist in multi-parametric tests which involve the continuous recording of

several biosignals, including electroencephalogram, electrooculogram, electromyogram,

ECG, nasal and oral airflow, thoracic and abdominal respiratory effort, pulse oximetry

and capnography. Afterwards, sleep stages and respiratory events are manually anno-

tated in 30-second epochs. The scoring rules for ensuring homogeneity across different

studies were established by the American Academy of Sleep Medicine (AASM) [9], and

are subjected to constant revision [37–39]. In this way, a 90% decrease in airflow last-

ing more than 10 seconds should be identified as an apnea. In the case of hypopneas,

a 30% decrease in airflow lasting more than 10 seconds is required, and it must be ac-

companied by either an oxygen desaturation ≥ 3% or by an arousal (defined according to

electroencephalographic and electromyographic activity). In the case that continuous or

increasing inspiratory effort is observed during the period of reduced airflow, the event

should be identified as obstructive, whereas the lack of inspiratory effort should be asso-

ciated with a central event. If there is no inspiratory effort at the beginning of the event

but it resumes along the event’s duration, then the event should be labeled as mixed [38].

There is also an adapted version of these scoring rules for pediatric SDB assessment.

The severity of SAS is established according to the so called apnea-hypopnea index

(AHI), which accounts for the total number of apneas and hypopneas divided by the total

sleep time. The AASM defines the stratification of SAS severity in mild (5 ≤ AHI < 15),

moderate (15 ≤ AHI < 30) or severe (AHI ≥ 30) [9].

Treatment

The recommended treatment for SAS is usually dependent on the severity and nature

of the disease. Positive airway pressure (PAP) has risen as the preferred treatment for

both OSA and CSA, and should be offered as an option to all patients [14, 76, 81]. There

are several modalities of PAP therapy, which essentially consist in different settings of

mechanical ventilation. For those subjects who refuse PAP treatment, there are other

recommended options, such as behavioral strategies (ranging from weight loss to posi-

tional therapy and the avoidance of alcohol and sedatives before bedtime), oral appli-

ances intended to improve upper airway patency, and surgical upper airway remodeling

or bypass [81]. As in many other diseases, there is a growing effort in understanding the

different phenotypes of SAS, so that other important features apart from AHI are consid-

ered, thus leading to personalized and more effective treatment strategies [16, 77, 288].
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SAS, ANS and cardiovascular disease

During an OSA episode, forced inspiration against an obstructed airway leads to exagger-

ated negative intrathoracic pressure and is accompained by immediate hypoxia, which

triggers a complicated autonomic response [245]. Previously to the apneic episode, an

increase in vagal drive is observed, reflecting as a bradycardia. Given the impossibility

to breathe, a sudden sympathetic activation is triggered, leading to the arousal of the

subject and the consequent interruption of the apneic event. This adrenergic surge can

be also noticed as an abrupt increase in HR and blood pressure [110, 262]. Although

the physiological mechanisms underlying the autonomic-mediated response to apneic

events have yet not been completely elucidated, the existence of non-invasive methods

for ANS assessment, such as HRV analysis, has motivated several works studying auto-

nomic activity in SAS patients, in comparison with controls. These studies have gener-

ally revealed an altered sympathovagal balance in subjects suffering from SAS, reflected

in an increased sympathetic dominance both during sleep [111,199] and in 24-hour holter

recordings [15]. Despite the fact that PSG settings remain the gold standard for the diag-

nosis of SAS, the possibility of developing a noninvasive tool for its premature diagnosis

and monitoring, based on ANS assessment, has received widespread attention.

Since apneic patients are subjected to recursive overnight alterations in intrathoracic

and blood pressure, HR, and autonomic control, all of them having a direct effect on car-

diovascular activity, SAS has been proposed as an independent risk factor for developing

hypertension, heart failure, cardiac arrhythmias, myocardial ischemia and other cardio-

vascular diseases (CVD) [150, 198, 202, 245]. Actually, SAS has been related with a 5-fold

increase in the risk of developing CVD, which could rise to 11-fold if not conveniently

treated [198]. Nevertheless, only some of the diagnoses of SAS are associated to cardiac

comorbidities. Given that altered HRV has been independently related with increased

risk of CVD and mortality [57, 126, 139, 254], and since many physiological and psycho-

somatic conditions that constitute risk factors for CVD have been also related with ANS

dysfunction [254], there is an increasing interest in understanding the relationship be-

tween SAS, CVD and autonomic control.

1.6 Exercise physiology

There is also a big portion of this thesis addressing the noninvasive analysis of cardiores-

piratory signals in the context of sport sciences. It is well-known that the combined

action of a sympathetic activation and a vagal withdrawal during exercise results in sev-

eral alterations in the cardiovascular and respiratory physiology, aimed at meeting the

enlarged metabolic demands of the body. In this way, larger tidal volume (facilitated

by bronchodilation) and respiratory rate augment the gas exchange in the lungs, thus

providing the blood with larger amounts of O2. Regarding the cardiac system, increased

HR, systolic blood pressure and stroke volume guarantee a continuous supply of oxygen

to the muscles. During moderate exercise, the aerobic energy production system uses
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this O2 in combination with carbohydrates, fats and proteins stored in the muscle tissue

to synthesize adenosine triphosphate (ATP), which is the molecule providing the mus-

cles with energy. However, the rhythm at which ATP is produced trough the aerobic

pathways results insufficient to maintain muscle activity at higher exercise intensity. In

this situation, ATP starts to be produced through the anaerobic pathways, which em-

ploy the glycogen stored in the muscles. Another characteristic of the anaerobic energy

production is that it also releases lactate and H+ ions as residuals, resulting in metabolic

acidosis [112, 207]. The O2 consumption above which anaerobic mechanisms are needed

to complement aerobic energy production, thus causing a sustained increase in lactate

levels and metabolic acidosis, is referred to as anaerobic threshold [271]. The increase

in H+ ions production is associated with larger ventilation, aimed at reducing metabolic

acidosis by a reduction in the CO2 levels.

The anaerobic threshold represents an inflection point in the way the body is ob-

taining energy to maintain its work capacity. Moreover, it accounts for the limit in O2

consumption beyond which metabolic acidosis occurs and beyond which the cardiovas-

cular system limits the endurance work [270]. In this way, an accurate estimation of the

anaerobic threshold remains of large interest in the field of sport sciences, as it can be

used to design better training routines, quantify athletes performance or prevent from

overtraining. Moreover, the estimation of the anaerobic threshold has some clinical ap-

plications and, actually, it was initially intended to assess the exercise capacity in cardiac

patients [272]. Several methods for the estimation of the anaerobic threshold have been

proposed in the literature, and some of the most relevant are described below.

1.6.1 Estimation of the tidal volume

As mentioned above, during exercise there is an increase in tidal volume and respiratory

rate intended to meet the metabolic demands of the body. Since both of them are related

with the physical condition, their assessment represents a useful tool in the development

of training routines and in several fields of sport sciences. Moreover, they have a clinical

value in the monitoring of a range of respiratory disorders. Whereas the estimation of

the respiratory rate is a recurrent topic in the literature, tidal volume estimation has been

only addressed by a few authors, which have proposed the use of image acquisition [216],

tracheal sounds [215] and inductive [238] or opto-electronic plethysmography [213]. In a

recent study, the estimation of tidal volume using electrocardiographic and intra-cardiac

signals has been proposed using mechanically ventilated swines [230]. Nevertheless,

more research effort is required in this field.

1.6.2 Estimation of the anaerobic threshold

Since there are different mechanisms involved in the anaerobic metabolism, there are sev-

eral methods for estimating the anaerobic threshold based on each of them. One of them

is its approximation by the lactate threshold, which is extensively used in the literature
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Figure 1.13: The ventilatory equivalents for O2 (V̇E/V̇O2
, green) and CO2 (V̇E/V̇CO2

, red) are displayed during an

incremental effort test. The point at which V̇E/V̇O2
starts to increase without an increase in V̇E/V̇CO2

is identified

as the aerobic threshold or VT1, whereas the point at which there is a simultaneous increase in V̇E/V̇O2
and

V̇E/V̇CO2
is referred to as the anaerobic threshold or VT2.

and accounts for the exercise intensity above which there is a substantial increase in the

levels of blood lactate during an incremental exercise test [251]. As ventilation pattern is

also altered during anaerobic metabolism, another family of methods have focused on ap-

proximating the anaerobic threshold through the so called ventilatory thresholds. Given

the minute ventilation (V̇E), and the O2 and CO2 consumption (V̇O2
and V̇CO2

), the method

of the ventilatory equivalents [214] relies on the temporal evolution of the ventilatory

equivalent for O2 (V̇E/V̇O2
) and for CO2 (V̇E/V̇CO2

), which represent the minute ventila-

tion required to consume one liter of O2 or produce one liter of CO2, respectively. The

point at which V̇E/V̇O2
starts to increase without an increment in V̇E/V̇CO2

is referred to as

VT1 or aerobic threshold, whilst that at which V̇E/V̇CO2
starts to grow simultaneously with

V̇E/V̇O2
is referred to as VT2 or anaerobic threshold (see Fig. 1.13). Another example is

the V-slope method [28], in which the anaerobic threshold is identified as the point at

which there is an exponential increment of V̇CO2
as a function of V̇O2

(see Fig. 1.14). Finally,

the change in the slope of the HR profile during an incremental effort test has been also

proposed as a possible estimation methodology.

1.7 Structure of the thesis

This dissertation is structured in three main parts. In the first one (Ch. 1 and 2), an

introduction to the physiology of the different scenarios covered in the thesis and to the

framework forHRV analysis is provided. The second part (Ch. 3, 4 and 5) is focused on the
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Figure 1.14: The CO2 consumption (V̇CO2
) is displayed as a function of the O2 consumption (V̇O2

). The point at

which V̇CO2
increases exponentially with respect to V̇O2

is referred to as the ventilatory threshold (VT).

analysis of HRV applied to different respiratory disorders, concretely asthma and sleep

apnea syndrome. The third part (Ch. 6 and 7) is dedicated to the noninvasive analysis

of cardiorespiratory signals in the context of sport sciences, for the estimation of tidal

volume and anaerobic threshold. Finally, Ch. 8 contains the main conclusions and future

research lines. The organization of the different chapters is the following:

• Chapter 1. Introduction: In the present chapter, the ANS and the most relevant

biological signals used in this thesis were introduced. Moreover, a physiological

background of all the scenarios considered throughout the next chapters was pro-

vided.

• Chapter 2. Contextualized HRV analysis: In this chapter, a methodological

framework for the analysis of HRV is presented. Apart from the mathematical

model used for the estimation of the different HRV parameters, the effect of noise,

ectopic beats, RSA and respiratory rate in the analysis and interpretation of the

results is discussed in detail. Moreover, the concept of cardiorespiratory coupling

is introduced, and the mathematical tools used for estimating it from the HRV

and respiratory activity time-frequency coherence maps are presented. Finally, a

frequency domain HRV index aimed at measuring the distribution of the HF com-

ponents is introduced. This index, named peakness, is analyzed in detail in order

to obtain the most adequate parameters setting, and to understand its relationship

with the conventional frequency and nonlinear domain HRV indexes. The frame-
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work described in this chapter will be used in all the chapters in the second part of

this dissertation.

• Chapter 3. HRV analysis in children with asthmatic symptoms: Using the

methodological framework introduced in Ch. 2, in this chapter ANS activity was

assessed through HRV analysis in two independent datasets of preschool children

classified attending to their asthmatic condition. The results suggest an increased

vagal dominance and a peakier HF component in those children at higher risk of

asthma. Moreover, vagal activity and cardiorespiratory coupling were reduced fol-

lowing an ICS treatment in the group of children with a good asthma outcome,

whereas it kept unchanged in those with a worse prognosis. Since it is nonin-

vasive in nature, HRV analysis could represent a feasible tool for the continuous

monitoring of asthma in young children, providing an objective measurement of

the evolution of the disease and aiding in the study of the underlying pathophysi-

ology. The research described in this chapter generated the following publications:

– Milagro, J., Gil, E., Bolea, J., Seppä, V. P., Malmberg, L. P., Pelkonen, A. S.,

Kotaniemi-Syrjänen, A., Mäkelä, M. J., Viik, J. and Bailón, R. Nonlinear Dy-

namics of Heart Rate Variability in Children with Asthmatic Symptoms. Joint

conference of the EuropeanMedical and Biological Engineering Conference (EM-

BEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical

Physics (NBC), 2017, pp. 815-818. Springer, Singapore.

– Milagro, J., Gil, E., Lázaro, J., Seppä, V. P., Malmberg, L. P., Pelkonen, A.

S., Kotaniemi-Syrjänen, A., Mäkelä, M. J., Viik, J. and Bailón, R. Nocturnal

Heart Rate Variability Spectrum Characterization in Children with Asthmatic

Symptoms. IEEE J Biomed Health Inform, 2017, vol. 22, n. 5, pp. 1332-1340.

– Milagro, J., Gracia, J., Seppä, V. P., Karjalainen, J., Paassilta, M., Orini, M.,

Bailón, R., Gil, E. and Viik, J. Noninvasive Cardiorespiratory Signals Analysis

for Asthma EvolutionMonitoring in Preschool Children. Major revision (IEEE

Trans Biomed Eng).

– Milagro, J., Gracia, J., Seppä, V. P., Karjalainen, J., Paassilta, M., Orini, M., Gil,

E., Bailón, R. and Viik, J. Cardiorespiratory coupling in asthmatic children.

Accepted for publication (Computing in Cardiology conference 2019).

• Chapter 4. HRV analysis in asthmatic adults: The methodological framework

introduced in Ch. 2 was employed for the assessment of HRV in a dataset com-

posed by asthmatic adults, classified attending to their degree of symptoms con-

trol and also with respect to the disease severity. The HRV features were employed

in combination with several respiratory-derived and clinical features for training

different classification algorithms, aiming to stratify the patients. The inclusion of

ANS-related features for clasifying the subjects attending to their asthma severity

resulted in a similar performance than in the case of employing only clinical fea-

tures, outperforming it in some cases, therefore suggesting that ANS assessment

could represent a feasible complement for the diagnosis and monitoring of asthma

in adults.
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• Chapter 5. HRV analysis in sleep apnea syndrome with associated cardio-

vascular diseases: SAS has been related to an increased risk of suffering from

CVD. However, and despite the characteristic autonomic response to an apneic

episode shared by most of the patients, only some of them will develop CVD. Since

altered HRV has been independently related to both conditions, in this chapter

HRV analysis was performed in a group of patients with SAS, half of which also

had cardiovascular comorbidites. Moreover, a subset of subjects who did not have

any CVD at the moment of the recordings but who developed them afterwards was

also considered. The results revealed a higher sympathetic dominance in those sub-

jects with CVD or that will develop CVD in the future, therefore suggesting that

altered autonomic activity could constitute a risk factor for the development of

cardiac comorbidities in subjects with sleep apnea. The research described in this

chapter generated the following publication:

– Milagro, J., Deviaene, M., Gil, E., Lázaro, J., Buyse, B., Testelmans, D., P.

Borzée, R. Willems, S. Van Huffel, R. Bailón and Varon, C. Autonomic Dys-

function Increases Cardiovascular Risk in the Presence of Sleep Apnea. Front

Physiol, 2019, vol. 10, n. 620, pp. 1-11.

• Chapter 6. Electrocardiogram-derived tidal volume estimation: In this chap-

ter, a novel methodology for the noninvasive estimation of the tidal volume during

a treadmill test is presented. Several parameters were derived only from the ECG

in a group of athletes who underwent two treadmill tests in different days. The

parameters obtained in the first recording were used to train a subject-oriented

model that was tested in the second recording. Several approaches were com-

pared, and fitting errors lower than 14% in most of the cases and lower than 6%

in some of them suggest that the tidal volume can be estimated from the ECG in

non-stationary conditions. The research described in this chapter generated the

following publications:

– Milagro, J., Hernando, D., Lázaro, J., Casajús, J. A., Garatachea, N., Gil, E. and

Bailón, R. On Deriving Tidal Volume From Electrocardiogram During Maxi-

mal Effort Test. Proceedings of the XLV International Conference on Computing

in Cardiology, 2018, pp. 1-4, Maastricht, The Netherlands.

– Milagro, J., Hernando, D., Lázaro, J., Casajús, J. A., Garatachea, N., Gil, E., and

Bailón, R. Electrocardiogram-Derived Tidal Volume During Treadmill Stress

Test. IEEE Trans Biomed Eng, 2019. In early access.

DOI: 10.1109/TBME.2019.2911351.

• Chapter 7. Anaerobic threshold estimation through ventricular repolar-

ization profile analysis: A novel methodology for the noninvasive estimation of

the anaerobic threshold during a cycle ergometer test is presented in this chapter.

Essentially, it is based on the analysis of the ventricular repolarization dynamics.

The general increase in the repolarization instability observed in most of the sub-

jects was used for the estimation of the anaerobic threshold. An estimation error
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lower than 1 minute in a 63% of the subjects suggests that the anerobic threshold

can be estimated noninvasively, using only ECG recordings.

• Chapter 8. Conclusions and future work: This last chapter contains the main

conclusions of the research presented in this thesis, as well as a proposal of future

research lines.

1.8 Collaborations and research stays

All the research presented in this dissertation was conducted within the Biomedical Sig-

nal Interpretation & Computational Simulation (BSICoS) group (University of Zaragoza,

Zaragoza, Spain), under the supervision of Prof. Raquel Bailón and Prof. Eduardo Gil.

Moreover, the vast majority of the studies were performed in collaboration with re-

searchers belonging to other research groups, who actively collaborated with method-

ological, physiological and data collection support. The visible heads of these research

groups are:

• Jari Viik

Faculty of Medicine and Health Technology, Tampere University, Tampere, Fin-
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• Ville-Pekka Seppä
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Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland.

• Jussi Karjalainen and Marita Paassilta

Allergy Centre of the Tampere University Hospital, Tampere, Finland.

• Carolina Varon and Sabine Van Huffel

Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Sys-

tems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium, and

IMEC, Leuven, Belgium.

• Bertien Buyse and Dries Testelmans

Department of Pneumology, UZ Leuven, Leuven, Belgium.

• Rik Willems

Department of Cardiovascular Sciences, UZ Leuven, Leuven, Belgium.

• Nuria Garatachea and José Antonio Casajús

Growth, Exercise, Nutrition and Development (GENUD) group at the Faculty of

Health and Sport Sciences, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
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• Vicente Plaza, Lorena Soto and Jordi Giner

Pneumology and Allergy Department, Santa Creu i Sant Pau Hospital, Barcelona,

Spain.

• Michele Orini

Institute of Cardiovascular Science, University College of London, London, United

Kingdom.

• Jordi Aguiló

Microelectronics and Electronic Systems Department, Autonomous University of

Barcelona, Bellaterra, Spain.

Additionally, I had the opportunity of benefiting from two research stays in the con-

text of my PhD, which are listed below:

• January 2016 - May 2016: Tampere University of Technology, Tampere, Finland. I

workedwith Prof. Jari Viik in order to set up the framework for the analysis of HRV

in preschool asthmatic children. During the stay I got familiar with the dataset of

asthmatic children acquired at the Helsinki University Hospital, which is described

in Ch. 3, and we designed the analysis criteria and parameters to be considered.

• September 2017 - December 2017: KU Leuven, Leuven, Belgium. This stay was an

opportunity to discuss closely with Prof. Carolina Varon and Prof. Sabine Van

Huffel in the context of the analysis of HRV in patients with sleep apnea syndrome

and cardiovascular comorbidities. Apart of getting familiar with the data to be

analyzed, we sat up a proper framework for its analysis, with the collaboration of

the doctors from the University Hospital of Leuven.
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2.1 Motivation

As already mentioned, extra-cardiac modulations of HR differ with age, gender and race

[12, 153, 268]. Even when considering a single subject, HRV is altered under different

situations, such as physical [45] or psychological stress [121], or during sleep, being it

also different across sleep stages [52]. Moreover, circadian rhythms can result in a dis-

35
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tinct HRV at different times of the day [125]. As it is well-known, several pathologies of

distinct nature result in alterations of ANS functioning, which are often reflected in HRV.

Therefore, a deep knowledge of the physiological changes induced by them is required

for a proper analysis.

Apart from demographic and pathophysiologic reasons, HRV analysis and interpre-

tation could be affected by several other confounders. One of these factors is the presence

of ectopic beats. This problem is frequently addressed, although some of the techniques

developed for removing the effect of ectopic beats from the tachogram based on beat-

to-beat interval constrains might also remove some strong RSA events misclassified as

ectopics, and which contain valuable information about ANS functioning.

On the other hand, HRV frequency-domain analysis has been traditionally focused

on the power content of predefined frequency bands, completely ignoring how the power

is distributed within those bands, which might be relevant in the analysis of ANS activity

alterations. In this chapter, a novel index for the quantification of HF power distribution

is presented and discussed in relation to the traditional frequency-domain indexes.

Another factor to take into account is the well-known coupling between HRV and

respiration which, in the presence of lower or higher than normal respiratory rates, can

lead to a shift of power of the HRV respiratory-related components towards frequency

bands where they are not expected to be, thus compromising traditional ANS activity in-

terpretation. The effect of the respiratory rate on HRV analysis was considered, together

with the assessment of cardiorespiratory coupling.

It is for all these reasons that HRV analysis should be always contextualized and

guided by physiology, being adapted to each concrete situation and hence minimizing

the possible factors leading to a wrong interpretation. In this chapter, the introduced

sources of error are discussed, and a framework for dealing with them is provided.

2.2 HRV assessment

In this dissertation, HRV has been analyzed in time, frequency and nonlinear domains.

Whereas time domain analysis was performed directly from the RR interval series con-

structed from beat occurrence times, spectral estimation was applied to the modulating

signal obtained from the time-varying integral pulse frequency modulation (TVIPFM)

model [19]. The TVIPFMmodel is used for representing the generation of an event series

from a continuous-time signal, which can be provided with a physiological interpreta-

tion [246]. In the case of HRV representation, the beat occurrence times, tk, are supposed
to be generated by a modulating signal, m(t), which has zero-mean and carries the in-

formation of ANS modulation. A schematic of the TVIPFM model is displayed in Fig.

2.1. The input signal, consisting in m(t) superimposed to a DC level, is integrated un-

til a threshold, T (t), which accounts for the time-varying mean heart period. Once the

threshold is reached, a heart beat occurs, and the integration process is reset. Under the
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Figure 2.1: Schematic of the time-varying integral pulse frequency modulation (TVIPFM) model. Reproduced

and modified from [19].

assumption thatm(t) is casual, band-limited and < 1, and that the time occurrence of the

first beat is at time t0 = 0, the beat occurrence time series can be related with m(t) as:
k = ∫ tk

0

1 +m(t)T (t) dt, (2.1)

being k and tk the index and occurrence time of the k-th beat, respectively. In Eq. 2.1, the

term:

dHR(t) = 1 +m(t)T (t) =
1T (t) + m(t)T (t) , (2.2)

accounts for the instantaneous HR, and is composed by two terms: the HRV signal,m(t)/T (t), and the time-varying mean HR, 1/T (t). Under the assumption that the varia-

tions in mean HR are much slower than the variations in HRV, the latter term can be eas-

ily obtained by low-pass filtering dHR(t). Defining the resulting signal as dHRM(t) = 1/T (t),m(t) can be calculated as:

m(t) = dHR(t) − dHRM(t)dHRM(t) . (2.3)

Afterwards, an evenly-sampled discrete-time version of the modulating signal,m(n), can
be obtained by resampling m(t), typically at 4 Hz. It is this m(n) which was used for fre-

quency domain HRV analysis in this thesis. All the frequency domain indexes computed

in the following chapters were obtained from 5-minute segments of m(n) following the

Task Force recommendations [252], whose spectra, ŜHRV(F ), were estimated by theWelch’s

periodogram method [273], using 50-second Hamming windows with 50% overlap. The

different frequency-domain indexes, i.e., PVLF, PLF, PHF, RLF/HF and PLFn (see Ch. 1.4.3), were

then calculated from ŜHRV(F ).
Regarding the nonlinear-domain analysis, D2, ApEn and SampEn were considered in

Ch. 3, being computed from the interpolated RR interval series. The computation of

D2 corresponds to that of D̂2(max) proposed by Bolea et al. [43], since it is computationally

efficient.
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2.3 Signal conditioning

Noise can be understood as any information contained in a given signal that does not

contribute to (or interfere with) the purpose for which the signal is being analyzed. In this

way, what is considered as noise will depend on the application: e.g., in the analysis of an

ECG signal, the electromyographic activity will be a source of noise that will contaminate

the target signal. However, if the interest is in the electrical response of the muscles in

the thorax, then the ECG will become a primary source of noise.

The presence of noise in the ECG signal may blur the exact position of the R wave

fiducial points, thus compromising HRV analysis for which accurate R peak detection

remains crucial. For this reason, a proper conditioning of the signals is required prior to

fiducial points detection. Some common interferences in the ECG signals are the baseline

wander, consisting in a low frequency modulation of the ECG occasioned by body move-

ment (respiration, postural changes or exercise) or poor electrode contact, the power line

interference and high-frequency noise, with its main source in electromyographic ac-

tivity [246]. The removal of the baseline wander can be accomplished in several ways,

from a simple high-pass filtering to polynomial fitting. The approach used in this thesis

consists in extracting the baseline with a forward-backward low-pass filter (3rd order But-

terworth filter with 0.5 Hz cut-off frequency), so that it can be further subtracted from

the original ECG:

xECG(t) = x bl

ECG
(t) − xbl(t), (2.4)

where xECG(t) is the clean ECG signal after baseline wander removal, x bl

ECG
(t) is the original

ECG signal and xbl(t) is the baseline signal as obtained from low-pass filtering. In the

case of power line interference and high-frequency noise, different filtering techniques

can be applied, being the most extended the notch filtering (at 50 or 60 Hz) and low-pass

filtering respectively.

On the other hand, there are some sources of noise that can not be avoided by sim-

ple filtering. This is the case of technical artifacts, such as poor electrode attachment

or electrode detachment, as well as some fast postural changes that can induce high-

amplitude noise in the ECG signal, completely masking it. In this situations, the R peak

detection algorithms might not be accurate and could compromise the further physio-

logical interpretation, which is especially hampering in ambulatory scenarios. Hence,

signal segments affected by this kind of artifacts should be conveniently identified and

discarded from the analysis. One possible solution relies in estimating the signal-to-noise

ratio (SNR) of the ECG signal in a continuous-time basis, so that those periods for which

SNR falls below a predefined threshold are discarded. Bailón et al. used a method for

beat-to-beat SNR estimation [21], where the SNR is computed as:

x̂SNR(i) =
A(i)

1 + PN(i)
, (2.5)
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where x̂SNR(i),A(i) and PN(i) are the SNR, peak-to-peak amplitude and level of high-frequency

noise of beat i, respectively. A(i) was obtained as the difference between the maximum

and the minimum value of the QRS-complex corresponding to beat i, whereas PN(i) was

calculated as:

PN(i) =

√
1

t2(i) − t1(i)
∫ t2(i)
t1(i) x 2

HF
(t)dt (2.6)

where xHF(t) is a high-pass filtered version of the ECG signal (2nd order, 20 Hz cut-off

frequency Butterworth filter) and t1(i) is set 150 ms after the QRS-complex corresponding

to beat i, whereas t2(i) is dependent of the instantaneous HR and is calculated as t1(i) +

RR(i)/2, being RR(i) the RR interval (in ms) between beat i and beat i + 1. Therefore,

beat-to-beat signal quality can be assessed by comparing x̂SNR(i) with a threshold, so that

those beats for which the SNR do not exceed it are discarded from the analysis.

Nevertheless, not only noise but also physiology itself can compromise ECG and HRV

analysis, since different physiological statuses may affect biosignals distinctly. One well

known example is the effect of sleep stages on HRV analysis, with decreased sympa-

thetic dominance during NREM sleep which is increased towards awake-like levels in

REM sleep [52]. This variability in HR control should be considered in the analysis, and

the absence of polysomnographic recordings will unavoidably constitute a limitation of

any HRV analysis performed during night. Some other examples of the importance of

subjecting the analysis to physiological conditions can be found in the behavior of differ-

ent biosignals to emotional or physical stress [45,121], or according to demographics (age,

gender or race) [12, 153, 268]. For these reasons, HRV analysis is usually performed dur-

ing rest, or in order to compare resting conditions with physiological changes of different

nature, and taking demographics into account. For those situations when no resting con-

ditions are available, the averaging of the analyzed parameters over long time windows

can be used to mitigate the effect of time-varying physiological conditions (e.g., in the

case of sleep, averaging over a complete sleep cycle).

Moreover, there are also pathological conditions that can lead to misinterpretation of

HRV analysis, such as some heart rhythms distinct from sinus rhythm (e.g., atrial fibril-

lation). Since HRV analysis is aimed to assess ANS activity, it is not suitable for those

conditions where the beats are not originated at the sinus node, since HR is not modu-

lated by autonomic activity in these cases. Also exacerbations in some pathologies such

as COPD, apneic episodes in SAS and other similar events are accompanied by complex

autonomic responses which should be taken into account in the analysis. Nonetheless,

several other pathologies and medications might also compromise HRV analysis inter-

pretation, since they may have a direct effect on autonomic activity or modulation of HR.

In such situations, physiological interpretation must be addressed carefully.
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2.4 Ectopic beats versus RSA

Since the SA node is not the only auto-excitable group of cells within the heart, it may

occur that a beat originated in a region different from the SA node interrupts the nor-

mal sinus rhythm. These kind of beats are known as ectopic beats, and can have either

a supra-ventricular or a ventricular origin which is unrelated to ANS modulation (an

example showing a ventricular ectopic beat is displayed in Fig. 2.2 a)). They are often

premature beats, and induce a characteristic disturbance in the tachogram, consisting in a

reduced beat-to-beat interval followed by a compensatory pause which reflects as a long

beat-to-beat interval [132], as depicted in Fig. 2.2 d). The presence of ectopic beats may

distort HRV analysis, especially in the frequency domain, since the spike-like artifacts

that they introduce in the tachogram are reflected as a wide-band noise in the frequency

domain (Fig. 2.2 e)), thus altering the spectra and leading to erroneous frequency domain

indexes estimation [41,156]. In Fig. 2.2, the effect of adding a different number of ectopic

beats to the same 5-minute tachogram is displayed.

In this way, it is evident that a proper ectopic beat management remains essential

in every HRV analysis, and several authors have proposed a variety of methods based

on direct removal or interpolation of the ectopic RR intervals [156], different filtering

techniques such as impulse rejection [175] or threshold-based filtering [147], or either

variations in the instantaneous HR [157, 172], among others. In this dissertation, the

heart timing signal-based method proposed by Mateo and Laguna [172] was employed.

Essentially, those beats exceeding a threshold for the allowed HR variation, U , are labeled

as ectopics. In [172], the threshold U was varied according to a parameter � , which in

this thesis will be referred to as �HR, so that lower values of �HR are more restrictive to

rhythm changes.

On the other hand, RSA is the principal short-term modulator of HR, and so it rep-

resents the main contribution to the HF power of HRV [4, 6]. However, the use of an

ectopic beat correction methodology which is only based on rhythm changes (and not in

ECG morphology) may cause the identification of some RSA episodes as ectopic beats,

so that they would be corrected to follow what is considered as “normal rhythm” by the

algorithm (see Fig. 2.3). Despite the fact that there might be no difference in the ef-

fect produced by an ectopic or by a strong and isolated RSA episode, the latter has an

ANS-mediated origin, and hence should be considered for a proper physiological inter-

pretation. The identification of RSA episodes with ectopic beats may particularly affect

HRV analysis in young children, who usually present a stronger RSA [87,141] and are less

prone to the occurrence of ectopic beats [186, 192]. As the different study cases included

in this thesis largely involve young children, an algorithm for the appropriate detection

of RSA episodes based both on ECGmorphology and onHR dynamics has been proposed.
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Figure 2.2: A real premature ventricular contraction (a)) and some examples showing the effect that ectopic

beats exert on HRV spectrum is displayed. The spectra on the right column correspond to the tachograms on

their left. In b) and c), the original tachogram and its spectra is shown, whereas in the other examples 1 (d) and

e)), 5 (f) and g)), 10 (h) and i)) and 30 (j) and k)) ectopic beats were added. It can be noticed how an increasing

number of ectopic beats distort the power distribution of the HRV spectra, thus compromising HRV analysis.
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circles, whereas red crosses indicate the corrected positions after applying the ectopic correction algorithm.

The large RR interval in the figure on the left is interpreted as abnormal, so that the beat highlighted with a

red dashed line is considered as ectopic and its R peak location is modified.

2.4.1 RSA detection algorithm

The algorithm consists in a two-stage analysis that departs from the ectopic beat iden-

tification and correction generated by the method of Mateo and Laguna [172], which

essentially consists in the position of those beats labeled as ectopics and the corrected

beat positions. A complete schematic of the algorithm is displayed at Fig. 2.4.

Each time that a beat is labeled as a possible ectopic, it undergoes a morphology

analysis stage, which follows the outline below:

1. The beat labeled as ectopic, as well as the previous and the next beats, are seg-

mented using a fixed window going from 200 ms before the R peak location to 400

ms after it. The three ECG segments are then normalized to the maximum ampli-

tude found in any of them, and aligned using the maximum of their covariance, as

exemplified in Fig. 2.4 a.1) to d.1). A maximum shift of ±150 ms is allowed in order

to prevent from aligning with waves that do not correspond to the target beats. The

resulting normalized and aligned waveforms corresponding to the ectopic beat, its

previous beat, and the following one are referred to as wec(t), wpre(t) and wpost(t),

respectively.

2. Considering each of the three waveforms as a vector in a K-dimensional euclidean

space, the euclidean distance between pairs of waveforms was considered as a met-

ric of their morphological similarity. In this way, three distance measurements

were obtained:
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Figure 2.4: A schematic of the algorithm for RSA episodes detection and correction is displayed. First, the beat

labeled as ectopic comes through a morphology analysis, and if it is considered similar to its surrounding beats,

the RR interval dynamics are taken into account. If the pattern followed by the tachogram is identified as a RSA

episode, beat positions are updated. Otherwise, beat positions obtained from the ectopic correction algorithm

are kept unchanged (see text for a detailed description of the algorithm).
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dref =

√∫ (wpre(t) − wpost(t))2dt,
dpre =

√∫ (wec(t) − wpre(t))2dt,
dpost =

√∫ (wec(t) − wpost(t))2dt, (2.7)

where dref accounts for the morphological difference betweenwpre(t) andwpost(t) and

it is considered as a reference, whereas dpre and dpost account for the morphological

distance between wec(t) and either wpre(t) or wpost(t).

3. Finally, the absolute values of the differences between dpre and dref and betweendpost and dref are computed independently. If the result is in both cases lower than

a predefined morphological threshold, �morph, wec(t) is considered morphologically

similar to its adjacent beats, and the next stage of the algorithm is applied. Other-

wise,wec(t) is considered as an ectopic and not as a RSA episode, so that the original

beat position detection is replaced by the output of the ectopic correction method.

If the possible ectopic is considered morphologically similar to its adjacent beats, a

HR analysis is performed. Essentially, the pattern of the tachogram in the vicinity of the

considered event is analyzed to determine whether there is a RSA episode or not. For

this purpose, the RR interval between the ectopic and the previous one, RRe, and the RR

interval previous to it, RRe-1, are located (Fig. 2.4 a.2) and b.2)), as they define a pattern

that can be used to interpret if the episode corresponds with RSA. Given a predefined

variation threshold, �RSA, four different patterns have been identified:

1. If RRe-1 < RRe the event is considered as the start of the HR deceleration posterior

to the acceleration in a RSA episode (Fig. 2.5 a) and b)).

2. If RRe-1 < �RSARRe and the RR interval following RRe is larger than it, then the event

is considered as the end of the HR acceleration previous to the deceleration in an

RSA episode (Fig. 2.5 c) and d)).

3. If RRe-1 < �RSARRe and the RR interval following RRe is shorter than it, then the even

is considered as the beginning of the HR acceleration of an RSA episode (Fig. 2.5

e) and f)).

4. Otherwise, the beats is considered as an ectopic.

In any of the first three cases, the original detections are left uncorrected, whereas

if the beat is labeled as an ectopic, the original beat position detection is replaced by

the output of the ectopic correction method. Some graphical examples of the resulting

tachograms after applying only the ectopic correction method or the ectopic correction
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Figure 2.5: Three different RSA patterns are displayed. Each RR interval series correspond to the ECG segment

displayed at its left. In a) and b), a decelerating pattern is shown, whereas the end and the beginning of two

acceleration patterns are displayed at c) and d) and at e) and f) respectively. In the ECG segments, the black cir-

cles and the red crosses indicate the original detections and the detections after applying the ectopic correction

respectively. The red circles in the RR interval series indicate the RR interval previous to the possible ectopic

(RRe-1), and the green ones indicate the RR interval occasioned by it (RRe).

plus a subsequent RSA detection and correction using different threshold combinations

are displayed in Figs. 2.6 and 2.7. In these figures, the effect of the accurate detection

of the RSA episodes in the resulting HRV spectra is also shown (note that the HF com-

ponent exceeds 0.4 Hz, since the employed ECGs belong to young children, with higher

respiratory rates than the adults).

Although at this point onemight think that increasing �HR would have been enough to

consider all the beats as non-ectopics, the analysis of Figs. 2.6 and 2.7 reveals the existence

of some advantages of applying the RSA algorithm after ectopics correction. First, ectopic

correction is limited in the amount of HR variation than can be admitted, as it can be

noticed in Fig. 2.7, where no every RSA episode is captured in spite of the increase in the

threshold. This bound is needed in order to be able to detect an absence of beats, e.g., in

a compensatory pause, as allowing larger variations would lead to interpret this pause as

normal, without labeling and correcting it. Once the beats that are suspicious of being

ectopics have been detected, the RSA algorithm allows to consider wider variations in

HR as normal if desired, only taking into account the variation in HR with respect to
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the previous beat, and not to the average HR. On the other hand, the ectopic correction

algorithm does not consider any kind of morphological information. By performing a

wave morphology analysis, the RSA correction method can better identify whether a

beat has a normal morphology or either the detected event is a real ectopic beat or a

noisy segment.

2.4.2 RSA correction in the presence of ectopic beats

In order to better analyze the effect of using different thresholds and to assess the per-

formance of the RSA detection and correction algorithm in the presence of ectopic beats,

it was applied to the MIT-BIH arrhythmia database [181], freely available at PhysioNet

[100]. This dataset contains 48 half-an-hour ECG segments which were annotated by

two or more cardiologists, who established the beat time occurrences, the nature of each

beat, and changes in the type of rhythm. Beat labels identify each beat either as normal

or as a given class of abnormal beat, which range from atrial premature beats to pre-

mature ventricular contraction or bundle branch block beats. Also rhythm changes can

belong to a large variety apart from normal sinus rhythm, e.g., atrial fibrillation, ven-

tricular bigeminy or ventricular tachycardia. All the signals were recorded at a sampling

rate of 360 Hz, and a complete description of the dataset and all the possible annotations

can be found at PhysioNet and in [181]. The total number of normal and ectopic beats

considered here was 57285 and 3852, respectively.

After ECG segments baseline wander removal and interpolation to 1000 Hz, R peaks

positions were detected using the wavelet-basedmethod proposed byMatínez et al. [167].

For simplicity, only those beats occurring during normal sinus rhythm and labeled as nor-

mal beat, atrial premature beat, aberrated atrial premature beat, supraventricular prema-

ture beat or premature ventricular contraction were considered. The ectopic and RSA

detection and correction algorithms were applied sequentially to all the recordings, us-

ing different sets of thresholds. In the case of the ectopic detection and correction, �HR

ranged from 0 to 3 in steps of 0.5. Regarding the RSA algorithm, �morph was varied between

0 and 5 in steps of 0.5, whereas two values of �RSA, 1.15 and 1.5, were tested (these values

were selected since they were later applied in Ch. 3). The performance evaluation was

accomplished by calculating the sensitivity and specificity of the beats classification in

normal or ectopics after applying either the ectopic correction alone or followed by the

RSA correction algorithm, for the different proposed sets of parameters. The results are

summarized in Figs. 2.8 and 2.9, and numerical values for some threshold combinations

are displayed in Table 2.1.

As expected, increasing the value of �HR (i.e., allowing higher deviations from the

meanHR) results in a reduction of the sensitivity in the detection of ectopic beats, whereas

small increases in �morph when the value of �HR is kept low results in an increase of the sen-

sitivity and specificity of the detection of normal and etopic beats, respectively, as dis-

played in Fig. 2.8 and Table 2.1. Although the specificity in the case of normal beats and

the sensitivity in the case of ectopics are reduced, this reduction is much smaller than the
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Figure 2.6: Differences in the tachograms obtained when varying ectopic and RSA detection and correction

thresholds. The same ECG segment is respresented in a), d), g) and j), and the tachograms on the right of each

ECG representation were obtained from the detection of its R peaks, whereas in c), f), i) and l) the spectrum

of each tachogram is shown. Red crosses and dashed lines represent the detections after applying the ectopic

correction algorithm and the tachogram obtained from them, respectively, whereas the green crosses and solid

lines represent the detections after applying the RSA detection and correction, and the resulting tachograms.

In this example, �HR and �RSA were fixed at 1 and 1.5 respectively, whereas �morph was selected as 0 in a), b) and

c), 0.5 in d), e) and f), 1 in g), h) and i), and 1.5 in j), k) and l).
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Figure 2.7: Differences in the tachograms obtained when varying ectopic and RSA detection and correction

thresholds. The same ECG segment is respresented in a), d), g) and j), and the tachograms on the right of each

ECG representation were obtained from the detection of its R peaks, whereas in c), f), i) and l) the spectrum

of each tachogram is shown. Red crosses and dashed lines represent the detections after applying the ectopic

correction algorithm and the tachogram obtained from them, respectively, whereas the green crosses and solid

lines represent the detections after applying the RSA detection and correction, and the resulting tachograms.

In this example, �HR and �RSA were fixed at 2 and 1.5 respectively, whereas �morph was selected as 0 in a), b) and

c), 0.5 in d), e) and f), 1 in g), h) and i), and 1.5 in j), k) and l).
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Figure 2.8: Sensitivity and specificity of the beat classification in normal (a) and c)) or ectopics (b) and d)), for

the different proposed thresholds. The red lines indicate the results obtained when only ectopic correction is

applied, whereas the blue lines indicate the results obtained after applying both ectopic and RSA detection and

correction (the results for growing values of �morph are further from the red line and closer to the green line, the

latter indicating the results obtained for the largest value of �morph). �RSA = 1.15 was employed.

increase in the other parameters. This behavior is maintained when increasing the value

of �RSA (see Fig. 2.9 and 2.1). However, the choice of high values for �morph results in a faster

decrease of the performance in the later case. Depending on the application, a different

set of parameters should be chosen, although considering the results of the simulation,

it can be concluded that the inclusion of the RSA detection and correction approach can

complement and even increase the performance of the ectopic beats correction alone.

2.4.3 Discussion

The main limitation of the previous simulation is that the mean age of the population in

the MIT-BIH arrhythmia dataset is much higher than the two children populations de-

scribed in Ch. 3, for which the RSA correctionmethodology was developed. Hence, much

less frequent strong RSA episodes were present in the MIT-BIH arrhythmia dataset, so

that this simulation should be only considered as a concrete example of the methodology

performance, and cannot be used for establishing the thresholds for the datasets em-

ployed in Ch. 3, for which less restrictive thresholds were employed. Since ectopic beats

are not frequent in young children, there is no reason for thinking that relaxing the al-
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Figure 2.9: Sensitivity and specificity of the beat classification in normal (a) and c)) or ectopics (b) and d)), for

the different proposed thresholds. The red lines indicate the results obtained when only ectopic correction is

applied, whereas the blue lines indicate the results obtained after applying both ectopic and RSA detection and

correction (the results for growing values of �morph are further from the red line and closer to the green line, the

latter indicating the results obtained for the largest value of �morph). �RSA = 1.5 was employed.

lowed RR variation could result in an increased number of false detections. As described

in Ch. 3, the employed thresholds were adjusted to each dataset by visual inspection

of the detections. Another limitation is the highly unbalanced number of normal and

ectopic beats, which might have an effect in the results of the simulation.

There is still not a unified explanation for the increased HR respiratory-related mod-

ulation in young children when compared with adults, although several hypotheses have

been proposed in the literature. On one hand, the smaller size of a child’s heart might

make it more responsive to fluctuations caused by respiration [87]. On the other hand,

and under the assumption that RSA could play a role in minimizing the workload of the

heart [31, 32], it is possible that the increased cardiac activity of young children is ac-

companied by a greater energy saving. Finally, maturation of the ANS may be also an

important factor.
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Table 2.1: Sensitivity and specificity of the detection of normal and ectopic beats in the MIT-BIH arrhythmia

dataset (see test for details) with the proposed methodology. The results obtained for different combinations of

thresholds are displayed.

�morph = 0 �morph = 2.5 �morph = 5

�HR = 0 �HR = 0.5 �HR = 0 �HR = 0.5 �HR = 0 �HR = 0.5

�RSA = 1.15

Sens. Normal (%) 67.54 92.61 89.41 96.75 90.59 97.07

Spec. Normal (%) 98.93 91.15 98.31 90.16 96.10 87.85

Sens. Ectopic (%) 88.80 71.03 85.45 66.87 81.42 62.69

Spec. Ectopic (%) 67.94 92.81 89.89 96.97 91.11 97.31

�RSA = 1.50

Sens. Normal (%) 67.54 92.61 90.61 97.17 92.33 97.67

Spec. Normal (%) 98.93 91.15 93.81 84.63 85.52 76.12

Sens. Ectopic (%) 88.80 71.03 76.27 56.39 62.58 42.50

Spec. Ectopic (%) 67.94 92.81 91.12 97.40 92.92 97.93

2.5 Peakness

2.5.1 Motivation

Short-term frequency domain HRV analysis is performed under the assumption that au-

tonomic modulation-induced changes in HR are stationary during the analyzed period,

typically of 5 minutes. Despite that recordings of approximately 1 and 2 minutes would

be enough for the estimation of the HF and LF components respectively [252], the stan-

dard has been set to 5 minutes for two reasons: first, it results in better estimations of

the LF component. Second, it provides a common framework for different studies con-

sidering short-term HRV. But the use of this rather long analysis window size has its

counterpart, especially in what concerns HF components, with faster oscillations. Since

HRV is not truly stationary, measurements performed in 5 minute windows account for

the average autonomic modulation, but do not provide any information regarding how

this modulation varies. In this way, non-stationarity of the vagal contribution could re-

sult in a widening of the HF component of the HRV spectrum which, eventually, might

even present a multi-modal behavior. However, this information is not accounted for by

any of the traditional frequency domain parameters, which are based on the measure-

ment of the power content in the different frequency bands (see Fig. 2.10). Since changes

in the vagal modulation pattern could provide additional information about PNS activity

and might be reflected as variations in the shape of HF spectra, a novel parameter which

accounts for how the power is distributed within the HF band is proposed below.

2.5.2 Definition

The concept of peakness was first introduced by Bailón et al. [21] in the context of robust

respiratory rate estimation, and it was later exploited by Lázaro et al. [146] and Hernando

et al. [121] for PPG-based respiratory rate estimation and stress assessment, respectively.
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Figure 2.10: Three different simulated HRV spectra with the same PHF but different shapes are displayed.

Essentially, it represents a measurement of how the power of a given frequency band is

concentrated around a frequency of interest, and it can be expressed mathematically as:

℘ =
∫Ω1

S(F )dF∫Ω2
S(F )dF , (2.8)

where Ω1 is a frequency band centered in the frequency of interest, Ω2 is the considered

frequency range and S(F ) is the spectrum to be analyzed. According to Eq. 2.8, ℘ will

range from 0 to 1, being 0 when there is no power in Ω1 and 1 when all the power in Ω2

is also contained in Ω1. At this point, it is clear that the main challenge in the definition

of peakness is the selection of appropriate frequency bands, which should be guided by

physiology and application.

In difference with previous studies where ℘ was employed to decide whether a dom-

inant component was present in the analyzed spectra, in this dissertation it is proposed

as a measurement of the spectral distribution of the HF components of HRV, and hence

somemethodological differences arise. The first one consists in the resolution of S(F ), as it
must be high enough to distinguish between near components. Here, the same resolution

used in the frequency domain analysis of HRV was employed, so that S(F )was estimated

from 5-minute length segments (since in this case S(F ) represents the estimation of the

HRV spectrum, it will be referred to as ŜHRV(F )), using the Welch’s periodogram method

(50 second windows, with 50% overlap), with Hamming windows. Hence, the spectral

resolution will be that of the Hamming window: ΔH = 1.3 FsN = 0.026 Hz (since Fs = 4 Hz,N = 50 secs ×Fs = 200 samples). In previous works using℘ for estimating the respiratory

rate, spectral resolutionwas not that critic, and therefore the spectra were estimated from
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smaller segments of 60 [21], 42 [121] and 40 [146] seconds (instead of the 5-minute win-

dows considered here). Another difference with previous works relies in the integration

bounds delimited by Ω1 and Ω2. Both frequency bands were centered in the respiratory

rate, so they were calculated in a time-variant basis. Whereas the bandwidth (BW) of Ω1

was set to Δf (the appropriate selection of this parameter is discussed below), in the case

of Ω2 it was set to ΔF = 0.15 Hz, so that only frequency components which are close to

the respiratory rate are considered. Moreover, both frequency bands were bounded be-

low by 0.15 Hz (which remains the lower limit for classical HF band) and above by HR/2

(given in Hz, HR remains the intrinsic sampling frequency of HRV [144]). In this way,

Eq. 2.8 can be rewritten as:

℘(k) = ∫ min(Fr(k)+Δf /2,HR(k)/2)
max(Fr(k)−Δf /2,0.15) ŜHRV(k, F )dF∫ min(Fr(k)+ΔF /2,HR(k)/2)
max(Fr(k)−ΔF /2,0.15) ŜHRV(k, F )dF , (2.9)

where k represents the k-th 5-minute segment of the analyzed signal, and Fr(k) accounts
for the mean respiratory rate in the k-th segment. In the following sections, the ade-

quate selection of Δf and the relationship of ℘ with several other indexes are detailedly

discussed.

2.5.3 Parameter selection

In order to evaluate the behavior of ℘ attending to the selection of Δf , a simulation

study consisting in the generation of synthetic HRV spectra was proposed. Since the

main concern relied in measuring how ℘ is able to account for the distribution of power

around a peak of interest, it was of great importance that the selected simulation model

allowed to vary the BW of the peaks in the generated spectra.

Synthetic HRV signals were generated as sums of sinusoids with custom frequencies

and amplitudes, so that:

xHRV(n) = ALFej2�FLFn + AHF1ej2�FHF1n + AHF2ej2�FHF2n +⋯ + AHFLej2�FHFLn + w(n), (2.10)

where ALF and FLF represent the amplitude and frequency of the LF component respec-

tively, and AHFl and FHFl symbolize the amplitudes and frequencies of up to L different

components in the HF band. Finally, w(n) is a white gaussian noise that accounts for

model inaccuracies and for the existence of jitter in the R wave detection. Signals of 5-

minute length were generated at a sampling rate of 4 Hz. Afterwards, the HRV spectrum

was estimated with the method proposed in [195], which allows to control the degree

of frequency smoothing through the parameter �0, so that a larger �0 results in wider

spectral components. This simulation configuration allows to represent the effect of the

widening of the HF component, as well as a multimodal HF spectrum.
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Figure 2.11: Scheme followed for studying the relationship of ℘ with different parameters (see text for details).

The simulationswere performed according to the following scheme, which is depicted

in Fig. 2.11:

1. Provided the desired frequency components and their amplitudes, a 5-minute length

HRV analytic signal (xHRV(n)), sampled at 4 Hz, was generated as in Eq. 2.10, without

adding the noise term.

2. One hundred realizations of xHRV(n)were generated by adding different realizations
of additive white gaussian noise (AWGN), wi(n).

3. The spectrum of each realization (ŜHRVi(F )) was estimated, provided �0.
4. The peakness of each ŜHRVi(F ), ℘i, was computed with a given Δf . An example of

this process is shown in Fig. 2.12.

5. The estimation of ℘ was obtained as the mean of all the ℘i.

In order to study the behavior of ℘ against different BW, several simulations were

conducted, considering one LF component (ALF = 0.12 a.u., FLF = 0.1 Hz) and one HF

component (AHF = 0.1 a.u., FHF = 0.3 Hz). Fixed �0 = 0.01 and � = 0.3 were selected for the
spectral estimation (see [195]), whereas �0 was varied from 0.01 to 0.25, and Δf ranged

from 0.25ΔH to 4ΔH Hz. The power of the different realizations of AWGN was set to
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0.01 a.u.2, which is approximately the power of the error introduced by a jitter of one

sample in the fiducial points detection when the sampling frequency of the ECG is 250

Hz [20]. The value of ℘ was computed for each possible combination of �0 and Δf , and
the results are displayed in Fig. 2.13, where also the relationship between peakness and

the HF component BW (measured at -3 dB) for different values of Δf is shown.
According to the simulation results, the behavior of℘ is similar independently of the

selected Δf , with low values when the BW is large and most of the power lays outside

Δf , and tending to saturate with small BW, when most of the power is contained within

the band delimited by Δf . However, not all the options for Δf are equally adequate for

the purpose of this thesis. E.g., values lower than 0.5ΔH present a more linear behavior,

not tending to saturate with a reasonably small BW. On the other hand, values larger

than 2ΔH saturate very fast, thus providing a small dynamic range. From the remaining

options, the most interesting one is Δf = ΔH because of two desirable properties: it will

account for all the power of a perfect sinusoid (since it shares the spectral resolution

of the spectral estimation method) and, in the presence of two sinusoids with the same

amplitude, one of which lays within the band delimited by Δf , the value of ℘ will be 0.5.

The latter property can be extended to the case when N sinusoids with equal amplitudes

are present in the spectra and only one of them lays within the band delimited by Δf , for
which ℘ = (totalpower)/N . For these reasons, and when not indicated, Δf = ΔH will be

considered.

2.5.4 Relationship with kurtosis

In probability theory and statistics, the kurtosis of a random variable is a measurement of

the propensity of its probability distribution function to produce outliers. In other words,

kurtosis accounts for the tailedness of a given random variable. Mathematically, kurtosis

is defined as:

� = Kurt(x) = E [(x − �� )
4] = E[(x − �4)](E[(x − �)2])2 = �4�4 , (2.11)

where x is a random variable, � and � are respectively the mean and standard deviation ofx , andE is the expectation operator. It can be demonstrated that the kurtosis of a normally

distributed random variable is equal to 3, and this fact was considered by Pearson [197]

to define � as:

� = �4�4 − 3, (2.12)

so that its value is relative to that of the normal distribution. Although the definition in

Eq. 2.12 is known as excess kurtosis, it has been also referred to simply as kurtosis, which

can lead to confusion if the definition is not provided. Here, correction with respect to

normal distribution was not considered, so the definition in Eq. 2.11 was employed.
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Figure 2.12: Synthetic HRV spectral with one (a)) or several (b)) peaks in the HF band. The frequency bands

used for the computation of peakness and the frequency of the component of interest (Fr) are displayed. In the

case of the unimodal signal, ℘ = 0.44, whereas in the multi-modal signal ℘ = 0.24.

Pearson regarded kurtosis as “a degree of flat-toppedness which is greater or less

than that of the normal curve” [197]. He also introduced the terms platykurtic, leptokur-

tic and mesokurtic to refer to a distribution which is respectively more flat-topped, less

flat-topped or equally flat-topped than the normal curve. Although the concept of kur-

tosis has been widely considered as a measurement of flat-toppedness or peakness, as

proposed by Pearson, for more than a century, Westfall provided strong evidence that

kurtosis reflects negligible information about the peak of a distribution, being it rather

related with its tails [277].

Thinking of ℘ from Westfall’s interpretation, it could occur that the total frequency

content of ΔF contributed much more than the content of Δf to the value of ℘. In this

way, it results interesting to compare ℘ and � in order to comprehend whether they are

measuring different phenomena or can be used interchangeably.
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lected as multiples of the resolution of the Hamming window. Note that in b) the axis of abscissas is represented

in logarithmic scale.

The first difference between ℘ and � resides in their upper bound: whereas ℘ sat-

urates at 1, when all the power in ΔF is also contained in Δf , � is unbounded above,

thus complicating the definition of what low and high � values are. Another important

difference arises when considering the scenarios that would lead to an increase in each

magnitude. In the case of℘, its value can only get higher if a greater percentage of the to-
tal power in ΔF lays within Δf . In contrast and according toMoors’ interpretation [183],

there are two circumstances that lead to increased �:
(a) if most of the samples are concentrated around the mean of the distribution, and

(b) if most of the samples lay in the tails of the distribution.

Hence, it is possible that℘ and �might share a commonmeaning in the case of (a), but

it follows that they will not account for the same information in scenario (b). In order to

study similarities between bothmeasurements given a distribution which is concentrated

around its mean value, the simulation proposed above was reproduced. Thus, synthetic

HRV spectra with different BWwere generated, and℘ and � were calculated with respect
to them (see Fig. 2.14). It is important to note that � was only calculated in the frequency

band delimited by [Fr − ΔF /2, Fr + ΔF /2], so that the same frequency components were

considered for � and ℘.
As it can be noticed in Fig. 2.14, whereas ℘ resembles an inverted sigmoid function,� presents a negative exponential-like behavior. Hence, assuming that:

℘(x) ∼ 1
1 + ex , (2.13)
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Figure 2.14: Evolution of ℘ (a)) and � (b)) in function of BW. For the computation of ℘, Δf = ΔH was selected.

Note that the axes of abscissas are represented in logarithmic scale.

and

�(x) ∼ e−x , (2.14)

a relationship between ℘ and � can be established as:

℘ ∼ 1
1 + 1/� . (2.15)

In order to provide the inverse sigmoid model with more degrees of freedom, a modi-

fied Boltzmann sigmoidal model (used byNavarro et al. for modeling the phase transition

of smart gels [189] and by Bolea et al. for fitting log-log curves for correlation dimension

calculations [43]) was employed, so that ℘ and � were related as:

℘̂(�) = A2 − A2 − A1

B + e (ln(�)−�0)� , (2.16)

being A1, A2, B, �0 and � the design parameters, which were obtained by fitting the model

in a least squares sense. Since the behavior of ℘ depends on the selected Δf , also the

model will show this dependence, as displayed in Fig. 2.15.

Given the relationship displayed in Eq. 2.15 it is clear that, in the presence of a uni-

modal distribution with the probability mass concentrated around its mean, both mea-

surements can be considered as equivalent. However, this equivalence should vanish in

the case of multi-modal distributions, where the ratio of the power in the different modes

should affect℘ and � distinctly. Hence, a new simulation with two peaks in the HF band,

placed at 0.25 and 0.3 Hz, and fixed �0 = 0.03 was conducted. The peak in 0.3 Hz was
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selected as the peak of interest, and the ratio between the amplitudes of both peaks was

modified in order to evaluate the effect of a shift of power from the peak of interest to-

wards the other frequency component. The results of this simulation are reflected in Fig.

2.16, where it can be noticed how the value of ℘ increases as the power is concentrated

in the peak of interest independently of the selected Δf , as expected. In contrast, and

according to Moors [183], � presents a local minimum when both peaks have the same

amplitude, and its value increases either if the power tends to concentrate near to the

peak of interest or away from it. In view of this behavior, it can be concluded that kur-

tosis can not be employed as a synonym of peakness in the presence of a multi-modal

distribution, since it may reflect either the amount of power contained in the component

of interest, or the shift of power towards other frequency components, thus having an

ambiguous interpretation. Since the HF band of HRV can present a multi-modal behav-

ior, peakness might be regarded as a more adequate mathematical tool for characterizing

the power distribution.

2.5.5 Relationship with HRV frequency domain analysis

Since ℘ is proposed as a new parameter for the characterization of HRV spectra, it is

important to study its relationship with the classical frequency domain HRV indexes.

In this way, two new simulations were proposed, in which the power within the HF

band was varied according to two different strategies: augmenting the power of a single

peak or of several peaks contained within the HF band. In both cases, the simulation

scheme proposed in Fig. 2.11 was used. Whereas in the former the amplitude of the HF

component (FHF = 0.3 Hz) was varied between 0.025 and 0.5 a.u., in the latter the ratio

between the amplitude of the component of interest (FHF = 0.3 Hz) and the sum of the

amplitudes of four other components located at 0.22, 0.35, 0.33 and 0.37 Hz was varied
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from 0.1 to 1.5. Fixed �0 = 0.03 was employed, and classical PLF and PHF were computed as

the powerwithin the [0.04, 0.15] Hz and the [0.15, 0.4] Hz bands, respectively, as proposed

by the Task Force [252]. Results of these simulations are displayed in Figs. 2.17 (a) and b))

and 2.18 (a) and b)).

In Fig. 2.17 (a) and b)) it can be noticed how ℘ is scarcely affected by changes in the

power of the measured peak, and that this behavior is the same independently of the

selected Δf . However, Spearman correlation of � = 1 for all the considered Δf indicates

a monotonous behavior, so that the value of ℘ always increase with increasing PHF. Nev-

ertheless, and as displayed in Fig. 2.18 (a) and b)), this is not true in the presence of a

multi-modal HF spectrum. In this case, � = −1 for all the analyzed Δf indicated a total

negative correlation between ℘ and PHF, thus enhancing the fact that not only HF power

but also how this power is distributed in the spectra might contribute with additional in-

formation to the traditional HRV analysis. Regarding PLF, its relationship with℘ remains

more difficult to establish, since it will only have an effect on it when the LF components

are very close to the LF upper bound, thus leading to a shift of power towards the HF

band that could directly affect the computation of ℘, and, in this case, the physiological

interpretation would be compromised.

Nevertheless, it is crucial to keep in mind that simulation is not enough for modeling

the complex interactions between the two main branches of ANS, and hence between

PLF and PHF. The fact that SNS and PNS often present an opposing effect, and taking into

account that awithdrawal in sympathetic tone is reflected similarly to an increase in vagal

tone and vice versa, it follows than the relationship between PLF, PHF and ℘may be much

more complex than that suggested by simulations. In this way, the relationship between

measurements of the sympathovagal balance such as RLF/HF and PLFn with ℘ might be of
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great interest in order to elucidate whether ℘ could contribute to the classical frequency

domain HRV analysis. This analysis is performed in Ch. 3, using real HRV signals.

2.5.6 Relationship with HRV nonlinear analysis

From Figs. 2.17 (a) and b)) and 2.18 (a) and b)), it can be inferred that ℘ and PHF are not

measuring the same phenomena. Since ℘ is related with how the power in the HF band

is distributed, it could be also associated with how complex a spectrum is, understanding

complexity as the number of frequency components present in the spectrum. In this way,

the least complex spectrum would be that of a perfect sinusoid (with only one spectral

component), whereas themost complex onewould be that of a white gaussian noise (with

all the possible spectral components).

In order to evaluate how ℘ might be related with nonlinear HRV analysis, D2 was

computed from the same two simulations proposed in the section above, where one and

five HF components were considered. Importantly, a high-pass filtering (5th order But-

terworth filter) was applied so that the contribution of the LF components to D2 was not

considered. D2 was calculated as proposed by Bolea et al. [43] (D2(max)), and the results

are displayed in Figs. 2.17 (c)) and 2.18 (c)). When considering only one peak, D2 does

not present a dependence with PHF, and the deviations from its constant-like behavior

are more likely due to the effect of noise (see Fig. 2.17 (c)). In this case, a clear relation-

ship with ℘ can not be established, since they present a very low Spearman correlation

(� = 0.37), although since ℘ tends to saturate they both resemble a similar behavior.

When adding more peaks, as in Fig. 2.18 (c), D2 presents a monotonous decreasing be-

havior when the dominance of one single component increases, which is highly inversely

correlated with℘ (� = −0.99). Hence, lower values of℘ are apparently related with more

complex spectra, understood as spectra with more variety of non-negligible frequency

components. However, it is important to highlight that this simulation analysis is not

enough to establish a relationship between℘ and nonlinear HRV analysis, since two sig-

nals with the same spectra can present very different nonlinear dynamics [133], which

can not be assessed from frequency-domain analysis.

2.5.7 Discussion

Traditional frequency domain HRV analysis relies on the assumption that signals are

stationary during the analyzed period. However, biological signals are far from being

stationary, even in segments of only some minutes. The effect of non-stationarity re-

flects in the spectrum as a widening of the main components, which might even result in

the appearance of several peaks with very close central frequencies. This phenomenon

particularly affects HF components, with faster fluctuations, but is not assessed through

traditional indexes based on in-band power quantification. For this reason, an index to

account for the power distribution within the HF band, ℘, has been presented. Despite

being conceptually similar to the kurtosis of a distribution, it has been proven to provide
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Figure 2.17: Evolution of ℘, PLF, PHF and D2 in function of AHF when only one HF peak is considered. ℘ is

shown for several different values of Δf selected as multiples of the resolution of the Hamming window.

different information. In this way,℘ is monotonically increasing with increasing concen-

tration of power near the frequency of interest, whereas kurtosis can increment its value

with increasing power concentration either around a frequency component or far from it.

Moreover, an analysis of the appropriate parameters for ℘ calculation and a comparison

with traditional frequency and nonlinear domain analysis was performed, revealing the

potential value that it could add to HRV analysis, since it is not necessarily related with

any of the considered parameters. Considering that ℘ accounts for the distribution of

power around a frequency component of interest, its physiological interpretation could

be related with the stationarity of that frequency component. Given that the frequency

of interest is that of the mean respiratory rate, which is known to represent the main con-

tribution to the HF band, lower values of ℘ might reflect an increased variability of the

respiratory rate during the analysis period, or either an increased adaptability of vagal

modulation, which is in constant change to meet the homeostatic demands of the body.
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the sum of the amplitudes of four additional peaks. ℘ is shown for several different values of Δf selected as

multiples of the resolution of the Hamming window.

2.6 Effect of the respiratory rate

Despite RSA represents themain contribution to theHF power ofHRV [4,6], there are sce-

narios in which the respiratory rate is not contained in the [0.15, 0.4] Hz HF band, so that

the respiratory-related modulation of the HR is shifted towards higher or lower frequen-

cies, thus compromising the classical frequency domain HRV analysis [36]. Hence, it is of

paramount importance to simultaneously consider respiration when analyzing HRV [50].

When the respiratory rate is above 0.4 Hz, e.g. during sport [20, 122] or in infants and

children [89], the HF band has to be redefined so that it contains the respiratory-related

components. On the other hand, when it is lower than 0.15 Hz, as it occurs, e.g., in re-

lax situations [121], a redefinition of the HF band is not enough, since it would overlap

with the LF band, thus resulting in a lack of differentiation between the HRV compo-
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nents related or unrelated with respiration. In this case, some authors opt for discarding

those segments for which respiratory-rate lays within the LF band [121]. However, some

mathematical tools for removing respiratory influence from HRV have been proposed in

recent years [149,280], thus enabling the further analysis of periods with low respiratory

rates.

2.6.1 Modified high-frequency bands

When respiratory rate is close to or above 0.4 Hz, a shift of power towards higher fre-

quency components results in an unreliable HF power measurement (as displayed in Fig.

2.19 a)). In order to account for the respiratory-related power, the HF band must be re-

defined. There are various options, which range from extending the bandwidth of the

classical HF band to the definition of a new band which is guided by respiration, and the

selection of the approach to implement should be guided by physiology and application.

Some possibilities are:

1. Extended HF band: the upper bound of the HF band is changed to HR/2 (see Fig.

2.19 b). This approach is independent on the respiratory rate, but since it is very

wide, it could include some components with uncertain origin. Additionally, HR

variations affect the window length and therefore the power estimation. The time-

varying extended HF band is mathematically defined as:

Ωe
HF
(k) = [0.15,HR(k)/2]Hz. (2.17)

2. HF band centered in respiration: the HF band is determined as a fixed frequency

window (ΔF ) centered in the mean respiratory rate of the analyzed period, Fr(k)
(see Fig. 2.19 c)). It avoids the inclusion of frequency components with uncertain

origin, such as mid-frequency components [4, 103], although it requires a contin-

uous estimation of the respiratory rate, and an appropriate selection of ΔF . The
time-varying HF band centered in respiration is then defined as:

Ωc,f b
HF (k) = [max(0.15, Fr(k) − ΔF /2),min(Fr(k) + ΔF /2,HR(k)/2)]Hz. (2.18)

In 5, both options were considered, so that, in order to distinguish between them,

when the extended HF band is used, the HF-related HRV variability parameters will be

referred to as Pe
HF
, Re

LF/HF
and Pe

LFn
. On the other hand, when the centered HF band is em-

ployed, they will be referred to as Pc
HF
, Rc

LF/HF
and Pc

LFn
. In Ch. 3 and 6, only the HF band

centered in respiration is employed and, for simplicity, the power within it will be re-

ferred to as PHF.

2.6.2 Removing respiratory influence from HRV

There are also scenarios in which the respiratory rate is very low, as it happens during

relax situations [121], or in certain applications related with the control of respiration,
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e.g., meditation [148]. In those cases, the RSA-related components might lie within the

LF band or close to its upper bound, as displayed in Fig. 2.20 (c) and d)). Under such a

condition, classical HRV analysis would lead to an underestimation of the HF power and

an overestimation of the LF power, thus resembling either a sympathetic activation or a

vagal withdrawal, and resulting in a misinterpretation of the real ANS state [36].

If HRV is to be analyzed in the presence of low respiratory rates, there are several

methodologies that can be followed. The most simple and straightforward option would

be to discard from the analysis those samples for which respiratory rate lays within the

LF band. However, if an important percentage of data is discarded, this could have a

direct effect on the obtained results. Moreover, in short recordings or in certain applica-

tions, it can occur that there are no samples for which respiratory rate is above 0.15 Hz,

thus impeding classical HRV analysis. Another alternative relies in avoiding the use of

frequency domain HRV analysis, considering other approaches such as time domain or

nonlinear analyses. Although it may be sufficient in some cases, this would difficult the

differentiation between the activity of the sympathetic and the parasympathetic branches

of the ANS, thus hampering the physiological interpretation. Nevertheless, several au-

thors have considered amore interesting approach consisting in removing the respiratory

influence from HRV, so that frequency-domain HRV analysis can be still applied.

A series of methodologies have been proposed for removing respiratory influence

from HRV: Granger’s causality [149], adaptive filtering, ARMAX modeling, multi-scale

principal component analysis or orthogonal subspace projection (OSP) [280]. From all

this possibilities, OSP was considered in this work, due to its simplicity and its perfor-

mance in different applications, such as emotional stress assessment [264,281] and auto-

matic sleep apnea detection [263].
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Orthogonal subspace projection

Given a matrix X of size (K × L), formed by L column vectors xl = {xl(1), xl(2),… , xl(K )}T ,
an orthogonal projection matrix, P, that maps any vector in a subspace defined by the

column space of X, S(X), can be constructed as:

P = X(XTX)−1XT , (2.19)

and the projection of a vector y ∈ ℝK in S(X) can be calculated as:

yS(X) = Py. (2.20)

In this way, the information in the HRV signal which is linearly related to respiration

can be removed by projecting the originalmodulating signal (which, for simplicity, will be

referred to in vector notation, m, in this section), into a subspace defined by respiration.

Hence, X is constructed using delayed versions of a given respiratory signal [264], xresp,

up to 2 seconds. Then, the respiratory and residual (non-respiratory related) components

of m (mresp and mresid respectively) can be obtained as:

mresp = Pm,
mresid = (I − P)m = m −mresp. (2.21)

As displayed in Eq. 2.21, mresid will not contain information linearly related with res-

piration and therefore it can be employed for HRV analysis in the classical HF band.

Nevertheless, the interpretation of the HF band content in the absence of RSA contri-

bution remains uncertain. In order to keep on distinguishing between sympathetic and

parasympathetic activity, mresp can be considered, as far as its frequency content is re-

lated with respiration and hence it should have a vagal origin (there are some situations,

such as during exercise or when a person is speaking, in which the power content in

the HF band may not be related with PNS activity). In this way, new LF and HF power

measurements can be defined as:

POSP

LF
= ∫ 0.15

0.04 Ŝresid(F )dF ,
POSP

HF
= ∫ HR/2

0.04 Ŝresp(F )dF , (2.22)

where Ŝresid(F ) and Ŝresp(F ) are the spectra ofmresid andmresp respectively. In the case of POSP

HF
,

the onset of the frequency band of interest is set at 0.04 Hz, since the initial assumption

was that the respiratory rate laid within the LF band. Once that a definition of POSP

LF
and
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Figure 2.20: Two examples of HRV spectra (a) and c)) and their correspondent respiration spectra (b) and d),

respectively) are displayed. Whereas in a) and b) the respiratory rate is above 0.15 Hz (marked with black

dashed lines), in c) and d) it lays within the LF band, thus compromising HRV analysis. Orthogonal subspace

projection decomposition was applied to the spectra in c) and d), and the respiration (green) and residual (red)

components are displayed.

POSP

HF
is available, an unconstrained measurement of the sympathovagal balance can be

defined as SBu =POSP

LF
/POSP

HF
[264]. An example of the OSP decompostion is displayed in Fig.

2.20.

2.7 Cardiorespiratory coupling

As aforementioned, HRV and respiration are intrinsically linked, being RSA the main

contribution to rapid HR variations. In this way, the interpretation of HRV analysis

should be always driven by its relationship with respiratory activity. However, including

respiratory information in HRV analysis is not the only way to account for the effect of

respiration on HRV, and there is a growing interest in studying the so called cardiorespi-

ratory coupling (CRC), which represents the association between neural control of res-

piration and HR. Actually, Schäfer et al. suggested that RSA and cardiorespiratory syn-
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chronization are two different phenomena representing distinct aspects of the interaction

between cardiac and respiratory rhythms [231]. Some authors have reported the appear-

ance of periods of CRC during rest [231], controlled breathing [68] or anesthesia [91],

and whereas the general belief is that it is lost in some respiratory disorders [93, 129] or

during mental stress [191], Riedl et al. suggested an increased CRC in sleep apnea, maybe

linked to the high autonomic stress induced by the disease [219].

Nevertheless, there is no consensus in the most appropriate way of measuring CRC,

and several approaches have been proposed in the literature. Some examples include

the use of Granger causality, entropy measurements or phase synchronization analysis,

as well as nonlinear prediction approaches [235]. In this dissertation, we analyzed CRC

through the time-frequency (TF) coherence (TFC) maps of HRV and respiration. There-

fore, the TF cross-spectrum of the HRV and the respiratory signals, ŜHRV,resp(t, f ), was esti-
mated using a TF distribution belonging to Cohen’s class, defined as in [195]:

ŜHRV,resp(t, f ) = ∫∫ ∞

−∞
AHRV,resp(�, � )Φ(�, � )ej2� (t�−f � )d�d� , (2.23)

where AHRV,resp(�, � ) is the ambiguity function [88] of the analytical signal representation

of the modulating and the respiratory signals, xHRV(t) and xresp(t) (which were obtained

using the Hilbert transform). On the other hand, Φ(�, � ) is a smoothing function in the

ambiguity domain for the reduction of the cross terms in a quadratic distribution (in this

thesis it was selected as an elliptic exponential kernel). They are respectively defined as:

AHRV,resp(�, � ) = ∫ ∞

−∞
xHRV(t + �

2 )x∗resp(t − �
2 )e−j2��tdt,

Φ(�, � ) = e−�[( ��0 )2+( ��0 )2]2� . (2.24)

The time and frequency resolution of ŜHRV,resp(t, f ) can be adjusted by modifying the shape

of the smoothing kernel in Eq. 2.24 through the parameters �0 and �0, respectively. Also
the roll-off factor of the kernel can be controlled with �. Afterwards, the TFC distribution

was obtained as:


̂ 2(t, f ) = |ŜHRV,resp(t, f )|2ŜHRV(t, f )Ŝresp(t, f ) , (2.25)

where ŜHRV(t, f ) and Ŝresp(t, f ) represent the TF spectra of the modulating and the respira-

tory signals respectively, estimated as in Eq. 2.23. From the TFC distribution it is possible

to obtain different measurements that are expected to reflect the degree of CRC, such as

the bandwidth in which 
̂ 2(t, f ) is higher than a predefined threshold or its mean value in

a given bandwidth. These two CRC measurements are proposed and discussed in Ch. 3.
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2.8 Discussion and conclusions

In this chapter, a framework for contextualized HRV analysis has been presented. First,

the methodology followed in this dissertation for HRV assessment, based on the TVIPFM

model, was introduced. Afterwards, some of the most relevant aspects that should be ad-

dressed in HRV analysis were described, including the effect of noise, physiology and

pathophysiology, presence of ectopic beats and strong RSA, and the effect of respira-

tory rate. Also, an index for quantifying the distribution of the HF components of HRV

was described and compared with traditional frequency and nonlinear domain analyses.

Nonetheless, two different parameters for the quantification of CRC were introduced.

The use of the TVIPFM model presents some advantages that make it appealing for

HRV estimation. On one hand, it assumes the existence of a modulating signal that car-

ries the information concerning SNS and PNS activity, so that it can be provided with

a physiological background which remains crucial for results interpretation. Moreover,

the TVIPFM model formulation allows to account for the presence of ectopic beats, and

provides a time-varying correction to remove the influence of mean HR, which make it

suitable for a large set of scenarios. Nevertheless, it is important to keep in mind that the

TVIPFM model is only a simplification of the enormously complex HR control system,

and it was not specifically developed for heart beat occurrence time series representation,

although it is highly related with the SA node behavior.

Regarding the presence of noise, the different preprocessing techniques for dealing

with the most common sources of artifacts are well know. Beyond technical noise, it is

important to pay attention to the different sources of physiological information that may

be present in the analysis, since HRV is widely altered according to the physiological

status. The same is true for a wide range of pathological conditions or the use of medi-

cation, since they might alter HRV and hence compromise the further interpretation. In

this way, HRV analysis should be guided by physiology, so that the possible physiological

confounders are taken into account.

Also the effect of ectopic beats and strong RSA episodes were considered. Despite

the fact that they could exert a similar effect on HRV spectrum in certain cases, ectopic

beats do not have their origin in the sinus node and thus they are not governed by ANS

modulation. Therefore, ectopic beats do not reflect ANS activity and their effect should

be corrected. On the other hand, strong RSA episodes may provide valuable physiologi-

cal information, specially in the case of young children. However, most of the techniques

employed for ectopic beats detection are only based on thresholding the RR interval se-

ries, or either in the deviation of a given RR interval from its expected value, which could

lead to the misclassification of RSA episodes as ectopic beats. Here, a methodology for

distinguishing between both events has been introduced. Although the algorithm perfor-

mance quantification presented in this chapter is limited to the concrete dataset in which

it was applied, its dependency with respect to the different parameters was analyzed. The

strength of this algorithm is better exploited in Ch. 3, where children populations were

analyzed.
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Furthermore, ℘ was introduced as a complement to frequency domain HRV analy-

sis, allowing to quantify the power distribution of the HF components of HRV. A careful

analysis of the behavior of℘ in function of different parameters as well as of their appro-

priate ranges of values for HRV analysis has been conducted through a simulation study.

Moreover, the relationship between ℘ and traditional frequency and nonlinear domain

HRV analyses was considered, concluding that ℘ could provide an added value, which

might be related to the stationarity or adaptability of vagal activity.

Respiratory rate is another well-known confounder in HRV analysis. In this way,

classical definition of the LF and HF bands may derive in misleading in-band power

measurements when respiratory rate is either too high or too low. In the former case,

the most common approaches rely on the redefinition of the HF band, which can be

extended towards higher frequencies or shifted to be centered in the respiratory rate,

so that respiratory-related components are well captured. When the respiratory rate

is too low, redefining the frequency bands is not an option, since vagal and sympa-

thetic influence on HRV are mixed within the LF band. In order to deal with this sit-

uation, several authors have proposed different methods aiming to remove respiratory

information from HRV [149,280], so that respiratory-related and -unrelated components

can be analyzed separately. In this dissertation, the OSP methodology was employed

due to its reduced computational complexity and its promising performance in previous

works [263, 264, 281]. Nevertheless, the use of techniques for dealing with the effect of

high or low respiratory rates is crucial in HRV analysis, since the nature of the frequency

components in the HF band when respiratory modulation is not contained within it re-

mains an open debate.

Although the interactions among respiration and HRV are usually quantified through

RSA, there is evidence that synchronization between them represents a different phe-

nomenon [231], which can be assessed through various CRC measurements. Despite the

fact that CRC is known to be altered in several disorders and conditions, there is still

controversy regarding the direction and nature of these changes, and the same is true for

the most appropriate way of accounting for them. In addition, whereas CRC measure-

ments are aimed at assessing neural control of cardiorespiratory activity, it is important to

take into account that respiration also modulates HR by mechanical effects [42], which

could compromise the physiological interpretation. Hence, large research is still to be

conducted in the potential of CRC for ANS assessment.

Summarizing, HRV analysis should be performed carefully and subjected to physiol-

ogy, since otherwise wide intra- and inter-individual variations might compromise the

interpretation of the results. Under the proper framework, HRV analysis could raise as a

convenient noninvasive tool for aiding in the increasingly expanding field of personalized

diagnosis and treatment of several pathologic conditions.
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3.1 Motivation

Lung function assessment remains essential for the diagnosis and monitoring of several

respiratory affections such as chronic obstructive pulmonary disease or asthma. Whereas

in the former pulmonary function is permanently reduced, asthma is characterized by a

variable and irregular respiratory tract obstruction, and therefore a continuous monitor-

ing of airway function would be desirable in asthmatics. Yet, the diagnosis of asthma

is performed through the evaluation of the clinical history, assessment of inflammatory

markers and single-time airway function measurements, being spirometry the most ex-

tended test. However, since young children are not able to perform repeatable expira-

tory maneuvers, there is still not a feasible means for the objective diagnosis of asthma

in this population [97]. In this way, the diagnosis of asthma in young children is very

dependent on the clinical history, and usually based on prediction indexes, such as the

modified asthma predictive index (mAPI), which have employed different criteria like

parental asthma, atopy or the presence peripheral eosinophilia for risk of asthma strat-

ification. Whereas these methodologies share a high specificity, very low sensitivity is

also a common feature [58], which might lead to a lot of missing diagnoses.

Treatment of asthma during childhood is equally challenging, and although ICS re-

main the standard medication for the prevention of symptoms, there is some controversy

regarding the possible negative effects that ICS may have during childhood, since their

use has been related with growth reduction and hypothalamic-pituitary-adrenal suppres-

sion [60, 69, 119].

These difficulties in the diagnosis, monitoring and treatment of asthma during child-

hood have motivated several studies aiming at developing a noninvasive tool that can be

used for patient state assessment in a time-continuous manner. Most of them have fo-

cused on ANS monitoring, since abnormal ANS activity has been related with the patho-

genesis of asthma [80, 130]. Particularly, the parasympathetic branch of the ANS is in-

volved in bronchoconstriction [151] and bronchomotor tone control [184], and the fact

that sympathetic innervation is sparse in the small airways [151] has pointed to PNS as

strongly related with altered airway tone in asthmatics. Since ANS, also modulates car-

diac activity, HRV analysis has been employed for its characterization in asthma, both

in adults [131, 287] and children [80]. Nevertheless, and to the best of our knowledge,

preschool children have not been considered. Hence, in this chapter we aimed at as-

sessing the possible clinical value of HRV analysis for the characterization of a group of

preschool children classified attending to their risk of developing asthma. Furthermore,

we considered the possibility of using the proposed indexes for the monitoring of the

asthma condition in children under and after ICS treatment. Under the hypothesis that

PNS activity is altered in asthma, it is expectable that it will turn normal after treatment in

subjects without or with low risk of asthma, but it should remain unchanged in children

with or at high risk of asthma.
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3.2 Materials and methods

Two independent databases were analyzed in this chapter, namely the Helsinki Univer-

sity Hospital and Tampere University Hospital datasets. The former was employed for

characterizing the HRV spectra of children classified attending to their risk of asthma.

In the latter, the same characterization was used for monitoring the asthma condition

of a group of children who underwent a three month ICS treatment. Both datasets are

described below.

3.2.1 Helsinki University Hospital dataset

The first dataset analyzed in this chapter consists of ECG holter and IP recordings of 44

children who were referred to the Pediatric Allergy Unit of Helsinki University Hospital

due to persistent or recurrent lower respiratory tract symptoms, such as wheezing (a

whistling sound when expiring air from the lungs), shortness of breath or coughing.

From this 44 recordings, 10 were discarded due to electrode detachment, patient turning

off the device or forgetting to turn on the device. The recording devices and the ECG

and IP acquisition were custom designed at Tampere University of Technology (Tampere,

Finland) [236], and signals were acquired with a sampling frequency of 256 Hz. The mean

length of the recordings is about 14 hours (± 3.5 hours).

Patients were classified into three groups according to their mAPI [108]. Children

with a positive mAPI were classified as a high risk (HiR) group for developing persistent

asthma, whereas children with negative mAPI were classified as low risk (LoR). Further-

more, another group was formed with children with a confirmed history of wheeze but

that were under ICS treatment at the time of the recording. In the case of the HiR and

LoR groups, none of the subjects was under regular asthma treatment, nor were they

supplied bronchodilators during the recordings. Table 3.1 contains a summary of patient

information. Data acquisition was approved by an institutional pediatric ethics review

board and informed written consent was received from guardians of all patients. Also

informed written parental consent was received before data acquisition. For simplicity,

this dataset will be referred to as HUH dataset hereon.

3.2.2 Tampere University Hospital dataset

The second dataset is composed by 68 children (45 boys and 23 girls) with a median age

of 2.5 years (range [0.9, 5.7]), who visited the Tampere University Hospital (Tampereen

Yliopistollinen Sairaala, TAYS) emergency room due to recurrent obstructive bronchi-

tis. All of them were prescribed ICS treatment during three months. ECG and IP were

acquired at a sampling rate of 256 Hz with the same custom designed recording device

used for the previous dataset [236]. Three different recordings were scheduled for each

subject:
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Table 3.1: Characteristics of the children in the HUH dataset. (Whereas continuous variables are expressed as

median (min-max), integer variables are displayed as n (%). BMI: Body Mass Index, SPT: Skin Prick Test.)

LoR HiR ICS Total

n 14 13 7 34

Sex (male) 6 (43%) 5 (39%) 4 (57%) 15 (44%)

Age (years) 5.0 (3.4-6.6) 4.6 (3.4-6.8) 5.1 (3.8-6.7) 4.9 (3.4-6.8)

Height (cm) 111 (96-121) 110 (94-126) 108 (104-127) 109 (94-127)

Birth weight (kg) 3.6 (2.1-5.2) 3.6 (2.8-4.6) 3.5 (3.0-4.1) 3.5 (2.1-5.2)

BMI 16.5 (13.5-18.3) 15.9 (14.8-18.0) 16.1 (14.5-18.0) 16.1 (13.5-18.3)

Wheeze 5 (36%) 13 (100%) 7 (100%) 26 (77%)

Allergic rhinitis 2 (14%) 3 (23%) 2 (29%) 7 (21%)

Atopic dermatitis 7 (50%) 7 (54%) 3 (43%) 17 (50%)

SPT positivity 3 (21%) 9 (69%) 5 (71%) 17 (50%)

Parental asthma 4 (28%) 6 (46%) 4 (57%) 14 (41%)

• Recording 1 (R1): it was scheduled 1 week before the end of the ICS treatment. It

started at the clinic, where the parents were instructed how to place the electrodes

and start and pause the biosignals acquisition, and lasted until the next morning,

when parents stopped the measurement.

• Recording 2 (R2): the second recording was conducted 1-2 weeks after the end of

the treatment and was performed at home, solely by the parents. In order to ensure

the validity of the recordings, the parents were requested to take pictures of the

electrodes placement. The recording started along the evening, and lasted until the

children woke up in the morning.

• Recording 3 (R3): it was scheduled 3-4 weeks after the end of the treatment and,

as in R2, it was conducted by the parents, who were asked to take pictures of the

electrodes position and to start the recording during the evening and to finish it in

the next morning.

Additionally, parents were requested to annotate the times when children fall asleep

and woke up in the morning.

Patients were followed up during a period of 6 months after R3 by a pediatric pulmo-

nologist, in order to determine their current asthma (CA) status. They were labeled as

having current asthma (CA-Y) if they had been prescribed medication for the control of

asthma in that period because of wheezing evidence, or reported nocturnal or exercise-

induced shortness of breath or cough which were reversible with bronchodilator medica-

tion. Patients who did not meet the previous criteria but were intermittently prescribed

with medication because of symptoms of asthma were labeled as possible current asthma

(CA-P), whereas all the remaining patients were labeled as absence of current asthma

(CA-N). Patients were also classified attending to their atopic status, measured through

a skin prick test (SPT). The responses to the SPT were considered positive when at least
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Figure 3.1: Distribution of the subjects in the TAYS dataset attending to their current asthma status (CA-N: no

current asthma, CA-P: possible current asthma, CA-Y: current asthma) and their risk of developing asthma as

derived from the mAPI (light gray: low risk, dark gray: high risk). This information was not available for 1 of

the 68 subjects.

one of the assessed allergens (egg, cat, dog, birch and timothy) caused a wheel with a

diameter greater than or equal to 3 mm without showing reaction to a negative control

substance. Patients were classified as atopics or non-atopics attending to a positive or

negative response to the SPT, respectively. Furthermore, they were classified attending

to their response to ICS treatment as effective, partially effective or not effective. Also

the classification as low or high risk of asthma attending to mAPI was available. The

classification of the subjects attending to the different criteria is summarized in Figs. 3.1

and 3.2. Classification criterion was absent for one subject. Additionally, atopic condition

was not available for one subject.

All the subjects had not previous history of laryngeal disease, tracheobronchial mala-

cia, parechymal lung disease or bronchopulmonary dysplasia. Since these conditions

might be accompanied by an asynchrony of the chest wall motion or changes in the

venous return and blood volume during a breathing cycle, they could lead to a loss of

linearity between the flow signal and the acquired IP signal due to changes in the elec-

trical conductivity of the thorax, and hence to lower quality IP recordings [165]. Written

informed consent was received from the parents of all the children. For simplicity, this

dataset will be referred to as TAYS dataset hereon.

3.2.3 Preprocessing

Only night time was considered in the analysis, since vagal modulation of cardiac activ-

ity [52] and broncho-constriction [24] are increased during night, together with a reduc-

tion in airway function which is especially noticeable in asthmatics [22, 24]. Moreover,

children activity during day time is usually higher than in the case of adults (and also

unknown in the analyzed database), compromising the analysis and interpretation of the

results in this period. For these reasons, signals were segmented according to parents

annotations of when children fall asleep and woke up in the case of the TAYS dataset.

However, no annotations were available in the case of the HUH dataset, so the analysis
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Figure 3.2: Distribution of the subjects in the TAYS dataset attending to the three different classifications. In

the figure, CA-N, CA-P and CA-Y refer to the current asthma status (CA-N: no current asthma, CA-P: possible

current asthma, CA-Y: current asthma), whereas T-N, T-P and T-E refer to the response to ICS treatment (T-N:

not effective, T-P: partially effective, T-E: effective). Dark gray represents the atopic subjects, whilst light gray

is used for non-atopics. This information was not available for 2 of the 68 subjects.

period was set between 23:00 and 05:00 in this case, according to a consistent reduction

in mean HR at this time interval, indicating a resting/sleeping state of the subjects.

The acquired signals of both datasets underwent a similar preprocessing. First, ECG

signals were resampled at 1000 Hz with linear interpolation, so that the effect of sam-

pling frequency on HRV analysis was reduced [177]. Afterwards, baseline wander was

corrected by subtracting the ECG baseline (extracted with low-pass filtering with 0.5 Hz

cut-off frequency) from the interpolated signals. For R peak detection, the wavelet-based

approach described by Martínez et al. [167] was employed, and the method proposed by

Mateo and Laguna [172] was used for ectopic beats detection and correction. However,

ectopic beats are not very frequent in young children [186,192], so it is important to dis-

tinguish their effect from the effect of RSA episodes, which are stronger for children than

for adults [87]. In this way, RSA episodes were distinguished from ectopic beats using the

approach presented in Ch. 2.4. The RR variation threshold (�RSA in Ch. 2.4) was selected

as 1.15 in the HUH dataset and as 1.5 in the TAYS dataset. These values were selected by

visual inspection, and they only needed to be adjusted manually for 6 subjects.

In order to avoid noisy signal segments (probablymovement artifacts) that could com-

promise the analysis, signal-to-noise ratio (SNR) was evaluated beat by beat, as described

by Bailón et al. [21], and in Ch. 2.3. Beats with a SNR more than 20 dB below the median

SNR of the whole night recording were labeled as “low quality”. If “low quality” beats
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were found during more than 3 consecutive seconds, this segment was considered noisy

and discarded from the analysis.

On the other hand, IP recordings were downsampled at 4 Hz, and band-pass filtered

(cut-off frequencies of 0.05 and 0.5 Hz) so that the baseline and other components un-

related with respiration were discarded. Respiratory rate, Fr, was estimated from the

IP signals in a time-continuous basis, according to the method proposed by Lázaro et

al. [145].

3.2.4 HRV analysis

Time, frequency and nonlinear domain HRV analyses were considered, and they were

performed in five-minute windows, with four-minute overlap. For the time domain anal-

ysis,NN, SDNN, SDSD, RMSSD and pNN50 were derived from the RR interval series after

ectopic correction, as suggested by the Task Force [252].

Regarding the frequency domain analysis, the modulating signal m(t) was estimated

using the TVIPFM model [19], and PLF, PHF, RLF/HF and PLFn, were then derived from its

spectrum, ŜHRV(F ), as described in Ch. 2.2. With respect to the LF and HF frequency

bands, the traditional [0.04, 0.15] Hz band [252] was considered. However, the increased

Fr observed in children, with values close to the upper limit of the classical HF band that

could lead to an underestimation of PHF due to a shift of power towards frequencies higher

than 0.4 Hz, motivated a redefinition of the HF band. In this way, instead of the classical

[0.15, 0.4] Hz HF band, a 0.15 Hz bandwidth centered in the mean respiratory rate of each

segment was employed.

For the nonlinear analysis, correlation dimension (D2), approximate entropy (ApEn)

and sample entropy (SampEn) were considered. The calculation of the three indexes was

performed as in [43] (in the case of D2, it was calculated as D̂2(max)), and all of them are

dependent on two parameters: the embedding dimension, and the threshold. D2 was com-

puted by varying the embedding dimension from 1 to 16 in steps of 1, and the threshold

from 0.01 to 3 in steps of 0.01. Regarding the SampEn and ApEn, an embedding dimen-

sion of 2 was selected, and whereas the threshold was fixed to 0.15 in the former, in the

case of ApEn it was selected for maximizing it (ApEnmax). Since the asthmatic condition

has been mainly related with an altered vagal activity, we proposed to estimate the non-

linear HRV indexes after minimizing the sympathetic influence present in the analyzed

series. In this way, the RR interval series were filtered (10th order band-pass Butterworth

filter) to preserve only those components that are thought to be related with parasympa-

thetic activity. Two different filters were applied, defining the unfiltered band as either

the extended HF band or the HF band centered in respiration, as proposed in Ch. 2.6.1.

Then, the nonlinear indexes were calculated from the original RR series and from its two

filtered versions.
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3.2.5 Peakness analysis

The HRV spectra was also characterized using peakness (℘), as defined in Ch. 2.5. The

bandwidths employed for ℘ calculation, Δf and ΔF , were selected as 0.026 (resolution of

the Hamming window) and 0.15 Hz (bandwidth of the HF band), respectively. Since ℘
was calculated from the HRV spectrum and using the respiratory rate derived from the

IP signals, it will be referred to as ℘IP

HRV
. In order to assess if the respiratory signal can be

excluded from the analysis, thus only considering ECG, another approach was proposed.

In this case, the respiratory rate was estimated from the QRS slopes and R wave angles

ECG-derived respiration (EDR) approach proposed by Lázaro et al. [145]. Hence, the new

definition of ℘ is:

℘EDR

HRV
=
∫ min(FEDR+Δf /2,HR/2)
max(FEDR−Δf /2,0.15) ŜHRV(F )dF

∫ min(FEDR+ΔF /2,HR/2)
max(FEDR−ΔF /2,0.15) ŜHRV(F )dF

, (3.1)

where the subindex HRV and the superindex EDR indicate that ℘EDR

HRV
is calculated from

the HRV spectrum and estimating the respiratory rate from the EDR.

Finally, the complementary case of using only the IP signal was considered. Hence,℘ was derived directly from the PSD of the IP signals as:

℘IP

IP
=
∫ min(Fr+Δf /2,HR/2)
max(Fr−Δf /2,0.15) ŜIP(F )dF

∫ min(Fr+ΔF /2,HR/2)
max(Fr−ΔF /2,0.15) ŜIP(F )dF

, (3.2)

where ŜIP(F ) is the PSD of the IP signal and the subindex IP and the superindex IP indicate

that ℘IP

IP
is calculated from the IP PSD and estimating the respiratory rate from the IP

signal. These two alternative definitions of ℘ were only tested in the HUH dataset.

3.2.6 Time-frequency coherence analysis

Given the close existing relationship between HRV and respiration control, cardiores-

piratory coupling (CRC) has also been suggested to be altered in some respiratory dis-

orders [93], although to the best of our knowledge it has not been studied in asthma.

Hence, we also considered the possibility that CRC might be modified in asthmatics and

contribute to the monitoring of the asthmatic condition, so we analyzed it in the TAYS

dataset. For this purpose, the time-frequency (TF) cross-spectrum of the HRV and the IP

signals was estimated using the methodology presented in Ch. 2.7, setting �0, �0 and � to

0.045, 0.05 and 0.3, as in [194]. Afterwards, two different parameters were proposed as
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Figure 3.3: A five-minute segment of the normalized time-frequency distribution of the heart rate modulating

signal (a)) and the impedance pneumography signal (b)) are displayed. In c), the time-frequency coherence dis-

tribution is depicted. The black dotted lines represent the limits between which 
̂ 2(t, f ) ≥ 
TH(t, f ; �), defining
Ω(t) (see text for details).

CRC measurements. The first one consists in the bandwidth, Ω(t), in which both spec-

tra are considered coherent for each time instant t , i.e., the bandwidth for which the

TF coherence, 
̂ 2(t, f ), satisfies the condition 
̂ 2(t, f ) ≥ 
TH(t, f ; �), being 
TH(t, f ; �) the
signal-independent threshold defined in [195], with � = 0.01. An example of the calcu-

lation of Ω is displayed in Fig. 3.3. Moreover, the mean coherence in Ω(t), 
̂ 2Ω (t), was
obtained as:


̂ 2Ω (t) = 1
Ω(t) ∫ Ω2(t)

Ω1(t) 
̂ 2(t, f )df , (3.3)

beingΩ1(t) andΩ2(t) the lower and upper limits of the frequency band for which 
̂ 2(t, f ) ≥
TH(t, f ; �) at the time instant t .
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3.2.7 Statistical methods

Median of each parameter was obtained from two-hour windows, so that at least one

complete sleep cycle is covered [70] and the effect of sleep stages is hence minimized.

In this way, several two-hour medians were obtained per each parameter and subject

(and in the case of the TAYS dataset, per recording day). In the HUH dataset, differences

among LoR, HiR and ICS were assessed using a two-sided Wilcoxon rank-sum test. Also

Spearman correlation coefficient (�) and Bland-Altman plot [8] were calculated for as-

sessing the relationship between parameters. Moreover, the mean absolute error in the

estimation of FEDR was computed.

On the other hand, in the case of the TAYS dataset the differences in the groups

classified attending to the CA status, atopy and response to treatment were assessed

by comparing each two-hour median of each subject along the three recording days,

using a paired Wilcoxon signed-rank test. In order to evaluate whether HRV parameters

were related to the CA status rather than to the mAPI (since in the HUH dataset there

was not an a posteriori evaluation of the asthma status available), differences among

children classified as low risk of developing asthma attending to mAPI but with distinct

CA outcomes were evaluated in each measurement day, using also a paired Wilcoxon

signed-rank test. Aditionally, in order to assess if the presence of atopy or the response

to medication had an effect in the results obtained for the classification according to

the CA status, differences among these subgroups within the CA-N group were assessed

using a Wilcoxon rank-sum test.

In all the tests, p < 0.05 was set as the significance level to consider statistical differ-

ences. Normality of the data was rejected using a Kolmogorov-Smirnov test, and when

the classification was in more than two groups, Bonferroni correction was applied.

3.3 Results

3.3.1 Helsinki University Hospital dataset

The highest number of significant differences between groups was found for the two-

hour period going from 02 to 04 a.m. Results obtained for this period are displayed in

Table 3.2, where it can be noticed that the three ℘, RLF/HF and PLFn presented statistically

significant differences between LoR and HiR. On the other hand, mean PHF, RLF/HF, PLFn,℘IP

HRV
and ℘EDR

HRV
were able to distinguish between LoR and ICS.

In order to check the accuracy of the respiratory frequency estimation obtained from

the EDR method, the mean absolute error between FIP and FEDR was calculated, being it

0.0038 ± 0.0044 Hz.

Comparing the results obtained for each of the groups, increased values of the three

different ℘ and also decreased values of RLF/HF and PLFn were obtained for HiR and ICS
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with respect to LoR. The median values of the three different versions of℘ are consistent

within each group, being them slightly reduced for ℘EDR

HRV
and slightly increased for ℘IP

IP

with respect to ℘IP

HRV
.

Since PHF mainly reflects parasympathetic activity and℘IP

HRV
aims to measure the spec-

tral distribution in HF band, it would be interesting to analyze if there exist a monotonic

relationship between PHF and ℘IP

HRV
, as an increased mean PHF could be related with in-

creased ℘IP

HRV
. Spearman correlation coefficient was calculated between both parameters,

being it � = 0.38, thus discarding monotony between them, consistenly with the sim-

ulation results obtained in Ch. 2.5.5. On the other hand, a possible relationship with

sympathovagal balance was considered (lower PLFn was observed for HiR than for LoR),

so correlation between PLFn and ℘IP

HRV
was calculated. In this case, � = −0.72 was obtained,

thus revealing a negative correlation between the indexes. Thismight indicate that higher

values of℘IP

HRV
would be associated with parasympathetic dominance. Regarding℘IP

HRV
and℘IP

IP
, � = 0.94 was obtained, reflecting a strong correlation. However, Bland-Altman plot

displayed in Fig. 3.4 suggests that both methods are not equivalent since the range of the

confidence intervals is larger than the difference of the medians between groups (Table

3.2). The negative bias indicates that ℘IP

IP
usually presents higher values (as can be also

noticed in their median values displayed in Table 3.2).

In addition, in Fig. 3.5, boxplots of mean ℘IP

HRV
and PLFn for the three groups are shown

for each two-hour interval, in order to evaluate the robustness of each of the parameters

to discriminate between them along the whole night. According to this figure, ℘IP

HRV
is a

much more robust index, since it is able to discriminate between LoR and HiR at almost

every interval. The performance of the other measurements of ℘, although similar to

that of ℘IP

HRV
, was lower.

Regarding the nonlinear domain analysis, the D2 obtained when the RR series were

filtered with a band-pass filter centered in the respiratory rate was decreased in HiR with

respect to LoR during almost all the analysis period, but no differences were observed in

the ApEn or the SampEn. Also decreased D2 was observed in ICS with respect to LoR

from 01 to 04 a.m. (see Table 3.2).

3.3.2 Tampere University Hospital dataset

Since the children were labeled attending to their CA statuts, atopy and response to ICS

treatment, the results of the analysis were evaluated considering each of these classifi-

cations independently. The greatest amount of significant differences was obtained for

the HRV indexes accounting for parasympathetic activity and the CRC parameters so, for

simplicity, only they were considered below. From all the available subjects, there were 3

with the 3 recordings absent or discarded due to bad quality, and also 10 for which 2 out

of 3 recordings were not considered for the same reasons. Since inter-day behavior of the

different parameters followed a similar tendency along the night, results obtained at the

hour with the greatest amount of significant differences, i.e., at 04 a.m., are summarized

in Tables 3.3, 3.4 and 3.5. Additionally, boxplots of the two-hours median of some of the
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Table 3.2: Median value between 02 and 04 a.m. of the presented parameters for each of the groups of the

HUH dataset (median [25th, 75th percentiles]). * and ** indicate differences with LoR (p < 0.05 and p < 0.017
respectively). Since PLF, PHF and TP are calculated from m(n) and not directly from RR interval series, they are

adimensional (ad). Nonlinear indexes were calculated from a fitlered version of the RR intervals (band-pass

filter centered in the respiratory rate).

LoR (n=14) HiR (n=13) ICS (n=7)

FIP (Hz) 0.30 [0.27, 0.31] 0.29 [0.27, 0.30] 0.29 [0.23, 0.33]

FEDR (Hz) 0.30 [0.26, 0.31] 0.29 [0.27, 0.30] 0.29 [0.24, 0.33]

NN (ms) 751.04 [692.84, 843.38] 772.26 [722.13, 850.99] 804.03 [740.32, 826.13]

SDNN (ms) 73.20 [56.90, 82.85] 74.19 [36.12, 99.00] 92.46 [28.84, 94.12]

SDSD (ms) 83.33 [57.64, 91.30] 74.96 [38.40, 103.48] 108.47 [44.50, 113.25]

RMSSD (ms) 83.22 [57.57, 91.21] 74.87 [38.35, 103.35] 108.33 [44.45, 113.11]

pNN50 (%) 46.08 [20.88, 50.23] 37.39 [15.22, 51.60] 51.10 [31.61, 64.25]

PLF (ad ×10−3) 2.10 [1.20, 2.71] 2.05 [0.45, 2.79] 2.34 [0.77, 3.14]

PHF (ad ×10−3) 3.37 [1.98, 3.57] 2.89 [1.04, 6.34] 5.77 [1.39, 6.89]*

TP (ad ×10−3) 5.87 [4.25, 6.59] 4.91 [1.66, 9.17] 9.21 [1.43, 9.74]

RLF/HF (n.u.) 0.77 [0.51, 1.00] 0.43 [0.29, 0.51]* 0.26 [0.04, 0.34]**

PLFn (n.u.) 0.44 [0.34, 0.50] 0.30 [0.23, 0.34]* 0.20 [0.04, 0.25]**

℘IP

HRV
(n.u.) 0.38 [0.31, 0.41] 0.45 [0.40, 0.46]* 0.47 [0.38, 0.48]*

℘EDR

HRV
(n.u.) 0.35 [0.30, 0.38] 0.39 [0.37, 0.40]* 0.42 [0.34, 0.43]*

℘IP

IP
(n.u.) 0.44 [0.41, 0.45] 0.49 [0.46, 0.55]** 0.50 [0.41, 0.52]

D2 2.68 [2.44, 2.75] 2.42 [2.34, 2.49]* 2.38 [2.27, 2.39]*

ApEn 0.57 [0.55, 0.57] 0.56 [0.54, 0.56] 0.57 [0.49, 0.57]

SampEn 0.50 [0.46, 0.51] 0.50 [0.47, 0.50] 0.49 [0.47, 0.52]

considered parameters and an example of the time course of the HF power are displayed

in Figs. 3.6 and 3.7, respectively.

Attending to current asthma status: A clear tendency towards increased PLFn and

decreased RMSSD, PHF and ℘IP

HRV
was found in R3 with respect to R1 and R2 in CA-N. This

behavior was consistent along several parameters and two-hour windows, as displayed in

Fig. 3.6. These differences were especially noticeable at 03 and 04 a.m. in the frequency-

domain HRV indexes. A similar behavior was assessed in the CRC parameters (see Fig.

3.6). On the other hand, only scarce differences between the three recording days were

found in CA-Y and CA-P.
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Attending to atopic status: Patients classified as atopic presented significantly de-

creased℘IP

HRV
in R3 with respect to R2 from 02 to 03 a.m. In the case of non-atopic subjects,

they presented decreased℘IP

HRV
in R3 when compared with R1 at 01 and from 05 to 06 a.m.,

and in R2 with respect to R1 at 05 a.m, and increased PLFn in R3 with respect to R1 at 05

a.m. Finally, a tendency towards decreased Ω and 
̂ 2Ω was assessed in R3 with respect to

R2 and R1, turning statistically significant for Ω from 23 to 01 a.m.

Attending to the response to treatment: Statistically significant differences were

only found in the group with partial response to ICS treatment, being only noticeable

in PLFn, which was increased in R3 when compared with R1 at 05, and at 03 a.m. when

compared with R2. Regarding the CRC indexes, decreased Ω and 
̂ 2Ω were assessed in the

groupwith partial response to treatment from 01 to 03 and 02 a.m. respectively. The same

behavior was found at 00 a.m. in the group which responded effectively to treatment.

Since several subjects classified as low risk attending to the mAPI were actually la-

beled as CA-Y (Fig. 3.1), we also analyzed the behavior of the different indexes attending

to the classification as CA-Y or CA-N, but only considering those subjects labeled as low

risk. In this case, significant differences were only present in CA-N (apart from isolated

differences in RMSSD and Ω in CA-Y, at 05 and 00 a.m. respectively). Regarding CA-N,

decreased PHF in R3 with respect to R2 was assessed at 04 a.m. Also increased PLFn and

decreased ℘IP

HRV
were found in R3 with respect to R2 from 03 to 04 and from 02 to 04 a.m.

respectively. With respect to the CRC indexes, their behavior was the same as when con-

sidering only the CA status, with lower values in R3 in those children classified as CA-N.

These results are displayed in Fig. 3.8.

Regarding the nonlinear domain analysis, there were no consistent differences among

the two-hour windows medians for any of the considered parameters, groups or record-

ing days.

Finally, when comparing the different atopy or response to treatment groups within

the CA-N group, no differences were assessed for any tow-hours window or recording

day.

3.4 Discussion

Several studies have pointed out to the parasympathetic branch of ANS as the main re-

sponsible of broncho-constriction mechanisms [151, 185] and bronchomotor tone con-

trol [184], which are closely related to asthma. The increased vagal activity and altered

autonomic airway control observed in asthmatic patients may be also reflected in car-

diac vagal activity [80, 131] and hence HRV could be a suitable tool for evaluating those

changes. In this chapter, we hypothesized that not only increased vagal tone but also a

distinct behaviour of vagal activity could be related with asthma, and that these differ-

ences could be characterized through HRV spectral analysis. For this purpose, we defined℘ as an index to evaluate the spectral distribution of the HF components of HRV spectra,
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and we used it in the characterization of a dataset of preschool children classified attend-

ing to their risk of developing asthma (HUH dataset). Afterwards, we extended the study

to a second dataset (TAYS dataset), with a more precise classification and a larger number

of subjects. Moreover, the TAYS dataset allowed to study the evolution of the different

HRV parameters following ICS treatment.

3.4.1 Methodology

℘ was analyzed together with classical time and frequency domain HRV indexes. Previ-

ously, HRV signals were conveniently preprocessed. Although it is well known that an

accurate ectopic beats detection and correction is crucial in HRV analysis, the problem in

this case is different: if we considered a strong RSA episode as ectopic (overcorrection),

we would be loosing fundamental information, since RSA is essentially what we pretend

to characterize through ℘. The RSA episodes detector proposed here aims to minimize

the number of false ectopic detections, which would lead to a smoother spectrum, there-

fore introducing a bias in the computation of ℘. The fact that the respiratory rate is

higher in children than in adults could also compromise the traditional HRV analysis,

given that the upper bound of the HF band results insufficient for an accurate measure-

ment of the HF power. In this way, the HF band was redefined adaptively in function of

the respiratory rate, as proposed in Ch. 2.6.1.

Whereas ℘IP

HRV
requires from respiratory information for its computation, the possi-

bility of using only the ECG was addressed. In this way, a respiratory rate estimation

obtained from an EDR signal as proposed by Lázaro et al. [145] was used for computing℘EDR

HRV
. On the other hand, the analogous case of using only respiratory information was

also considered, so that ℘IP

IP
was defined. Although the performance of the three indexes

was similar, some differences arise. In the case of℘EDR

HRV
, median values were slightly lower

than in ℘IP

HRV
, thus revealing that ℘IP

HRV
is sensitive to the accuracy of the respiratory rate

estimation. Regarding ℘IP

IP
, it overestimated ℘IP

HRV
. In order to understand whether ℘IP

HRV

does reflect a measurement of the respiratory activity or either it accounts for another

mechanism, correlation and Bland-Altman plot were analyzed. High correlation between

both definitions (� = 0.94) suggests strong relationship. However, the Bland-Altman plot

displayed in Fig. 3.4 suggests that both measurements are not equivalent, since the range

of the confidence intervals is larger than the difference of the medians between groups.

In this way and despite the fact that both indexes are though to measure a similar phe-

nomenon, they cannot be used interchangeably due to the existence of different spectral

components in respiration and HRV. For these reasons, in the case of the TAYS dataset,

only ℘IP

HRV
was employed.

3.4.2 Helsinki University Hospital dataset

Results in Table 3.2 suggest a peakier component in the HF band accompanied by a re-

duced sympathovagal balance in the group classified as HiR when compared with LoR.
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Also a similar behavior was observed in ICS, together with an increased PHF with respect

to LoR. Similar results obtained for HiR and ICS could be due to the fact that children

under medication are symptomatic. Nevertheless, the limited size of the ICS group com-

promises the further physiological interpretation. Since ℘ is a measurement of how the

power is concentrated around the respiratory rate, a peakier HF component seems to be

a common feature of children with enhanced risk of asthma. A possible explanation of

the increased℘IP

HRV
would be a strong relationship with PHF. However, correlation between

both variables has been discarded in the simulation study of Ch. 2.5.5, and also in this

study, where moreover the PHF was similar for LoR and HiR. On the other hand, negative

correlation between℘IP

HRV
and PLFn suggests that the spectral distribution of the HF compo-

nents may be closely related with changes in the sympathovagal balance, whose altered

behavior has been proposed to be responsible of the increased broncho-constriction and

bronchomotor tone observed in asthmatics [151, 184, 185]. Despite, the nature of these

changes is not easy to analyze, since an increase in SNS activity often produces a similar

effect than a decrease in PNS activity and vice versa. Even though correlation between℘IP

HRV
and PLFn has been assessed, the former has been presented as a more robust index

against inter- and intra-subject variability for distinguishing between HiR and LoR, as

displayed in Fig. 3.5.

In a previous study, Emin et al. [80] reported increased PNS activity in response to

autonomic tests in older children (7-12 years) with a clinical diagnosis of asthma, as well

as the possibility to stratify asthma severity attending to HRV analysis. Here, increased

parasympathetic dominance assessed in HiR and ICS by lower RLF/HF and PLFn is consistent

with the results in [80]. However, in difference with [80], mean PHF was similar in LoR

and HiR, which might be due to several reasons. First, distinct definitions of the HF band

were employed, since in [80] it was defined as [0.15, 0.5] Hz, thus impeding direct com-

parison of the results. Moreover, the aim of this study was not to perform a classification

of children with diagnosed asthma, but a characterization of groups that were formed

attending to the predicted asthma risk. Also age difference between the populations of

both studies is probably accompanied by differences in the ANS functioning. Finally,

the recordings in Emin et al. were performed under predefined conditions of stimulated

PNS activity (deep breathing, Valsalva maneuver) [80], whereas in our study ECGs were

acquired without a controlled environment.

Regarding the nonlinear analysis, D2 was different among groups only when the RR

intervals were filtered to preserve the respiration-related components. The fact that D2

was lower for the HiR group might suggest a reduction in the number of degrees of free-

dom in the case of HiR, i.e., a reduction in the adaptability of vagal activity. Although

this result is coherent with a reduced ℘IP

HRV
in this group, both parameters remain diffi-

cult to relate, since two different HRV signals of distinct complexity could share similar

spectra [133]. On the other hand, no differences were found in ApEn and SampEn, which
may suggest that some of the features of the analyzed signals remained hidden in a low-

dimensional analysis (in the case of D2, the embedding dimension was varied from 1 to

16).
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Figure 3.6: Boxplots corresponding to some of the analyzed parameters in R1 (black), R2 (dark gray) and R3 (light gray)

in the TAYS dataset, attending to the current asthma status. Each box corresponds to a two-hour window centered in the

hour depicted in the figure (although boxes with the same time reference are depicted separately for clarity, same central

hour was considered in the analysis). Medians of the boxes corresponding to the same measurement day are connected

with solid lines, and statistical significant differences are labeled with * (p ≤ 0.05). Statistical differences after Bonferroni

correction (p ≤ 0.017) are labeled as **. PHF, as obtained fromm(n), is adimensional (ad). In order to improve the readability

of the figure, only the interval 00 to 05 a.m. is displayed.
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Figure 3.7: Time course of PHF for R1 (black), R2 (dark gray) and R3 (light gray) of three subjects belonging to

the different current asthma groups. PHF, as obtained from m(n), is adimensional (ad).

3.4.3 Tampere Unviersity Hospital dataset

All the children underwent the same ICS treatment during three months. However,

whereas ANS activity (asmeasured fromHRV) remained unchanged after treatment com-

pletion in those children classified as CA-Y, a decrease in parasympathetic activity and

an increase in sympathetic dominance was observed in the CA-N group. Since previous

studies have assessed an augmented vagal activity in asthmatics [80, 131, 287], the low-

ered PNS activity in CA-N following treatment could be reflecting recovery from illness,

so that vagal over-activity is gradually diminished towards homeostatic levels. Also a

reduction in ℘IP

HRV
and CRC (as meadured from Ω and 
̂ 2Ω ) were assessed in this group.

Since CRC is related to how the respiratory activity modulates the HR, a reduction in

CRC measurements and ℘IP

HRV
could be reflecting a less synchronous vagal modulation of

respiratory and cardiac rhythms or a less regular PNS activity, respectively. In this case,

the interpretation might be linked to the concept of illness as a state of reduced complex-

ity [99, 212], suggesting that HRV might be more dependent on the respiratory activity

in asthma or in subjects at an increased risk of developing asthma in the future. The

fact that both Ω and 
̂ 2Ω were lowered in R3 in the CA-N group suggests a reduction in

the frequency span in which HRV is governed by respiration, but also in the strength of

the interdependence of cardiac and respiratory control in those subjects that have over-

come the disease. This hypothesis is supported by previous studies suggesting lowered

chaoticity and regularity of impedance pneumography [237] and airflow pattern [267] in

subjects with a worse asthma outcome. It is noteworthy that, in concordance with the

results obtained for the HUH dataset, most significant differences were obtained between

02 and 04 a.m., thus when airway function is lowest [24, 30]. Regarding the CA-P group,

only scarce differences in ANS activity were assessed, which could reflect an intermediate

behavior between those of CA-N and CA-P.

Despite not being specific for asthma, the presence of atopy enhances the probability

that a patient with respiratory symptoms presents allergic asthma [97], and it has been

included as a factor for the prediction of asthma in, e.g., the Isle of Wight study [143].

For these reasons, we analyzed the results regarding the atopic status of the patients.

Although a reduced CRC was assessed in R3 in the non-atopic group, the fact that not
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Figure 3.8: Boxplots corresponding to some of the analyzed parameters in R1 (black), R2 (dark gray) and R3

(light gray) in the TAYS dataset. Only the subjects classified as low risk and CA-Y/CA-N are depicted. Each box

corresponds to a two hours window centered in the hour depicted in the figure (although boxes with the same

time reference are depicted separately for clarity, same central hour was considered in the analysis). Medians of

the boxes corresponding to the same measurement day are connected with solid lines, and statistical significant

differences are labeled with * (p ≤ 0.05). Statistical differences after Bonferroni correction (p ≤ 0.017) are labeled

as **. PHF, as obtained from m(n), is adimensional (ad). In order to improve the readability of the figure, only

the interval 00 to 05 a.m. is displayed.
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consistent differences were found in the other considered indexes suggests that atopy is

not closely related with the apparent altered ANS activity in CA-Y.

On the other hand, whereas changes in ANS function were expected to be produced

by a proper response to ICS treatment, no differences were found in the HRV parame-

ters of the group for which treatment resulted effective (which constitutes the majority

of the dataset). However, some scarce differences were found in the group with partial

response to treatment, specially in the CRC. The most likely explanation for this out-

come is that most of the children for which the treatment was effective were classified

as CA-Y or CA-P, whereas the group with partial response to ICS is mainly formed by

subjects classified as CA-N (Fig. 3.2), thus suggesting that the observed differences may

not be related with the treatment but with the evolution of the illness itself. This result is

particularly interesting, as it could indicate that, despite ICS treatment which is aimed to

reduce airway inflammation, altered ANS behavior might be still present in the groups

with a worse asthma prognosis.

Nevertheless, the fact that children with different atopic or response to treatment

status are classified as CA-N could have a direct influence in the observed results. In

this way, we studied the differences between atopics and non-atopics classified as CA-N,

as well as between the subgroups attending to the response to treatment. The absence

of significant differences suggests that the observed results attending to the CA status

are not likely due to the atopic condition or the response to treatment of the different

subjects.

In the case of the HUH dataset, subjects classified as LoR attending to mAPI presented

a similar behavior than the CA-N group, with a reduced vagal dominance and ℘IP

HRV
with

respect to the HiR group. However, similarities between the classification based on mAPI

and the CA status should be regarded carefully. If we analyze the subject distribution in

Fig. 3.1, we can observe that 57% of the children that were classified as LoR attending to

mAPIwere labeled as CA-Y after the 6-month follow up, thus revealing the low sensitivity

of this method and highlighting the need of robust alternatives. In this way, we evaluated

the temporal evolution of those subjects labeled as CA-Y and CA-N, with the additional

restriction that theywere labeled as LoR attending to themAPI. As depicted in Fig. 3.8, no

differences were found in the CA-Y group (except from isolated differences in RMSSD and

Ω) regardless of their classification as LoR, whereas the expected differences appeared in

the CA-N group, being Ω the best performing index. Hence, it is possible that changes in

HRV might be better related with the CA status than with mAPI in this dataset.

Finally, nonlinear analysis did not reveal any difference among groups, in contrast

with the results obtained in the HUH dataset. Therefore, it is possible that the results

in the HUH dataset are more related to some of the clinical parameters involved in the

calculation of the mAPI than to the real asthmatic condition.
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3.4.4 Limitations

The main limitation of this study resides in the absence of polysomnographic recordings,

so that it was not possible to look for differences in HRV along the various sleep stages. In

order to deal with this restriction, we proposed to calculate two-hour medians of the an-

alyzed indexes to cover at least one complete sleep cycle [70]. Furthermore, we checked

that the overnight variation was not higher than the interday variation for any of the

considered parameters, being NN, RMSSD and PHF those that showed a larger inter-day

variability. Another limitation relies in the possibility of a coexistence of additional con-

founders apart from the risk of asthma, such as obstructive sleep apnea syndrome (OSAS)

or COPD, which are also obstructive diseases causing dyspnea and that have been related

with altered HRV [95, 111]. In the case of OSAS, visual analysis of the IP signals of the

different patients revealed the absence of generalized amplitude decreases that could in-

dicate apneic episodes, and no differences between changes in IP amplitude were noticed

in the different groups. To the authors knowledge, no COPD diagnosis was made for any

of the subjects in the database, although the diagnosis of COPD remains compromised in

so young children.

3.4.5 Physiological interpretation

In spite of the many studies stating the important role of PNS as a source of the air-

way hyper-responsiveness characteristic of asthma, the underlying mechanisms causing

an abnormal vagal activity have not yet been elucidated. The presence of immune cells

which are involved in the inflammatory response has been considered as one likely ex-

planation, as they release inflammatory mediators that could alter local PNS activity and

trigger bronchial hyper-reactivity. However, several counterpoints can be highlighted.

First, preventive treatment with anti-inflammatory corticosteroids has been shown to be

insufficient for avoiding the development of asthma in young children [109]. Second, the

presence of different phenotypes of asthma with distinct manifestations and responses to

treatment, together with an apparent absence of relationship between inflammation and

airway remodeling in children [152] suggest the existence of other factors. Moreover,

the fact that altered PNS activity in asthmatics can be also noticed in HRV opposes to

the idea of a local effect. Fryer et al. suggested that excessive vagal stimulation could be

caused by a dysfunction of the M2 muscarinic receptors [90], which are largely present

in the post-ganglionic nerves innervating the airways and provide negative feedback in

response to acetylcholine (ACh) withdrawal, thus inhibiting the further release of ACh.

Altought the lowered control over ACh release might explain the increased vagal dom-

inance observed through HRV in the presence of asthma, as well as the more regular

PNS activity suggested by increased℘, if cardiac vagal fibers also presented M2 receptors

dysfunction, the simultaneous reduction in the adaptability of cardiac and respiratory

vagal control due to excessive ACh release could resemble an increased CRC. In this way,

further research is needed to completely understand the neural control in asthmatics.
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3.5 Conclusion

HRV analysis has been presented as a suitable non-invasive tool for the assessment of

abnormal ANS activity in children at risk of asthma. In the HUH dataset, HRV analysis

was used for the characterization of ANS activity in a dataset of pre-school children di-

vided in three groups based on the risk of asthma development and on medication intake.

Consistently with previous studies, a decreased sympahtovagal balance was assessed in

those children at higher risk of developing asthma, who also presented a peakier HF

component, as measured through peakness.

Regarding the TAYS dataset, the main outcome is that vagal activity and cardiores-

piratory coupling, measured in a group of children with obstructive bronchitis, were

reduced after ICS treatment in the subgroup at lower risk of asthma, whereas it kept un-

changed in those who presented a worse prognosis. This result is in concordance with

our initial hypothesis that altered PNS activity would turn normal after treatment in chil-

dren without or with low risk of asthma, but not in those with or at high risk of asthma.

The difficulties of young children to perform repeatable spirometric tests together with

the lack of collaboration and the low adherence to ICS treatment emphasize the interest

in a continuous monitoring of asthma in order to detect or predict exacerbations, thus

providing an objective measurement of the evolution of the disease.

Both studies reflected coherent results, which were in concordance with previous

works assessing HRV in asthmatic children. In this way, since HRV analysis is non-

invasive in nature, it stands out as a feasible option for aiding in the study of the neural

mechanisms underlying asthma. In addition, the possibility of a continuous monitoring

of ANS activity in asthmatics could shed some light on the nature of this disease, and

hence be useful for patient phenotyping, which constitutes the first step towards person-

alized treatment.
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4.1 Motivation

The diagnosis of asthma in adults is performed following a well-established clinical rou-

tine, and it is based on the assessment of lung function via spirometric tests and in the

quantification of different inflammatory biomarkers, such as the inflammatory cells count

in the induced sputum, the amount of serum immunoglobulin E (IgE) or the levels of

exhaled nitric oxide (FeNO) [97, 206]. Apart from the severity of the disease, there is

a high clinical interest in stratifying the level of control of the symptomatology, since a

poor symptoms control has been related with an increased risk of suffering exacerbations

[232], and might require from additional treatment. However, asthma is a very hetero-

geneous disorder, presenting itself with a variety of symptoms that also vary over time,

therefore hindering its accurate diagnosis and the clustering of patients in the different

99
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phenotypes. In this way, there is a high inter-subject variability which reflects in several

aspects of the disease. E.g., although asthma is usually accompanied by chronic airway

inflammation, studies in large populations have revealed that a 40% of the asthmatics do

not present bronchial inflammation (as measured from induced sputum) [234], whereas a

57% are persistent non-eosinophilics [174]. Hence, the role of inflammatory cells and pro-

inflammatory substances in the characteristic bronchial hyper-responsiveness observed

in asthmatics is yet a debate topic. On the other hand, there is also controversy regarding

the reliability of the self-applied questionnaires in the diagnosis of asthma [35, 243].

Since broncho-constriction and bronchomotor tone control are mainly mediated by

the vagal pathways of the ANS [151, 184], and given the role of the neural control as

a modulator of airway inflammation [26], the suspicion that an altered ANS function-

ing could be an important factor in the pathogenesis of asthma has received widespread

research attention for decades. Therefore, several authors have focused on the devel-

opment of noninvasive approaches for the study of ANS activity in asthmatics. In this

context, HRV analysis has raised as a feasible option, and has been employed for the

characterization of ANS activity in asthmatic children [80, 178] and adults [131, 287],

revealing an increased vagal dominance in response to autonomic tests [80, 131] or dur-

ing sleep [178, 287]. Moreover, the study of asthmatic subjects classified based on their

asthma control suggests a decreased HRV in subjects with uncontrolled asthma [160].

Other works have focused on the respiratory activity, which is also highly influenced by

neural control. In this way, a more rapid decay in the inspiratory muscle activity has

been reported in subjects with airway obstruction than in healthy controls [64], sug-

gesting that the analysis of the inspiration dynamics may also shed some light on the

underlying ANS status in asthmatics. On the contrary, the expiratory activity is more

related with the mechanical properties of the respiratory system, and a reduced compli-

ance has been reported in subjects with obstructed airways [241]. Furthermore, respi-

ratory dynamics have been suggested to be altered in asthmatic subjects in response to

stress [220] which, together with the aforementioned vagal dominance in response to

autonomic tests [80, 131], could be an indicator of an imbalanced autonomic response

against demanding scenarios.

Nevertheless, and in spite of the growing evidence of the important role of ANS in

asthma, no ANS information is employed in its diagnosis and monitoring. If noninva-

sive ANS assessment resulted useful for this application, it could complement the clinical

routine, so that the evaluation of the asthmatic status of a patient could be performed

faster and with less specific equipment, and eventually without a hospital visit. For this

reason, the aim of this chapter is twofold. First, to investigate the capability of several

cardiorespiratory-derived indexes, which are thought to be related with the ANS and

the respiratory system status, to distinguish between subjects classified based on their

asthma severity and on their degree of control of the disease, during basal conditions.

Second, to evaluate the potential of the considered features for the automatic classifica-

tion of the subjects.
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4.2 Materials and methods

4.2.1 Study population

We recruited 30 adults with diagnosed asthma (the diagnosis was performed attending to

the criteria established in the Spanish guidelines for the management of asthma [206]).

They belonged to three different asthma severity groups, namely mild asthma (10 sub-

jects), severe asthma with controlled symptoms (9 subjects) and severe asthma with un-

controlled symptoms (11 subjects). The patients were also classified attending to their

degree of symptomatology control in controlled asthma (19 subjects) and uncontrolled

asthma (11 subjects), attending to the results of a self-applied asthma control test (ACT,

controlled asthma if the score of the test was ≥ 20 and uncontrolled asthma otherwise)

[266]. All the subjects were requested to remain seated and without talking for a pe-

riod of 10 minutes, during which multi-lead ECG and respiratory effort (using a respira-

tory band) were acquired at 1000 and 250 Hz, respectively. Afterwards, they underwent

spirometric, skin prick and induced sputum tests, in order to assess airway obstruction,

their atopic status and the existence of airway inflammation (when the count of either

eosinophils or neutrophils was higher than the reference levels established by Pin et

al. [204]). Airway obstruction was assessed through the forced expiratory volume in one

second (FEV1), the percentage of FEV1 with respect to a normalized population (FEV1,%)

and the FEV1 with respect to the forced vital capacity (FEV1/FVC). Moreover, the frac-

tion of FeNO was assessed, and saliva and blood tests were performed to account for the

levels of cortisol and IgE respectively, as well as the existence of peripheral eosinophilia

(considered as positive when the blood eosinophils count was higher than 300 permm3).
Finally, they filled a questionnaire aiming to assess their perceived quality of life (mini

asthma quality of life questionnaire, MiniAQLQ [128]). The demographics and clinical

parameters of the subjects in the different groups are displayed in Table 4.1. The data ac-

quisition was performed in accordance with the Declaration of Helsinki, being approved

by the Ethic Committee of Clinical Investigation of the Santa Creu i San Pau Hospital

(Barcelona, Spain). All the subjects provided a signed written informed consent prior

to their inclusion in the study, and none of them presented cardiac, neurological or en-

docrine disease, nor other obstructive disease different from asthma at the time of the

study.

4.2.2 Preprocessing

Baseline wanders were extracted from the ECG signals using a low-pass filter (3rd order

Butterworth filter with 0.5 Hz cut-off frequency), and they were further subtracted from

the original signals. Afterwards, the wavelet-based approach described byMartínez et al.

[167] was applied for the R peaks detection, and ectopic beat detection and correctionwas

performed according to the method proposed byMateo and Laguna [172] (the number of

detected ectopic beats represented a 0.13% of the total number of beats). Regarding the

respiratory effort signals, they were band-pass filtered (3rd order Butterworth filter with
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Table 4.1: Demographics and clinical parameters of the subjects classified based on their asthma severity and

control. The values are displayed as median [25th, 75th percentiles] for the continuous variables (* and † indicatep < 0.05with respect to the mild and severe controlled groups respectively, whereas ** and ‡ indicate p < 0.017.
On the other hand, # indicates p < 0.05 between the controlled and the severe uncontrolled groups. BMI: body

mass index, Eos: eosinophilia, Inflam: upper airway inflammation.)

Controlled
Severe uncontrolled

Mild Severe controlled

N (#)
19

11
10 9

Age (years)
50.00 [39.50, 58.50]

49.00 [42.75, 63.25]
50.00 [41.00, 51.00] 53.00 [38.50, 61.00]

Sex (Male/Female)
11 / 8

2 / 9#
6 / 4 5 / 4

BMI (kg/m2) 26.40 [23.85, 27.75]
30.00 [25.25, 33.50]†

26.85 [23.30, 28.90] 24.00 [23.50, 26.93]

Atopy (Yes/No)
16 / 3

8 / 3
9 / 1 7 / 2

FEV1 (liters)
3.20 [2.40, 3.63]

2.00 [1.72, 2.29]∗∗,‡,#
3.40 [2.40, 3.63] 3.19 [2.15, 3.64]

FEV1,% (%)
91.00 [84.25, 96.50]

87.00 [57.50, 91.25]∗,#
96.00 [87.00, 100.00] 89.00 [83.75, 92.50]

FEV1/FVC (%)
73.00 [65.50, 76.00]

56.00 [50.75, 74.00]∗
75.00 [73.00, 78.00] 67.00 [56.00, 73.00]∗

FeNO (ppb)
27.00 [20.75, 34.50]

41.00 [22.25, 87.88]
24.65 [18.00, 32.00] 28.00 [22.25, 35.25]

ACT
24.00 [21.00, 25.00]

18.00 [14.50, 19.00]∗∗,‡,#
23.50 [22.00, 25.00] 24.00 [23.00, 25.00]

MiniAQLQ
6.60 [6.40, 6.80]

5.20 [3.43, 5.45]∗∗,†,#
6.65 [6.40, 6.80] 6.50 [5.10, 6.80]

Peripheral Eos (Yes/No)
7 / 12

6 / 5
4 / 6 3 / 6

IgE (UI/ml)
131.00 [59.50, 209.00]

204.00 [28.83, 478.75]
109.00 [64.00, 287.00] 131.00 [51.30, 203.00]

Inflam (Yes/No)
4 / 15

3 / 8
2 / 8 2 / 7

Cortisol (pg/ml)
860.00 [522.50, 1212.50]

655.00 [491.30, 1670.00]
577.50 [530.00, 1190.00] 925.00 [475.00, 1357.50]

0.05-1 Hz cut-off frequencies) in order to discard the baseline and those components that

are not expected to be related with respiration, and they were downsampled at 4 Hz. In

all the cases, forward-backward filtering was applied for preserving the morphology of

the signal.
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4.2.3 HRV analysis

NN, SDNN, SDSD, RMSSD and pNN50 were computed from the RR interval series fol-

lowing ectopic correction, according to the Task Force [252]. The analysis was performed

in five-minute windows, with four-minute overlap, and each subject was characterized

by the median value of each parameter in the different time windows.

Regarding the frequency-domain HRV analysis, the modulating signal,m(n), was es-
timated using the TVIPFM model [19] and resampled at 4 Hz (see Ch. 2.2). An a priori

analysis of the respiratory rate revealed that it was lower than or slightly above 0.15 Hz

in a 13 % of the subjects. Since 0.15 Hz represents the lower limit of the HF band tradition-

ally employed in the frequency-domain HRV analysis [252], when the main components

of the respiratory modulation of the HR fall below this limit there is an overestimation

of the LF and an underestimation of the HF contributions of HRV. Moreover, the power

content in the HF band is assumed to be originated by the respiratory modulation of

the HR, so that the interpretation of the frequency components within this band, when

the respiratory contribution lays outside it, remains an open debate [36]. Therefore, the

respiratory-related and residual components of m(n) were obtained using the orthogo-

nal subspace decomposition (OSP) approach [264] described in Ch. 2.6.2. The spectra

of both components, Ŝresp(F ) and Ŝresid(F ), were estimated in five-minute windows with

four-minute overlap, using the Welch’s periodogram (50 s windows, 50% overlap). An

example of an spectrum before and after the OSP decomposition is displayed in Fig. 4.1.

Afterwards, the non-respiratory related HRV power, PLF

resid
, was obtained as the power

content of Ŝresid(F ) within the LF band, whereas the respiratory-related power, Prespir, was

computed as the power of Ŝresp(F ) within the [0.04, HR/2] Hz band, where HR represents

the mean HR expressed in Hz. Finally, the ratio SBu =PLF

resid
/Prespir was calculated as an un-

constrained measurement of the sympathovagal balance [264]. All the described indexes

were calculated from the spectra corresponding to each five-minute window.

4.2.4 Respiration dynamics analysis

The respiratory effort signals were analyzed in the time domain as follows. First, the peak,

nadir and the points with the maximum upslope and downslope within each breath were

detected (see Fig. 4.2). Afterwards, the breaths were delineated, and the onset and offset

of each breath were detected as the time instants at which the derivative of each breath

has reached a 20% of its maximum or minimum value respectively. The time difference

between the peaks of two consecutive breaths (breath-to-breath interval, BB), between

the onset of each breath and its peak (duration of inspiration, Tinsp), between the peak

of each breath and its offset (duration of expiration, Texp) and between the offset of each

breath and its nadir (Tidle, accounting for the time that passes from the end of an expiration

to the beginning of the next inspiration) were used as features for characterizing the

morphology of the respiratory effort signals. Also the ratio between Tinsp, Texp and Tidle

with respect to BB, the ratio between Tinsp and Texp, and the time (Δts) and amplitude (ΔAs)

difference between the points with maximum upslope and downslope were considered.
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Ŝ HRV(
F)

Frequency (Hz)Frequency (Hz)

Figure 4.1: a) Normalized power spectral density of the modulating signal (blue) and the respiratory effort

(pink) in a five-minute segment. Note that the respiratory activity lays below 0.15 Hz (black dashed line). b)

Orthogonal subspace projection was applied to separate the respiratory-related (green) and -unrelated (red)

components of the modulating signal.

A schematic exemplifying the definition of the aforementioned features is depicted in

Fig. 4.2.

4.2.5 Statistical analysis

The temporal median of all the time and frequency domain HRV parameters, as well as

from the time-domain respiratory indexes, was obtained for each subject. Normality of

the data was rejected using a Kolmogorov-Smirnov test, so that aWilcoxon rank-sum test

was applied in order to assess the differences between groups. The statistical significance

threshold was set to p = 0.05 and when the comparison was between more than 2 groups,

Bonferroni correction was applied.

Additionally to the univariate analysis, several machine learning algorithms were

applied, in order to explore the potential of the described features to classify the asthmatic

patients in the different groups. The feature selection and classification approaches used

for this purpose are described below.

4.2.6 Automatic stratification

First, feature importance was computed using the out-of-bag permuted predictor im-

portance algorithm [48], using a random forest with 400 decision trees. After training

each tree using a random subset of patients (bagging), their accuracy was computed on
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Figure 4.2: A segment of a respiratory effort signal (solid line) and its derivative (dashed line) are displayed,

together with the definition of the parameters used for the characterization of the respiratory dynamics. The

delineation of a given breath is shown, so that the black facing-up and -down triangles represent its peak and

nadir, the pink facing-up and -down triangles mark the points of maximum up and downslope and the green

and red circles indicate its onset and offset, respectively.

the remaining data (out-of-bag examples). Then, the importance of a given feature was

quantified by comparing the resulting accuracy of each tree with the accuracy achieved

when the values of the feature under evaluation were randomly permuted. This process

was repeated for all the trees were this feature was employed, and the feature importance

was computed as the mean of the differences between the accuracies before and after the

random permutation divided by its standard deviation.

Those features with an almost negligible importance (< 0.05) were discarded, and

the remaining were considered as candidates for building a classification model. When

two features were highly correlated (Pearson correlation coefficient higher than 0.75) the

one with lower feature importance was discarded. A different model was constructed for

classifying the subjects based on their degree of asthma control or to their asthma sever-

ity, and six different approaches were tested, namely logistic regression (LR), k nearest

neighbors (kNN) and support vector machines (SVM). For the SVMs, linear, quadratic,

cubic and radial basis function (RBF) kernels were considered. For each type of classi-

fier, feature selection was addressed using a greedy forward algorithm, maximizing the

F1 score of the minority class in the case that the classification is performed according

to the level of asthma control, and maximizing the total accuracy when asthma sever-

ity was considered. In order to avoid overfitting, leave-one-patient-out cross-validation

was combined with bootstrapping [78], following the methodology in [44], as depicted

in Fig. 4.3 (Ktrain = 10000 was employed, being Ktrain the number of folds used in the
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Figure 4.3: A schematic of the combination of the leave-one-patient-out cross-validation with bootstrapping is

displayed. The circles represent the subjects in the dataset (N subjects) whereas their color represent that they

belong to different groups. After defining a training (white rectangle) and a test (gray square) set, bootstrapping

is applied K times to obtain K different training sets. Then, the median of the performance of the K classifiers

is used as a robust measure of the performance of the tested classification model.

bootstrapping, which is different from the number of folds of the leave-one-patient-out

cross-validation), and the maximum number of features was restricted to the square root

of the number of subjects in the minority group (i.e., to 3). Afterwards, the leave-one-

patient-out cross-validation and bootstrapping were repeated for constructing a model

and testing the performance of the features selected for each classifier (with Ktest = 100 in
this case). The number of neighbors in the kNN algorithm was set to 7.

This processwas repeated considering only the clinical variables, the cardiorespiratory-

derived features, and both of them simultaneously, so that the performance of the three

approaches can be compared.

4.3 Results

The indexes that yielded to statistically significant differences among groups are dis-

played in Table 4.2. Those parameters were able to distinguish between controlled and

uncontrolled asthma, and also between mild and severe uncontrolled asthma. Addition-

ally, pNN50 and Presid also differed between severe controlled and severe uncontrolled

asthma.
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Table 4.2: Median [25th, 75th percentiles] of the parameters that were significantly different among groups. (*

and † indicate p < 0.05 with respect to the mild and severe controlled groups respectively, whereas ** and ‡
indicate p < 0.017. On the other hand, # indicates p < 0.05 between the controlled and the severe uncontrolled

groups.)

Controlled
Severe uncontrolled

Mild Severe controlled

SDNN (ms)
37.51 [29.41, 46.15]

23.46 [20.92, 27.41]∗∗,#
40.06 [34.63, 42.60] 29.88 [24.74, 56.44]

SDSD (ms)
18.10 [16.15, 32.53]

13.94 [10.29, 15.64]∗,#
18.10 [16.09, 22.40] 18.85 [14.03, 32.66]

RMSSD (ms)
18.08 [16.13, 32.48]

13.92 [10.28, 15.61]∗,#
18.08 [16.07, 22.38] 18.83 [14.01, 32.61]

pNN50 (%)
0.84 [0.45, 10.84]

0.00 [0.00, 0.55]∗∗,†,#
0.84 [0.45, 5.24] 0.65 [0.35, 12.16]

TP (a.u. × 10−3) 13.65 [6.49, 16.65]
4.85 [2.61, 5.73]∗,#

7.80 [6.49, 15.56] 15.60 [6.27, 16.96]

Presid (a.u. × 10−3) 5.67 [3.78, 9.94]
2.02 [1.55, 3.22]∗,†,#

4.17 [3.78, 6.85] 8.07 [3.60, 9.94]

Presp (a.u. × 10−3) 2.66 [1.37, 5.26]
0.85 [0.27, 1.70]∗∗,#

2.66 [2.02, 5.36] 3.48 [0.86, 5.74]

In Table 4.3, the results of the classification attending to the degree of asthma control

are displayed. The best performance, as measured by the F1 score, was achieved when

using the LR classifier in the case of considering all the available features, and with thekNN classifier when using only the cardiorespiratoy ones (although in the latter case best

accuracy was also obtained with the LR classifier). The use of all the available param-

eters resulted in an increased performance than employing only the cardiorespiratory

ones, with an increase in the accuracy ranging from a 5 to a 16%. Nevertheless, in some

of the classifiers, the inclusion of cardiorespiratory features outperformed the use of only

clinical features (see Table 4.3), reaching an accuracy of almost a 77% in the case of the

SVM with cubic kernel. With respect to the classification performance based on asthma

severity, in Fig. 4.4 it can be noticed that the combination of the cardiorespiratory and

clinical features resulted in a similar performance than when using any of them sepa-

rately, except for the SVM with cubic and RBF kernels, when the feature combination

outperformed the other options. Whereas the F1 score was similar for the groups with

mild and severe controlled asthma, it wasmuch higher for the uncontrolled asthma group

in all the tested classifiers.

Regarding the feature selection, FEV1, FEV1,% and IgE were the most frequently se-

lected clinical features (IgE was closely followed by FeNO), whilst SDNN, Presid and Presp

were the most relevant cardiorespiratory features (see Table 4.4). None of the parameters
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Table 4.3: Median [25th, 75th percentiles] of the accuracy, sensitivity, specificity and F1 score obtained with the

different classification algorithms when the subjects were classified based on their degree of asthma control.

The sensitivity, specificity and F1 score were computed considering the uncontrolled asthma group as the

positive class. The results correspond to the case of combining cardiorespiratory and clinical features, or using

any of them separately.

Acc. (%) Sens. (%) Spec. (%) F1

LR

All 80.00 [76.67, 83.33] 72.73 [72.73, 81.82] 84.21 [78.95, 89.47] 0.75 [0.70, 0.78]

Clin 80.00 [76.67, 83.33] 72.73 [72.73, 81.82] 84.21 [78.95, 89.47] 0.75 [0.70, 0.78]

HRV 70.00 [63.33, 73.33] 54.55 [54.55, 63.64] 73.68 [68.42, 78.95] 0.57 [0.52, 0.64]

kNN All 73.33 [70.00, 76.67] 72.73 [63.64, 81.82] 73.68 [68.42, 78.95] 0.67 [0.61, 0.72]

Clin 70.00 [66.67, 73.33] 54.55 [54.55, 63.64] 78.95 [73.68, 84.21] 0.60 [0.52, 0.67]

HRV 68.33 [63.33, 73.33] 63.64 [54.55, 72.73] 68.42 [68.42, 73.68] 0.61 [0.55, 0.67]

SVM (linear kernel)

All 80.00 [76.67, 83.33] 63.64 [63.64, 72.73] 89.47 [84.21, 94.74] 0.70 [0.67, 0.74]

Clin 80.00 [76.67, 83.33] 63.64 [63.64, 72.73] 89.47 [84.21, 94.74] 0.70 [0.67, 0.74]

HRV 65.00 [60.00, 70.00] 54.55 [45.45, 63.64] 73.68 [68.42, 78.95] 0.52 [0.43, 0.61]

SVM (quadratic kernel)

All 80.00 [76.67, 83.33] 63.64 [54.55, 63.64] 89.47 [89.47,94.74 ] 0.70 [0.63, 0.74]

Clin 80.00 [76.67, 83.33] 63.64 [54.55, 63.64] 89.47 [89.47,94.74 ] 0.70 [0.63, 0.74]

HRV 63.33 [60.00, 70.00] 54.55 [45.45, 63.64] 68.42 [63.16, 73.68] 0.55 [0.48, 0.61]

SVM (cubic kernel)

All 76.67 [73.33, 80.00] 63.64 [54.55, 72.73] 89.47 [84.21, 89.47] 0.67 [0.60, 0.73]

Clin 66.67 [63.33, 73.33] 54.55 [45.45, 63.64] 78.95 [73.68, 78.95] 0.55 [0.45, 0.64]

HRV 63.33 [60.00, 70.00] 54.55 [45.45, 63.64] 68.42 [68.42, 73.68] 0.51 [0.48, 0.60]

SVM (RBF kernel)

All 80.00 [73.33, 83.33] 54.55 [54.55, 63.64] 89.47 [84.21, 94.74] 0.67 [0.60, 0.71]

Clin 80.00 [73.33, 83.33] 54.55 [54.55, 63.64] 89.47 [84.21, 94.74] 0.67 [0.60, 0.71]

HRV 66.67 [63.33, 73.33] 54.55 [45.45, 63.64] 78.95 [73.68, 78.95] 0.55 [0.45, 0.64]

Table 4.4: Features selected for each of the classification approaches and methodologies, when considering all

the features or only the clinical or cardiorespiratory ones separately. When the classification was performed

attending to the asthma control, the criteria for the feature selection algorithm was to maximize the F1 score

of the uncontrolled group. When the classification was based on the asthma severity, the total accuracy was

maximized.

Asthma Control Asthma Severity

LR

All {FEV1, FeNO, IgE} {FEV1}
Clinical {FEV1, FeNO, IgE} {FEV1}
HRV {SDNN, Presid} {SDNN, Presid}

kNN All {SDSD, Presp, FEV1} {SDNN, Presid}
Clinical {FEV1, FEV1,%} {FEV1,%, FEV1/FVC, FeNO}
HRV {SDNN, Presid} {SDNN, Presid}

SVM (linear kernel)

All {FEV1, FEV1,%, IgE} {FEV1}
Clinical {FEV1, FEV1,%, IgE} {FEV1}
HRV {SDNN, Presid, Presp} {SDNN, Presp}

SVM (quadratic kernel)

All {FEV1, FEV1,%, IgE} {pNN50, FEV1}
Clinical {FEV1, FEV1,%, IgE} {FEV1,%, FEV1/FVC}
HRV {SDNN, Presid} {SDNN, Presid}

SVM (cubic kernel)

All {SDNN, FEV1,%, FeNO} {SDNN, FEV1,%, FeNO}
Clinical {FEV1,%} {FEV1,%}
HRV {SDNN, Presid} {SDNN, Presid}

SVM (RBF kernel)

All {FEV1, FEV1,%, IgE} {SDNN, Presid, FEV1,%}
Clinical {FEV1, FEV1,%, IgE} {FEV1,%, FEV1/FVC, FeNO}
HRV {SDNN, Presid} {SDNN, Presid}

extracted from the respiration dynamics analysis was able to distinguish among groups,

nor were they selected as features for any of the classification models.
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Figure 4.4: The accuracy, sensitivity, specificity and F1 score obtained with the different classifiers when the

patients were classified based on their asthma severity are displayed. In the case of the accuracy, the squares

represent the values obtained when only the cardiorespiratory features were consider in the model, whereas the

down-facing triangles account for the results when only the clinical parameters were used and the up-facing

triangles represent the performance when all the features were used together. In the other cases, the black, gray

and white circles represent the values obtained for the mild, severe controlled and severe uncontrolled groups

respectively, when all the features were employed. Linear, quadr, cubic and RBF refer to the kernels employed

in the SVM classifier (see text for details).

4.4 Discussion

ANS is acknowledged as a modulator of lower airway inflammation [26] and control

[151,184]. Therefore, the altered autonomic activity [80,131,178,287] and respiratory dy-

namics [64, 220, 241] observed in asthmatics and subjects with lower airway obstruction

suggest an important relationship between ANS and the pathogenesis of asthma. In this

chapter, we aimed at evaluating the capability and added value of ANS assessment in the

stratification of asthmatic subjects. ANS was assessed from time- and frequency-domain

HRV analyses, as well as from respiratory effort dynamics. However, a preliminary anal-

ysis of the respiratory rate revealed that it was lower than or very close to 0.15 Hz in

some subjects, which remains the lower limit of the HF band traditionally employed in

frequency-domain HRV analysis [252]. For this reason, the HRV signals were decom-

posed in their respiratory-related and -unrelated components, so that they can be still

analyzed. The OSP algorithm was used for the decomposition, given its performance
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in previous works [264]. Although it is a linear method which does not consider some

nonlinearities that may be relevant [264], it shows to be sufficient for the proposed task.

Regarding the results displayed in Table 4.2, a reduction in the sympathetic (Presid)

and vagal (SDSD, RMSSD, pNN50 and Presp) components of HRV, as well as in the total

HRV (SDNN, TP), was obtained in the uncontrolled asthma with respect to the controlled

asthma group, in concordance with previous studies [160], and also in the severe uncon-

trolled asthma compared with the mild asthma group. In the case of severe controlled

asthma, higher values of all the indexes than in the other two groups were obtained, ex-

cept for SDNN and pNN50, which showed a decreasing tendency with increasing asthma

severity. Although these results appear to be contradictory with previous works report-

ing increased vagal activity in asthmatics [80,131,178,287], in these studies they evaluated

the autonomic activity in response to autonomic tests or during sleep (which represents

a state of increased vagal dominance), whilst in the present study the signal acquisition

was performed during basal conditions. In this way, it is possible that asthmatic subjects

present a decreased autonomic control during rest, but their vagal pathways respond

exaggeratedly to certain stimuli, yielding to the hyper-responsiveness characteristic of

asthma [90]. The fact that larger values were generally obtained for the severe controlled

group could be related with the higher intra-class variability observed in the features of

this group, although provided the existing differences between mild and severe uncon-

trolled, and between controlled and uncontrolled asthmatics, it is possible that the se-

lected features are more representative of the degree of symptoms control than of the

severity of the disease itself. Nevertheless, a lower relative number of males and an in-

creased median body mass index (BMI) were assessed in the uncontrolled asthma group

(see Table 4.1). Whereasmales usually present increased sympathetic and decreased vagal

tone than females [12], a high BMI has been related with decreased HRV [254], which

could compromise the interpretation of the HRV analysis in this group. However, Presp

was lower instead of higher in the uncontrolled asthma group, and the BMI was uncor-

related with all the HRV measurements, suggesting that the differences in ANS activity

between controlled and uncontrolled asthmatics may be due to other causes than gender

or obesity. Since the age range was very similar among groups, the reductions in the

cardiorespiratory interactions due to aging were not considered here.

Interestingly, and in spite of a consistent decrease in FEV1/FVC and an increase in

FeNO and IgE with asthma severity or poor symptoms control, the only clinical parame-

ters that were able to distinguish between the degree of symptomatology control were the

FEV1 and FEV1,% (and the ACT and the MiniAQLQ questionnaires, which remain the gold

standards in this classification criterion). On the other hand, and despite the different

airway condition of the various groups (as measured from FEV1, FEV1,% and FEV1/FVC),

the analysis of the respiratory effort dynamics did not succeed in distinguishing between

any pair of groups. It is possible that these features do not reliably represent the airway

status during resting conditions so that spirometric maneuvers are required. Neverthe-

less, and although previous studies suggest that the respiratory dynamics of asthmatic

subjects are altered in response to stress [220] and that inspiratory muscle activity differs

in the presence of airway obstruction [64], the proposed respiration dynamics features
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were not able to distinguish between groups. Therefore, it is possible that these differ-

ences are not that clear among asthma categories than when comparing asthmatic and

healthy subjects, although the possibility that the underlying respiration control is not

accurately reflected by the proposed indexes should be considered.

Additionally, we tested the capability of several classifiers to correctly classify the

patients based on their asthma control or severity. The feature selection process described

above was repeated three times: once using only the clinical features, another using only

cardiorespiratory-derived ANS features, and a third time combining both. Whereas the

clinical features appeared to be more important in the classification regarding asthma

control (although the cardiorespiratory features were also considered in some classifiers),

in the case of the classification attending to asthma severity the cardiorespiratory features

were included in 4 out of the 6 tested classifiers (see Table 4.4). In the latter case, the use

of the ANS-related features resulted in an increased or similar performance than when

only clinical features were employed (see Fig. 4.4). The best performance was achieved

when using the LR classifier when the classification was based on the asthma control,

whereas best results were obtained with the SVM with cubic or RBF kernels when it

was based on asthma severity. It is possible that, given the more complex classification

scheme when attending to asthma severity, and provided that the HRV features had a

higher added value than in the case of asthma control, nonlinear classifiers are required

to better exploit the complex interaction among the clinical and the HRV features. The

most selected HRV features independently of the target classes or the classifier were

SDNN, Presid and Presp, thus suggesting that not only the total HRV, but also the independent

contribution of the sympathetic and the vagal branches of the ANS are important for

patient stratification. Regarding the clinical features, FEV1, FEV1,% and IgE were the most

selected. It is important to highlight that, when the classification was based on asthma

severity, the best results were achieved for the severe uncontrolled asthma group (as

displayed in Fig. 4.4), which remains the groupwith aworse prognosis. Also the generally

reduced sensitivity achieved in the classification of the severe controlled asthma group

(see Fig. 4.4) is worth noticing. As aforementioned, the decreased performance of the

selected features in this group could indicate that they are reflecting differences in the

degree of asthma control, rather than in the disease severity. However, a careful analysis

of the confusion matrices obtained for the different classifiers did not reveal a particular

bias in the misclassification of the severe controlled asthmatics towards any of the other

groups.

The use of ANS-derived information has some desirable properties. First, it is very

noninvasive in nature, and can be acquired in a continuous manner, without requiring

a visit to the hospital. Moreover, it is important to take into account that the clinical

parameters were used for stratifying the subjects initially [206], which might result in an

over-fitting for those features, whereas ANS assessment provides new information that

could complement the current clinical practice.

There are also some limitations that should be considered when interpreting the re-

sults of this chapter. First, the dataset is composed by a small number of subjects, and it
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is imbalanced regarding the classification based on the control of the symptoms. In order

to reduce the impact of the low amount of data, we adopted the classification approach

presented in [44], consisting of a combination of leave-one-patient-out cross-validation

and boostrapping. With this methodology, the performance for each subject was tested

in several different classifiers that had been trained with different subsets of the original

dataset, and the median performance of all the classifiers can be regarded as a much more

robust measurement than if only leave-one-patient-out cross-validation was applied. The

reduced number of subjects in the minority class also limited the maximum number of

features to be considered in the classifiers, so that over-fitting is minimized. Additionally,

the cardiorespiratory-derived features were extracted from only 10 minutes of ECG and

respiratory effort recordings, so that they represent the instantaneous ANS status of each

subject, and not an average ANS condition, which could be responsible of the increased

intra-class variability observed in the features of the severe controlled asthma group (see

Table 4.2). However, the subjects were requested to remain seated andwithout talking for

some minutes prior to the biosignals acquisition, so that the most possible basal state was

considered. On the contrary, the use of 10-minute recordings also constitutes a strength

of this study, since it represents a low time-consuming test which, given its noninvasive

nature, could eventually be realized without needing to attend to the clinic. Nonetheless,

evaluation in larger datasets is required, and the assessment of the autonomic response

of the subjects to different autonomic tests would probably contribute to improve the

classification performance.

4.5 Conclusion

Noninvasive ANS assessment has been presented as a potential tool for asthma control

and severity stratification. On one hand, the univariate analysis of the cardiorespiratory-

derived features revealed a reduced HRV in uncontrolled with respect to controlled asth-

matics, and in severe uncontrolled with respect to mild asthmatics. On the other hand,

the inclusion of ANS information in the classification of the subjects attending to their

asthma severity resulted in a similar performance than using only clinical features, out-

performing them in some cases. In this way, ANS assessment through noninvasive car-

diorespiratory signals analysis could represent a useful complement in the monitoring

and diagnosis of asthma.
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5.1 Motivation

Sleep apnea syndrome (SAS) is a complex sleep-related breathing disorder character-

ized by a repetitive total (apnea) or partial (hypopnea) upper-airway collapse (obstruc-

tive sleep apnea, OSA), an absence of respiratory drive (central sleep apnea, CSA) or a

combination of both (mixed sleep apnea). During an OSA episode, forced inspiration

against an obstructed upper airway leads to exaggerated negative intrathoracic pressure

113
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and is accompanied by immediate hypoxia, which triggers a complicated autonomic re-

sponse [245] and large fluctuations in blood pressure [202] and HR [54, 150]. The apneic

episode is often stopped by the arousal of the subject, thus resulting in a fragmented

sleep. Combination of all these effects has been closely related with excessive daytime

sleepiness, chronic hypertension and increased mortality [245]. Moreover, SAS has been

related with a 5-fold increase in the risk for developing cardiovascular diseases (CVD),

which could rise to 11-fold if not conveniently treated [198]. In this way, SAS represents a

well known cause of secondary systemic and pulmonary hypertension, and a significant

risk factor for coronary artery disease, cardiac arrhythmias and heart failure [255, 282].

Analogously, some CVD such as heart failure, atrial fibrillation or stroke may exert a

negative effect in SAS, as a deficient blood conduction could lead to a dysregulation of

PaCO2 and hence trigger CSA episodes [136].

Notwithstanding the characteristic physiological response to an apneic episode shared

by most of the patients, only some of themwill develop CVD. Since altered HRV has been

independently related to both conditions, HRV analysis has attracted widespread interest

in the field of SAS (almost 200 publications in PubMed search including the key words

heart rate variability and apnea, considering only the last 5 years). In this context, HRV

analysis has revealed altered sympathovagal balance during sleep in subjects suffering

from moderate or severe SAS when compared with healthy controls [111, 199]. Also 24-

hour monitoring suggests altered autonomic control in SAS patients [15], which reflects

in an increased sympathetic dominance. Moreover, many physiological (e.g.: hyperten-

sion, diabetes) and psychosomatic (e.g.: stress, depression) conditions that constitute risk

factors for CVD development, have also been related with altered HRV and sympathova-

gal balance [254]. Hence, HRV analysis could shed some light on the role of ANS in the

interaction between SAS and CVD.

Whereas polysomnographic (PSG) recordings remain the gold standard for the diag-

nosis of SAS, it would be interesting to dispose of a simple tool for the early identification

of patients at cardiovascular risk, thus improving their screening and prioritizing their

treatment. If there was a relationship between ANS activity, SAS and CVD, HRV could

represent such a tool. Nevertheless, previous works aiming to characterize ANS activity

in SAS patients using HRV analysis usually include the apneic episodes [15, 111, 199],

so that the increased sympathetic dominance observed in SAS could be biased by the

sympathetic activation taking place in response to an apnea, and might not reflect the

baseline state of the ANS in these subjects.

For these reasons, the aim of the present chapter is twofold: first, to evaluate whether

imbalanced autonomic activity could be related with CVD in SAS. Second, to investigate

whether HRV analysis could be a useful tool for the early stage identification and screen-

ing of SAS patients at cardiovascular risk.
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5.2 Materials and methods

Two independent databases were analyzed in this chapter, namely the UZ Leuven and the

Sleep Heart Health Study datasets. The former was employed for assessing differences in

ANS activity between patients suffering from SAS or SAS plus additional cardiac comor-

bidities. The latter was used to verify if altered ANS control can be assessed in subjects

with SAS who will be latter diagnosed with cardiovascular comorbidities. Both datasets

are described below.

5.2.1 UZ Leuven dataset

It is composed of 100 subjects (78 male, 22 female) who were referred to the sleep labo-

ratory of the University Hospital Leuven (UZ Leuven, Leuven, Belgium) because of sus-

picion of SAS. PSGs were acquired, revised and annotated by sleep specialists according

to the AASM 2012 scoring rules [39]. Sleep annotations included a classification of the

recording period in rapid eyemovement (REM) sleep and three non-REM stages (NREM1-

NREM3), as well as the time occurrence and duration of each apneic/hypopneic episode

and arousal. Sleep stage annotations were available for each 30-second epoch during the

whole recording. In this study no difference was made between light and deep NREM

sleep, so that the sleep stage classification was reduced to REM and NREM sleep. Only

subjects with an apnea/hypopnea index (AHI) greater or equal than 15 were included.

Bipolar ECG (lead II) and thoracic respiratory effort (recorded through respiratory in-

ductive plethysmography) signals were acquired with a sampling frequency of 500 Hz.

The database consists of:

• 50 control patients without cardiac comorbidities (previous myocardial infarction,

objective coronary disease, revascularization or stroke) and without cardiovascular

risk factors (hypertension, hyperlipidemia, diabetes), and

• 50 patients with cardiac comorbidities or cardiovascular risk factors.

Subjects in both groups were matched in age (47.8 ± 10.9 years), gender (78 males,

22 females), body mass index (BMI, 30.0 ± 4.5 kg/m2) and smoking habits (24 habitual

smokers at the time of the recordings). The average AHI was 41.3 ± 22.0, and the average

recording duration was 09:02:33 (hh:mm:ss). Demographics of each group are summa-

rized in Table 5.1, where also the different medications used by the cardiac comorbidity

group are indicated. Data acquisition was carried out in accordance with the recom-

mendations of the Commissie Medische Ethiek UZ KU Leuven, and the protocol was

approved by it (ML 7962). All subjects gave written informed consent in accordance with

the Declaration of Helsinki.
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Table 5.1: Anthropometric data of the UZ Leuven dataset. In the cardiac comorbidity group, subjects under

medication intake can be treated with various distinct drugs simultaneously. (BMI: Body Mass Index, AHI:

Apnea Hypopnea Index, ACE: Angiotesin Converting Enzyme.)

Control Cardiac comorbidity Total

Number of patients 50 50 100

Age (years) 47.3 ± 10.5 48.2 ± 11.4 47.8 ± 10.9

Gender (male/female) 39 / 11 39 / 11 78 / 22

BMI (kg/m2) 29.9 ± 4.6 29.8 ± 4.4 30.0 ± 4.5

AHI 39.8 ± 23.3 42.7 ± 21.1 41.3 ± 22.0

Active smokers 12 12 24

Medication intake 0 33 33

∙ �-blockers 0 22 22

∙ Ca channels inhibitors 0 8 8

∙ ACE inhibitors 0 12 12

∙ Diuretics 0 4 4

∙ Antidepressants 0 1 1

5.2.2 Sleep Heart Health Study dataset

The SleepHeart Health Study (SHHS) was conducted by the National Heart Lung& Blood

Institute in order to assess the negative cardiovascular effects induced by sleep-disordered

breathing in general population [211]. Acquisition was performed in two different ses-

sions: a baseline session and a follow up session, performed 3 to 8 years after the baseline

session. Despite the database is very extensive, we only considered a subset of individu-

als who were appropriate for the purpose of this study. Specifically, we were interested in

those subjects who did not present any cardiac comorbidity or cardiovascular risk factor

(the same ones than in the UZ Leuven dataset) at the baseline recording, but developed

any of them afterwards. Conditions for inclusion were: baseline and follow up recordings

available, no cardiac comorbidities or cardiovascular risk factors at baseline and subjects

younger than 65 years, so that both databases were as similar as possible.

Thirty-three subjects satisfied the above mentioned criteria and suffered from a car-

diac event at any point after the baseline session, so they were labeled as cardiovascular

event group. Cardiac events considered for inclusion in this groupwere any of the follow-

ing: myocardial infarction, stroke, revascularization, congestive heart failure, coronary

artery disease and procedures related with any of the previous conditions. Afterwards,

one control subject without cardiac comorbidities or cardiovascular risk factors (control

group) and one subject who developed cardiovascular risk factors (hypertension, hyper-

lipidemia or/and diabetes) at any point after the baseline session (cardiovascular risk

group) were matched to each subject in the cardiovascular event group, so that a final

subset of 99 subjects was obtained. Matches were based on age (56.9 ± 4.4 years), gen-

der (63 males, 36 females), BMI (28.1 ± 4.4 kg/m2), smoking habits (57 smokers at the

time of the baseline session) and AHI (13.4 ± 10.9). The average recording duration was
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Table 5.2: Anthropometric data of the SHHS dataset. (BMI: Body Mass Index, AHI: Apnea Hypopnea Index.)

Control Cardiovascular risk Cardiovascular event Total

Number of patients 33 33 33 99

Age (years) 55.8 ± 4.35 57.2 ± 4.2 57.8 ± 4.6 56.9 ± 4.4

Gender (male/female) 21 / 12 21 / 12 21 / 12 63 / 36

BMI (kg/m2) 28.3 ± 5.0 28.1 ± 4.5 27.9 ± 3.8 28.1 ± 4.4

AHI 13.8 ± 11.3 13.1 ± 10.1 13.3 ± 11.4 13.4 ± 10.9

Active smokers 19 19 19 57

08:27:38 (hh:mm:ss). Demographics of each group are summarized in Table 5.2. Since

some subjects presented a low AHI, only those with AHI ≥ 5 were considered in the fur-

ther analysis (AHI = 5 remains the lower limit for the diagnosis of moderate SAS). None

of the subjects in the two datasets suffered from atrial fibrillation.

As in the UZ Leuven database, PSGs were annotated by sleep experts, and sleep stage

classification (REM and NREM) was available for each 30-second interval, together with

the time of occurrence and duration of each apneic/hypopneic episodes and arousal. Since

SHHS has several AHI measurements available, we selected the one that best resembled

the AASM 2012 scoring (containing hypopneas with arousal/desaturation >3%). Bipo-

lar ECG (modified lead II ) and thoracic respiratory effort (recorded through respiratory

inductive plethysmography) were acquired at 125 and 10 Hz, respectively.

5.2.3 Preprocessing

Same preprocessing was applied to the databases described above. First, bipolar ECG

signals were resampled at 1000 Hz with cubic splines so that HRV analysis was not com-

promised by the effect of the sampling frequency [177]. Baseline wander removal was

accomplished by extracting the baseline with a low-pass filter (0.5 Hz cut-off frequency).

Afterwards, the baseline was subtracted from the ECG signal.

Subsequently, QRS-complexes were detected by the wavelet-based method proposed

by Martínez et al [167]. Ectopic beat detection and correction was performed with the

method described by Mateo and Laguna [172]. Then, ectopic beat positions and misde-

tections were corrected by using the heart timing signal [172].

On the other hand, respiratory effort signals were resampled at 4 Hz and the respira-

tory rate, Fr, was estimated from them using the method proposed by Lázaro et al [145].

5.2.4 HRV analysis

HRV analysis was performed from the modulating signal,m(n), which was estimated ac-

cording to the TVIPFM model as described in Ch. 2.2. m(n) was resampled at 4 Hz, and

HRV power spectral density, ŜHRV(k, F), was estimated from the k-th segment of length 5
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minutes of m(n) by the Welch’s periodogram, with 4 minute overlap. 50-second Ham-

mingwindowswith 50% overlap were employed. Subsequently, the spectral indexes were

computed from ŜHRV(k, F).
PLF was defined as the power in the classical LF band [252]. However, a preliminary

analysis of the respiratory rate revealed some values close to 0.4 Hz, which remains the

upper limit of the classical HF band and could lead to an underestimation of PHF [18]. For

this reason, the two different alternative definitions of the HF band presented in Ch. 2.6.1

were used. In this way, Pc
HF
, Rc

LF/HF
and Pc

LFn
were obtained from the HF band centered in

the respiratory rate, Ωc
HF
, whereas Pe

HF
, Re

LF/HF
and Pe

LFn
were derived from the extended HF

band, Ωe
HF
.

Also PVLF was considered, being it defined as the power of the time-varying mean HR

in order to account for the slower variations of m(n). Finally, NN was also calculated

from each five-minute window [252].

5.2.5 Effect of sleep stages on HRV

Sleep stages are known to exert an important effect on HRV, which is mainly reflected as

an increased parasympathetic activity duringNREM sleep and an awake-like sympathetic

activity during REM sleep [52,244]. These large inter-stage fluctuations make it advisable

to consider sleep stages in the analysis. In this way, HRV analysis was performed for

NREM and REM sleep separately, by considering PSG-based sleep stage scoring.

5.2.6 Effect of apneas, hypopneas and arousals on HRV

The complex physiological response to an apnea or hypopnea usually finishes with an

increase in sympathetic activity that may trigger an arousal, thus biasing any possible

measurement in that period towards high sympathetic activity. Despite this well-known

effect, apneic episodes are usually included in the analysis. A major innovation in this

chapter is that the episodes of apneas, hypopneas and arousals (for simplicity summarized

as apneic episodes hereon) were removed from the analysis, so that ANS activity can be

assessed in a more basal state.

In order to minimize the effects of the recovery after an apneic episode, the minute

after the offset of each event was also removed, since the tachycardia following an apnea

or arousal often lasts about 20 to 30 seconds [249]. Some subjects presented an extremely

high number of events, and hence only a few five-minute apneic episodes-free segments

were usable (especially during REM sleep, which is a shorter stage and with higher in-

cidence and duration of apneic episodes [61, 86]). Thus, and to guarantee a minimum

sample size, subjects with less than 10 five-minute segments were discarded.
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Figure 5.1: A flowchart of the data analysis performed for each subject is displayed. First, the modulating signal

was divided in periods corresponding to NREM (black) and REM (gray) sleep. Afterwards, two different HRV

analyses were performed in each of the sleep stages: one including the apneic episodes (red) and one excluding

them (the one-minute period after the apneic episodes are included in the segments highlighted in red). The

HRV analyses were performed over five-minute windows of available signal.

Nevertheless, the analysis was repeated including the apneic episodes, so that the

results were comparable with previous studies. A schematic of the different proposed

analyses is depicted in Fig. 5.1.

5.2.7 Effect of medication

Patients in the cardiac comorbidity group of the UZ Leuven dataset suffering from hy-

pertension (33 out of 50) were under anti-hypertensive medication at the time of the
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study. Each patient was administered a different drug or combination of drugs such as�-blockers, calcium channels inhibitors or blockers, angiotensin converting enzyme in-

hibitors, and diuretics, which are summarized in Table 5.1. Since anti-hypertensives could

directly alter HRVmeasurements [29,114], we considered medication intake as a possible

confounder in the analysis.

The effect of medication was analyzed in the following manner. First, patients with

cardiac comorbiditieswere divided in two subgroups: under and not under anti-hypertensive

drugs intake. Afterwards, the differences inNN and Pe
LFn

between each subject and his/her

matched control were computed, and the distributions obtained for the two subgroups

were compared.

5.2.8 Statistical methods

The mean value of each parameter for the different sleep stages was obtained for each

subject. Normality of the data was rejected using a Kolmogorov-Smirnov test (p < 0.05)

and so a paired Wilcoxon signed-rank test was applied in order to assess differences

between the matched groups. This test was applied twice: once considering apneas,

hypopneas and arousals, and another time excluding them from the analysis. When the

comparison was between not matched groups, a two-sided Wilcoxon rank-sum test was

applied instead. Significance level for considering statistical differences between groups

was set to 0.05.

5.3 Results

In both datasets, results of the HRV analysis were similar when defining the HF band as

Ωe
HF
or Ωc

HF
so, for simplicity, only those concerning the former are presented. The results

obtained for each of the two datasets are summarized below.

5.3.1 UZ Leuven dataset

The results of the HRV analysis including and excluding apneic episodes are presented

in Table 5.3. A tendency towards lower values of Re
LF/HF

and Pe
LFn

in the cardiac comorbidity

group than in the control group was assessed when excluding apneic episodes from the

analysis. These differences were statistically significant during NREM sleep. An example

of the mean overnight spectra of a control subject and his/her comorbidity match during

NREM sleep is displayed in Fig. 5.2. Similar results were obtained when including apneic

episodes, although significant differences were only assessed during REM sleep in this

case. Regarding the differences between sleep stages, decreasedNN and Pe
HF
and increased

Re
LF/HF

and Pe
LFn

were assessed during REM sleep. When excluding apneic episodes from the

analysis, also Fr was increased during REM sleep.



5.3 Results 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Frequency (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

P
S

D
 (

a
.u

.)

LF

       Control: PLFn  = 0.42

Comorbidity: PLFn  = 0.39

Figure 5.2: Average spectra for all the NREM segments (excluding those with apneic episodes) of a control

subject of the UZ Leuven dataset (black) and his match (gray) are displayed. An increased sympathetic dom-

inance can be noticed in the control subject, as reflected by the relative higher low frequency power content.

The dashed black lines indicate the boundaries of the low frequency band. The number of averaged 5 minute

segments was 50 and 36 for the control and the match respectively. As estimated from the modulating signal,

the power spectral density is given in arbitrary units (a.u.).

The results obtained for the subgroups under and not under medication intake are

displayed in Fig. 5.3. Whereas a higherNNwas assessed in the subgroupwithmedication,

no differences were found regarding Pe
LFn

(although in Fig. 5.3 only the analysis during

NREM sleep and excluding apneic episodes is represented, no differences in Pe
LFn

were

found for REM sleep nor when including apneic episodes).

5.3.2 SHHS dataset

The results of the HRV analysis are summarized in Table 5.4. An increased Pe
HF
and de-

creased Re
LF/HF

and Pe
LFn

were observed in the cardiovascular risk and cardiovascular event

groups in comparison with controls when excluding the apneic episodes. In the car-

diovascular event group, those differences turned statistically significant for Pe
LFn

during

NREM sleep. Similar results were obtained when including apneic episodes in the anal-

ysis. In general, differences between sleep stages were noticed as decreased NN and Pe
HF

and increased Re
LF/HF

and Pe
LFn

during REM sleep. However, higher NN and lower PVLF were

assessed during REM than during NREM sleep in some cases (Tables 5.3 and 5.4), but

this is most likely due to the reduced number of segments at REM sleep available for the

analysis.
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Table 5.3: Results of HRV analysis for the UZ Leuven dataset. Results are displayed as median (IQR), except for

the number of subjects. Significant differences with the same sleep stage of the control group are marked with

† (p < 0.05). Significant differences between NREM and REM sleep within each group are marked with * (p <
0.05).

Control Cardiac comorbidity

NREM REM NREM REM

Excluding apneic episodes:

Fr (Hz) 0.23 (0.06) 0.25 (0.06)∗ 0.23 (0.07) 0.25 (0.08)∗

NN (ms) 920.13 (184.89) 939.09 (178.61)∗ 951.08 (173.29) 911.34 (177.57)∗

PVLF (a.u.) 1.16 (0.40) 1.12 (0.40)∗ 1.09 (0.42) 1.20 (0.41)∗

PLF (a.u. ×10−3) 5.00 (6.11) 5.72 (14.68) 4.97 (6.71) 7.90 (12.68)

Pe
HF
(a.u. ×10−3) 4.89 (9.70) 2.72 (4.54)∗ 6.19 (16.37) 4.54 (11.81)∗

Re
LF/HF

(n.u.) 0.96 (1.12) 2.43 (3.14)∗ 0.69 (0.94)† 1.52 (1.77)∗

Pe
LFn

(n.u.) 0.47 (0.24) 0.68 (0.22)∗ 0.38 (0.23)† 0.60 (0.19)∗

N (subjects) 43 29 42 25

Including apneic episodes:

Fr (Hz) 0.23 (0.05) 0.23 (0.07) 0.23 (0.06) 0.24 (0.07)

NN (ms) 938.53 (200.44) 936.66 (198.97)∗ 950.39 (155.86) 900.00 (125.60)∗

PVLF (a.u.) 1.13 (0.42) 1.12 (0.48)∗ 1.10 (0.37) 1.23 (0.32)∗

PLF (a.u. ×10−3) 11.47 (12.57) 12.10 (19.98) 9.73 (14.73) 8.93 (13.77)†
Pe

HF
(a.u. ×10−3) 6.42 (11.70) 4.33 (6.33)∗ 8.27 (16.05) 4.83 (9.09)∗

Re
LF/HF

(n.u.) 1.79 (2.56) 3.16 (3.41)∗ 1.42 (1.50) 1.72 (2.32)†,∗
Pe

LFn
(n.u.) 0.59 (0.28) 0.72 (0.20)∗ 0.52 (0.21) 0.60 (0.22)†,∗

N (subjects) 46 50 49 46
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Figure 5.3: Boxplots of the differences in NN (ΔNN) and PeLFn (ΔPeLFn) between the control subjects of the UZ

Leuven dataset and their matches under or not under medication intake (during NREM sleep and excluding

apneic episodes). Whereas ΔNN was decreased in the group under medication intake when compared with the

group without medication (p < 0.05, indicated with *), no differences in ΔPeLFn were assessed.
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Table 5.4: Results of HRV analysis for the SHHS dataset. Results are displayed as median (IQR), except for the

number of subjects. Significant differences with the same sleep stage of the control group are marked with † (p< 0.05). Significant differences between NREM and REM sleep within each group are marked with * (p < 0.05).

Control Cardiovascular risk Cardiovascular event

NREM REM NREM REM NREM REM

Excluding apneic episodes:

Fr (Hz) 0.25 (0.05) 0.24 (0.03) 0.24 (0.04) 0.25 (0.03) 0.25 (0.05) 0.24 (0.07)

NN (ms) 925.95 (150.24) 924.58 (123.65) 980.00 (168.87) 959.41 (266.71) 914.59 (201.34) 919.62 (186.39)∗

PVLF (a.u.) 1.16 (0.35) 1.15 (0.33) 1.03 (0.34) 1.07 (0.60) 1.18 (0.47) 1.17 (0.51)∗

PLF (a.u. ×10−3) 3.53 (4.10) 5.16 (8.73) 4.24 (4.68) 4.06 (25.65) 2.77 (2.46) 2.57 (3.00)

Pe
HF
(a.u. ×10−3) 2.24 (2.53) 0.93 (1.53) 4.47 (5.34) 6.03 (7.25) 3.35 (5.29) 1.23 (0.95)∗

Re
LF/HF

(n.u.) 1.13 (1.01) 3.99 (2.62)∗ 0.94 (1.21) 2.01 (2.38) 0.97 (0.99) 1.65 (4.06)

Pe
LFn

(n.u.) 0.49 (0.17) 0.79 (0.11)∗ 0.45 (0.28) 0.67 (0.30)∗ 0.43 (0.28)† 0.59 (0.36)

N (subjects) 23 6 24 7 22 6

Including apneic episodes:

Fr (Hz) 0.26 (0.05) 0.25 (0.04) 0.24 (0.04) 0.26 (0.04) 0.25 (0.05) 0.25 (0.04)

NN (ms) 922.36 (158.63) 929.32 (154.77) 992.65 (144.38) 1016.15 (134.91)∗ 929.90 (217.02) 897.97 (154.08)

PVLF (a.u.) 1.16 (0.39) 1.15 (0.36) 1.01 (0.30) 0.96 (0.26)∗ 1.16 (0.52) 1.22 (0.42)

PLF (a.u. ×10−3) 5.30 (6.23) 5.13 (6.18) 5.62 (7.58) 6.50 (10.01) 3.86 (5.45) 5.18 (7.30)

Pe
HF
(a.u. ×10−3) 2.60 (3.04) 1.71 (1.40)∗ 4.62 (4.60) 3.77 (3.52)† 3.88 (5.39) 1.93 (1.34)∗

Re
LF/HF

(n.u.) 1.74 (1.08) 3.19 (2.94)∗ 1.39 (1.26) 2.09 (2.22)∗ 1.09 (1.27)† 2.86 (2.25)∗

Pe
LFn

(n.u.) 0.55 (0.13) 0.74 (0.18)∗ 0.53 (0.24) 0.66 (0.22)∗ 0.46 (0.24)† 0.67 (0.26)∗

N (subjects) 25 23 26 25 25 22

5.4 Discussion

The main purpose of the present chapter was to assess whether imbalanced autonomic

activity could be related to CVD in patients with SAS, as well as to investigate the po-

tential use of ANS activity analysis in the early stage identification of patients at higher

cardiovascular risk. ANS evaluation was achieved by HRV analysis, since it has been

largely supported as a noninvasive tool for ANS activity assessment [252]. However,

HRV should be addressed carefully in nocturnal recordings, since several studies have

reported differences in HRV among the different sleep stages [52, 244]. Also differences

in HRV when comparing subjects with and without apneas have been described in the

literature [111, 199]. Nevertheless, whereas the effect of sleep stages is often considered

in overnight HRV analysis, the effect of apneic episodes has been largely ignored. In this

way, increased sympathetic dominance assessed in SAS patients might be reflecting the

adrenergic surge following apneas and not a chronic SNS dominance during rest. For this

reason, in this work we proposed to discard apneic episodes from the analysis, so that

ANS evaluation is performed during the most basal condition.

The effect of excluding apneic episodes from the analysis can be noticed in both

datasets (Tables 5.3 and 5.4), with large significant differences in PLF and sympathovagal

balance measurements. The apparent reduction observed in sympathetic activity when

not considering the periods of apnea suggests that apneic episodes do alter ANS assess-

ment by HRV and hence should be removed from the analysis, since changes in sym-

pathetic activity unrelated to apneas might be masked otherwise. Moreover, this effect
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was more evident for the patients in the UZ Leuven dataset, with larger AHI than in the

SHHS.

With respect to the different definitions of the HF band employed in HRV analy-

sis, Ωe
HF
resulted to be the most discriminative between groups, especially when apneic

episodes were excluded from the analysis (although similar results were achieved with

Ωc
HF
). The motivation for considering modified HF bands was that a preliminary analy-

sis of Fr revealed the existence of some high values, which could yield to a power shift

outside the band and hence result in underestimations of the real power. In this way,

one possible solution is to center the band into the estimated respiratory rate, so that

respiratory-related power lays inside the band. Besides, the fact that better results were

obtained when considering Ωe
HF
could be related with differences in HR (as the higher

limit of the extended band was selected as HR/2 Hz, since HR remains the intrinsic sam-

pling rate of HRV [144]), although the absence of significant differences in the NN of

the distinct groups in both datasets suggests that this is not a likely explanation for the

obtained results. Alternatively, the nonlinear interaction between HR and respiration

during sleep [265] may result in meaningful frequency components that lie outside the

classic and the centered bands.

5.4.1 UZ Leuven dataset

In order to study the relationship between ANS, SAS and CVD, we considered the UZ

Leuven database described in Ch. 5.2.1, since it is composed by SAS patients with and

without cardiac comorbidities that were matched based on age, gender, BMI and smok-

ing habits. When comparing the patients with cardiac comorbidities with their matched

controls a decreased sympathovagal balance, as assessed by lower values of Re
LF/HF

and Pe
LFn
,

was observed in the former (Table 5.3). This decreased sympathetic dominance, exem-

plified in Fig. 5.2, could reflect a lack of adaptability of ANS and hence incapability to

restore homeostasis after an apneic episode. If this was the case, an inefficient response to

oxygen deprivation could directly affect the cardiovascular system, leading to inflamma-

tion [245], oxidative stress [250] or tonic chemoreceptor activation [188] among others,

which are intrinsically related with the development of CVDs [245]. The fact that statis-

tically significant differences were observed in NREM when excluding apneic episodes

from the analysis but not when including them might suggest that the sympathetic ac-

tivations following apneas could be masking the lowered sympathetic dominance in the

comorbidity group. On the other hand, the increased incidence of apneic episodes dur-

ing REM sleep [224] results in a reduction in the number of subjects considered in the

analysis when excluding them, which could explain the absence of significant differences

during this sleep stage. Similarly to previous studies [52,244], a higher sympathetic tone

was assessed during REM than during NREM sleep, as reflected in increased PLF, R
e
LF/HF

and

Pe
LFn

and decreased NN and Pe
HF
in the former.

Nevertheless, altered sympathovagal balance should be regarded carefully, as 33 out

of 50 patients in the cardiac comorbidity group were under anti-hypertensive medica-
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tion at the time of the recordings. Since anti-hypertensives could contribute to reduced

cardiac sympathetic activity [29, 114], a more detailed analysis was performed in order

to check whether the observed differences could be explained by medication intake. In

this way, the differences in mean NN and Pe
LFn

of the patients under medication and their

matched controls were compared with those of the patients without medication (Fig.

5.3). The results revealed a higher NN, i.e., a lower HR, in those patients under anti-

hypertensives, as expected, although no differences were found in Pe
LFn
. The higher NN in

the medication group would be reflected as a decrease in the mean HR which is corrected

in the TVIPFM model (see Eq. 2.3) and hence is not expected to have a big influence in

the analysis. On the other hand, Pe
LFn

was apparently independent on the use of medica-

tion, possibly due to the aforementioned correction by mean HR intrinsic to the TVIPFM

model.

5.4.2 SHHS dataset

Moreover, in order to evaluate if altered ANS activity may be prior to cardiovascular

disorders in subjects with SAS, a second dataset consisting of a subset of the SHHS and

described in Ch. 5.2.2 was considered. Again, HRV analysis revealed a decreased sym-

pathetic dominance in the cardiovascular risk and cardiovascular event groups (Table

5.4), which turned statistically significant in the case of the cardiovascular event group

(during NREM sleep). Given that subjects in the cardiovascular event group presented

an altered sympathovagal balance when compared with their matched controls, despite

the fact that they did not suffer from any CVD at the time of the recording, it is possible

that individuals with SAS and altered sympathovagal balance are at augmented risk for

developing CVDs. This unbalanced sympathovagal activity may be an indicator of either

a lowered SNS activity, a dysfunction in the response to SNS stimuli or a combination of

both. Although decreased LF variability has been assessed in severe chronic heart fail-

ure [260], this effect appears to be visible only in the most advanced stages of the disease.

Nonetheless, the desensitization of �-adrenergic receptors when subjected to a recurrent

stimuli [25] could point to SAS as a possible precursor of CVD, as heart damage has been

associated with decreased �-adrenergic receptors density and decreased sensitivity to

adrenergic stimulation [49]. Regarding the differences between sleep stages, increased

sympathetic dominance was generally observed during REM sleep as expected.

5.4.3 Limitations

There are some limitations in this study that must be mentioned. The first and most im-

portant one is the use of anti-hypertensive medication by a large subset of subjects in

the UZ Leuven database, which might compromise the physiological interpretation. Al-

though the differences that may be induced bymedication intakewere analyzed carefully,

it is not possible to ensure that it does not have an effect on the results. Moreover, there

is controversy in the literature, with some studies reporting absence of changes in the
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sympathovagal balance in subjects under �-blockers [102,162], and some others suggest-

ing altered sympathetic dominance [155, 227]. Another limitation is that the proposed

analysis for ANS assessment is only valid during sinus rhythm and it is not applicable to

other scenarios. This limitation takes special relevance in the case of atrial fibrillation,

since it is known to be associated with SAS [255]. Regarding sleep stages, no distinction

was made between light and deep NREM sleep due to the extremely low number of deep

sleep epochs (less than 5% of the recording duration in most of the subjects in the UZ

Leuven dataset, prior to apneic epochs deletion). In the SHHS dataset, the low number

of analyzed subjects during REM sleep after removing apneic episodes compromises the

further physiological interpretation. On the other hand, whereas the results obtained for

both datasets are coherent, the datasets are not comparable, due to differences in mean

age and AHI, and to the fact that cardiac comorbidity subjects in the UZ Leuven dataset

had already developed CVDs. It is also important to highlight that subjects in the UZ

Leuven dataset attended to the sleep laboratory because of complains and/or symptoms

related to SAS, whereas volunteers in SHHS did not report any interference with their

daily life, regardless of their scored AHI. Finally, and although several cardiac conditions

with different origin and effects were considered simultaneously, the scope of this chapter

was limited to the risk of developing CVDs as a whole.

5.5 Conclusion

The combination of all the underlying mechanisms that act in response to an apneic

episode, together with the functional alterations caused by the different CVD, result

in a very complex frame that obscures the physiological interpretation. Despite, de-

creased sympathetic dominance was assessed in SAS patients suffering from cardiac co-

morbidities. Furthermore, retrospective analysis of the subjects with SAS that will de-

velop cardiovascular events in the future also revealed a reduced sympathetic dominance.

Notwithstanding that further work is needed in the field of SAS phenotyping, HRV analy-

sis could represent a useful tool for improving the screening and diagnosis of SAS patients

with increased cardiovascular risk. Moreover, the importance of considering the effect of

the apneic episodes in the interpretation of HRV analysis was addressed.
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6.1 Motivation

Monitoring respiratory activity is very important in several applications, e.g., respiratory

rate is a sensitive clinical parameter in a multitude of pulmonary diseases [142]. Another

important respiratory parameter is the tidal volume (TV), which is defined as the volume

of air inhaled or exhaled during a respiratory cycle. TV is useful for monitoring some

respiratory diseases, such as Cheyne-Stokes respiration and sleep apnea. Both respira-

tory rate and TV have been studied as indicators of the anaerobic threshold [56, 180],

129



130 Chapter 6. Electrocardiogram-derived tidal volume estimation

which is related to the physical condition. The assessment of the physical condition re-

sults interesting for heart failure patients [284] and for athletes. Respiration monitoring

techniques are usually based on plethysmography, pneumography or spirometry. These

techniques require cumbersome devices which remain inconvenient for some applica-

tions, and which may interfere with natural breathing. Therefore, some alternatives have

been presented in the literature.

As described in Ch. 1.3.2, ECG is known to carry some respiratory information. Es-

sentially, it is modulated by respiration through at least three different mechanisms: RSA,

variations in the relative position of the recording electrodes and changes in thoracic

impedance. These mechanisms alter ECG morphology in synchrony with respiration,

which has been exploited by several authors to develop different ECG-derived respiration

(EDR) methods, consisting in extracting respiratory information from ECG features such

as R or R-to-S waves amplitude [169], the QRS-complex slopes [145] and QRS-complex

area [182] variations, or vectocardiogram rotations [21], whitout needing additional sen-

sors. Despite the interest in EDR, research efforts have focused in estimating respiratory

rate, with very few publications concerning TV estimation. Moreover and to the best of

our knowledge, most of the studies aiming to estimate TV are based on ECG-unrelated

techniques such as image acquisition [216], traqueal sounds [215] and inductive [238] or

opto-electronic plethysmography [213].

Moody et al. already reported proportionality between TV and EDR [182]. Almost 30

years later, Sayadi et al. conducted a conceptual study aiming to derive TV using only

ECG or different intra-cardiac signals in a controlled environment [230]. For this pur-

pose, they employed mechanically ventilated swines, varying both TV and respiratory

rate ranging from 0 to 750 ml and from 7 to 14 breaths/min (0.12 to 0.23 Hz) respec-

tively. Each configuration was maintained for a minimum of 90 seconds, hence allow-

ing stable measurement periods. In this chapter, we addressed TV estimation from ECG

in rest and during a treadmill test, which constitutes a highly non-stationary scenario.

Subject-specific models for TV based on ECG derived features were proposed and cali-

brated during a maximal effort test. These models were then validated for TV estimation

in a submaximal treadmill test, conducted in a different day.

6.2 Materials and methods

6.2.1 Dataset

25 male volunteers aged 33.4 ± 5.2 years were recruited. All of them were apparently

healthy and active, practicing aerobic training at least 3 times per week. None of the sub-

jects were active smokers or reported any respiratory disorder by the time of the study,

and only one of them was under medication intake (fluoxetine) during the recordings.

They performed a maximal and a submaximal treadmill (Quasar MED LT h/p Cosmos,

Nussdorf-Traunstein, Germany) test in different days, denoted as MaxT and SubT re-
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Table 6.1: Demographics of the subjects in the presented dataset. All the values are given as mean ± standard

deviation, except from the number of subjects (N) and the maximum heart rate (the latter is provided as median

[25th, 75th percentiles] since it was not normally distributed). (BMI: Body Mass Index).

N Age (years) Height (cm) Weight (kg) BMI (kg/m2) Max. HR (bpm)

25 33.4 ± 5.2 178.0 ± 5.5 74.8 ± 7.0 23.6 ± 2.1 180 [172, 186]

spectively. Both tests were divided in 3 stages: a 5-minute resting stage, during which

the subjects remained seated and without talking, an exercise stage and a recovery stage.

The resting stage was common to both tests, whereas different protocols were followed

in the exercise stage. During MaxT, the volunteers started to run at an initial speed of

8 km⋅h−1 which was increased 1 km⋅h−1 per minute until they stopped due to volitional

exhaustion. At this point, maximumHRwas annotated for each subejct. On the contrary,

during SubT the procedure was similar to MaxT, but the speed was kept constant once

the subjects reached the 90% of their maximum HR, and they were asked to keep run-

ning for 2 more minutes at the reached speed. Finally, the recovery stage was similar in

both tests and lasted between 3 and 5 minutes during which the subjects were required

to remain running at a comfortable speed of 8 km⋅h−1.
Multi-lead ECG was acquired with a high-resolution holter (Mortara 48-hour H12+,

Mortara Instrument, Milwaukee,Wisconsin). Leads I, II, III, aVL, aVR, aVF, V4, V5 and V6

were recorded at a sampling rate of 1000 Hz, whilst an Oxycon Pro device (Jaeger/Viasys,

Germany) was used for recording breath-by-breath minute ventilation (V̇E) and respira-

tory rate (Fr). A breath-by-breath HR signal was also acquired with the latter device.

Recordings were performed at University of Zaragoza (Spain), and the protocol was ap-

proved by the institutional ethics committee following the ethical principles of the Dec-

laration of Helsinki. Written informed consent was received from all the volunteers, and

the demographics are summarized in Table 6.1.

6.2.2 Preprocessing

Beat detection and delineation was accomplished in each ECG lead using the wavelet-

based approach proposed in [167]. Instantaneous HR, xHR(n), was derived from beat time

occurrence series as 60/du
IF
(n), where du

IF
(n) represents the unevenly sampled interval

function [223] (see Ch. 1.4.2). The reference for TV was obtained as VT(k) = V̇E(k)/Fr(k),
where index k represents the k-th breath, and xHR(n) was synchronized with VT(k). Syn-
chronization was performed by employing the derivatives of xHR(n) and the HR signal

provided by the Oxycon Pro device, synchronized with VT(k). First, both HR signals were

resampled at 4 Hz by linear interpolation. Afterwards, correlation between the deriva-

tives of the interpolated signals was calculated, and the time difference was obtained as

the maximum of this correlation. Finally, the interpolated and synchronized version ofxHR(n) was resampled at the time instants k by linear interpolation, and xHR(k) and VT(k)
were smoothed using a 10-sample median filter.
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The described preprocessing was applied in MaxT and SubT. In order to distinguish

the notation between the signals corresponding to each test, superindexeswere employed

so that xm
HR
(k) and Vm

T
(k) refer to MaxT whereas x s

HR
(k) and Vs

T
(k) allude to SubT.

Both stress tests were segmented into 5 different stages: a rest stage, three exercise

stages, and a recovery stage. Irest corresponds to the initial resting stage during which

volunteers remained seated, and it lasts from the beginning of the recording until 30 sec-

onds before exercise onset, so that transition from seated to the treadmill was discarded.Irecov refers to the recovery stage, and it expands from 30 seconds after maximum HR was

reached until the end of the acquisition. The initial time offset of 30 seconds was included

to avoid transition from exercise to recovery stage, since subjects did not behave in the

same way after reaching maximum HR: whereas some of them remained running, some

others jumped from the treadmill and then started running again. The segmentation of

the three exercise stages was performed automatically from xm
HR
(k) as percentages of the

range of variations of the HR: 0-60% (I0-60), 60-80% (I60-80) and 80-100% (I80-100), considering
the mean HR at Irest as 0% and the maximumHR as 100%. Whereas the definition of Irest andIrecov was similar for MaxT and SubT, the percentages of maximum HR used for defining

the other 3 stages were only calculated from xm
HR
(k), and these values were employed in

both tests. An example of this segmentation process is displayed in Fig. 6.1.

6.2.3 Tidal volume estimation

The proposed TV estimation approach consists in a linear model which was calibrated

using the data in MaxT (training set) and evaluated using the data in SubT (test set). Both

calibration and estimation were performed for each subject and stage. For the calibration

process of each stage all the data samples in the current stage were used. Therefore, for

stage Ii, the offset and slope (�Ii and �Ii respectively) of a linear model were estimated

in a least squares sense by fitting Vm
T,Ii (k) with a determined feature of MaxT, �mIi (k). The

selection of appropriate features remains essential for a proper TV estimation, and several

options are described below. Afterwards, TV was estimated in SubT as:

V̂s
T,Ii (k) = �Ii + � sIi (k)�Ii , (6.1)

where � sIi represents the employed feature in stage Ii and in SubT.

Several features were tested as possible TV predictors: the amplitude of different EDR

series (in a single-lead and a multi-lead approach), the instantaneous HR, the PHF of the

HRV signal and the respiratory rate. Moreover, a multi-parametric model including two

or more of these features was also considered. The different methodologies followed

for feature extraction are described below and, when not indicated, the same procedure

was applied for feature extraction in MaxT and SubT. It is important to note that all the

features were normalized with respect to MaxT in order to minimize inter-day changes

in measurements (different electrode position, different basal state, etc), so that:
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Figure 6.1: Stage segmentation for MaxT, a), and SubT, b), of one subject is shown. Vertical lines indicate

onset and offset of the different stages for each test, whereas horizontal lines mark the different percentages

of maximum HR used for segmentation. In both cases, there is a 30-second interval between Irest and I0-60, and
between I80-100 and Irecov, in order to exclude the transition from rest to exercise and from exercise to recovery

respectively.

�̃mIi (k) = �mIi (k) − ��mIi��mIi
,

�̃ sIi (k) = � sIi (k) − ��mIi��mIi
, (6.2)

being ��mIi and ��mIi the mean and standard deviation of �m(k) during interval Ii respec-
tively. �̃mIi and �̃ sIi represent the normalized versions of �m(k) and � s(k) during interval Ii
respectively, although they will be referred to as �m(k) and � s(k) for simplicity.

6.2.4 Single-lead EDR

Amplitude difference between peaks and nadirs of the EDR series obtained from each

lead were used as features for TV estimation. For this purpose, several EDR signals were

considered: R-S amplitudes [169], QRS upslopes and downslopes, and R wave angles
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Figure 6.2: Derivation of the amplitude difference series using R-S amplitude as EDR. In a), R (green circles)

and S (red circles) waves were detected in the ECG signal, and the difference between them was calculated for

each beat to obtain a R-S amplitude series. xEDR(t) is a low-pass filtered version of this series (b)). Finally, the

peaks and nadirs in xEDR(t) were detected (pink and blue circles respectively), and the series generated from

the difference between them was resampled at the times when breaths occur and smoothed with a 10-sample

median filter. The result, �m(k) (c)), was used as a feature for our linear model.

[145]. The resulting series were evenly sampled at 4 Hz and low-pass filtered at 1.5 Hz

in order to discard HF components that are unrelated with respiration, and they were

referred to as xEDR(t). As local maxima/minima in the EDR signal amplitude should be

related with the end of expiration/inspiration, thus when electrodes are closer to/farther

from the heart, peaks and nadirs in xEDR(t) were detected, and the difference between

the amplitude of each peak and its corresponding nadir was calculated. The amplitude

difference series were linearly interpolated at the time instants when expirations occur

and smoothed with a 10-sample median filter, and the outputs of this process, �m(k),
were used as features for estimating the TV. An example of this procedure using the R-S

amplitude as EDR signal is displayed in Fig. 6.2.

6.2.5 Multi-lead EDR

During inspiration and expiration processes thorax expands or contract differently in

the three spatial dimensions, and hence the use of spatial information could result in a

better TV estimation. In this way, a multi-lead approach consisting in the combination

of EDR signals extracted from different leads is proposed. The procedure is similar to

the single-lead approach, and only differs in the definition of xEDR(t). In order to account

for this three-dimensional behavior, in the multi-lead approach the EDR signals of three
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different leads were combined using a principal component analysis (PCA), and xEDR(t)
was obtained as the first component of this PCA. The employed leads were selected as

those forming the most orthogonal combination possible, so that spatial information was

maximized. In this case, leads V4, V6 and aVF were selected. Also the possibility of

combining all the available leads was contemplated in the analysis.

As in the single-lead approach, R-S amplitudes, QRS upslopes and downslopes, and

R wave angles were used as EDR signals.

6.2.6 Instantaneous heart rate

When body metabolic demands increase, TV and HR increase in order to enlarge gas

exchange. In this way, it is expectable that TV and HR present some correlation, so HR

was considered as a possible TV estimator. xm
HR
(k) and x s

HR
(k)were used as features for the

linear model in MaxT and SubT respectively:

�m(k) = xm
HR
(k),� s(k) = x s

HR
(k). (6.3)

6.2.7 Heart rate variability

Relationship betweenHRV and TV has been a recurrent topic in the literature [50,74,123],

where association of an increased TVwith a higher PHF has been reported. For this reason,

we considered PHF as a potential feature for estimating TV. Although HRV is drastically

reduced during moderate exercise [17, 67], the mechanical effect that breathing exerts

over the SA node appears to be responsible of increased PHF during high intensity exercise

[66]. However, PHF calculation should be addressed carefully during physical activity,

since the increased Fr during exercise could yield to a shift of power towards higher

frequency components [18]. In this way, we adopted the methodology proposed in [122]

for the calculation of PHF, where it was determined in a time-frequency basis (PHF(t)),
using an adaptive band centered in Fr. Moreover, the presence of non-respiratory-related

frequency components thatmight laywithin theHF band [17]was taken into account (see

[122] for details). The obtained PHF(t) was resampled at the time instants when breaths

occur, and the resulting discrete series (Pm
HF
(k) and Ps

HF
(k) for MaxT and SubT respectively)

were used as features for TV estimation:

�m(k) = Pm
HF
(k),� s(k) = Ps

HF
(k). (6.4)
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Prior to HRV analysis, ectopic beats and misdetections were identified and corrected

using the method described in [172] (less than a 0.1% of the beats were labeled as ectopics

or misdetections).

6.2.8 Respiratory rate

Minute ventilation is defined as the volume of air inhaled or exhaled per minute. In

this way, it is proportional to both TV and Fr. When an increase of gas exchange is

required, the request can be satisfied by increasing either TV or/and Fr. However, in a

very demanding situation such as a maximal effort test, the role of both magnitudes is

closely related [256], so Fr was also considered as a possible TV estimator. Respiratory

rate was estimated from the ECG as proposed by Lázaro et al. [145]. The EDR series

calculated from the upslopes, downslopes and angles of the R waves of all the available

leads were employed. Same parameters than in [145] were used for Fr estimation in Irest,
whereas they were modified in the exercise stages. Concretely, the Welch’s periodogram

parameters were set to Ts = 12 s, Tm = 4 s and ts = 1 s. Also the peakness threshold

for averaging was reduced to 50% (� = 0.5), and faster changes in Fr were allowed by

increasing � from 0.1 to 0.2 (see [145] for details). Finally, the upper limit of the EDR

signals filtering was set to 1.5 instead of 1 Hz in order to adapt it to the studied scenario,

where Fr can exceed 60 breaths/minute.

Afterwards, the estimated Fr for MaxT and SubT, F̂m
r
and F̂s

r
, were used as features for

TV estimation:

�m(k) = F̂m
r
(k),� s(k) = F̂s

r
(k). (6.5)

6.2.9 Multi-parametric model

Since in the literature TV has been related with all the previously described parameters

independently, it might occur that combining the TV information obtained from different

sources yields to a better estimation, so we considered the possibility or merging infor-

mation from all the presented parameters using a multi-linear model, so that the final TV

estimation was obtained as:

V̂s
T,Ii (k) = �Ii + � s, 1Ii (k)� 1Ii + � s, 2Ii (k)� 2Ii +⋯ + � s, LIi (k)�LIi , (6.6)

where � s, lIi (k) represents the different proposed features, i.e., parameters extracted from

the single-lead and multi-lead EDR approaches, instantaneous HR, HRV and Fr. �Ii and� lIi represent the parameters of the multi-linear model estimated from MaxT, and L is
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the number of parameters considered in the model. All the possible combinations of the

proposed features were tested in order to obtain the best performing feature combination.

6.2.10 Subject-independent model

The possibility of having a single model which can be applied in a subject-independent

basis was also addressed. For this purpose, the median of each of the coefficients of all

the subject-specific multi-parametric models described above was calculated:

� Ii = median([�Ii (1), �Ii (2),… , �Ii (N )]),� l
Ii = median([� lIi (1), � lIi (2),… , � lIi (N )]),

∀l ∈ [1,… , L], (6.7)

being � Ii and � l
Ii the coefficients of the subject-independent multi-parametric model, �Ii (n)

and � lIi (n) the coefficients of the multi-parametric model for subject n, and N and L the

total number of subjects and parameters considered in the model respectively.

6.2.11 Performance measurement

Median and IQR of the absolute (�a) and relative error (�r ) were calculated for each

methodology, stage and subject in order to quantify the accuracy of the estimation. Medi-

ans of medians and IQRswere computed among subjects for eachmethodology and stage.

Moreover, accuracy in the estimation of Fr was quantified as the inter-subject median of

the median absolute error in each stage.

6.3 Results

Median TV estimation errors obtained for each stage and approach are displayed in Ta-

bles 6.2 and 6.3. Also graphical examples of the different methodologies are depicted in

Figure 6.3. From the 25 volunteers recruited for this study, a total of 11 subjects had to

be discarded due to missing TV signal or ECG, or bad quality signals either in MaxT or

SubT.

The estimation errors obtained with the single-lead approach are summarized in Ta-

ble 6.2, where the results obtained for the different EDR methods can be compared. Al-

though similar results were obtained for all the leads, lead II was the best performing

independently of the considered EDR. The use of the downslopes of the R waves led to

the lowest estimation errors in Irest, I60-80 and I80-100, with median relative errors of 11.68,

7.40 and 5.81%, respectively. On the other hand, the upslopes led to the best results inI0-60, whereas the R-S amplitude was the best performing EDR in Irecov, with median relative
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Table 6.2: Inter-subject medians of median and IQR of the fitting errors obtained with the single-lead EDR

approach. Best results were achieved for lead II, so results obtained in lead II with each of the considered EDRs

are displayed. The median and IQR of the absolute and relative error corresponding to the lowest relative error

in each stage are highlighted in bold type.

IIR-S II upslope II downslope II angle

Median IQR Median IQR Median IQR Median IQR

Irest �a (liters) 0.11 0.11 0.10 0.11 0.11 0.12 0.09 0.09�r (%) 13.06 11.36 13.38 12.42 11.68 12.26 12.40 12.11

I0-60 �a (liters) 0.37 0.33 0.27 0.31 0.39 0.30 0.31 0.36�r (%) 20.31 22.80 17.01 16.80 22.34 22.49 19.77 26.57

I60-80 �a (liters) 0.27 0.23 0.24 0.23 0.18 0.23 0.29 0.21�r (%) 11.35 6.95 9.17 6.56 7.40 7.28 10.86 7.00

I80-100 �a (liters) 0.19 0.11 0.19 0.13 0.16 0.14 0.17 0.12�r (%) 6.03 4.57 5.96 4.48 5.81 4.62 6.27 4.24

Irecov �a (liters) 0.42 0.32 0.49 0.34 0.39 0.29 0.48 0.32�r (%) 14.07 12.76 15.26 11.43 15.77 11.32 16.68 12.30

Table 6.3: Inter-subject medians of median and IQR of the fitting errors obtained with the multi-lead, HR, HRV,

Fr and multi-parametric approaches. Results concerning the multi-lead approach were achieved considering

the leads V4, V6 and aVF, whereas those of the multi-parametric approach were obtained from a combination

of the single-lead and HR approaches (in the single-lead approach, lead II and QRS downslopes were employed).

The median and IQR of the absolute and relative error corresponding to the lowest relative error in each stage

are highlighted in bold type.

Multi-lead HR HRV Fr Multi-parametric

Median IQR Median IQR Median IQR Median IQR Median IQR

Irest �a (liters) 0.09 0.12 0.10 0.10 0.12 0.10 0.17 0.13 0.16 0.12�r (%) 11.87 14.23 12.74 12.57 16.19 14.10 17.37 16.85 17.61 15.87

I0-60 �a (liters) 0.39 0.35 0.25 0.22 0.38 0.39 0.56 0.54 0.23 0.25�r (%) 21.86 22.31 15.12 14.36 20.41 25.38 28.85 40.43 12.96 15.87

I60-80 �a (liters) 0.29 0.22 0.15 0.13 0.27 0.18 0.21 0.23 0.14 0.11�r (%) 11.24 6.80 7.64 5.66 10.98 7.02 9.02 7.49 7.41 4.68

I80-100 �a (liters) 0.15 0.14 0.16 0.13 0.16 0.14 0.18 0.11 0.14 0.12�r (%) 6.97 5.02 6.14 4.13 5.32 4.03 7.14 4.81 5.06 4.01

Irecov �a (liters) 0.37 0.31 0.27 0.28 0.54 0.34 0.36 0.35 0.28 0.28�r (%) 15.33 8.66 11.55 12.04 18.58 15.74 13.75 14.61 11.41 12.03

errors of 17.01 and 14.07% respectively. Median IQRs of the estimation error were similar

for all the approaches and stages.

Estimation errors obtained with the multi-lead, HR, HRV, Fr and multi-parametric

approaches are reflected in Table 6.3. Lowest relative fitting errors were obtained when

combining the downslopes series in lead II and the instantaneous HR with the multi-

parametric approach, except in Irest, where the multi-lead approach remained the best

option. Scatter plots of the performance of the multi-parametric approach for all the

subjects and in the different stages are displayed in Fig. 6.4. Nevertheless, similar estima-
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Figure 6.3: Real (blue) and estimated (red) tidal volume (V̂s
T) for a given subject is displayed. The different esti-

mations were obtained from the best performing lead (lead II in this case) of the single-lead EDR approach (a)),

the muli-lead EDR approach (b)), the instantaneous HR (c)) approach, the HRV approach (d)), the respiratory

rate approach (e)) and the best performing feature combination (lead II in the EDR approach plus instantaneous

HR in this case) of the multi-parametric approach (f)).

tion errors were achieved in the multi-lead, HR, Fr and the multi-parametric approaches

for all the stages, except for Irest in Fr and the multi-parametric option, and I0-60 in Fr and

multi-lead, where larger errors were observed. On the other hand, slightly increased er-

rors in most of the stages were obtained for the HRV approach. In most of the cases,

median relative error was lower than 14%, being it lower than 7.5% in I80-100 for all the
approaches, and as low as 5.06% in the multi-parametric approach. Highest estimation

errors were generally obtained for HRV and Fr, although their performance is compara-

ble to the other approaches in the majority of the stages. Median IQRs of the estimation

error were similar for all the approaches and stages, except for increased values in I0-60 for
all the approaches excluding the HR and the multi-parametric options.

In Table 6.4, themedian value of each coefficient obtained for the subject-independent

multi-parametric models, as well as the ratio of the contributions of the downslopes

and the HR are summarized. Whereas the contribution of the HR is in median always

higher than the contribution of the EDR calculated from the downslopes, the former

turns highest during the I0-60 and the Irecov stages. On the other hand, and since best perfor-

mance was generally achieved with the multi-parametric model, the subject-independent

model was composed by the median of the coefficients of all the subject-specific multi-
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Figure 6.4: Scatter plots of the tidl volume estimated from the multi-parametric approach when combining the

downslopes of lead II and the HR (V̂s
T) against the real one (V̂s

T) for all the subjects and each of the stages (a):Irest, b): I0-60, c): I60-80, d): I80-100 and e): Irecov). Dashed lines indicate V̂s
T = Vs

T.

parametric models, which are those displayed in Table 6.4. The performance of this

subject-independent model is also summarized in Table 6.4, where larger absolute and

relative errors when compared with the subject-specific model were obtained in all the

stages, except from Irest.
Although not displayed in the tables, median Fr estimation error was computed for

all the stages in MaxT and SubT independently. Estimation errors lower than 0.035 Hz

were obtained for most of the stages in both MaxT and SubT, whilst a maximum error of

0.077 Hz was obtained for I0-60 in SubT.
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Table 6.4: Median (IQR) of the parameters of the subject-independent multi-parametric model for each stage

(parameters of the multi-linear model when the QRS downslopes in lead II and the instantaneous HR are con-

sidered, so that � Ii is the offset, and �1Ii and �2Ii are the contributions of the downslopes and the HR respectively).

Also the median (IQR) of the absolute and relative errors obtained when estimating the TV using the median

model are displayed.

� Ii � 1
Ii � 2

Ii |� 2
Ii /� 1

Ii | �a (liters) �r (%)Irest 0.800 (0.232) 0.021 (0.088) 0.036 (0.101) 1.128 (1.594) 0.10 (0.08) 14.04 (11.77)I0-60 1.734 (0.488) 0.016 (0.070) 0.358 (0.352) 6.186 (21.097) 0.48 (0.28) 22.72 (22.19)I60-80 2.410 (0.561) -0.020 (0.042) 0.110 (0.084) 3.076 (4.743) 0.45 (0.14) 18.74 (4.88)I80-100 2.828 (0.728) 0.001 (0.054) 0.089 (0.1849) 5.791 (14.302) 0.32 (0.14) 10.23 (5.47)Irecov 2.561 (0.942) 0.001 (0.094) 0.230 (0.257) 7.955 (52.689) 0.49 (0.39) 19.75 (12.33)

6.4 Discussion

In this chapter, we addressed the possibility of estimating TV only from ECG recordings.

The use of a dataset composed by signals acquired duringmaximal and submaximal tread-

mill stress tests results in a challenging but suitable environment for testing the behavior

of the proposed methodologies in a highly non-stationary scenario. Also rest periods

were considered, thus representing a more stationary situation. Although several differ-

ent approaches were proposed, all of them are based on a first order lineal model, so that

the complexity relies in the selection of adequate ECG-derived features.

Both MaxT and SubT were automatically divided in five stages, according to the exer-

cise onset and offset and different percentages of the maximum reached HR. Afterwards,

TV estimation was performed for each stage. For this purpose, we calibrated the param-

eters of the linear model in Eq. 6.1 using all the samples in the stage of interest of MaxT,

and used them for estimating the TV in the same stage of SubT. Moody et al. suggested

that the amplitude of an EDR signal (calculated using the QRS-complex area) obtained

from any set of electrodes should be roughly proportional to the TV [182]. In order to

test this hypothesis, we applied four different EDR techniques to all the available leads:

the R-S amplitudes [169], and the upslopes, downslopes and angles of the R waves [145].

Although results obtained for all the leads were similar, best estimation accuracy was

obtained when using lead II, independently of the employed EDR. When comparing the

different EDRs, lowest error was achieved with the downslopes in most of the stages, as

displayed in Table 6.2, which might suggest a more linear relationship with TV than the

other EDRs. For all the leads and EDRs, a lower performance was observed in the I0-60
stage. The most likely explanation for the performance reduction is the fast changes that

occur during this stage, with a sudden increase in TV, HR and Fr that are not completely

followed by the EDRs or the first-order linear model. Also changes in the position of the

electrodes used for ECG acquisition (since both tests were performed in different days,

it is probable that they were attached in slightly different places) or in the basal state of

the subjects could constitute additional sources of estimation error.
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In a second approach, we addressed the possibility of including spatial information

by a combination of EDRs extracted from three "quasi-orthogonal" leads (since lead V2

was missing, there were not three leads that were completely orthogonal) through PCA,

so that the main variations in those EDRs, which are expected to be produced by respi-

ration, were maximized. Also the option of combining all the available leads was consid-

ered, although it did not outperformed the three-lead option. Despite the similar results

obtained in the single-lead and multi-lead EDR approaches, median relative error was

slightly higher when accounting for spatial information, except for Irest and Irecov, probably
due to fact that sources of noise such as movement during running may contribute to the

first component of PCA. Nonetheless, since the different spatial dimensions of thoracic

expansion do not contribute equally to the total TV, most of the information might be

obtained from a single lead capturing variations along a preferable dimension. Addition-

ally, the non-standard leads employed by Lázaro et al. in [145] were considered, although

their performance was not higher than that of the multi-lead approach.

HRV has also been related with TV in the literature, since PHF has been reported to

be affected both by TV and respiratory rate [50, 74, 123]. In a previous study using the

same dataset, Hernando et al. proposed a method for calculating PHF in a time-frequency

basis and considering the presence of non-respiratory-related components [122], so we

adopted this methodology and used the obtained PHF as a feature for estimating the TV.

Results displayed in Table 6.3 revealed that the performance using HRV was similar than

for the single-lead EDR approach in I80-100 and in I0-60, but fitting error was higher in Irest, I60-80
and Irecov (although it increased less than a 5% in all the cases). The lowered performance

during I60-80 and Irecov could be related with the fact that HRV is drastically reduced during

moderate exercise [17, 67] and so its variations might uncouple from those in TV, thus

resulting in an increased estimation error in these stages, whereas during high intensity

exercise (as in I80-100) PHF might recover the coupling with TV (possibly due to mechanical

stretching of the sinus node [66]), thus resulting in a reduced estimation error. In the case

of Irest, decreased performance could have its origin in the fact that low respiratory rates

might result in wrong estimations of PHF, due to spectral shift towards low frequency

band. Differences in the metabolic demands and in the ANS state (reflected in HRV) from

day to day could also contribute to estimation error.

Since metabolic demands of the body increase during exercise, the demanded gas

exchange increases as well, so both minute ventilation and HR increase consequently.

Due to the very close relation between TV and Fr in the control of V̇E during exer-

cise [256], Fr was considered for estimating the TV. First, Fr was estimated as proposed by

Lázaro et al. [145]. Essentially, Fr is calculated from the EDRs derived from the upslopes,

downslopes and angles of the R waves of all the available leads, which are combined in

a short-term basis when they spectra are peaky enough. Although the same parame-

ters employed in [145] were used in Irest, they were modified during the exercise stages

attending to the fast and wide changes observed in Fr in the studied scenario. Median

absolute Fr estimation error was generally lower than 0.035 Hz. Results in Table 6.3 re-

veal a relative error lower than 10% in I60-80 and I80-100, lower than 18% in Irest and Irecov and
higher than 28% in I0-60 respectively. The decreased accuracy in the latter stage might be
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explained by the different response of the subjects to the increasing ventilation demands,

as observed by Carey et al. during incremental exercise [55]. Whereas in some subjects Fr

increased in parallel with the exercise load, some others satisfied the ventilation demands

during moderate exercise by mainly regulating the TV, with a lower contribution of Fr,

which increased slowly as exercise became more intense. In order to study the effect of

Fr estimation in the results, we repeated the calculations using the original Fr provided

by the Oxycon Pro device, concluding that the error in Fr estimation did not contribute

noticeably to the error in TV estimation.

On the other hand, HR increases together with exercise intensity. In this way, we

observed that the use of HR as TV estimator resulted in low fitting errors, with a median

relative error lower than 13% in all the stages except in I0-60, where it increased up to

15.12%. Despite the high performance of this approach (especially in I0-60, when compared

with the other approaches), these results should be regarded carefully, since the relation

between HR and TV could be not that direct in other scenarios.

Finally, we also considered the combination of several features using a data fusion al-

gorithm such as a multi-linear model. From all the possible feature combinations, lowest

fitting errors were obtainedwhen combining the single-lead EDR and the HR approaches.

This feature combination outperformed all the other approaches in all the stages, except

in Irest, thus highlighting the multi-source origin of the physiological mechanisms un-

derlying the respiratory-related modulation of cardiac activity. In this way, although the

EDR andHR signals may share some information regarding respiratory activity, they also

contain non-redundant information that is exploited by this multi-parametric approach,

thus resulting in a better TV model than any of the considered features separately. How-

ever, and as displayed in Table 6.4, the contribution of the HR was always dominant,

independently on the considered stage. This dominance was weak during Irest, but in-
creased in the other stages, especially during I0-60 and Irecov. This behavior is most likely

related with the similar profile of the instantaneous HR and the TV during the treadmill

tests, so that when abrupt transitions occurs (such as those in I0-60 and Irecov), HR turns in

the best estimator of the TV, whose changes are poorly followed by the other considered

features. As displayed in Fig. 6.4, the performance of this approach was similar for all

the subjects, with larger variations occurring in Irest, I0-60 and Irecov. Whereas the presence

of outliers in I0-60 was to be expected due to abrupt changes in TV, larger performance

variations during Irest are most likely due to a lower linear coupling between the target

features and the TV during spontaneous breathing in some of the subjects. On the other

hand, the subjects behaved distinctly after reaching the maximum HR in MaxT (some of

them jumped from the treadmill and started running again), and therefore it is difficult to

establish whether large deviations in Irecov are explained by this fact or by an uncoupling

between TV and the estimation features.

Nevertheless, since themulti-parametric approachwas generally the best performing,

it was used for estimating a subject-independent model, built as the median of all the

previously trained subject-specific models. As summarized in Table 6.4, relative errors

lower than 20% were obtained for most of the stages (relative error raised to 23% in I0-60).
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As expected, the median absolute and relative errors were larger than in the case of the

subject-specific model for all the stages, except in the case of Irest. This is possibly related

with the fact that, for those subjects presenting large estimation errors in this particular

stage, a median model results in a better approach, given that the average TV during rest

is similar for people with similar characteristics.

There are also some limitations that must be highlighted. First, the dataset was com-

posed only by healthy men in a relatively small age range, which were used to aerobic

training. In this way, the algorithm performance in subjects with a different age range

or physical condition, or with cardiorespiratory disorders remains unknown and should

be evaluated in further studies. Regarding the high linear relation between TV and HR,

the scope of this work was limited to a treadmill test, and hence this coupling might be

reduced in other scenarios.

In summary, we proposed a simple method for estimating TV from only the ECG. Sev-

eral different features that are related with respiration were considered as TV estimators,

and all the methodologies were tested in rest and also in a highly non-stationary scenario

such as an effort treadmill test. The promising results with low fitting errors suggest that

it might be possible to develop a subject-specific model that could be applied to estimate

the TV in a day-independent basis. Nevertheless, further research should be conducted in

order to improve TV estimation from the ECG. In this study we only considered estima-

tion during an exercise test, but this method could be useful in many other applications,

e.g., in the monitoring of respiratory disorders such as Cheyne-Stokes respiration, COPD

or asthma. For this purpose, validation in these scenarios remains crucial. Moreover, the

proposed model could be regarded as an interesting tool in several activities that are cen-

tered in the control of respiration, like meditation, yoga or mindfulness, and in different

fields of sports science.

6.5 Conclusion

A methodology for estimating TV from several features derived from ECG during a

treadmill stress test has been presented, considering the possibility to develop a subject-

oriented model independent on the measurement day. Recordings from two different

days were employed, being the first used for calibrating the model and the second for

testing. During exercise, the different proposed approaches led to fitting errors lower

than 14% in most of the cases and than 6% in some of them, suggesting that TV can be

estimated from the ECG in non-stationary conditions. Best results were obtained when

combining the information provided by a single-lead EDR signal based on the downslopes

of the R waves and the instantaneous HR.
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7.1 Motivation

During moderate exercise, the aerobic energy production system combines the blood O2

with carbohydrates, fats and proteins to synthesize adenosine triphosphate (ATP), which

is the molecule providing the muscles with energy. However, the rhythm at which ATP

is produced through the aerobic pathways results insufficient to maintain muscle activ-

ity at higher exercise intensity. In this situation, ATP starts to be produced through the

anaerobic pathways, which employ the glycogen stored in the muscles and release lactate

and H+ ions as residuals, resulting in metabolic acidosis [112, 207]. The O2 consumption

145



146 Anaerobic threshold estimation

above which anaerobic mechanisms are needed to complement aerobic energy produc-

tion, thus causing a sustained increase in lactate levels and metabolic acidosis, is referred

to as anaerobic threshold (AT) [271]. Apart from representing an inflection point in the

way the body obtains energy to maintain its work capacity, the AT is also regarded as

the frontier beyond which the cardiovascular system limits the endurance work [270].

In this way, an accurate estimation of the AT remains of large interest in the field of

sport sciences, as it can be used to design better training routines, quantify athletes per-

formance or prevent from overtraining. Moreover, it has some clinical applications and,

actually, it was initially intended to assess the exercise capacity in cardiac patients [272].

Different methodologies for the estimation of the AT based on the analysis of blood lac-

tate (lactate threshold, LT) and gas exchange (ventilatory threshold, VT) [251] have been

proposed in the literature. However, whereas the former requires from repetitive blood

samples acquisition, the latter employs cumbersome devices that interfere with natural

breathing.

For these reasons, there is a growing interest in the noninvasive estimation of the AT,

using ECG-derived parameters such as the HR [124] or HRV [134]. In a recent work by

Hamm et al. [115], they proposed amethodology for the estimation of the LT based on the

analysis of the ventricular repolarization instability and reported a characteristic pattern

that was used for estimating the LT in function of its correlation with the HR. However,

the use of blood lactate levels as a gold standard for detecting the AT might result in a

high uncertainty, given that it can be only assessed in a discrete-time basis, usually with

high sampling periods. In this chapter, we addressed the estimation of the AT from the

analysis of the ventricular repolarization dynamics, using the VT as a reference, given

that it can be assessed in a more continuous-time basis.

On the other hand, Rizas et al. proposed the use of periodic repolarization dynam-

ics (PRD), computed from the ventricular repolarization instability analysis, as a novel

method for the assessment of sympathetic activity [222]. Given the close relationship

between PRD and repolarization instability, we also considered the possibility of esti-

mating the AT from the PRD, under the hypothesis that the VT will also be related with

an increased sympathetic activity, due to the need of faster ventilation.

7.2 Materials and methods

7.2.1 Dataset

The same 25 healthymale volunteers recruited for themaximal and submaximal treadmill

tests introduced in Ch. 6 (their demographics are displayed in Table 6.1) performed a step

incremental cycle ergometer test, divided in three stages. In the first stage, the subjects

remained seated and without talking for 5 minutes. Afterwards, they performed the cycle

ergometer test, with an initial workload of 75 W that increased 25 W each minute. The

cadence frequency was fixed at 80 rpm, and the workload kept on increasing until the
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volunteers reached the 90% of their maximum HR (the maximum HR was determined

from the maximal treadmill test described in Ch. 6) after what it was kept fixed for 2

more minutes. Finally, they underwent a recovery stage, in which they were asked to

keep on pedaling at 75 W for 3 to 5 more minutes. All the volunteers were requested to

avoid food, tobacco, alcohol or caffeine in the 3 hours prior to the study, to avoid high

intensity physical activity on the day of the test and to drink plenty of fluids during the

previous 24 hours.

During the test, high-resolution multi-lead ECG was acquired using a holter device

(Mortara 48-hour H12+, Mortara Instrument, Milwaukee, Wisconsin). Leads I, II, III,

aVL, aVR, aVF, V4, V5 and V6 were acquired at 1000 Hz. On the other hand, O2 and

CO2 consumption (V̇O2
and V̇CO2

, respectively), minute ventilation (V̇E) and respiratory ex-

change ratio (RER) were assessed with an Oxycon Pro device (Jaeger/Viasys, Germany).

The recordings were performed at University of Zaragoza (Spain), and the protocol was

approved by the institutional ethics committee in accordance with the Declaration of

Helsinki. Written informed consent was received from all the subjects.

7.2.2 Determination of the ventilatory threshold

The VT was determined by an expert in sport sciences from the ventilatory equivalents

of O2 and CO2 (V̇E/V̇O2
and V̇E/V̇CO2

, respectively) of each subject. In this way, the point

at which there was a simultaneous increase in the ventilatory equivalents of O2 and CO2

was set as the VT. Also the RER and instantaneous HRwere available to the expert. These

annotations were used as the gold standard for the estimation of the AT in this work.

7.2.3 Repolarization dynamics assessment

Baselinewanderwas subtracted from the ECG recordings (it was obtained using a forward-

backward low-pass filter with 0.5 Hz cut-off frequency). Afterwards, beat detection and

delineation was accomplished using the wavelet-based approach proposed by Martínez

et al. [167], so that the onset and offset of the T waves (Ton and Toff, respectively) were ob-

tained. Since there were not three orthogonal leads available and the absence of V2 did

not allow to calculate the Frank’s lead configuration, the three most orthogonal leads,

namely V4, V6 and aVF, were considered. After a low-pass filtering (forward-backward

filter with 30 Hz cut-off frequency) for removing HF noise without altering the morphol-

ogy of the T waves, the T waves were extracted from each lead based on Ton and Toff. The

repolarization dynamics profile, dT, was constructed as follows. First, for each beat i, the
T waves of the three employed leads were forced to have a common origin at 0 �V, by
subtracting them their first sample. Then, the length of the T waves was truncated to the

point when one of them turns zero again, in order to avoid negative values. Finally, the

three-dimensional repolarization vector corresponding to beat i was constructed using

the mean amplitude of the three T waves as its coordinates, and dT(i) was computed

as the angular difference between the repolarization vector of beats i and i − 1. An ex-
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Figure 7.1: Calculation of the dT series. In a), the original T waves of the three considered leads (V4: blue, V6:

red, aVF : green) are displayed. In b), they were subtracted their first sample to have a common origin, and they

were truncated to the first zero-crossing, marked with a black dashed line. Only the portion of the T waves

displayed in bold were used for computing dT. In c), the T waves are displayed along three perpendicular axes,

and the values of their mean amplitude (displayed with filled circles) was used to construct the repolarization

vector (black arrow). Afterwards, dT was calculated as the angular difference between this vector and the

vector corresponding to the previous beat (gray arrow).

ample of this process is displayed in Fig. 7.1. In order to improve the robustness in the

computation of dT(i), it was only calculated when the correlation between the T waves

corresponding to the beats i and i−1 had a correlation coefficient ≥ 0.9 in all the employed

leads. However, a visual analysis of the ECG signals revealed that the aVF lead was very

noisy in approximately half of the recordings during the high-intensity stages, so that dT
was estimated from only V4 and V6, in a two-dimensional approach.

On the other hand, the instantaneous HR was computed from the time difference

between consecutive beats, and the HR and dT signals were interpolated to 4 Hz and low-

pass filtered (forward-backward filter with 0.1 Hz cut-off frequency) in order to obtain

the HR and dT profiles (see Fig. 7.2 a)).

Also PRD was assessed. For this purpose, the profile of dT profile was subtracted,

and the short-term Fourier transform (STFT) of the resulting detrended dT series was

computed (120 s Blackman window, slid sample-by-sample). Afterwards, the time profile

of the PRD was computed as the total power within the [0.04 0.15] Hz band in each time

instant, and the resulting series was re-sampled to 4 Hz and low-pass filtered as the HR

and dT series. An example of the PRD profile of one subject is displayed in Fig. 7.2 b),

whereas its corresponding TF distribution is depicted in Fig. 7.3. In order to analyse

the effect of the cardiolocomotor coupling in the computation of PRD, we also checked

if there was any power content in the frequency alias corresponding to HR(t) − Fc and|2Fc−HR(t)| as proposed in [122], where Fc accounts for the pedaling cadence. An example

showing the temporal evolution of these components is displayed in Fig. 7.3.
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Figure 7.2: a) Instantaneous HR (red, left axis) and dT (green, right axis) during the exercise test for a given

subject. The HR and dT profiles are represented in bold. Moreover, the first derivative of the dT profile is

displayed (cyan, rescaled for representation purposes). b) Temporal evolution of the PRD (blue), with its profile

represented in bold and its first derivative in cyan (rescaled for representation purposes). The dashed black and

pink lines represent the occurrence time of the ventilatory threshold and the estimated anaerobic threshold.

7.2.4 Anaerobic threshold estimation

According to the repolarization dynamics profile reported by Hamm et al. [115], a visual

analysis of the dT profiles revealed a characteristic sudden increase in the repolarization

instability in the vicinity of the VT. In the present study, we first located the time instant

at which the faster variation in dT occurred from the maximum of its first derivative. The

point at which this fast increase in dT startedwas located as the local minimumpreceding

the maximum of its first derivative, and this point was selected as an estimation of the

AT, being referred to as ATdT. An example showing the estimation of the AT from the

derivative of the dT profile is depicted in Fig. 7.2 a). However, in some subjects, only

a local maximum of the derivative of dT was found close to the VT, with the absolute

maximum occurring close to the onset of exercise (see Fig. 7.2 a)). For this reason, we
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Figure 7.3: Time-frequency distribution of dT (detrended). The dashed black and pink lines represent the

occurrence time of the ventilatory threshold and the estimated anaerobic threshold, respectively. The limits of

the band used for computing PRD are shown in white, whereas the dotted red and green lines represents the

limits of a 0.125 Hz band centered in the alias terms HR(t) − Fc and |2Fc −HR(t)|, respectively (Fc, represents the
pedaling cadence)

.

established a lower threshold in the HR, belowwhichwe should not expect to see a switch

towards the anaerobic pathways. This threshold was set as the 77% of the maximum HR

of each subject (measured from a maximal treadmill test, as mentioned above), since

a previous study by Goldberg et al. [98] revealed that this value was always below the

HR measured at the VT, independently on the physical condition. Moreover, it is in

accordance with several studies reporting a HR of the 90% of the maximum HR at the

training intensity of the AT (assessed either from the VT or the lactate threshold) [190,

274].

Additionally, the possibility of estimating the AT from the PRD profile was also ad-

dressed. The same criteria than that described in the case of the dT profilewere employed,

and an example of the estimation of the AT from the first derivative of the PRD series is

displayed in Fig. 7.2 b). In this case, the resulting estimation will be referred to as ATPRD.

7.2.5 Statistical analysis

The performance of the two proposed methodologies for the estimation of the AT was

assessed by calculating the error in the VT estimation. All the results are presented in

terms of workload, so that they are comparable with previous studies. In this way, the

estimations of AT were converted from seconds to watts, assuming a linear increment of

the workload.
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Since dT was computed using only two leads, we also evaluated the differences in the

AT estimation performance with respect to the three-lead approach (only those subjects

with good signal quality in the aVF lead were considered in this case).

7.3 Results

From the 25 volunteers enrolled in the study, 5 were discarded because of misleading

T wave delineation during the high-intensity exercise, due to the noisy ECG (more than

100 consecutive beats without a correlation index ≥ 0.9 among consecutive T waves), and

another one was not included due to missing gas exchange information.

The obtained results and two boxplots accounting for the distribution of the AT esti-

mation error when using the dT and the PRD profiles are displayed in Table 7.1 and Fig.

7.4 a), respectively. In the case of using dT, a median error of -0.6 W and [25th, 75th per-

centiles] of [-19.3, 10.8] W were achieved, being them 12.9 [-17.1, 54.4] W in the case of

employing the PRD series. Since the workload was increased 25 W per minute, the error

in the estimation of ATdT was lower than 1 minute for a 63% of the subjects, whereas it

was generally kept below 2 minutes in the case of ATPRD. The absolute workload values at

VT, ATdT and ATPRD were 330.8 [282.7, 342.9], 313.1 [287.0, 344.5] and 289.6 [248.3, 325.6]

W, respectively.

Regarding the dT profile, the behavior shown in Fig. 7.2 a) was shared by the majority

of the volunteers, with a sudden increase above the resting level in response to the exer-

cise onset, followed by a plateau-like period and a new increase occurring in the vicinity

of the VT. Finally, there was a decrease in dT corresponding to the start of the recovery

stage. This behavior was very similar in the case of PRD (Fig. 7.2 b)). In order to assess

whether the increase in PRD following the VT could be due to the presence of armonic

components, we studied the alias caused by the cardiolocomotor coupling, as displayed

in Fig. 7.3. There was not a meaningful power content in the armonic components for

any of the subjects.

Since only two leads were employed in order to maximize the number of subjects

available for the analysis (19 subjects when using the two-lead approach versus 11 when

considering also the aVF lead), the difference in the estimation performance with respect

to the three-lead approach was computed. As displayed in Fig. 7.4 b), the effect was

reduced in the case of ATdT, with median and [25th, 75th percentiles] of -6.1 [-28.4, 3.2] W,

but it increased to 49.2 [-4.5, 49.2] W for ATPRD, with higher errors when employing the

three-lead configuration.
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Figure 7.4: a) Boxplots of the error in the estimation of the anaerobic threshold using the dT or the PRD series.

b) Difference in the estimation error when using three or two leads, and considering the dT or the PRD series.

In both figures, the filled circles represent the values for the different subjects.

Table 7.1: Parameters of interest in the exercise test (median and [25th, 75th percentiles]). The maximum HR

refers to that in the test conducted in this study, and not to the maximum HR reached during the maximal

treadmill test (see text for details). The percentage of maximumHRwas calculatedwith respect to themaximum

HR in the maximal treadmill test. The workloads refer to the test in this study. (VT: ventilatory threshold, AT:

estimated anaerobic threshold).

Max. HR (bpm) 171.5 [160.6, 175.6]

% max. HR at VT 89.0 [86.0, 90.8]

Max. workload (W) 350.0 [325.0, 375.0]

% max. workload at VT 85.2 [80.0, 88.2]

VT (W) 330.8 [282.7, 342.9]

ATdT 313.1 [287.0, 344.5]

ATPRD 289.6 [248.3, 325.6]

7.4 Discussion

In this chapter, the AT was estimated during a cycle ergometer test through the study of

the ventricular repolarization dynamics. The analysis of the dT and PRD profiles revealed

a sudden increase in the repolarization instability, as reflected in abrupt increases in the

trends of dT and PRD, in the vicinity of the VT. Therefore, the point at which a change in

the repolarization dynamics tendency occurred was employed as an estimation of the AT.

The good performance achieved with ATdT and ATPRD suggests that the analysis of eitherdT or PRDmight be suitable for the noninvasive estimation of the AT. Several works have

addressed the study of the ventricular repolarization dynamics, aiming to shed some
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light on the physiological mechanisms underlying them. Rizas et al. proposed the use

of dT for deriving PRD, which is regarded as a noninvasive measurement of the effect

of sympathetic activity on ventricular myocardial repolarization [222]. They reported

an increase in PRD following sympathetic activation, and a decrease after sympathetic

blockade. Moreover, they found that PRD was unrelated to HRV and respiratory activity.

Other authors have also addressed the study of the low frequency oscillations of the

repolarization dynamics, both experimentally [116, 209] and in simulation studies [210,

226], and have suggested that the variability in the repolarization dynamics is increased

in response to sympathetic provocation.

The aforementioned results could contribute to the interpretation of the dT and PRD

profiles obtained in this work. In Fig. 7.2, there are several well-distinguished stages.

During rest, repolarization instability remains low, and it presents a rapid increase follow-

ing the onset of exercise, due to the surge in sympathetic activity and vagal withdrawal

during exercise [45]. Afterwards, the repolarization dynamics present a plateau-like be-

haviour, suggesting an equilibrium in the sympathetic and vagal control. In this stage,

the progressive increase in the blood lactate levels is compensated with the HCO-

3
buffer

system. However, in the vicinity of the AT the increase in blood lactate can not be further

compensated. According to Karapetian et al. [134], the vagal activity reduces at around

the 50-60% of the maximum V̇O2
(this range has been related with the LT [63]), so that

there is a further increase in the respiratory rate aiming at compensating metabolic aci-

dosis by respiratory alkalosis (CO2 elimination). The suppression of vagal activity results

in an increased sympathetic dominance, reflected as a fast increase in the dT and PRD

profiles. Although some authors have reported an increase in the vagal component of

HRV at high exercise intensities, this is more likely reflecting the mechanical modula-

tion of cardiac activity due to increased ventilation [66]. Finally, the diminution of the

repolarization instability following the end of the exercise test would be associated with

a restitution of the sympathovagal control of ventricular repolarization.

The estimation of the AT from the analysis of the ventricular repolarization dynamics

was recently proposed by Hamm et al. [115], who studied the moving correlation among

the instantaneous HR and the trend of dT. The time point at which this correlation was

minimumwas used as an estimation of the AT. Although initially we tried to replicate the

methodology described in [115], we obtained large estimation errors due to the inconsis-

tent correlation profiles of the different subjects. However, there are several differences

between our study and the one by Hamm et al. that may explain this lower performance.

First, the configuration of the exercise test was very different, being it muchmore exigent

in our case, with an initial workload of 75 W followed by increments of 25 W per minute,

in comparison with [115], with an initial workload of 40 W and increases of 30 W every

3 minutes. This results in different HR profiles, with a much smoother increase in the

case of [115], which could be responsible of the differences in the correlation profiles.

Another important difference relies on the lead configuration of the ECG acquisition.

Whereas in [115] they employed the orthogonal Frank’s leads, in our case the conven-

tional 12-lead ECG configuration was employed (leads V1, V2 and V3 were not available,

since the volunteers were also wearing a chest band during the exercise test). The ab-
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sence of V2made it impossible to dispose of three orthogonal leads, so a quasi-orthogonal

lead configuration composed of V4, V6 and aVF was employed. However, due to the bad

quality of aVF in several subjects, only V4 and V6 were used. As displayed in Fig. 7.4 b),

the effect of using two leads instead of three resulted in an almost negligible difference

for most of the subjects in the case of ATdT, whereas it had a greater impact in ATPRD,

being the latter generally higher when employing the three-lead configuration. Possibly,

the lower performance when including aVF is due to a generalized lower signal quality,

which might not affect the trend of dT, but has an effect on the estimation of the PRD.

On the other hand, the gold standard in the work by Hamm et al. was the LT, whilst

in this work the VT was employed. In spite of the fact that the LT is largely acknowl-

edged as a good estimator of the physical condition, its use for estimating the AT is not

yet unified, so that the accuracy will depend on the methodology and site of the blood

extraction and of the employed analysis methods [83]. Moreover, it will also be depen-

dent on the sampling period (in the case of [115] the sampling period was selected as 3

minutes), which is much lower than in the case of the VT, since the signals used for es-

timating it have a continuous-time nature. Nevertheless, the estimation of the VT might

be subjective in some cases, depending on the expert annotator experience and opinion,

or in the established criteria in the case of automatic detection.

There are also some limitations in this work that must be discussed. As aforemen-

tioned, the VT annotations might have a subjective component, although they are proba-

bly more precise than in the case of using the LT, with high sampling periods. Moreover,

the use of only 2 leads limits the available information concerning the ventricular re-

polarization dynamics and, possibly, better results could be obtained if adding a third

orthogonal lead in the estimation of dT. Also the use of predefined HR thresholds could

result in an overestimation of the VT, although in this case none of the subjects had

reached their VT at the 77% of their maximum HR. Additionally, we considered the pos-

sibility that the increase in PRD after the AT could be caused by the presence of armonic

cardiolocomotor components, but the analysis of the TF maps of dT discarded this pos-

sibility. Finally, we only tested the proposed methodologies in subjects used to aerobic

training, so further studies in a wider range of physical conditions would be desirable.

7.5 Conclusion

In this chapter, a novel methodology for the estimation of the AT based on the analysis

of the ventricular repolarization dynamics profile has been proposed. The analysis of thedT and PRD profiles reflects a rapid increase in sympathetic dominance in the vicinity of

the AT, and the high performance with estimation errors lower than 25 W (or 1 minute)

for most of the subjects suggests that the AT can be estimated noninvasively, using only

ECG recordings.
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8
Conclusions and future work

8.1 Summary and conclusions

8.1.1 HRV analysis in asthma

8.1.2 HRV analysis in sleep ap-

nea syndrome

8.1.3 Cardiorespiratory signals

analysis in sport sciences

applications

8.1.4 Conclusion

8.2 Future work

8.1 Summary and conclusions

The main objective of this dissertation was the noninvasive assessment of ANS activity,

applied to different respiratory disorders and to the field of sport sciences. For this pur-

pose, this document was divided in three main parts. In the first one, an introduction

to the physiology underlying the different considered scenarios was provided, together

with a methodological framework for the contextualized analysis of HRV. HRV analysis

remains the most extensively employed tool for ANS assessment, although it requires

from a proper signal conditioning in order not to hamper the further interpretation. In

this way, the presence of noise or other interfering sources, ectopic beats or strong RSA

episodes should be considered. In Ch. 2, an algorithm for differentiating between ec-

topic beats and rhythm changes due to RSA was presented, and it was later employed in

Ch. 3 for improving beat detection in two different datasets of asthmatic children, with

stronger RSA than in the case of adults.
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Also the use of peakness for the assessment of the HF power distribution was ad-

dressed, and its potential and relationship with classical frequency domain HRV param-

eters was evalauted through a simulation study. Moreover, the effect of the respiratory

rate on HRV analysis was discussed, contemplating the use of modified HF bands or the

removal of the respiratory contribution to HRV. Finally, CRC assessment was consid-

ered, and two indexes derived from the TFC map were described. All these tools were

employed to a greater or lesser extent in the different sections of this thesis.

In the second part, HRV analysis was applied to three different clinical scenarios,

namely child asthma, adult asthma and SAS. In each of these scenarios, the methodol-

ogy was adapted so that the results of the analysis can be provided with a physiological

interpretation. Finally, the third part consisted in the study of cardiorespiratory signals

in the context of exercise tests. Two novel methodologies for the estimation of the TV

and the AT were proposed and tested during treadmill and cycle ergometer tests, respec-

tively. Themethodological details, main results and conclusions of each of the considered

scenarios are discussed below.

8.1.1 HRV analysis in asthma

The physiological mechanisms underlying the pathogenesis of asthma have not yet been

elucidated. Although airway hyper-responsiveness is one of themost common symptoms

of asthma, its origin remains unknown due to the large heterogeneity among asthmatic

patients. However, the fundamental role of PNS in the control of bronchomotor tone

[184] and bronchoconstriction [151] has attracted some attention to ANS imbalance as

a possible source of airway hyper-responsiveness. In this way, it is possible that ANS

assessment could add some clinical value for the diagnosis and monitoring of asthma.

Under the hypothesis that altered autonomic airway control observed in asthmatics may

be also reflected in cardiac vagal activity, in this thesis we proposed the analysis of HRV

for ANS evaluation in asthmatic children and adults.

In the case of asthmatic children, we found an increased vagal dominance in those

subjects with higher risk of developing asthma in the future, in according with previous

studies reporting increased vagal activity in asthmatics [80, 94, 131, 240, 257, 287]. More-

over, increased ℘ reflected a peakier HF component, which could suggest a more regular

vagal activity in children with higher risk of asthma. Importantly, we included several

methodological novelties with respect to previous works, such as the improved detec-

tion of ectopic beats taking RSA episodes into account, or the use of modified HF bands

for the frequency domain HRV analysis, given the increased respiratory rate observed in

children. When analyzing the same parameters in a group of children under ICS treat-

ment for obstructive bronchitis, we observed a decrease in vagal activity and an increase

in the sympathovagal balance (as measured from HRV) in those children with less risk

of asthma, which might suggest a restoration of the homeostatic autonomic activity. Ac-

cording to Fryer et al., increased vagal activity observed in asthmatics could be caused by

a dysfuntion of the M2 muscarinic receptors [90], largely present in the post-ganglionic
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nerves innervating the airways. Moreover, a decrease in ℘ and CRC was also assessed

in this group of children. On the other hand, all these parameters remained unaltered

in those children with a worse asthma prognosis, which might be linked to the concept

of illness as a state of reduced complexity [99, 212], suggesting that HRV might be more

dependent on the respiratory activity in asthma or in subjects with an increased risk

of developing asthma. Since the results of both studies were coherent among them and

with the literature, and provided that HRV analysis is noninvasive in nature, ANS assess-

ment using HRV might stand out as a feasible option for aiding in the study of the neural

mechanisms underlying asthma.

Regarding the study of HRV in asthmatic adults, the objective was to evaluate the

added value of ANS assessment in the stratification of asthmatic patients attending to

their degree of symptoms control or their disease severity. For this purpose, several HRV,

respiratory-derived and clinical features were employed for training various classifiers.

Since some of the subjects presented low respiratory rates, respiratory information was

removed from theHRV signal using the OSPmethodology. We assessed a reducedHRV in

the subjects with more severe or uncontrolled asthma with respect to those with a better

condition, in concordance with previous studies [160]. Additionally, the classification

attending to the asthma severity when including ANS information resulted in a similar

performance than using only the clinical features, which were outperformed in some

cases, therefore suggesting that ANS assessment through noninvasive cardiorespiratory

signals analysis could represent a useful complement in the monitoring and diagnosis of

asthma in adults.

8.1.2 HRV analysis in sleep apnea syndrome

SAS has been identified as risk factor for the development of CVD, representing a well-

known cause of secondary hypertension, coronary artery disease, cardiac arrhythmias

and heart failure [198,255,282]. On the other hand, altered HRV has been independently

related with SAS and with several conditions that constitute risk factors for the develop-

ment of CVD. However, and in spite of the fact that the characteristic autonomic response

to an apneic episode is shared by most of SAS patients, only some of them will develop

CVD. Under the hypothesis that there might be some differences in the autonomic con-

trol of SAS patients developing or not cardiac comorbidities, we analyzed the overnight

HRV in two datasets composed by SAS patients with a well defined CVD outcome.

Since polysomnographic recordings were available, the effect of the different sleep

stages was taken into account, as differences in HRV among sleep stages have been re-

ported [52, 244]. However, and in spite of the well known sympathetic surge follow-

ing an apneic episode, this effect has been largely ignored in the literature. Given that

the increased sympathetic activity due to the presence of apneic events could mimic a

chronically increased sympathetic tone, we also studied the effect of removing the ap-

neic episodes from the analysis. Additionally, a preliminary analysis revealed high respi-
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ratory rates in some subjects, which could compromise the interpretation of the HF HRV

component. For this reason, alternative definitions of the HF band were considered.

When comparing the patients with SAS plus additional cardiac comorbidities with

their matched controls (SAS patients without CVD), we found a decreased sympathovagal

balance, as assessed by lower values of Re
LF/HF

and Pe
LFn
, suggesting a reduced sympathetic

dominance. Additionally, in the SHHS dataset and during NREM, this effect could only be

assessed when excluding the apneic events from the analysis, which might imply that the

sympathetic surges following apneas could be masking the lowered sympathetic domi-

nance in the group with cardiac comorbidities. This apparent lower sympathetic control

could be caused by a desensitization of cardiac �-adrenergic receptors when subjected to

a recurrent stimuli [25], such as the continuous sympathetic discharges following apneic

episodes, which could point to SAS as a possible precursor of CVD since heart damage

has been associated with decreased �-adrenergic receptors density and sensitivity [49].

Moreover, a retrospective analysis in SAS patients also revealed a decreased sympathetic

dominance in those subjects that will develop CVD in the future. In this way, the results

suggest that SAS patients with a reduced sympathovagal balance could be at higher risk

of developing CVD, and the fact that a decreased SNS activity was assessed prior to the

arise of cardiac comorbidities encourages further research in the field of autonomic con-

trol in sleep apnea, and suggests that HRV could represent a useful tool for improving

the screening of SAS patients with increased cardiovascular risk.

8.1.3 Cardiorespiratory signals analysis in sport sciences applica-

tions

In Ch. 6 and 7, the noninvasive estimation of the TV and the AT was addressed. Both

parameters have a great interest in the field of sports sciences, since they can be used for

assessing the physical condition of a subject, for the design of better training routines or

to prevent from overtraining. Moreover, they also have clinical value: whereas the TV is

drastically reduced in some obstructive respiratory disorders, such as COPD or asthma

exacerbations, the AT was initially intended to assess the physical condition of patients

with CVD [272].

For the estimation of the TV, several ECG-derived features were extracted from a

dataset of 25 volunteers who performed a maximal effort treadmill test. These features

were employed for training a linear model, and this model was used to estimate the TV

of the same subjects during a submaximal treadmill test performed in a different day. The

best results were obtained when combining the information extracted from the instanta-

neous HR and a single-lead EDR signal derived from the downslopes of the R waves, in

a multi-parametric approach. Fitting errors lower than 14% in most of the cases and as

low as 6% in some of them suggest that TV can be estimated using only the ECG, and in

a non-stationary scenario. Although we only considered an exercise test, TV estimation

could be useful in the monitoring of several respiratory disorders, such as Cheyne-Stokes

respiration, COPD or asthma. Nevertheless, validation in these scenarios remains crucial.
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Regarding the estimation of the AT, the ventricular repolarization dynamics were an-

alyzed from the dT profile, as proposed in previous works. Additionally, and under the

hypothesis that the VT should be related with an increased sympathetic activity, also

the PRD profile was considered. In both cases, the onset of the characteristic increase in

repolarization instability observed at high exercise intensities was employed as an esti-

mation of the AT, yielding to estimation errors lower than 25 W (equivalent to 1 minute

in the employed dataset) in most of the subjetcs. These accurate results suggest that it is

possible to estimate the AT in a noninvasive way, using only ECG-derived features.

8.1.4 Conclusion

Cardiorespiratory signal analysis remains the most extensively employed tool for the

noninvasive assessment of the ANS. Given the intrinsic variability of ANS activity un-

der different situations or in response to distinct stimuli, it is of paramount importance

that the analyses are guided by physiology, so that the results can be provided with a

physiological interpretation. In this dissertation, ANS assessment has been applied to

several clinical and non-clinical scenarios, and the employed methodology has been con-

textualized and adapted to the particularities of each of them. In this way, a framework

for dealing with several physiological conditions, such as high or low respiratory rates,

ectopic beats or the presence of sleep apneas has been provided.

8.2 Future work

Some future research lines derived from the different parts of this thesis are described

below.

• The performance of the methodology proposed in Ch. 2 for the accurate detection

of ectopic beats in the presence of strong RSA episodes was tested using a simu-

lation study, for which the MIT-BIH dataset was employed. However, this dataset

is composed by adults, with a less pronounced RSA than in the case of young chil-

dren, for who the methodology was proposed. Therefore, its performance should

be further tested in populations which are more similar to the target one.

• The use of ℘ for the characterization of the HRV spectra in children with different

risk of asthma revealed that not only the power content of the HF band but also the

way it is distributed could provide some information regarding the ANS status. In

this way, it could be interesting to evaluate this index in a larger set of pathological

conditions, such as COPD or bronchitis, for the sake of a better understanding of

their relationship with abnormal ANS activity.

• In Ch. 3, the differences in ANS activity of a group of children under ICS treat-

ment were evaluated before and after treatment conclusion. However, no informa-

tion regarding the children status before the treatment onset was available. The
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comparison of autonomic control before and after ICS treatment could shed some

light on the effects of the treatment on the ANS. Additionally, the inclusion of in-

formation regarding the sleep stages would allow a more detailed analysis of the

overnight recordings.

• The main limitation of the study of ANS-related features for the stratification of

asthmatic adults was the sample size, with only 30 subjects divided in up to 3

groups. The inclusion of more subjects could improve the feature selection process,

and possibly the classification performance. Also the definition of new features de-

rived from respiratory signals which could provide information of the airway status

would be desirable. Additionally, it would be of great interest to develop a protocol

in which the subjects are subjected to autonomic tests (in the current protocol only

basal conditions were considered), so that the response of the different groups can

be characterized.

• Although the effect of medication was carefully addressed in Ch. 5, it could not

be discarded as a possible confounder of the decreased sympathetic dominance

observed in subjects with SAS plus additional cardiac comorbidities. In this way,

the inclusion of a larger number of unmedicated subjects would allow to discern

to what extent the medication is affecting the results. Moreover, regarding the

SHHS dataset, only the baseline but not the follow up session was considered. The

analysis of the follow up session could provide some insight into the evolution of

ANS activity in those SAS patients at higher risk of developing CVD.

• The TV was only estimated in a dataset of healthy subjects, within a small age

and physical condition range. In this way, the validation of this methodology in

more heterogeneous datasets remains crucial. Moreover, given its potential appli-

cation in the monitoring of several respiratory disorders, the proposed method-

ology should be also tested in patients suffering from the target disorders. The

possibility of employing more complex estimation models with more degrees of

freedom than the first order linear model proposed here could also represent a fu-

ture work line. Also adding demographic information could result in more precise

and personalized estimation models.

• The main limitation in the analysis of the repolarization dynamics profile for the

estimation of the AT was also the small demographic range considered. For this

reason, the proposed methodology should be extended to more complete datasets.

Additionally, the analysis should be repeated using the Frank’s lead configuration

for registering the ECG, so that the three-dimensional information was available.
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6.3 Real (blue) and estimated (red) tidal volume (V̂s
T
) for a given subject is dis-

played. The different estimations were obtained from the best performing

lead (lead II in this case) of the single-lead EDR approach (a)), the muli-

lead EDR approach (b)), the instantaneous HR (c)) approach, the HRV

approach (d)), the respiratory rate approach (e)) and the best performing

feature combination (lead II in the EDR approach plus instantaneous HR

in this case) of the multi-parametric approach (f)). . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Scatter plots of the tidl volume estimated from the multi-parametric ap-

proachwhen combining the downslopes of lead II and the HR (V̂s
T
) against

the real one (V̂s
T
) for all the subjects and each of the stages (a): Irest, b): I0-60,

c): I60-80, d): I80-100 and e): Irecov). Dashed lines indicate V̂s
T
= Vs

T
. . . . . . . . . . . . . . . 140



182 List of figures

7.1 Calculation of the dT series. In a), the original T waves of the three con-
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