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José Antonio Moler (Universidad Pública de Navarra, Spain).

Domingo Morales (Universidad Miguel Hernández, Spain).

Evsey Morozov (University of Petrozavodsk, Russia).

Leandro Pardo (Universidad Complutense de Madrid, Spain).
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PREFACE

The Pyrenees International Workshop and Summer School on Statistics, Probabil-
ity and Operations Research, SPO 2009, was held in Jaca (Spanish Pyrenees) from
September 15 to September 18, 2009.

The meeting combined the structure of a workshop and a summer school with
invited conferences and contributed presentations.

The school featured two advanced short courses taught by Carlos A. Coello Coello
from the CINVESTAV-IPN, Mexico (A Tutorial on Multi-Objective Optimization
using Metaheuristics) and Alejandro Maass from the Center for Mathematical Mod-
elling, University of Chile, Chile (Rigidity results in cellular automata theory: proba-
bilistic and ergodic theory approach), and a plenary conference by professor Alberto
Rodŕıguez Casal from the University of Santiago de Compostela , Spain (Some statis-
tical procedures for boundary estimation and image analysis). We thank them very
sincerely.

In the contributed sessions, the participants introduced recent developments in
Statistics, Probability and Operations Research. We also appreciated sincerely the
contribution of all of them.

This volume includes extended notes of the courses developed in the conference
and some of the presentations; all papers have been refereed. It is very satisfactory
for us to present it to the scientific community.

We thank specially the financial support provided by Ministerio de Ciencia e
Innovación (Spain) and Gobierno de Aragón. Thanks are also due to the Social
Council of the University of Zaragoza, CTP (Work Community of the Pyrenees),
Multicaja and University of Pau et des Pays de l’Adour. We also thank the University
of Zaragoza for their financial and material support.

We wish to express our gratitude to the many colleagues (some participants at the
workshop) who carefully reviewed the papers in the present volume and made many
helpful suggestions for their improvement.

Special thanks are due to all members of the Scientific and Organizing committees;
their generous work had a decisive influence in the success of the conference. We are
also indebted to all others who helped in the organization of the conference and
provided assistance to participants, in particular, Juan Marta and Daniel Sanz.

We hope that the next edition of the Pyrenees conference, SPO 2011, to be held
in September 2011 will be as successful as this one.

Zaragoza, December, 2010.

The editors.
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A TUTORIAL ON MULTI-OBJECTIVE
OPTIMIZATION USING METAHEURISTICS

Carlos A. Coello Coello

Abstract. This paper provides an overview of the use of metaheuristics for solving multi-
objective optimization problems. The metaheuristics discussed include multi-objective
evolutionary algorithms (going from the early approches to the most recent research
trends in that area), multi-objective particle swarm optimizers, multi-objective artificial
immune systems, multi-objective ant colony systems and multi-objective scatter search.
In the final part of the paper, we provide a review of sample applications of multi-objective
metaheuristics, and a discussion of some of the topics in which more research is required.

Keywords: multi-objective optimization, metaheuristics.

AMS classification: 90C29, 65K10.

§1. Introduction

A wide variety of problems in engineering and other disciplines have two or more objectives
which we wish to minimize simultaneously. Such objectives are normally in conflict with
each other (at least partially) and tend to be expressed in different units. These problems are
called multi-objective and their solution requires a different notion of optimality that aims for
the best possible trade-offs among the objectives (i.e., solutions for which no objective can be
improved without worsening another one). For dealing with these problems, it is common to
rely on the so-called Pareto optimality [92]. This definition gives rise to several compromise
solutions, called the Pareto optimal set. The objective function values corresponding to the
elements of the Pareto optimal set constitute the so-called Pareto front.

The algorithms for solving multi-objective optimization problems which are currently
available in the mathematical programming literature [87] have a number of limitations, in-
cluding the facts that some of them have a fairly limited applicability and that others need,
in many cases, of problem specific information (e.g., derivatives). Additionally, some of
those methods can be easily trapped in local Pareto optimal solutions when dealing with
complex search spaces. This has motivated the use of alternative approaches, from which
metaheuristics have gained an increasing popularity in the last few years. The main reasons
for this popularity are their ease of use and their effectiveness to deal with a wide variety of
problems, requiring little or no problem-specific information. Within the many types of meta-
heuristics currently available, evolutionary algorithms are, with no doubt, the most popular
choice [19].1

1The author maintains the EMOO repository, which currently contains over 4800 bibliographic references on this
topic. The EMOO repository is available at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO/



20 Carlos A. Coello Coello

The remainder of this paper is organized as follows. In Section 2, we provide some basic
concepts necessary to understand the rest of the paper. Section 3 is devoted to multi-objective
evolutionary algorithms which are, the most popular multi-objective metaheuristic (MOMH)
in current use. In Section 4, we talk about four more MOMHs that are relatively popular in the
specialized literature. Section 5 summarizes some of the main applications of MOMHs. Two
research topics that deserve further exploration are briefly discussed in Section 6. Finally, our
conclusions are provided in Section 7.

§2. Basic Concepts

We are interested in solving problems of the type2:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]
T is the vector of decision variables, fi : IRn → IR, i = 1, ..., k

are the objective functions and gi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p are the constraint
functions of the problem.

To describe the concept of optimality in which we are interested, we will introduce next
a few definitions.

Definition 1. Given two vectors ~x, ~y ∈ IRk, we say that ~x ≤ ~y if xi ≤ yi for i = 1, ..., k, and
that ~x dominates ~y (denoted by ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 2. We say that a vector of decision variables ~x ∈ X ⊂ IRn is nondominated with
respect to X , if there does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables ~x∗ ∈ F ⊂ IRn (F is the feasible
region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from F of all the decision variable
vectors that satisfy (2) and (3). It is worth indicating, however, that in practice, to obtain all
the elements of the Pareto optimal set is normally undesirable and could also be impossible.

2Without loss of generality, we will assume only minimization problems.
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Thus, our main goal when using a MOMH is to generate a good approximation of the Pareto
optimal set (i.e., containing solutions that, when mapped in objective function space, are as
close as possible from the true Pareto front of the problem) and having a good distribution
(i.e., also in objective function space).

§3. Multi-Objective Evolutionary Algorithms

Since evolutionary algorithms are, by far, the most popular metaheuristic that has been used
for solving multi-objective optimization problems, we will devote this entire section to them.

3.1. The Early Days

Evolutionary algorithm (EA) is a generic term used to denote several metaheuristics inspired
on the “survival of the fittest” principle from Darwin’s evolutionary theory. Their origins can
be traced back to the 1960s [68, 100, 49], and have been found to be quite effective in solving
a wide variety of complex search, classification and optimization problems [41].

EAs are particularly suitable for solving multi-objective optimization problems because
of their capability to operate on a set of solutions (the population) at each iteration, which
allows them to generate several trade-off solutions in a single run. They have also become
popular because of their ease of use and generality (i.e., EAs are less susceptible to the shape
and continuity of the Pareto front of a problem than mathematical programming techniques)
[19].

It is worth indicating than traditional EAs require some modifications in order to deal
with multi-objective optimization problems. The main two are the following:

1. All the nondominated solutions should be considered equally good by the selection
mechanism. This means that a different notion of fitness is required for dealing with
multi-objective optimization problems. The most popular mechanism to deal with this
problem is called Pareto ranking and was introduced by Goldberg [59]. This approach
assigns a rank to each solution based on its Pareto dominance, such that nondominated
solutions are all sampled at the same rate.

2. EAs tend to converge to a single solution if run long enough, because of stochastic noise
[59]. Therefore, a mechanism to maintain diversity is required. This component is
known as the density estimator. Fitness sharing [60] was the earliest density estimator,
but many others have been proposed over time, including clusters [122], entropy [47],
adaptive grids [80] and crowding [31], among others.

The first actual implementation of a multi-objective evolutionary algorithm (MOEA) was
David Schaffer’s Vector Evaluation Genetic Algorithm (VEGA), which was introduced in the
mid-1980s, mainly aimed for solving problems in machine learning [99].

In the period that goes from the second half of the 1980s to the first half of the 1990s, a
few relatively simple and naive MOEAs were introduced. Most of them relied on aggregat-
ing functions (mostly linear) [104], lexicographic ordering [51], and target-vector approaches
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[113]. Most of these MOEAs did not modify their selection mechanism or any other compo-
nent, except for the definition of the fitness function. Most of these MOEAs would soon be
forgotten.

As indicated before, Pareto ranking was proposed in Goldberg’s famous book on genetic
algorithms [59]. However, he only provided an informal description of this new selection
mechanism but no actual implementation. This gave rise to several MOEAs based on Gold-
berg’s proposal. The three most representative of the early days of MOEAs are:

1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm was proposed by
Srinivas and Deb [103] and was the first MOEA to be published in a specialized journal
(Evolutionary Computation). The NSGA is based on several layers of classification of
the individuals as suggested by Goldberg. Before selection takes place, the population
is ranked on the basis of nondominance: all nondominated individuals are classified
into one category (with a dummy fitness value, which is proportional to the population
size, to provide an equal reproductive potential for these individuals). To maintain the
diversity of the population, these classified individuals are shared with their dummy
fitness values. Then this group of classified individuals is ignored and another layer
of nondominated individuals is considered. The process continues until all individuals
in the population are classified. Since individuals in the first front have the maximum
fitness value, they always get more copies than the rest of the population. Fitness
sharing is used to distribute the population along the Pareto front of the problem.

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al. [69]. It uses
a tournament selection scheme based on Pareto dominance. The basic idea of the
algorithm is the following: Two individuals are randomly chosen and compared against
a subset from the entire population (typically, around 10% of the population). If one of
them is dominated (by the individuals randomly chosen from the population) and the
other is not, then the nondominated individual wins. When both competitors are either
dominated or nondominated (i.e., there is a tie), the result of the tournament is decided
through fitness sharing [60]. In [45], a revised version of this algorithm, called NPGA
2 was proposed. This algorithm relies on a traditional Pareto ranking approach (similar
to Fonseca and Fleming’s MOGA [50]), but it keeps its tournament selection scheme.
Ties are solved through fitness sharing as in its predecessor. However, the niche count
of the NPGA 2 is computed using individuals from the next partially filled generation
using a technique called “continuously updated fitness sharing” [91].

3. Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca and Fleming
[50]. Here, the rank of a certain individual corresponds to the number of individuals in
the current population by which it is dominated. Consider, for example, an individual
xi at generation t, which is dominated by p(t)

i individuals in the current generation.
The rank of an individual is given by [50]:

rank(xi, t) = 1 + p
(t)
i (4)

All nondominated individuals are assigned rank 1, while dominated ones are penalized
according to the population density of the corresponding region of the trade-off surface.
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Fitness assignment is performed in the following way [50]:

(a) Sort population according to rank.

(b) Assign fitness to individuals by interpolating from the best to the worst in the way
proposed by Goldberg [59], according to some function, usually linear, but not
necessarily.

(c) Average the fitnesses of individuals with the same rank, so that all of them are
sampled at the same rate. This procedure keeps the global population fitness con-
stant while maintaining appropriate selective pressure, as defined by the function
used.

From these 3 algorithms, a few comparative studies undertaken during the mid and late
1990s, indicated that MOGA was the most effective and efficient approach, followed by the
NPGA and by the NSGA [22, 108]. It is worth indicating that during the early days (up to the
end of the 1990s), most papers would compare MOEAs without using performance measures,
but only in a graphical way (plotting the Pareto fronts generated by each MOEA).

3.2. Elitist MOEAs
Towards the end of the 1990s, elitism became a standard mechanism to be provided into any
MOEA. The Strengh Pareto Evolutionary Algorithm (SPEA) [118] played a key role in pop-
ularizing elitism, since it adopted an external population, and its publication in a specialized
journal (the IEEE Transactions on Evolutionary Computation), quickly made it a landmark
in the field. Consequently, many researchers started to incorporate external populations in
their MOEAs, popularizing this mechanism. There are, however, also theoretical reasons for
which elitism is a required mechanism in MOEAs (see [97]). Elitism consists of retaining the
best solutions found during the search so that they are subject to crossover or mutation. In
the context of multi-objective optimization, elitism usually (although not necessarily) refers
to the use of an external population (also called secondary population) to retain the nondom-
inated individuals found during the search. External archives can be unbounded but, mainly
because of practical reasons, they are normally bounded. Another mechanism that can be
used instead of an external archive is the so-called (µ + λ)-selection in which parents com-
pete with their children and those which are nondominated (and possibly comply with some
additional criterion such as providing a better distribution of solutions) are selected for the
following generation. This sort of selection is implicitly elitist, because it will retain the best
half of the individuals under consideration.

With the advent of elitist MOEAs, performance measures started to become popular in
the specialized literature [27, 119, 109]. It has been found, however, that some of these
performance measures are not Pareto-compliant and can provide no reliable assessment [124].
There are also several benchmarks for testing new MOEAs, from which the most popular are:
the Zitzler-Deb-Thiele (ZDT) test suite [119], the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [32] and the Walkig-Fish-Group (WFG) test suite [70].

The three following approaches are representative of the elitist MOEAs in common use
nowadays:
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1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm was introduced in
[118], and was conceived as a way of integrating different MOEAs. It uses an archive
containing nondominated solutions previously found (the so-called external nondom-
inated set). At each generation, nondominated individuals are copied to the external
nondominated set. For each individual in this external set, a strength value is computed.
This strength is similar to the ranking value of MOGA [50], since it is proportional to
the number of solutions to which a certain individual dominates. In SPEA, the fit-
ness of each member of the current population is computed according to the strengths
of all external nondominated solutions that dominate it. The fitness assignment pro-
cess of SPEA considers both closeness to the true Pareto front and even distribution
of solutions at the same time. Thus, instead of using niches based on distance, Pareto
dominance is used to ensure that the solutions are properly distributed along the Pareto
front. Although this approach does not require a niche radius, its effectiveness relies
on the size of the external nondominated set. In fact, since the external nondominated
set participates in the selection process of SPEA, if its size grows too large, it might re-
duce the selection pressure, thus slowing down the search. Because of this, the authors
decided to adopt a technique that prunes the contents of the external nondominated set
so that its size remains below a certain threshold (a clustering technique called “aver-
age linkage method” [88] was used for that sake). There is a revised version of SPEA,
called SPEA2, which has three main differences with respect to its predecessor [121]:
(1) it incorporates a fine-grained fitness assignment strategy which takes into account
for each individual the number of individuals that dominate it and the number of in-
dividuals by which it is dominated; (2) it uses a nearest neighbor density estimation
technique which guides the search more efficiently, and (3) it has an enhanced archive
truncation method that guarantees the preservation of boundary solutions.

2. Pareto Archived Evolution Strategy (PAES): This algorithm was introduced in [81].
It consists of a (1+1) evolution strategy (i.e., a single parent that generates a single
offspring) in combination with a historical archive (the elitist mechanism) that records
the nondominated solutions previously found. This archive is used as a reference set
against which each mutated individual is being compared. An interesting aspect of this
algorithm is the procedure used to maintain diversity which consists of a crowding pro-
cedure that divides objective space in a recursive manner. Each solution is placed in a
certain grid location based on the values of its objectives (which are used as its “coor-
dinates” or “geographical location”). A map of such grid is maintained, indicating the
number of solutions that reside in each grid location. Since the procedure is adaptive,
no extra parameters are required (except for the number of divisions of the objective
space).

3. Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was intro-
duced in [29, 31] as an improved version of the NSGA [103]. In the NSGA-II, for each
solution one has to determine how many solutions dominate it and the set of solutions
to which it dominates. The NSGA-II estimates the density of solutions surrounding a
particular solution in the population by computing the average distance of two points
on either side of this point along each of the objectives of the problem. This value
is the so-called crowding distance. During selection, the NSGA-II uses a crowded-
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comparison operator which takes into consideration both the nondomination rank of an
individual in the population and its crowding distance (i.e., nondominated solutions are
preferred over dominated solutions, but between two solutions with the same nondom-
ination rank, the one that resides in the less crowded region is preferred). The NSGA-II
combines the best parents with the best offspring obtained (i.e., a (µ+λ)-selection), in-
stead of using an external archive. Due to its clever mechanisms, the NSGA-II is much
more efficient (computationally speaking) than its predecessor, and its performance is
so good, that it has become very popular in the last few years, becoming a landmark
against which other MOEAs have to be compared.

Although many other MOEAs exist (see for example [20, 101, 115]), it is not the intention
of this paper to be comprehensive. The interested reader may refer to [19, 28, 105] for more
information on this topic.

3.3. Current Trends in MOEAs
During some time, the use of relaxed forms of Pareto dominance became popular as a mech-
anism to regulate convergence of a MOEA. From these mechanisms, ε-dominance was, with
no doubt, the most popular [85]. ε-dominance allows to control the granularity of the ap-
proximation of the Pareto front obtained. As a consequence, it is possible to accelerate con-
vergence using this mechanism (if we are satisfied with a very coarse approximation of the
Pareto front). Several MOEAs incorporated ε-dominance in their external archives (see for
example [33, 65]), and there was even one MOEA fully developed around this concept (see
[30]).

However, the main current research trend regarding algorithmic development is to adopt
a performance measure in the selection scheme of a MOEA (hypervolume3 has been the most
popular). See for example:

• Evolution Strategy with Probability Mutation (ESP): This approach uses a hyper-
volume-based, scaling independent, parameterless measure, to truncate overpopulated
external archives [71].

• Indicator-Based Evolutionary Algorithm (IBEA): This is a framework that allows
any performance indicator to be incorporated into the selection mechanism of a MOEA
[120]. Its authors tested it with the hypervolume and with the binary ε indicator.

• S Metric Selection Evolutionary Multiobjective Algorithm (SMS-EMOA): This
approach is based on the hypervolume performance measure [42, 9].

• Set Preference Algorithm for Multiobjective optimization (SPAM): This can be
seen as a generalization of IBEA which allows the use of any sort of set preference
relation [123].

The use of hypervolume has some advantages, from which the main one is that it has
been proved that the maximization of this performance measure is equivalent to finding the

3The hypervolume (also known as the S metric or the Lebesgue Measure) of a set of solutions measures the size
of the portion of objective space that is dominated by those solutions collectively.
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Pareto optimal set [48]. Additionally, empirical studies have shown that (for a certain number
of points previously determined) the maximization of the hypervolume does indeed produce
subsets of the Pareto front which are well-distributed [82, 42]. Furthermore, hypervolume
measures convergence and, to a certain extent, also the spread of solutions along the Pareto
front. Finally, it has been shown that hypervolume-selection is less sensitive to scalability
in objective function space, which makes it promising to deal with problems having many
objectives [75].

Hypervolume has, however, some problems of its own. First, the computation of this
performance measure depends on a reference point, which can influence the results in a sig-
nificant manner. Some people have proposed to use the worst objective function values in the
current population, but this requires scaling of the objectives. Its main drawback, however,
is that the best algorithms known to compute hypervolume have a polynomial complexity
on the number of points used, but such complexity grows exponentially on the number of
objectives. This has triggered an important amount of efforts aimed to produce more efficient
algorithms to approximate the hypervolume [112, 10, 8, 7, 13].

§4. Other Metaheuristics

Several other metaheuristics have also been used as multi-objective optimizers [19, 23]. Next,
we will discuss four of the most popular of them in more detail:

• Particle Swarm Optimization: This metaheuristic was inspired on the choreography
of a bird flock which aim to find food [78, 79]. The implementation of this algo-
rithm employs a population of particles, whose behavior is affected by either the best
local (i.e., within a certain neighborhood) or the best global individual (i.e., with re-
spect to the entire swarm). Particle swarm optimization (PSO) has been successfully
used for both continuous nonlinear and discrete binary optimization [43, 44]. An im-
portant number of multi-objective versions of PSO currently exist (see for example
[21, 94, 95, 46]). However, until relatively recently, most of the research had concen-
trated on producing new variations of existing algorithms, rather than on studying other
(more interesting) topics, such as the role of the main components of a multi-objective
particle swarm optimizer. Some recent research in that direction has shown that certain
components that had been traditionally disregarded (e.g., the leader selection mecha-
nism and the parameters of the flight formula) play a key role in the performance of
a multi-objective particle swarm optimizer [12, 107]. There are also other interest-
ing comparative studies aimed to identify their advantages and limitations [39]. It is
expected that more research of this sort will be conducted in the next few years.

• Artificial Immune Systems: If considered from a computational point of view, our
natural immune system can be considered a distributed intelligent system, which is
able to learn and retrieve knowledge previously acquired, in order to solve several
(highly complex) recognition and classification tasks [89]. These features make our
immune has motivated researchers to develop computational models of our immune
system which have been used for a variety of tasks, including classification, pattern
recognition, and optimization [26, 89]. Several multi-objective extensions of artifi-
cial immune systems have been proposed in the specialized literature (see for example
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[17, 53, 14, 52]). Also, several hybrid approaches have been proposed to solve specific
tasks (see for example [2], where the authors use a multi-objective immune system hy-
bridized with evolutionary operators and local search, in order to solve a rule extraction
problem). More hybrid approaches are still to come, but until now, the high potential
of multi-objective artificial immune systems in classification and pattern recognition
tasks has not been fully exploited yet [117].

• Ant Colony Optimization: This metaheuristic was inspired on the foraging behavior
of real ants. It is a distributed, stochastic search procedure based on the indirect com-
munication of a set (called “colony”) of artificial ants, which mediate using artificial
pheromone trails. These pheromone trails can be seen as distributed information which
is used by the ants to construct their solutions to the problem at hand. Such pheromone
trails are modified during the algorithm’s execution, such that they reflect the search
experience acquired by the ants. This metaheuristic is intended for solving difficult
(both static and dynamic) combinatorial optimization problems, in which solutions can
be generated through the use of a construction procedure [36, 37]. There are several
multi-objective extensions of ant colony optimization (ACO) algorithms (see for exam-
ple [66, 35, 55, 1]), but as multi-objective combinatorial optimization becomes more
attractive for researchers [40, 54], it is expected that more multi-objective ant colony
optimization approaches (and hybrids of ACO algorithms with other metaheuristics)
are proposed within the next few years.

• Scatter Search: This approach was originally conceived as an extension of a heuris-
tic called surrogate constraint relaxation, which was designed for solving integer pro-
gramming problems [56]. Its core idea is to adopt a series of different initializations
to generate solutions. A reference set of solutions (the best found so far) is adopted,
and then such solutions are “diversified” in order to generate new solutions within the
neighborhood of the contents of the reference set. This sort of simple procedure is re-
peated until no further improvements to the contents of the reference set are detected.
In the mid-1990s, some further mechanisms were added to the original scatter search
algorithm, which allowed its extension to solve nonlinear, binary and permutation op-
timization problems [57]. These new applications triggered an important amount of
research in the following years [83, 86]. Multi-objective extensions of scatter search
are relatively recent, but have been steadily increasing [4, 90]. Scatter search has a lot
of potential for hybrid approaches, such as memetic MOEAs [58], since it can act as
a powerful local search engine for tasks such as generating missing parts of a Pareto
front [98]. Because of its flexibility and ease of use, scatter search is expected to be-
come more commonly adopted in the near future, particularly when designing hybrid
MOEAs that rely heavily on good local search engines.

§5. Applications

MOEAs have been applied to a wide variety of domains (see for example [18]). However,
and for the purposes of this paper, we can roughly classify the applications of MOEAs into
three large groups: engineering, industrial and scientific. Some specific areas within each of
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these groups are indicated next.
We will start with the engineering applications, which are, by far, the most popular in

the literature. This should not be surprising, since engineering disciplines normally have
problems with better understood mathematical models, which makes them more suitable for
the use of MOEAs. Some sample applications of MOEAs in engineering are the following:

• Electrical engineering [111]

• Hydraulic engineering [5]

• Structural engineering [15]

• Aeronautical engineering [93]

• Robotics [106]

• Control [114]

• Telecommunications [24]

• Civil engineering [38]

• Transport engineering [61]

Now, we will provide some applications of MOEAs in industry:

• Design and manufacture [62]

• Scheduling [64]

• Management [72]

Finally, we have a variety of scientific applications of MOEAs:

• Chemistry [34]

• Physics [96]

• Medicine [125]

• Geography [6]

• Bioinformatics [3]

• Computer science [102]

Although small, this sample should give a good idea of the type of work being done
with MOEAs these days. Nevertheless, many other applications exist. The interested reader
should refer to the EMOO repository [16] for more information on this topic.
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§6. Future Research Paths

In spite of the high volume of research done around multi-objective metaheuristics, several
interesting topics remain to be explored in greater depth. Next, we briefly discuss two of
them:

1. Hybridization: The hybridization of MOMHs with other metaheuristics and with lo-
cal search mechanisms (either gradient-based or not) aimed to improve their perfor-
mance is a topic that is currently being explored by many researchers (see for example
[63, 67, 76, 84]), because of its high potential. Hybrid MOMHs could be viable al-
ternatives for solving some of the great challenges of today, such as many-objective
optimization problems (i.e., problems having 4 or more objective functions) [73, 74].
The use of scalarization methods combined with MOMHs is also another type of in-
teresting hybridization that has a lot of potential for solving highly complex problems
(see for example [116]).

2. Incorporation of user’s preferences: In most real-world applications, users are not
interested in the entire Pareto front, but only in a portion of it. Several mechanisms
to incorporate user’s preferences into a MOMH have been reported in the specialized
literature (see for example [25, 77, 110, 11]), but this topic has only been scarcely
explored and certainly deserves more attention.

§7. Conclusions

In this paper, we have provided a short (and highly compact) tutorial on the use of meta-
heuristics for solving multi-objective optimization problems. As such, this tutorial provides
a very general overview of the field and is intended to serve as a quick reference for those
interested in in this area. The author hopes that, in spite of favoring breadth over depth, this
tutorial can be useful for those wishing to do research in multi-objective optimization using
metaheuristics, since that has been the purpose of this work.
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Abstract. This article contains the talk given at the Pyrenees International Workshop on
Statistics, Probability and Operations Research, SPO 09. Its objective is to review the
main results and its extensions concerning the existence of invariant stationary proba-
bility measures under a one-dimensional algebraic cellular automaton. We present two
historical axes of this question and the techniques used to solve them or produce rele-
vant intermediate results. Both make appear strong rigidity phenomena, i.e. the unique
solution is the uniform Bernoulli product measure. The first axe is the ergodic theory
approach where we impose some natural conditions on the entropy and ergodicity of the
system to get the result. This approach follows ideas by Rudolph [18] and Host [9] in the
classical problem called (×2,×3) in the circle posed by Hillel Furstenberg at the end of
the 60’. Then we present a purely probabilistic approach. We study the convergence of the
Cesàro mean of the iterates by an algebraic cellular automaton of a translation invariant
probability measure. Assuming some natural correlation properties (this class includes
Markov and Gibbs probability measures of full topological support) one proves the limit
exists and it is the uniform Bernoulli product measure.
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§1. Introduction

The study of the dynamics of cellular automata is often associated to its capacity to model
complex systems using very simple local interactions in the phase space. From the probabilis-
tic point of view one possible interpretation of such complex behavior is the richness of the
space of invariant probability measures and the existence of limit measures for the iterates
of interesting classes of probability measures by cellular automata. Such initial conditions
can be thought as the law that we use to produce random configurations in the phase space
of the cellular automata. Both questions represent major challenges of the theory of cellular
automata and few results exist even in the one-dimensional setting.
A remarkable situation appears when considering classes of algebraic cellular automata. That
is, when in addition, the underlying phase space has an algebraic structure compatible with
the cellular automata. In this context, it has been observed that even if the sets of invariant
probability measures are rich, under very natural conditions the unique invariant measure is
the maximal entropy one. From the perspective of iterating probability measures by cellular
automata of algebraic origin these kinds of results lead to think that good candidates to be
limits of such sequences of iterations are the same class of measures. In fact, such limits rarely
exist being the Cesàro means of such sequences the good candidates to converge. Indeed, it
has been observed by D. Lind in his pioneer work [12] that the Cesàro mean of the iterates
of a Bernoulli measure on {0, 1}Z by the cellular automaton F = σ−1 + σ converges to
the uniform product measure ( 1

2 ,
1
2 )Z. In this example σ is the shift map and {0, 1}Z is the

product Abelian group with addition modulo two componentwise. Since Lind’s results, this
rigid phenomenon has being proved to be very general in the algebraic context and seems
to be extensible to the context of positively expansive or expansive cellular automata. The
purpose of these notes is to present what in the opinion of the author are the most illustrative
results concerning the described phenomena in the case of algebraic cellular automata acting
on a fullshift AZ that at the same time is a compact Abelian group.
The notes are organized as follows. Section 2 is devoted to a minimum of background in
symbolic dynamics and ergodic theory. In section 3 we present a basic example to illuminate
the problems in a relevant study case. The rigidity phenomenon that appears in the set of in-
variant measures is presented in section 4. There we show that different ergodicity conditions
together with some entropy conditions imply that the Haar measure is the unique invariant
measure for the shift and the cellular automaton simultaneously. Section 5 is devoted to the
study of the convergence of the Cesàro means of the iterates of nice classes of probability
measures by algebraic cellular automata.

§2. Preliminaries and Background

2.1. Symbolic Dynamics (in dimension 1)
In this section we summarize the main background in Symbolic Dynamics that we will need
in the article. For a more detailed exposition we suggest the book by D. Lind and B. Marcus
[11].
Let A be a finite set or alphabet. Following this last nomenclature its elements are also called
letters or symbols. Denote by A∗ the set of finite sequences or words w = w0...wn−1 ∈ An
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with letters in A including the empty word ε. By |w| we mean the length of w ∈ A∗ and
|ε| = 0.
Let X = AZ be the set of two-sided sequences

x = (xi)i∈Z = (. . . x−i . . . x0 . . . xi . . .)

with symbols in A. Analogously one defines X = AN to be the set of one-sided sequences
in A. Both are called full-shifts. For simplicity we restrict our attention to the two-sided
case. The space X is compact for the product topology and metrizable. A classical distance
is given by:

d(x,y) = 2− inf{|i| : i∈Z, xi 6=yi},

for any x,y ∈ X , i.e. two points are close if they coincide in big windows near the origin.
For x ∈ X and i ≤ j in Z or x = x0 . . . xn ∈ A∗ and i ≤ j in {0, . . . , n}, we denote by
x[i, j] = xi . . . xj the finite word in x between coordinates i and j. Given w ∈ A∗ and i ∈ Z,
the cylinder set starting in coordinate iwith wordw is [w]i = {x ∈ X : x[i, i+|w|−1] = w}.
A natural dynamical system on X is the shift map σ : X → X , where σ(x) = (xi+1)i∈Z.
This map is a homeomorphism of X . If we need to distinguish a shift map according to its
alphabet we denote it by σA.
We call Y ⊆ X a subshift if it is closed (for the product topology) and σ(Y ) = Y (invariant
for the shift map). A simple example is given by the orbit closure of a point x in X , i.e.
{σn(x) : n ∈ Z}. A special class of subshifts are shifts of finite type; they are inspired in
Markov chains in probability theory. A subshift Y ⊆ X is a subshift of finite type if there is
a finite subsetW of words in A of a given length L such that for any y ∈ Y and i ∈ Z,

yi . . . yi+L−1 /∈ W.

Example 2.1. Let A = {0, 1} and considerW = {11}. The subshift of finite type Y defined
byW as described before consists of two-sided infinite sequences inA do not containing two
consecutive ones.

The language of a subshift Y ⊆ X is given by

L(Y ) = {y[i, j] : y ∈ Y, i, j ∈ Z, i ≤ j}.

One saids that Y is mixing if for any u, v ∈ L(Y ) there is N ∈ N such that for any n > N ,
[u]0 ∩ σ−n[v]0 6= ∅. In other words, there is a word w ∈ An such that uwv ∈ L(Y ).
A second kind of important dynamics are given by continuous and shift commuting maps of
a subshift Y ⊆ X . A map F : Y → Y is called a block-map if F is continuous (for the
product topology) and F ◦ σ = σ ◦F . They are called block maps since Hedlund’s result [8]
states that there is a local map f : Am+a+1 → A, where a,m ∈ N (a is called anticipation
and m memory), such that ∀ i ∈ Z,∀ y ∈ Y

F (y)i = f(yi−m, . . . , yi+a).

We also use f to indicate the action of the local rule on words of length greater than or equal
to m+ a+ 1. That is, for w = w0...wn ∈ A∗ with |w| ≥ m+ a+ 1, we put

f(w) = f(w0, ..., wm+a)f(w1, ..., wm+a+1)...f(wn−(m+a), ..., wn).

If m = 0 or a = 0 one says that F is one-sided.
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2.2. Cellular automata and invariant measures
Let Y ⊆ AZ be a mixing shift of finite type and F : Y → Y a block-map. Then F is
called a cellular automaton (CA). Typical examples correspond to Y = AZ (a full-shift).
Analogously one defines cellular automata acting on the set of one-sided subshifts Y ⊆ AN

but this case is not considered in these notes.
Let Y ⊆ AZ be a subshift and F : Y → Y a block-map. A probability measure µ defined on
the Borel σ-algebra of Y (we simply say “on Y ”) is F -invariant if for any Borel set B of Y

Fµ(B) := µ(F−1(B)) = µ(B).

If F = σ (the shift map on Y ), the measure is said to be stationary or shift invariant. An
invariant measure is ergodic if invariant Borel sets have measure 0 or 1. We observe that if µ
is shift invariant, since F commutes wit the shift, then Fnµ is also shift invariant, where Fn

is the n-th iterate of F .
In this paper we study the convergence of the Cesàro meanMN

µ (F ) = 1
N

∑N−1
n=0 F

nµ. If
this limit exists as N → ∞, we denote it byMµ(F ). If Y = AZ a main role will be played
by the uniform product or Bernoulli measure λZA of AZ, where λA is the equidistributed
probability measure on A.
The following classes of CA on AZ are relevant for these notes:

1) Linear CA. Let (A,+) be a finite Abelian group. This structure naturally extends to AZ

by componentwise operations, so (AZ,+) is also an Abelian group (to simplify notations we
also denote the operation by +). Observe that (AZ,+) is a compact Abelian group and the
uniform Bernoulli measure is its Haar measure. It is characterized as the unique probability
measure µ such that µ(χ) =

∫
AZ χdµ = 0 for every non-trivial character χ ∈ ÂZ, i.e. for

χ 6= 1.
A cellular automaton F : AZ → AZ is said to be linear if for any x ∈ AZ

F (x) =
l∑
i=1

kiσ
ni(x)

where n1, . . . , nl, k1, . . . , kl ∈ Z. In terms of the local rule this means:

F (x)j =
l∑
i=1

kixj+ni .

2) Permutative CA. The CA F : AZ → AZ is said to be right permutative if for every
w ∈ Am+a the map f(w, ·) : A → A defined by f(w, ·)(α) = f(wα) is one-to-one. This
implies that for every w ∈ Am+a the map fw : Am+a → Am+a given by fw(w′) = f(ww′)
is also one-to-one. Analogously we define left permutative and bipermutative CA.

2.3. Entropy
A classical measure of complexity of the dynamics of a (classically surjective) CA F on a
subshift Y ⊆ AZ with respect to an F invariant measure µ is the Shannon entropy or just
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the entropy. It is defined as follows: for any N ∈ N let αN,∞ be the σ-algebra given by∨
n≥1 F

−nαN , where αN = {y[−N,N ] : y ∈ Y } is a partition of Y , and put:

hµ(F ) = − lim
N→∞

∑
C∈αN

∫
Y

1C(y) log (E(1C |αN,∞)(y)) dµ(y) .

A probablity measure of maximal entropy (for the CA) is one for which:

hµ(F ) = sup
ν
hν(F )

where the sup is taken over all F invariant probability measures on Y .

§3. Main Questions

3.1. Questions and comments
Let F : Y → Y be a surjective cellular automaton on a mixing shift of finite type Y . In this
article we assume Y = AZ. Here we set the three main questions of this theory.

Question 1: Study the set of invariant measures of F and in addition of the joint action of F
and σ. That is, find probability measures µ on Y such that for any Borel set B and integers
n ∈ N,m ∈ Z

Fnµ(B) := µ(F−nB) = µ(B)

or
Fn ◦ σmµ(B) := µ(F−n ◦ σ−mB) = µ(B).

A natural invariant measure for F is the one of maximal entropy for the shift map. In fact, it
holds that F is surjective if and only if the maximal entropy measure is also F -invariant [4].
Depending on the subshift Y and the dynamical properties of F it is possible to construct
other invariant measures (see for example [26]). Nevertheless, in some cases strong rigidities
appear, that is, this is the unique shift and F invariant probability measure.

Question 2: Given a shift invariant probability measure µ on Y study if the limit of the
sequence (Fnµ : n ∈ N) exists (in the weak topology). We remark that every weak limit
of a subsequence is invariant for F and the shift. It is also interesting the convergence when
N →∞ of the Cesàro mean

MN
µ (F ) =

1

N

N−1∑
n=0

Fnµ .

One says F asymptotically randomizes µ if the limit of the Cesàro mean converges to the
maximal entropy measure.

Question 3: Find conditions to ensure the maximal entropy measure is the unique solution
to Questions 1 and 2.
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Comments:
— In relation with Question 1 the type of solutions we look for are like the (×2,×3) Fursten-
berg’s problem in R/Z [18]: F (or σ) is ergodic and σ (resp. F ) has positive entropy for the
invariant measure. While ergodicity of one transformation can be changed for a weaker con-
dition the positivity of the entropy cannot be dropped for the moment. Proofs strongly rely
on entropy formulas. These conditions already appear in Rudolph’s or Host’s solutions to
(×2,×3) problem and all recent improvements (see [9, 18]).

— In relation with Question 2 in the linear case there are two points of view. One is to
consider measures µ of increasing complexity in correlations: Markov, Gibbs, other chain
connected measures; then represent them as “independent processes” and prove that the limit
of the Cesàro mean converges to the uniform Bernoulli product measure onAZ [6]. The other
one is motivated by Lind’s work [12] and uses harmonic analysis. The idea is to define a class
of mixing measures such that the Cesàro mean of the iterates of any of them converges.

– From Glasner and Weiss results in topological dynamics (see [7]) one gets that either the CA
map F is almost equicontinuous or sensitive to initial conditions, and in the last class most
interesting known examples (and in fact coming from Nasu’s reductions [17]) are expansive
or positively expansive maps. In the equicontinuous case or systems with equicontinuous
points, orbits tend to be periodic and invariant measures can be more or less described but
are not nice. Moreover, in this case the limits of the Cesàro means we are considering al-
ways converge [2]. If the CA are positively expansive they are conjugate with shifts of finite
type (see [1, 3]), so we have two commuting shifts of finite type with the same maximal en-
tropy measure. In this last case there can still exist an equicontinuous direction so invariant
measures are as in the previous case.

– Good examples: the classes of positively expansive or expansive CA without equicontinu-
ous directions have not been described. The main examples with these features correspond to
algebraic maps, in particular linear CA. This is why most of the results concerning Questions
1, 2 and 3 are concentrated on these maps.

3.2. Basic example: addition modulo 2 or Ledrappier’s three dot problem
Let X = {0, 1}Z and see X as an Abelian group with coordinatewise addition modulo 2.
Let F : X → X be given by F = id + σ, where σ is the shift map on X . That is,
F (x)i = xi + xi+1. Remark that it is a 2-to-1 surjective map.

– In relation to Question 1: Natural invariant measures for F and the shift map simultane-
ously are the uniform Bernoulli product measure λ = (1/2, 1/2)Z and measures supported
on periodic orbits for F and the shift, but other invariant measures of algebraic origin has
been described (see [26]).

– In relation to Question 2: In general the limit does not exist. It follows from a good
understanding of the Pascal triangle modulo 2.
We give a brief argument in the Bernoulli case. Let µ = (π0, π1)Z be a Bernoulli non-uniform
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Figure 1: The iteration of a ultimately periodic configuration by the addition modulo 2 CA.
One observes the Pascal triangle modulo 2 behind it.

product measure on X with π0 = µ(xi = 0), π1 = µ(xi = 1). A simple induction yields to:

µ

(∑
i∈I

xi = a

)
=

1

2

(
1 + (−1)a(π0 − π1)#I

)
where I is a finite subset of N. Thus,

Fnµ([a]0) = µ

 ∑
k∈I(n)

xk = a

 =
1

2

(
1 + (−1)a(π0 − π1)#I(n)

)
where I(n) = {0 ≤ k ≤ n :

(
n
k

)
= 1 mod 2}.

If a = 0, for the subsequence along n = 2m the limit exists and is equal to π2
0 + π2

1 and for
the subsequence along n = 2m − 1 the limit is 1

2 .
But the Cesàro mean converges:

MN
µ (F )([a]0) =

1

N

N−1∑
n=0

Fnµ([a]0) =
1

2
+

(−1)a

2

1

N

N−1∑
n=0

(π0 − π1)#I(n)
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since limN→∞
{0≤n<N : #I(n)≥α log logN}

N = 1 for some α ∈ (0, 1/2) (a non trivial con-
sequence of Lucas’ lemma, see [6]) then the limit is 1

2 . Also, using similar arguments, one
proves thatMN

µ (F )([a0 . . . al−1]0) converges to 1
2l

as N → ∞. This was observed by D.
Lind in 84 for F = σ−1 + σ [12].

This result reinforces the idea that the uniform Bernoulli product measure λ = (1/2, 1/2)Z

must be the unique invariant measure of F and σ verifying some conditions to be determined.
The following sections will go deeper on these conditions and proofs will be drafted for this
particular but relevant example.

§4. Ergodic approach: results on invariant measures for a CA and the
shift simultaneously

4.1. A theorem for the basic example
The model theorem in the theory concerns the basic example. Most of the existing generaliza-
tions start from this example changing the precise local map, the cardinality of the alphabet
or the algebraic structure ofAZ. In the rest of this section {0, 1}Z is seen as a product Abelian
group where addition modulo 2 is applied componentwise.

Theorem 4.1 (Basic Theorem [10]). Let F : {0, 1}Z → {0, 1}Z be the CA given by F =
id + σ. If µ is an F and σ invariant probability measure on {0, 1}Z with hµ(F ) > 0 and is
ergodic for σ then µ = λ = (1/2, 1/2)Z.

Sketch of the proof. Let µ be a simultaneously invariant probability measure for F and the
shift σ. Put X = {0, 1}Z. We describe the main steps of the proof, the difficulty is not
homogeneous but each step only requires a little computation:

1) Let B be the product σ-algebra of X and B1 = F−1B. For µ–a.e. x ∈ X define µx(·) =
E(·|B1)(x). This measure is concentrated on {x,x + 1}, where 1 = . . . 1111111 . . . ∈ X .
Also, σµx = µσx.
2) Define φ(x) = µx({x + 1}). Then

φ ◦ σ(x) = µσx({σx + 1}) = σµx({σx + 1}) = µx({x + 1}) = φ(x)

3) The ergodicity of µ with respect to σ implies that φ is constant µ–a.e., thus also Fµ-a.e.
This implies that

φ ◦ F = φ ◦ σ = φ, µ− a.e. (∗)

4) Define E = {x ∈ X : φ(x) > 0}.

– If B ⊆ X is the good set of measure one where (∗) is satisfied then µ{x ∈ E : x + 1 ∈
B} = µ(E);

– so, φ(x + 1) = φ(F (x + 1)) = φ(F (x)) = φ(x) for µ-a.e. x in E;

– that is, µx({x}) = µx({x + 1}) = 1
2 for µ-a.e. x in E.
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5) E is σ-invariant by (*), then by ergodicity µ(E) = 0 or µ(E) = 1.

6) Entropy formula: let α = {[0]0, [1]0}. Therefore, using standard computations in the
entropy theory of dynamical systems one deduces (see for instance [19]):

hµ(F ) = −
∑

a∈{0,1}

∫
X

1[a]0(x) log
(
E(1[a]0 |B1)(x)

)
dµ(x)

Observe that when x ∈ [a]0 then µx([a]0) = µ({x}) since x + 1 /∈ [a]0 for a = 0, 1. Then

hµ(F ) = −
∫
X

log(µx({x}))dµ(x) .

7) Conclusion:

– If hµ(F ) > 0 then from 6) one deduces that µ(E) > 0. Therefore, from 5) (ergodicity)
follows that µ(E) = 1;

– this last fact implies by 4) that: µx({x}) = µx({x + 1}) = 1
2 for µ-a.e. x ∈ X;

– concluding by 6) that hµ(F ) = log(2). Since λ = (1/2, 1/2)Z is the unique maximal en-
tropy measure for F (or similarly is the unique stationary probability measure onX verifying
last equality) then µ = λ.

4.2. Some generalizations
As commented before, several generalizations can be expected. The next two are of different
nature. The first one consists just in changing {0, 1}Z by Zp = {0, . . . , p − 1}Z where p is
a prime number. Its proof is essentially copying the one given before. In the second one, the
ergodicity condition is weaker, then we need to add a condition on the σ-algebra of invariant
sets. Here, we do not change the local rules, but all reasonable linear extensions follows also
directly.

Theorem 4.2 (Host, Maass, Martínez, [10]). Let F : ZZ
p → ZZ

p be given by F = id+ σ. Let
µ be an F and σ invariant probability measure on ZZ

p . If hµ(F ) > 0 and µ is ergodic for the
shift then µ is the uniform product measure (1/p, . . . , 1/p)Z.

We need an additional concept. One says that an invariant probability measure µ for a CA
F : Y → Y and the shift map on Y is (F, σ)-ergodic if any Borel set B in Y that is invariant
for the joint action of such maps has measure 0 or 1, i.e., if µ(F−nσ−mB∆B) = 0 for
any n ∈ N,m ∈ Z then µ(B) = 0 or µ(B) = 1. We denote by Iµ(F ) = {B ∈ B(Y ) :
µ(F−1B∆B) = 0}, the set of invariant Borel sets for F with respect to µ.
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Theorem 4.3 (Host, Maass, Martínez, [10]). Let F : ZZ
p → ZZ

p be given by F = id+ σ. Let
µ be an F and σ invariant probability measure on ZZ

p . If hµ(F ) > 0, µ is (F, σ)-ergodic and
Iµ(σ) = Iµ(σp(p−1)), then µ is the uniform product measure (1/p, . . . , 1/p)Z.

The next generalizations try to extract from previous theorems those properties that seems
to be the main objects behind this class of results. We say a CA F : Y → Y is algebraic
if Y (in addition to be a mixing shift of finite type) is a compact Abelian topological group
and F and the shift are endomorphisms of such group. Here, the role of the uniform product
measure is played by the Haar measure of the compact Abelian group (the unique probability
measure that is invariant by translation by elements of the group). An invariant measure for F
is said to be totally ergodic if it is ergodic for all powers of F . This is a very strong ergodicity
condition that allows frequently in this theory to jump over the difficult obstacles. It implies
the technical hypothesis about invariant σ-algebras in Theorem 4.3, but this last is a much
more refined condition.

Theorem 4.4 (Pivato, [23]). Let F : AZ → AZ be an algebraic bipermutative CA. If µ is
a totally ergodic invariant probability measure for σ, hµ(F ) > 0 and Ker(F ) has no shift
invariant subgroups, then µ is the Haar measure of AZ.

The most general extension of Theorem 4.3 not using total ergodicity is the following.

Theorem 4.5 (Sablik, [25]). Let F : AZ → AZ be an algebraic bipermutative CA and Σ be
an F and σ invariant closed subgroup of AZ. Fix k ∈ N such that any prime divisor of |A|
divides k. Let µ be an F and σ invariant probability measure on AZ with supp(µ) ⊆ Σ such
that:
– µ is (F, σ)-ergodic;
– hµ(F ) > 0;
– Iµ(σ) = Iµ(σkp1), where p1 is the smallest common period of the elements in Ker(F );
– any finite shift invariant subgroup of ∪n∈NKer(Fn) ∩ Σ is dense in Σ.
Then µ is the Haar measure of Σ.

These theorems have an analogous result in a much more general algebraic context. We do
not give all the details of this theory since they escape from the context of these notes. The
main point is that, instead of considering the actions of a CA F and the shift map on a mixing
shift of finite type Y , one considers d commuting actions on a 0-dimensional set. In our
context d = 2, the commuting actions are F and σ and the 0-dimensional space is Y .

Theorem 4.6 (Einsiedler, [5]). Let α be an algebraic Zd-action of a compact 0-dimensional
Abelian group verifying some algebraic conditions. Let µ be an invariant (for the complete
action) probability measure. Then, if the action has positive entropy in one direction and the
measure is totally ergodic for the action then it is the Haar measure of the group.

Remark 4.1. From last theorems it is possible to deduce the same kind of results for some
classes of positively expansive and expansive CA actions on a fullshift, a priori not algebraic
(see [10]).
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§5. Probabilistic approach: results on the convergence of Cesàro means

In this section we will present the main results concerning the convergence of Cesàro means
of the iterates of a probability measure by algebraic cellular automata. In [12] D. Lind pro-
poses an harmonic analysis point of view to study the convergence of the Cesàro means of
the iterates of a Bernoulli product measure by the CA σ−1 + σ on {0, 1}Z seen as a product
Abelian group. This technique cannot work alone, it needs a fine combinatorial analysis of
the Pascal triangle modulo 2. The extension of Lind’s pioneer results to other classes of initial
probability measures and other types of algebraic cellular automata was considered in [13]
and was deepened in [6]. In these works the main example is id+σ in ZZ

p where p is a prime
number. The main issue was that Bernoulli measures were changed by probability measures
with complete connections and summable decay of correlations, class that includes Markov
and Gibbs measures for example. The harmonic analysis ideas used by Lind were not used
here, the technical part was to represent such general class of measures using independent
processes via regeneration idea. The harmonic analysis reappeared with the works of M. Pi-
vato and R. Yassawi ([20, 21]). They put into the concept of harmonically mixing measures
(introduced by them) the main properties observed in the classes of measures considered in
[6], and the dynamical properties of the algebraic CA considered (that essentially comes from
Pascal triangle) gave rise to the concept of diffusivity, giving an abstract formalization to pre-
vious results. The complexification of the classes of algebraic CA considered was achieved
in several further works [22, 23, 24, 14, 15, 16]. For simplicity we will not describe such
results in this review. The main statements there propose the same kind of results as in the
basic (but fundamental) cases up to some natural and necessary technical conditions.

5.1. Harmonic analysis point of view
Let (A,+) be a finite Abelian group and fix F : AZ → AZ an algebraic CA.
A character χ : A → T1 in ÂZ, where T1 is the one-dimensional torus, is given by χ =⊗
k∈Z

χk where χk are characters of A and χk = 1 for all but finitely many terms in this prod-

uct. The rank of the character χ, rank(χ), is the number of non trivial characters χk in
⊗
k∈Z

χk.

The Haar or uniform Bernoulli measure λ on AZ is characterized by

λ(χ) =

∫
AZ
χdλ = 0 ∀χ 6≡ 1 . (1)

Definition 5.1 (Pivato, Yassawi, [20]). A probability measure µ on AZ is harmonically mix-
ing if ∀ε > 0 ∃N(ε) > 0 such that ∀χ ∈ ÂZ :

rank(χ) > N(ε)⇒ |µ(χ)| =
∣∣∣∣∫
AZ
χdµ

∣∣∣∣ < ε .

If A = Zp, then a Markov probability measure with strictly positive transitions is harmoni-
cally mixing.

Definition 5.2 (Pivato, Yassawi, [20]). • The block map F : AZ → AZ is diffusive if

∀χ 6≡ 1 : lim
n→∞

rank [χ ◦ Fn] =∞.
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• F is diffusive in density if there exists J ⊆ N of density 1 such that

lim
n→∞
n∈J

rank [χ ◦ Fn] =∞.

The following theorem can be considered as a consolidation of results in [20, 21, 6]. Never-
theless, historically this form appeared first in [21].

Theorem 5.1. Let (A,+) be a finite Abelian group and F : AZ → AZ be an algebraic

CA with local map given by f(xi−m . . . xi+a) =
a∑

k=−m
fk(xi+k), where f−m, . . . , fa are

commuting automorphisms of the group (A,+) and at least two of them are non-trivial.
Then F is diffusive in density and for any harmonically mixing probability measure µ on AZ:

Mµ(F ) = lim
N→∞

MN
µ (F ) = lim

N→∞

1

N

N−1∑
n=0

Fnµ = λ.

Sketch of the proof. The diffusitivy of F comes from the combinatorial structure of the as-
sociated generalized Pascal triangle and we do not give it here. The consequence on the
convergence of the Cesàro means follows directly from the combination of diffusivity of F
and the harmonically mixing condition of µ. Indeed, let χ be a non-trivial character in ÂZ

and N ∈ N. A simple computation yields to,∫
AZ
χdMN

µ (F ) =
1

N

N−1∑
n=0

∫
AZ
χ ◦ Fndµ .

Assume F is diffusive in density and consider J ⊆ N with density 1 such that lim
n→∞
n∈J

rank [χ◦

Fn] =∞ and put JN = J ∩ {0, . . . , N − 1}. One gets,∫
AZ
χdMN

µ (F ) =
1

N

∑
n∈JN

∫
AZ
χ ◦ Fndµ+

1

N

∑
n∈JcN

∫
AZ
χ ◦ Fndµ .

Thus, ∣∣∣∣∫
AZ
χdMN

µ (F )

∣∣∣∣ ≤
∣∣∣∣∣ 1

N

∑
n∈JN

∫
AZ
χ ◦ Fndµ

∣∣∣∣∣+
|JcN |
N

.

Since µ is harmonically mixing, given ε > 0 there is N(ε) ∈ N such that for any n ≥ N(ε)
in JN , ∣∣∣∣∫

AZ
χ ◦ Fndµ

∣∣∣∣ ≤ ε .
One concludes, taking the limit as N →∞ that:

lim
N→∞

∫
AZ
χdMN

µ (F ) ≤ ε .

By (1), this implies thatMN
µ (F ) converges and its limit is equal to the Haar measure λ.
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5.2. Regeneration of measures point of view
In this subsection we present the probabilistic approach proposed by P. Ferrari, A. Maass, S.
Martínez and P.Ney in [6]. Further works that use the same idea are [10, 16].
Let µ be any shift invariant probability measure on a fullshift AZ and consider
w = (. . . , w−2, w−1) ∈ A−N (for our purposes −N = {. . . − 4,−3,−2,−1}). We de-
note by µw the conditional probability measure on AN.

Definition 5.3. One says that µ has complete connections if given a ∈ A and w ∈ A−N,
µw([a]0) > 0. If µ is a probability measure with complete connections, one defines for every
m ≥ 1

γm = sup

(∣∣∣∣ µv([a]0)

µw([a]0)
− 1

∣∣∣∣ : v, w ∈ A−N; v−i = w−i, 1 ≤ i ≤ m
)
.

In addition, if
∑
m≥1 γm <∞ one says µ has summable decay of correlations.

The main result in [6] states:

Theorem 5.2 (Ferrari, Maass, Martínez, Ney). Let (A,+) be a finite Abelian group with
|A| = ps with p prime. Let F : AZ → AZ be the CA given by id + σ. If µ is a probability
measure on AZ with complete connections and summable decay of correlations, then for all
w ∈ A−N it holds

Mµ(F ) = lim
N→∞

MN
µ (F ) = lim

N→∞

1

N

N−1∑
n=0

Fnµ = λ .

We observe that the technical conditions on the cardinality of A and the form of F can be
dropped to state a result similar to that in Theorem 5.1. Historically this is the first large
generalization (in relation to the class of initial measures) to Lind’s result.

5.2.1. Main Idea behind the proof: regeneration of measures

Beyond the study of the combinatorial properties of the Pascal triangle modulo a prime num-
ber the main ingredient in the proof of Theorem 5.2 is the representation of a probability
measure with complete connections and summable decay of correlations by means of uni-
form independent variables. The idea behind is trying to mimic the computations made in the
Bernoulli case.

Let (Ti : i ≥ 1) be an increasing sequence of non-negative integer random variables. For
every finite subset L of N define

N(L) =
∣∣{i ≥ 1 : Ti ∈ L}

∣∣ .
One says that (Ti : i ≥ 1) is a stationary renewal process with finite mean interrenewal time
if

(1) (Ti − Ti−1 : i ≥ 2) are independent identically distributed with finite expectation, they
are independent of T1 and P(T2 − T1 > 0) > 0;
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(2) For n ∈ N, P(T1 = n) = 1
E(T2−T1)P(T2 − T1 > n).

These conditions imply the stationary property: for every finite subset L of N and every
a ∈ N the random variables N(L) and N(L+ a) have the same distribution.

Theorem 5.3 (Ferrari, Maass, Martínez, Ney, [6]). Let µ be a shift invariant probability
measure on AZ with complete connections and summable decay of correlations. There exists
a stationary renewal process (Ti : i ≥ 1) with finite mean interrenewal time such that for
every w ∈ A−N, there exists a random sequence z = (zi : i ≥ 1) with values in A and
distribution µw such that (zTi : i ≥ 1) are i.i.d. uniformly distributed in A and independent
of (zi : i ∈ N \ {T1, T2, . . .}).

From the construction of the renewal process in [6] one also gets the following properties:

(1) There exists a function ρ : N → R decreasing to zero such that P(N(L) = 0) ≤ ρ(|L|),
for any finite subset L of N.

(2) Given n, ` ∈ N \ {0}, 1 ≤ k1 < ... < k` ≤ n and j1, ..., jl ∈ N, for all a1, ..., an ∈ A,

µw (zi = ai, i ∈ {1, ..., n};Tj1 = k1, ..., Tj` = k`) =

1

|A|`
µw (zi = ai, i ∈ {1, ..., n} \ {k1, ..., k`};Tj1 = k1, ..., Tj` = k`) .

(3) For any n ∈ N and v ∈ A∗, µw ({N({0, . . . , n− 1}) > 0} ∩ [v]n) does not depend on
w ∈ A−N.

In the language of [20] these properties allow to prove that shift invariant probability mea-
sures with complete connections and summable decay of correlations onAZ are harmonically
mixing, and thus one can conclude Theorem 5.2. The proof in [6] did not follow this path
explicitly, nevertheless they are analogous.

Theorem 5.4 (Host, Maass, Martínez, [10]; use ideas in [6]). A shift invariant probability
measure with complete connections and summable decay of correlations on AZ is harmoni-
cally mixing.

Sketch of the proof. Let µ be a shift invariant probability measure on AZ with complete
connections and summable decay of correlations. Fix a past sequence w ∈ A−N and let
(Ti : i ≥ 1) be the renewal process induced by µ. We write Pw for the probability, when the
random variables (zi : i ∈ N) in Theorem 5.3 are given the distribution µw. The probability
measure P is the integral of Pw with respect to w ∈ A−N.
For a finite subset R of Z and x ∈ AZ we write xR for the sequence (xi : i ∈ R) in AR.
Let χ : AZ → T1 be a character. There exist a finite set R ⊂ Z and a sequence (χn : n ∈ Z)

in Â, with χn = 1 for n /∈ R, χn 6= 1 for n ∈ R and χ(x) =
∏
n∈Z χn(xn) for every

x ∈ AZ. We have to find an upper bound for |
∫
χdµ| depending only on |R|. As µ is shift

invariant we can assume that R ⊂ N.
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For any finite subset R′ of Z define χR′ : AR
′ → T1 by χR′(y) =

∏
r∈R′ χr(yr). Observe

that χR′(AR
′
) is a subgroup of T1 and that we can identify χ with χR because χR(xR) =

χ(x) for x ∈ AZ.
Denote Ξ = χR(AR) and define τ(R) = inf{i ∈ R : N({i}) = 1}, where inf ∅ = ∞. We
have

∫
AZ
χ(xR)dµw(x) =

∑
ξ∈Ξ

ξ µw(χ(xR) = ξ)

=
∑
i∈R

∑
ξ∈Ξ

ξ Pw(χ(zR) = ξ, τ(R) = i) +
∑
ξ∈Ξ

ξ Pw
(
χ(zR) = ξ, τ(R) =∞

)
.

Let i ∈ R and set Ri = R \ {i}, so Ξ = χRi(A
Ri)χi(A). For ξ ∈ Ξ we define Vi(ξ) =

χ−1
Ri

(ξχi(A)). A word y = (yr : r ∈ Ri) ∈ ARi belongs to Vi(ξ) if and only if there exists
a ∈ A such that the word y′ obtained from y by putting y′i = a satisfies χ(y′) = ξ.
For y ∈ ARi we put ξy = χRi(y) and for ξ ∈ Ξ we define Vi(ξ, y) = χ−1

i (ξξ−1
y ). Since

Vi(ξ, y) is a coset of Ker(χi), we get |Vi(ξ, y)| = |Ker(χi)|. Therefore,

∑
ξ∈Ξ

ξ Pw
(
χ(zR) = ξ, τ(R) = i

)
=
∑
ξ∈Ξ

ξ
∑

y∈Vi(ξ)

∑
yi∈Vi(ξ,y)

Pw
(
zr = yr, r ∈ R; τ(R) = i

)
=
∑
ξ∈Ξ

ξ
∑

y∈Vi(ξ)

∑
yi∈Vi(ξ,y)

1

|A|
Pw
(
zr = yr, r ∈ Ri; τ(R) = i

)
=
∑
ξ∈Ξ

ξ
∑

y∈Vi(ξ)

|Vi(ξ, y)|
|A|

Pw
(
zr = yr, r ∈ Ri; τ(R) = i

)
=
|Ker(χi)|
|A|

∑
ξ∈Ξ

ξ
∑

y∈Vi(ξ)

Pw
(
zr = yr, r ∈ Ri; τ(R) = i

)

=
|Ker(χi)|
|A|

∑
y∈ARi

Pw
(
zr = yr, r ∈ Ri; τ(R) = i

)
·

∑
{ξ∈Ξ:Vi(ξ,y) 6=∅}

ξ

where in the second equality we have used Theorem 5.3. Recall ξy = χRi(y). We have

{ξ ∈ Ξ : Vi(ξ, y) 6= ∅} = {ξ ∈ Ξ : χ−1
i (ξξ−1

y ) 6= ∅} = ξyχi(A) .

Hence ∑
{ξ∈Ξ:Vi(ξ,y)6=∅}

ξ = ξy
∑

ξ∈χi(K)

ξ = 0 .
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We conclude ∑
ξ∈Ξ

ξ Pw
(
χ(rR) = ξ, τ(R) = i

)
= 0 .

Coming back to the integral we get,∣∣∫
AZ
χ(xR)dµw(x)

∣∣ =
∣∣∑
ξ∈Ξ

ξ Pw
(
χ(xR) = ξ, τ(R) =∞

)∣∣
≤ |Ξ|Pw

(
τ(R) =∞

)
≤ |K| ρ(|R|) .

Since this inequality holds for any w ∈ A−N we have
∣∣∫ χ(x) dµ(x)

∣∣ ≤ |A| ρ(|R|). Since
ρ(|R|)→ 0 as |R| → ∞ we conclude that µ is harmonically mixing.

5.3. Some generalizations
There are several extensions of Theorem 5.3. Just to give the flavour of them here we give one
where fullshifts are changed by subgroup shifts. Other generalizations appeared in [16, 24].

Theorem 5.5 (Maass, Martínez, Pivato, Yassawi, [14, 15]). Let G ⊆ AZ be an irreducible
subgroup shift verifying the following-lifting-property (resp. A is ps-torsion with p prime).
Let F : G → G be a proper linear block map and µ a probability measure with complete
connections and summable memory decay compatible with G. Then, the Cesàro mean of µ
under the action of F converges to the Haar measure of G. If A is a p-group with p-prime G
always verifies the FLP property.

§6. Final comments and questions

– We would like to change the “complete connections and summable decay of correlations”
property by some mixing property for the shift map.

– The asymptotic randomization does not require full support of the initial measure and pos-
itive entropy w.r.t. the shift map: there exist shift invariant measures µ on {0, 1}Z with
hµ(σ) = 0 that are asymptotically randomized by F = id + σ (see Pivato and Yassawi
examples in [22]).

— Question: Do Cesàro means exist for expansive and/or positively expansive block-maps
of a mixing shift of finite type ? how the limit is related with the unique maximal entropy
measure ? There are some partial results for classes of right permutative cellular automata:
with associative local rules, or N -scaling local rules (see [10]). These CA can be seen as the
product of an algebraic CA with a shift. Here measures are not asymptotically randomized
but the limits are the product of a maximal measure with a periodic measure, so combining
results from [6, 20, 21] and [2].
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points. Ann. Inst. H. PoincarŐ Probab. Statist. 36 (2000), no. 5, 569–582.

[3] M. BOYLE, A. MAASS. Expansive invertible onesided cellular automata. J. Math. Soc.
Japan 52 (2000), no. 4, 725–740.

[4] E. COVEN, M. PAUL. Endomorphisms of irreducible subshifts of finite type. Math.
Systems Theory 8 (1974/75), no. 2, 167–175.

[5] M.EINSIEDLER. Isomorphism and measure rigidity for algebraic actions on zero-
dimensional groups. Monatsh. Math. 144 (2005), no. 1, 39–69.

[6] P. FERRARI, A. MAASS, S. MARTÍNEZ, P. NEY. Cesàro mean distribution of group
automata starting from measures with summable decay. Ergodic Theory Dynam. Sys-
tems 20 (2000), no. 6, 1657–1670.

[7] E. GLASNER, B. WEISS. Sensitive dependence on initial conditions. Nonlinearity 6
(1993), no. 6, 1067–1075.

[8] A. HEDLUND. Endormorphisms and automorphisms of the shift dynamical system.
Math. Systems Theory 3 (1969), 320–375.

[9] B. HOST. Nombres normaux, entropie, translations. Israel J. Math. 91 (1995), no. 1-3,
419–428.

[10] B. HOST, A. MAASS, S. MARTÍNEZ. Uniform Bernoulli measure in dynamics of
permutative cellular automata with algebraic local rules. Discrete Contin. Dyn. Syst.
9 (2003), no. 6, 1423–1446.

[11] D. LIND, B. MARCUS. An introduction to symbolic dynamics and coding. Cambridge
University Press, Cambridge, 1995. xvi+495 pp.

[12] D. LIND. Applications of ergodic theory and sofic systems to cellular automata. Cellular
automata (Los Alamos, N.M., 1983). Phys. D 10 (1984), no. 1-2, 36–44.

[13] A. MAASS, S. MARTÍNEZ. On Cesàro limit distribution of a class of permutative cel-
lular automata. J. Statist. Phys. 90 (1998), no. 1-2, 435–452.

[14] A. MAASS, S. MARTÍNEZ, M. PIVATO, R. YASSAWI. Asymptotic randomization of
subgroup shifts by linear cellular automata. Ergodic Theory Dynam. Systems 26 (2006),
no. 4, 1203–1224.

[15] A. MAASS, S. MARTÍNEZ, M. PIVATO, R. YASSAWI. Attractiveness of the Haar mea-
sure for linear cellular automata on Markov subgroups. Dynamics & stochastics, 100–
108, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006.



56 Alejandro Maass

[16] A. MAASS, S. MARTÍNEZ, M. SOBOTTKA. Limit measures for affine cellular au-
tomata on topological Markov subgroups. Nonlinearity 19 (2006), no. 9, 2137–2147.

[17] M. NASU. Textile systems for endomorphisms and automorphisms of the shift. Mem.
Amer. Math. Soc. 114 (1995), no. 546, viii+215 pp.

[18] D. RUDOLPH. ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam.
Systems 10 (1990), no. 2, 395–406.

[19] K. PETERSEN. Ergodic theory. Cambridge Studies in Advanced Mathematics 2. Cam-
bridge University Press, Cambridge, 1983. xii+329 pp.

[20] M. PIVATO, R. YASSAWI. Limit measures for affine cellular automata. Ergodic Theory
Dynam. Systems 22 (2002), no. 4, 1269–1287.

[21] M. PIVATO, R. YASSAWI. Limit measures for affine cellular automata. II. Ergodic The-
ory Dynam. Systems 24 (2004), no. 6, 1961–1980.

[22] M. PIVATO, R. YASSAWI. Asymptotic randomization of sofic shifts by linear cellular
automata. Ergodic Theory Dynam. Systems 26 (2006), no. 4, 1177–1201.

[23] M. PIVATO. Invariant measures for bipermutative cellular automata. Discrete Contin.
Dyn. Syst. 12 (2005), no. 4, 723–736.

[24] M. PIVATO. Module shifts and measure rigidity in linear cellular automata. Ergodic
Theory Dynam. Systems 28 (2008), no. 6, 1945–1958.

[25] M. SABLIK. Measure rigidity for algebraic bipermutative cellular automata. Ergodic
Theory Dynam. Systems 27 (2007), no. 6, 1965–1990.

[26] S. SILBERGER. Subshifts of the three dot system. Ergodic Theory Dynam. Systems 25
(2005), no. 5, 1673–1687.

Departamento de Ingeniería Matemática,
Universidad de Chile & Centro de Modelamiento Matemático
UMI 2071 UCHILE-CNRS
Casilla 170/3 correo 3
Santiago, Chili.
amaass@dim.uchile.cl



Contributed Papers





Monografías Matemáticas García de Galdeano 36, 59–67 (2010)

ON THE ADMISSION-ABANDON
CONTROL OF THE M/M/S/K+G QUEUE

F. Avram, D. F. Chedom and L. P. Fotso

Abstract. Motivated by the application to call centers, we consider a multiserver queue
with waiting room of finite size K, where customers who find all the servers busy may
leave before the beginning of their service, according to a general impatience distribution
G(·) of meanD. For this model, denoted by M/M/s/K + G, we investigate numerically the
optimal choice of the parameters K,D, focusing on the case of deterministic impatience
D, for several objectives involving reneging, balking, waiting and refusal costs.

Keywords: M/M/s/K + G queue, impatience, Erlang C, finite buffer, admission control.

AMS classification: 60K25, 93E20, 68M20

§1. Introduction

The model. Consider the M/M/s/K/ + G model, where arrivals occur according to a
Poisson process with rate λ and service times are exponentially distributed with mean µ−1.
The number of servers is s, the buffer (number of waiting places) limit is K and an arrival
customer who finds s + K customers in the system is rejected. Customers are served in the
order of arrival, if they don’t abandon. Furthermore, customers arrive with deadlines until
the beginning of service, which are i.i.d. random variables I1, I2, ..., with a general "patience
distribution" G(·) with mean D. Balking (refusal to enter if not served immediately) is mod-
eled by introducing an atom of mass p = P [Ik = 0] in the patience distribution. Furthermore,
customers may abandon the system (or renege) after entering, if service does not start before
their deadline.
Markovian modelisation. Let N(t) be the total number of customers in the system at time
t. It is convenient to consider separately three cases: i) Unsaturated regime: N(t) < s, ii)
Saturated regime N(t) = s, iii) Overloaded regime N(t) ≥ s+ 1.
Let U(t) denote the time until the waiting buffer at time t becomes unsaturated, also called
virtual offered waiting time (v.o.w.t). Thus, a customer who arrives at time t with infinite
patience (i.e. no deadline) must wait U(t) before his service. The distribution of U(t) con-
ditional on the number K(t) = (N(t) − s + 1)+ = k is Erlang with k stages and scale
parameter µs = sµ.
Aware customers. There is a model with "aware customers", who know the v.o.w.t. at their
arrival, and use this to leave immediately, if it exceeds their deadline. We may specify the
"aware" Markovian system by:

Z(t) := (U(t), N(t)) =

{
(0, i) if N(t) = i, 0 ≤ i < s,

(U(t), i) if N(t) = i, i ≥ s.
(1)
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Notes:The saturated regime, starting when all servers become busy and ending with the first
arrival which must wait, may be viewed as a common boundary state, from which the process
may be "teleported" to either the unsaturated states N(t) < s, or to the overloaded regime
N(t) ≥ s+ 1, with rates sµ and λ, respectively.
Unaware customers. There is also an alternative model where the i-th customer admitted at
time t will leave at time t + Ii if Ii < U(t). This model leads to a worse utilization of the
waiting buffer and to a bigger admittance refusal probability, but the offered waiting time and
abandon probability are the same [2], since for a customer already admitted in the line, the
impatient leaving customers might as well have left at their arrival (and so don’t affect U(t)).
Historical notes. The pioneer work on impatience is Palm [10], who proposed both the
exponential and the Weibull as reasonable distributions for patience times. Deterministic
impatience has first been studied by Barrer [3] and Gnedenko and Kovalenko [8], who em-
ployed a Markovian model specifying the joint behavior of the elapsed waiting time in line
X(t) of the queue’s first customer, and the total number of customers waiting N(t). When
K =∞, X(t) alone provides a Markovian description of the system in waiting regime (and
the number of waiting customers (N(t) − s)+ is Poisson distributed), as noticed by Choi &
al [7].
The case of general impatience was studied by Baccelli, Boyer and Hebuterne – see for
example [2], who used the alternative modelization via U(t).
The combined effect of impatience and refusal of customers was considered in Ancker and
Gafarian [1] and Subba Rao [11], who assumed exponential impatience. Most recently, ex-
tensive analyses of the model with state dependent rates and general impatience have been
provided by Movaghar [9] and Brandt and Brandt [4]. See also Zeltyn and Mandelbaum [12]
for further references and developments.
The contribution of our work consists in studying numerically the choice of the parameters
K,D for optimal admission control under this model, for several objectives involving aban-
donment, waiting and refusal costs. The rest of the paper is structured as follows. In section
2 we review, following the results of Baccelli & al [2], Movaghar [9], and Brandt [4], first the
characteristics of the classical model with K = ∞, and then, in subsection 2.3, for the case
K < ∞. The special case of deterministic impatience is presented in section 3, where we
introduce also the performance measures to be optimized. Finally, we deal with optimization
in section 4.

§2. Performance characteristics

2.1. The undersaturated and saturated regimes

The queue evolves in this "immediate service" regime as a classical Markovian birth and
death process. The stationary distribution: qi = P{N(t) = i}, i = 0, ..., s, satisfies the
standard equilibrium equations:

(λ+ iµ)qi = λqi−1 + (i+ 1)µqi+1, 0 ≤ i ≤ s− 1, (2)
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(where q−1 = 0) which reduce to local equilibrium equation iµqi = λqi−1, 0 ≤ i ≤ s.
Putting ρ = λ/µ, we find:

qi = q0
ρi

i!
, 0 ≤ i ≤ s. (3)

2.2. The waiting regime
In this regime, the basic quantity which determines the various performance metrics of the
queue is the stationary density of the v.o.w.t U(t):

v(x) =
d

dx
(P [N(t) ≥ s, U(t) ≤ x]) , x ∈ R+. (4)

It may then be checked by the method of level crossings [5], [6] (see also (3.30) in [9]) that
v(x) satisfies the integral equation:

v(x) = λqs−1e
−µsx + λ

∫ x

0

Ḡ(y) v(y)e−µs(x−y)dy, (5)

with solution:

v(x) = v(0)eλH(x)−µsx, v(0) = λ qs−1 = µsqs, (6)

where H(x) = E[min(x, I)] =
∫ x

0
Ḡ(y)dy (where I is a customer’s impatience time) rep-

resent the expected time a given customer spent waiting during (0, x].

Remark 1. Note that H(∞) = D, the mean patience time.

Remark 2. The stationary probabilities of a client abandoning and being served are respec-
tively: PAb =

∫∞
0
v(x)G(x)dx, pSer =

∫∞
0
v(x)Ḡ(x)dx.

Using (6), we can compute now q0 from the normalization condition in the case K = ∞,
completing thus the description of the stationary measure:

s−1∑
i=0

qi +

∫ ∞
0

v(x)dx = q0

(
s−1∑
i=0

ρi

i!
+ λ

ρs−1

(s− 1)!

∫ ∞
0

eλH(x)−µsxdx

)
= 1. (7)

Putting now J =

∫ ∞
0

µse
λH(x)−µsxdx = Eeλmin[I,S], where S denotes the time until the

first departure from service, we find (compare to (3.3) in [4] and (3.27) in [9]) that :

q0 =

(
s−1∑
i=0

ρi

i!
+

ρs−1

(s− 1)!
ψ J

)−1

=
1

ρs−1

(s−1)! (Es + ψJ)
(8)

where ψ = λ/µs, and where Es =
∑s−1
i=0

ρi

i!
ρs−1

(s−1)!

=
∫∞

0
e−t(1 + t/ρ)s−1dt := h−1

Γ (s, ρ) is

the inverse of the Gamma distribution hazard function (which yields in queueing theory the
fundamental Erlang-B formula).
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2.3. The finite buffer model
When K < ∞, we must also keep track of the buffer occupation, and consider therefore the
joint stationary density of the v.o.w.t. U(t) and the number k of customers waiting:

v(k, x) =
d

dx
(P [N(t)− s = k, U(t) ≤ x]) (9)

= qsµse
−µsx (λH(x))k

k!
= v∞(x)

e−λH(x)(λH(x))k

k!
, k = 0, 1, 2, ...K

This basic formula does not seem to appear explicitly in the literature, but is equivalent
of course to the known formulas for the conditional density v(x|k) and marginal pk =∫∞

0
v(k, x)dx recalled in the notes below.

Notes: 1) From formula (9), we obtain immediately the marginal stationary distributions of
U(t) and of the number k of customers waiting. Letting

Φk =

∫ ∞
0

H(x)kµse
−µsxdx = EH[S]k, k = 0, 2, ...,K (10)

we find that the stationary distribution of the number k of customers waiting is:

pk = P [N(t) = s+ k] =

∫ ∞
0

v(k, x)dx = qs
λk

k!
Φk, k = 0, 1, 2, ...K, (11)

which coincides with (3.1) of [4] and with (3.33) of [9] (since λqs−1 = µsqs, and p0 = qs).
2) The density of the v.o.w.t. U(t) conditional on the number k of customers waiting is:

v(x|k) =
v(k, x)

pk
= µse

−µsxH(x)k

Φk
, k = 0, 1, 2, ...K. (12)

which is the same result as (3.17) in [9] § .
3) Brandt and Brandt[4] and Movaghar[9] showed furthermore that the intensity of customers
leaving due to impatience conditional on the number k of customers waiting is given by:

θk =
kΦk−1

Φk
− µs.

4) From the normalization condition:

s−1∑
i=0

qi +
K∑
k=0

pk = q0

(
s−1∑
i=0

ρi

i!
+
ρs

s!

K∑
k=0

λk

k!
Φk

)
= 1, (13)

we obtain q0:

q0 =

(
s−1∑
i=0

ρi

i!
+
ρs

s!

K∑
k=0

λk

k!
Φk

)−1

=

(
s−1∑
i=0

ρi

i!
+

ρs−1

(s− 1)!
ψ JK

)−1

(14)

where JK =
∑K
k=0

λk

k! Φk, which coincides with (3.35) in [9].

§The formula (9) states that under the stationary measure, the variable U(t) and the number of arrivals during
H(U(t)) are independent, and thus v(k, x) is the product of the probability v(x) and of the probability of having k
arrivals during H(x), which is e−λH(x)(λH(x))k/k!
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§3. The special case with deterministic impatience: the M/M/s/K + D
queue

From the above results, we have the following ones for queues with deterministic impatience
D :

H(x) = min[x,D] =

{
x, 0 ≤ x ≤ D,
D, x > D,

, Φk =
Γ̃k(µsD)

µks
, (15)

where Γ̃k(x) = 1− e−x
k−1∑
j=0

(x)j

j!
= 1− Γ(k, x)

Γ(k)
, and where Γ(k) and Γ(k, x) represent the

Gamma and incomplete Gamma function (indeed, the integral (10) is easily checked ...)
It follows that the joint density of the v.o.w.t. U(t) and of the number k of customers waiting
is

v(k, x) =


qsµse

−µsx (λx)k

k!
, x ≤ D,

qsµse
−µsx (λD)k

k!
, x > D,

(16)

In the unsaturated regime, we have: P{N(t) = n} = qn, 0 ≤ n ≤ s − 1, and in the
saturated regime P{N(t) = n} =

∫∞
0
v(n− s, x)dx = qs

ψn−s

(n−s)! Γ̃n−s(µsD).

Letting now Pn = P{N(t) = n}, 0 ≤ n ≤ s + K be the system size distribution, we
recover (4.5) of [9]:

Pn =

qn, N(t) = n, 0 ≤ n ≤ s− 1,

qs
ψn−s

(n− s)!
Γ̃n−s(µsD), N(t) = n, s ≤ n ≤ s+K.

(17)

with q0 =
(∑s

i=0
ρi

i! + ρs

s!

∑K
k=1 λ

k Φk

)−1

.
The stationary distribution of the number k of customers waiting is:

pk = Ps+k = qsψ
kΓ̃k(µsD), k = 0, 1, 2, ...K; (18)

Finally, the density of the v.o.w.t. U(t) conditional on the number k of customers waiting is:

v(x|k) =
v(k, x)

pk
=


µse
−µsx(λx)k

k!ψkΓ̃k(µsD)
, x ≤ D,

µse
−µsx(λD)k

k!ψkΓ̃k(µsD)
, x > D,

(19)

which is the same result as (4.4) in [9].
Some performance measures with deterministic impatience are:

1. The probability of being refused entry is :

PRef = Ps+K = qsψ
K Γ̃K(µsD); (20)
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2. The stationary loss probability

PAb(D) =

∑K
k=1 v(k,D)

λ
= qse

−µsD
K−1∑
k=0

(λD)k

k!
= qse

(λ−µs)D Γ(K,λD)

Γ(K)
. (21)

Note that when K =∞ and D = 0 we recover the Erlang-B formula
ρs/s!∑s
i=0 ρ

i/i!
;

3. The mean queue size EQ is given by :

EQ =
K∑
k=1

k Ps+k =
K∑
k=1

k qs ψ
kΓ̃k(µsD). (22)

After some tedious algebra we obtain:

EQ = qs ψ

(
1− e−µsD + g(K,µsD)ψK((K + 1)ψ −K − 1− ψ)

(1− ψ)2

)
, (23)

where g(k, x) = 1− Γ(k + 1, x)

k!
.

Taking D →∞ we get the expression of the standard M/M/s/K model:

EQ = qs ψ

(
1 +KψK+1 − (K + 1)ψK

(1− ψ)2

)
; (24)

4. The mean waiting time comes from the Little formula:

EW =
EQ
λ∗

= qs ψ

(
1 +KψK+1 − (K + 1)ψK

λ∗ (1− ψ)2

)
, (25)

where λ∗ = λ(1− PRef ).

§4. Optimization

Let w denote the waiting cost incured each time a customer spend in the queue, ca, the aban-
doning cost incurred each time a waiting customer abandons the system before his service has
begun and let cr denote the rejection cost incurred each time an arriving customer is rejected
at entry. Assuming already an optimal number of servers s, our optimization goal here con-
sists of determining the optimal D and K that minimize the customer’s long-run stationary
inconvenience costs, which combine waiting, abandon and rejection at entry.

f = w EQ + cr λ PRef + ca λ(1− PRef )PAb

In this preliminary study, we consider only the one dimensional optimizations obtained by
fixing K and D, respectively, and only for the case of deterministic impatience, reviewed in
Section 3.
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4.1. Optimal D on an objective combining EW and PAb
We assume now that K is fixed, and consider the optimization objective combining the wait-
ing cost and the abandoning cost, given by:

f1 = wEQ + λ∗caPAb = wλ∗(EW + a′PAb) (26)

where λ∗ = λ(1− PRef ), a′ =
ca
w

and where we applied Little’s formula.
Since λ∗ is a positive constant when K is fixed, minimizing f1 is equivalent to minimizing
ξ1 = EW + a′PAb
The ratio a′ between the abandoning cost and the waiting cost is an important management
decision parameter, reflecting what is more expensive: abandoning or waiting.
Note that EW increases with D while PAb decreases with D, as shown in figure 1, obtained
with λ = µ = 1, s = 2, and the queue limit size K = 10. While ξ1 (and thus f1) need not be
convex in D in general, we found this to be the case often, like for example with λ = µ = 1,
s = 2, and K = 10, and for any a′ ∈ [1.0, 1.5]. When a′ = 1.2 our combined objective
admits a minimum D∗ = 0.56 as shown in figure 2

D
 Ew PAb

D

Figure 1 : EW and PAb depending on D, Figure 2: The combined objective of Ew
for λ = 1, s = 2,K = 10 and PAb depending on D, for λ = 1, s = 2,

K = 10, and a′ = 1.2

Table (1) gives different values of D∗ for µ = 1 and a set of given couples (λ, a′) with
s = 2 and K = 10 § . A zero-value or infinite value means that ξ1 does not have an interior
minimum in the case considered.
Table (1) also shows that D∗ increases with a′, that is as the abandoning cost prevails over
the waiting cost.

4.2. Optimal K on an objective combining PAb and PRef
The second optimization objective function combines the abandoning cost and the balking
cost The combined objective is given by :

f2 = ca λ
∗ PAb + cr λPRef = caλξ2 (27)

§As µ = 1, λ represents also the traffic intensity ρ
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a′

0.6 0.8 1 1.1 1.2 1.3 1.4 1.5 1.6

λ = 0.5 0 0.48 1.32 1.93 2.81 4.34 ∞ ∞ ∞
λ = 0.75 0 0.16 0.53 0.82 1.2 1.8 3.05 ∞ ∞
λ = 1 0 0 0.21 0.37 0.56 0.83 1.29 2.83 ∞
λ = 1.25 0 0 0 0.15 0.26 0.41 0.61 1.0 ∞
λ = 1.5 0 0 0 0 0.11 0.2 0.3 0.4 ∞
λ = 1.75 0 0 0 0 0 0.08 0.15 0.23 ∞
λ = 2 0 0 0 0 0 0 0.06 0.11 ∞

Table 1: D∗ for a set of given couples (λ, a′) with s = 2 and K = 10.

where ξ2 = (1− Pref )PAb + r′ Pref , with r′ =
cr
ca

. Of course, minimizing f2 is equivalent

to minimizing ξ2.
The ratio r′ between the rejection cost and the desertion cost is another important manage-
ment decision parameter, reflecting what is more expensive: rejection or desertion.
Our goal here is to obtain the optimal K which minimizes the objective function, when D is
fixed. Note that PAb increases with K while PRef decreases with K, as shown in figure 3,
obtained with λ = 1, s = 2 and D = 1. When λ = 1, s = 2, and D = 1, ξ2 (thus, f2)
is convex and admits a minimum for any r′ ∈ [0.1, 1.0] . For example, with r′ = 0.5 our
combined objective admits a minimum K∗ = 1.77 as shown in figure 4.

PRef PAb

K

K

Figure 3 : PRef and PAb depending on K, Figure 4: The combined objective of PRef
for λ = 1, s = 2 and D = 1. and PAb depending on K, for λ = 1,

s = 2, D = 1 and r′ = 0.5.

Table (2) gives the different values of K∗ for a set of given couples (λ, r′) with s = 2 and
D = 1. A zero-value or an infinite value means that ξ2 (thus, f2) is not convex in the case
considered.
Table (2) also shows thatK∗ increase with r′, that is when the rejection cost prevails over the
waiting cost. We note that K∗ doesn’t strongly depend on the traffic intensity ρ.
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r′

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ = 0.5 0 0.52 0.98 1.5 2.1 3.0 4.42 ∞ ∞
λ = 0.75 0.05 0.47 0.88 1.35 1.93 2.71 3.92 6.21 ∞
λ = 1 0.046 0.43 0.82 1.24 1.77 2.47 3.53 5.54 ∞
λ = 1.25 0.051 0.43 0.81 1.22 1.71 2.37 3.36 5.22 ∞
λ = 1.5 0.1 0.51 0.91 1.34 1.86 2.54 3.58 5.52 ∞
λ = 1.75 0.30 0.51 1.30 1.82 2.45 3.28 4.56 → ∞
λ = 2 0 0.17 0.36 0.53 0.70 0.86 1.0 1.2 1.3

Table 2: K∗ for a set of given couples (λ, r′) with µ = 1, s = 2 and D = 1.
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ON OPTIMAL DIVIDEND DISTRIBUTION
FOR A CRAMÉR-LUNDBERG PROCESS

WITH EXPONENTIAL JUMPS IN THE
PRESENCE OF A LINEAR GERBER-SHIU

PENALTY FUNCTION

Florin Avram, Zbigniew Palmowski and Martijn Pistorius

Abstract. In this paper we consider the optimal dividend problem in the presence of a
linear Gerber-Shiu penalty function for an insurance company whose reserves evolve ac-
cording to a classical risk process. We give explicit sufficient conditions for the optimality
of a liquidation and barrier strategies, and analytically explicit expressions for their value
functions. We use these results to completely analyze the case of exponentially distributed
claims.

Keywords: Optimal control, risk process, barrier strategies, optimal dividend distribution

AMS classification: 60J99, 93E20, 60G51

§1. Introduction

In classical collective risk theory (e.g. Gerber [9]) the surplus X = {Xt, t ≥ 0} of an
insurance company with initial capital x is described by the Cramér-Lundberg model:

Xt = x+ p t−
Nt∑
k=1

Ck, (1)

where Ck are independent positive random variables with common distribution function F
representing the claims made, N = {Nt, t ≥ 0} is an independent Poisson process with
intensity λ modeling the times at which the claims occur, and p t represents the premium
income up to time t.
The ruin problem and De Finetti’s dividend problem. The classic research of the scan-
dinavian school (Lundberg, Cramér, etc.) had focused on determining the "ruin probability"
of the process (1) ever becoming negative, under the assumption that X has positive profits,
i.e. that its first moment is positive. Since however in this case the surplus has the unreal-
istic property that it converges to infinity with probability one, De Finetti [6] introduced the
dividend barrier model, in which all surpluses above a given level are transferred (subject
to a discount rate) to a beneficiary, and raised the question of optimizing this barrier. An
intricate "bands strategy" solution was discovered by Gerber [7], [8], as well as the fact that
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for exponential claims and with no constraints on the dividends rate, this reduces to a simple
barrier strategy: "pay all you can above a fixed constant barrier a". Hallin [12] formulated
time dependent integro-differential equations describing the payoff associated to a 2n bands
policy.
There has been a great deal of work on De Finetti’s objective, usually concerning barrier
strategies. Gerber and Shiu [10] and Jeanblanc and Shiryaev [13] consider the optimal divi-
dend problem in a Brownian setting. Zhou [19] study the constant barrier under the Cramér-
Lundberg model (1). For related work considering both excess-of-loss reinsurance and divi-
dend distribution policies (in a diffusion setting), see Asmussen et al. [2].
Balancing dividends and ruin penalties. Since under De Finetti’s objective ruin is sure and
its "severity" ignored, several alternative objectives have been proposed recently, involving a
continuous payoff until ruin [1], or a penalty at ruin, based on some function of the severity
of ruin [18], [5], [11], [17], [15]. It is this problem that we consider below, under the Cramér-
Lunderg model.
The model. The risk process before dividends are deducted is modeled by by X in (1). The
risk process controlled by the dividend policy π is then given by Uπ = {Uπt , t ≥ 0}, where

Uπt = Xt − Lπt , (2)

X0 = x > 0 is an initial reserve and Lπt is an increasing left-continuous process representing
the cumulative dividends paid out by the company up till time t. Writing σπ = inf{t ≥
0 : min{Uπt , Uπt+} < 0} for the time at which ruin occurs, a dividend strategy is called
admissible if, at any time before ruin, a lump sum dividend payment is smaller than the size
of the available reserves: Lπt+ − L

π
t ≤ Uπt for t ≤ σπ .

The optimization objective function is given by the sum of the cumulative discounted div-
idends received until the moment of ruin and a negative payment or penalty that the benefi-
ciaries of the dividends need to pay at ruin, which is a function of the shortfall at the moment
Uπσπ of ruin σπ . More precisely,

vπ(x) = V π(x) +Hπ
w(x), (3)

where

V π(x) = Ex

[∫ σπ

0

e−qtdLπt

]
with rate of discounting q > 0, and Hπ

w denotes the Gerber-Shiu penalty function

Hπ
w(x) = Ex

[
e−qσ

π

w(Uσπ )
]
,

associated to a penalty w : R → (−∞, 0] (with w(y) = 0 for y > 0). In this article we will
restrict ourselves to penalties that (on the negative half-axis) are equal to a constant multiple
of the shortfall at the moment of ruin:

w(y) = cy, y < 0, c > 0.

The objective of the beneficiaries of the insurance company is to maximize vπ(x) over all
admissible strategies π = {Lπt , t ≥ 0} ∈ Π:

v∗(x) = sup
π∈Π

vπ(x), (4)
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where Π denotes the set of all admissible strategies.
Contents. In Section 2 the value function corresponding to a constant barrier strategy is
expressed explicitly in terms of the scale function of the Crámer-Lundberg model. In Section
3 a verification theorem for the optimization problem (4) is given, which is used in Section
4 to analyze global optimality of the liquidation and constant barrier strategies. Finally, in
Section 5 we present an analytically explicit solution to the case of exponential jumps.

§2. Barrier strategies and penalty functions

For a constant barrier strategy πa at level a the value function va = vπa is given by

va(x) = V πa(x) +Hπa
w (x),

the sum of the present value V πa of the stream of dividend payments under the strategy πa
until the moment of ruin σa = σπa = inf{t ≥ 0 : Uπat < 0} and the penalty at ruin

Hπa
w (x) = Ex[e−qσ

a

w(Uaσa)].

The functions V πa and Hπa can be conveniently expressed in terms of the q-scale function
W (q) of X that is defined as the unique continuous and increasing function W (q) : [0,∞)→
[0,∞) with the Laplace transform∫ ∞

0

e−θyW (q)(y)dy = (ψ(θ)− q)−1, θ > Φ(q), (5)

where ψ(θ) is the Laplace-exponent of the Crámer-Lundberg process (1),

ψ(θ) = pθ − λ+ λ

∫ ∞
0

e−θyF (dy),

and Φ(q) is the positive root of the Crámer equation ψ(θ) = q.
As shown in [3], V πa can be expressed in terms of W (q) as follows:

V πa(x) = Ex
[∫ σa

0

e−qtdLat

]
=
W (q)(x)

W (q)′(a)
, x ∈ [0, a], (6)

where W (q)′(a) = limx↓aW
(q)′(x) denotes the right limit at a (W (q)′ has at most countably

many discontinuities, at the locations of the atoms of F ). Further, La = Lπa is the local time
type strategy, given explicitly in terms of X by La0 = 0 and

Lat = sup
s≤t

(Xs − a)
+
, t > 0, (7)

with x+ = max{x, 0}. Further, it was shown in Prop. 2 of [16] and [3] that under πa, the
Laplace transform of the ruin time and the expected discounted shortfall at ruin are given by

Ex[e−qσ
a

] = Z(q)(x)− q W
(q)(a)

W (q)′(a)
W (q)(x), (8)

Ex[e−qσ
a

Uaσa ] = F
(q)

(x)− F (q)(a)

W (q)′(a)
W (q)(x), (9)
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where Ua = Uπa and F
(q)

(x) =
∫ x

0
F (q)(y)dy with

F (q)(x) = Z(q)(x)− ψ′(0)W (q)(x).

If the penalty is linear, w(y) = cy, y < 0, −c < 0, we thus arrive at the following result:

Proposition 1. If w(x) = cx, x < 0, then:
a) The penalty function Hπa

w (x), x ∈ [0, a], is given by:

Hπa
w (x) = Fw(x)−W (q)(x)

Fw(a)

W (q)′(a)
, (10)

where Fw(x) =
∫ x

0
Fw(y)dy with

Fw(x) = cF (q)(x). (11)

b) The value function of a barrier strategy is given by:

va(x) = Fw(x) +W (q)(x)Gw(a), x ∈ [0, a], (12)

where

Gw(a) =
1− Fw(a)

W (q)′(a)
. (13)

§3. Verification theorem

To show the optimality of a particular dividend distribution strategy π across all admissible
strategies Π for the dividend problem (4) we are led, by standard Markovian arguments, to
consider the following variational inequalities:

Γf(x)− qf(x) ≤ 0, x ≥ 0, (14)
f ′(x) ≥ 1, x ≥ 0, (15)
f(x) = cx, x < 0, (16)

for functions f : R → R in the domain of the extended generator Γ of the process X which
acts on C1 functions f with compact support as

Γf(x) = pf ′(x) + λ

∫ ∞
0

[f(x− y)− f(x)]F (dy), (17)

where λ is the jump intensity and F the jump-size distribution. The following result, which is
a special case of a general verification theorem proved in [4], implies that any sufficiently reg-
ular solution of the variational inequalities (14)–(16) dominates the value function v∗ given
in (4):

Theorem 2. Suppose f is continuous and piecewise C1 on (0,∞) and extend f to the neg-
ative half-line by setting f(x) = cy for y < 0. If f satisfies (14) and (15), then f ≥ v∗. If
moreover there exists an admissible strategy π ∈ Π such that f = vπ , then π is an optimal
strategy and v∗ = vπ .
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§4. Optimal strategies

If the penalty of the deficit at ruin is severe, it is clear that rather than continue the business
it will be more profitable to liquidate the insurance company, by paying out all the initial
reserves as a lump sum dividend payment, and force ruin immediately thereafter (by paying
out dividends at a rate higher than the rate of premium income p).

Proposition 3 (Liquidation). Suppose Ic(x) ≤ 0 for all x > 0, where

Ic(x) := p− λ/µ+ λ(1− c)
∫ 0

−∞
F (x− u)du− qx, (18)

with F (x) = 1 − F (x) and µ−1 =
∫∞

0
xF (dx) is the mean of F . Then it is optimal to

liquidate the insurance company, for any level of the reserves.

Proof. Noting that the value function v` of the liquidation strategy is given by v`(x) = x for
x ≥ 0 and v`(x) = cx for x < 0 and using the form of Γ given in (17), it is a matter of
straightforward calculation to show that, for x > 0, (Γvl − qvl)(x) is equal to the left-hand
side of (18). The assertion then follows in view of Theorem 2. �
Let us next consider the complementary case that the ratio of premium income and expected
payout per unit of time pµ/λ is sufficiently large compared to the slope c of the penalty
function:

Ic(0) = p− λc/µ > 0⇔ c < pµ/λ. (19)

Define the candidate optimal level a∗ to be the (smallest) point where the functionGw attains
its global maximum, where

Gw(a) =
1− Fw(a)

W (q)′(a)
, (20)

that is,
a∗ = inf{a ≥ 0 : Gw(y) ≤ Gw(a) for all y ≥ 0} (21)

with inf ∅ = ∞. Under condition (19) the level a∗ is finite. From Proposition 1 we see that
the corresponding value function is given by

va∗(x) = vπa∗ (x) =

{
Fw(x) +W (q)(x)Gw(a∗) x ∈ [0, a∗]

x− a∗ + va∗(a
∗) x > a∗

. (22)

Observing that Iw(x)→ −∞ as x tends to infinity, an argument similar to that used to prove
the verification theorem can be employed to show that a∗ is finite. Further, in view of the
form (22) it follows that πa∗ is the optimal strategy among all constant barrier strategies, in
the sense that

vb(x) ≤ va∗(x) for all x ∈ [0, a∗], b ≥ 0.

We have the following sufficient conditions for global optimality of πa∗ :

Theorem 4. Let condition (19) hold. The value function and optimal strategy of (4) are given
by v∗ = va∗ and π∗ = πa∗ if (i)

Γva∗ − qva∗(x) ≤ 0 for all x > a∗ (23)
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or (ii) Gw is monotone decreasing on (a∗,∞), i.e.

Gw(a) ≥ Gw(b), for a∗ < a < b. (24)

Let us sketch the proof of this result (see also [4] for a more general version of this result).
The idea of the proof is to show first that va∗ satisfies the HJB equation (14) – (16) and to
apply next the verification theorem, Theorem 2. For statement (i) we note to that end that

(a) Since {
e−q(t∧T

−
0 )
(
W (q)(Xt∧T−0

)G(a∗) + F
(q)

(Xt∧T−0
)
)
, t ≥ 0

}
is a martingale it holds that Γva∗(x) − qva∗(x) = 0 for x ∈ (0, a∗) (see [4, Lemma
10]).

(b) For x ∈ (0, a∗) it holds that
v′a∗(x) ≥ 1,

which is a consequence the form of va and the facts that Gc(x) ≤ Gc(a
∗) for all

0 < x ≤ a∗ and v′x(x) = 1

(ii) By arguments similar to those employed in the proof of Theorem 2 of Loeffen [14] it can
be shown that

Γva∗ − qva∗(x) ≤ 0 for x > a∗ if v′a(x) ≥ v′b(x) for all x and a, b with a∗ < a < b,

which is equivalent to (24) in view of the form (12) of va∗ . The assertion follows then in view
of (i).

In the next section we will use the condition (24) to explicitly and completely analyse the
case of exponential jumps.

§5. Cramér-Lundberg model with exponential jumps

Suppose X is given by the Cramér-Lundberg model (1) with exponential jump sizes with
mean 1/µ. Let p > λ/µ . Then κ(θ) = pθ − λθ/(µ + θ) and the scale functions W (q) and
Z(q) are given by

W (q)(x) = p−1
(
A+eq

+(q)x −A−eq
−(q)x

)
,

Z(q)(x) = p−1q
(
q+(q)−1A+eq

+(q)x − q−(q)−1A−eq
−(q)x

)
= µ−1

(
q+(q)A−eq

−(q)x − q−(q)A+eq
+(q)x

)
,

where A± = µ+q±(q)
q+(q)−q−(q) with q+(q) = Φ(q) and q−(q) the smallest root of κ(θ) = q:

q±(q) =
q + λ− µ p±

√
(q + λ− µ p)2 + 4pqµ

2p
.
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We recall from [3] that in the absence of the penalty (w(x) = 0), the function G(x)−1 =
W (q)′(x) is unimodular with global minimum at

a∗ =
1

q+(q)− q−(q)

{
log q−(q)2(µ +q−(q))

q+(q)2(µ +q+(q)) if W (q)′′(0) < 0⇔ (q + λ)2 − pλµ < 0

0 if W (q)′′(0) ≥ 0⇔ (q + λ)2 − pλµ ≥ 0

(since W (q)′′(0) ∼ q+(q)2(µ + q+(q)) − q−(q)2(µ + q−(q))/(q+(q)) − q−(q)) = (q +
λ)2 − pλµ and therefore the optimal strategy is always the barrier strategy at level a∗.
We take now the linear penalty function w(x) = cx. From Proposition 3, liquidation is
optimal for any level of reserves, if Iw(0) ≤ 0⇔ c ≥ ρ−1 = pµ/λ.
We will show now that in the opposite case 0 < c < ρ−1, the optimal strategy is a barrier
strategy at some level a∗.
Let us investigate the sign of the function D(x) = −G′(x)W (q)′(x),

D(x) := W (q)′′(x)(1− cF (x)) + cF (q)′(x)W (q)′(x) = W (q)′′(x)

+c
[
W (q)′′(x)(−Z(q)(x) + κ′(0)W (q)(x))) +W (q)′(x)(qW (q)(x)− κ′(0)W (q)′(x))

]
,

which determines the optimal barrier policy.
If a positive root a∗ > 0 of D(x) exists, it must satisfy:

W (q)′′(a∗) + cW (q)′′(a∗)(κ′(0)W (q)(a∗)− Z(q)(a∗))

+ cW (q)′(a∗)(qW (q)(a∗)− κ′(0)W (q)′(a∗)) = 0. (25)

Noting that

W (q)′′(x)W (q)(x)− (W (q)′(x))2 = −A+A−(q+ − q− )2e(q+ +q− )x

W (q)′(x)W (q)(x)−W (q)′′(x)q−1Z(q)(x) = P e(q+ +q− )x,

where

P = A+A−(q+ − q− )2(q+ + q− )/(q+ q− ) = (µ+ q+)(µ+ q−)(κ′(0)/q − 1/µ)

and where we used (q+ + q− )/(q+ q− ) = κ′(0)/q − 1/µ, we see that (25) is equivalent to

cAe(q+(q)+q−(q))a∗ −Beq
+(q)a∗ + Ceq

−(q)a∗ = 0,

where we changed the sign and where

A =
q

µ
(µ+ q+(q))(µ+ q−(q)) > 0,

B = q+(q)2A+ > 0,

C = q−(q)2A− > 0.

We note now that a∗ = 0 iff (q + λ)2 − λµp ≥ cλq ⇔ G′(0) ≤ 0. To verify this note that

Z(q)(0) = 1,W (q)(0) = p−1,W (q)′(0) = p−2(q+λ) and W (q)′′(0) = p−3[(q+λ)2−λµp].
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Thus, G′(0) ≤ 0 is equivalent to cρ(q+ λ)(pµ− (q+ λ)) + (cρ− 1)((q+ λ)2 − λpµ) ≤ 0.
In conclusion, from Theorem 4 it follows that the barrier strategy at level a∗ is globally
optimal if

f(x) := cAeq
+(q)x −Be(q+(q)−q−(q))x + C < 0 for x > a∗. (26)

To see that this is the case note that f(x) ↓ +C and ↓ −∞ as x→ ±∞ and that f attains its
maximum at unique x∗ ∈ R, with f ′(x) > 0 and f ′(x) < 0 for x < x∗ and x > x∗. Since
f(x∗) > C, we deduce that x∗ < a∗, and (26) holds true.
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A BIVARIATE STOCHASTIC GAMMA
DIFFUSION MODEL: STATISTICAL

INFERENCE

R. Gutiérrez, R. Gutiérrez-Sánchez, A. Nafidi

Abstract. In the present study, we propose a bivariate stochastic Gamma diffusion model
as the solution to Ito’s stochastic differential equations (SDE) that are similar as regards
the drift and diffusion coefficients to those considered in the univariate Gamma diffu-
sion model (see [11]). Firstly, we determine the main probabilistic characteristics of this
model, such as the solution to the SDE, the bivariate transition density, the bidimensional
moment functions, the conditioned trend functions and in particular, the correlation func-
tion between each of the components of the model. Then, based on some results of matrix
differential calculus (see [13]), the statistical inference in the model is drawn, estimating
the bidimensional drift and the diffusion matrix by the maximum likelihood method using
discrete sampling. Finally, we obtain the properties of the resulting likelihood estimators.

Keywords: Bivariate stochastic Gamma diffusion process, Likelihood estimation using
discrete sampling, Matrix differential calculus, Normal and Wishart random matrices.

AMS classification: 60J60, 62M05.

§1. Introduction

Stochastic diffusion processes are of great interest to investigators in many fields, such as
biology, physics, demography, economics and environmental sciences. One of the questions
that has aroused greatest interest about these stochastic models (especially in the one dimen-
sional case) and one that has been the object of numerous studies in recent years, is that of
statistical estimation and inference. Various methods addressing the question of statistical
inference have been developed recently, and several papers published on the topic, including
those by Biby and Sorensen [4] and Ait-Sahalia [1], without overlooking the wide-ranging
review of results presented by Prakasa Rao [14], who provides a lengthy list of references on
the subject.

As regards the statistical inference in multivariate diffusion processes, some special cases
have been studied, such as the multivariate lognormal and Gompertz diffusion processes. An
extensive study of the probabilistic aspects and of the corresponding statistical inference (es-
timation and test of hypotheses) can be seen, for example, for the first process in [6], [7] and
[8] and for the second process in [9] and [5].
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The main aim of this study is to propose and examine a “bivariate Gamma diffusion model”.
To do so, we follow the methodology previously employed to extend one-dimensional dif-
fusion processes to the multivariate case. For example, in [6] and [7] this methodology is
applied to the case of a multivariate lognormal diffusion model, and in [9] for the case of
the bivariate Gompertz diffusion model. Specifically, in the present study, we extend the uni-
variate stochastic Gamma diffusion process studied in [10] and [11] to a bivariate Gamma
process. The latter process is constituted of two components, which are Gamma univariate
processes and which are interrelated in the sense that they vary in a correlated way in their
stochastic evolution in time. Having established this model, we then study its probabilistic
characteristics and its associated basic statistical inference.

This paper is organized as follows. In the second section, we determine the main probabilistic
characteristics of the model, such as the solution to the SDE, the bivariate transition density,
the bidimensional moment functions, the conditioned trend functions and in particular, the
correlation function between each of the components of the model. In the third section, the
statistical inference in the model is achieved, and the bidimensional drift and the diffusion
matrix are estimated by the maximum likelihood method based on discrete sampling. In the
last section, based on some results of the matrix normal distribution, we obtain the properties
of the resulting likelihood estimators.

§2. Bivariate SGDP and its characteristics

2.1. The model and its analytical expression
Let {x(t) = (x1(t), x2(t))′; t ∈ [t0, T ]; t0 > 0} be a bivariate stochastic process that satisfies
the following Ito’s SDE:

dx(t) = a(t, x(t))dt+ b(t, x(t))dw(t) ; x(t0) = xt0 (1)

with the vector a(t, x) and the matrix b(t, x) being given as follows

a(t, x) = D(x)
(a
t
− β

)
; b(t, x) = D(x)B1/2

where {w(t); t ∈ [t0, T ]} is a 2-dimensional standard Wiener process, xt0 is a fixed vector
belonging to (0,∞)2, x = (x1, x2)′ ∈ (0,∞)2, a = (a1, a2)′ and β = (β1, β2)′, in which
D(x) is a diagonal matrix where the elements of the principal diagonal are x1, x2, and where
B = (bij)i,j is a 2×2 symmetric non negative definite matrix. The parameters a1, a2, β1, β2

and bi,j for 1 ≤ i, j ≤ 2 are real and will be the object of subsequent statistical estimation.

The vector a(t, x) and the matrix b(t, x) specified in Eq.(2) satisfy the Lipschitz restriction
on growth conditions for the existence and unicity of the solution to the SDEs in theorem
(6.2.2 page 105) of Arnold [3]. Thus, let:

K1 = max
1≤i≤2

[
max
t∈[t0,T ]

(ai
t
− βi

)2
]

and K2 = max
1≤i≤2

(bii).
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Then, on the one hand, ∃K = K
1/2
1 +K

1/2
2 , ∀t ∈ [t0, T ], such that ∀x, y ∈ (0,∞)2 we have

‖a(t, x)− a(y, t)‖e + ‖b(t, x)− b(t, y)‖tr ≤ K‖x− y‖e
‖a(t, x)‖2e + ‖b(t, x)‖2tr ≤ K(1 + ‖x‖2e)

where ‖ ‖e denotes the euclidean norm in R2 and ‖ ‖tr denotes the trace norm inM2×2

(‖A‖tr = [tr(AA′)]
1/2).

Then, under these conditions equation Eq.(1) has on [t0, T ] a unique R2-valued solution
{x(t); t ∈ [t0, T ]}, continuous with probability 1, that satisfies the initial condition x(t0) =
xt0 .

On the other hand, as the vector a(t, x) is a continuous function with respect to t, then by
theorem (9.3.1 page 152) of Arnold [3], the solution {x(t); t ∈ [t0, T ]} is a 2-dimensional
diffusion process on [t0, T ] with drift vector a(t, x) and with a diffusion matrix given by

B(x) = (D(x)B1/2)(D(x)B1/2)′ = D(x)BD(x) = (bijxixj)1≤i,j≤2 .

The analytical expression of process {x(t), t ∈ [t0, T ]} can be obtained by applying
Ito’s formula (see, for example [3]) to a transform of the type y(t) = log(x(t)) =
(log(x1(t)), log(x2(t)))′, and then we obtain

dy(t) =

[
a

t
−
(
β +

b

2

)]
dt+B1/2dw(t) , y(t0) = log(xt0)

where b = (b11, b22)′, and then by integration we have

y(t) = y(t0) + log

(
t

t0

)
a−

(
β +

b

2

)
(t− t0) +B1/2(wt − wt0)

from which we can deduce that the solution to the original SDE Eq. (1) has the following
form

x(t) = exp

(
log(xt0) + log

(
t

t0

)
a−

(
β +

b

2

)
(t− t0) +B1/2(wt − wt0)

)
.

2.2. The ptdf and moments of the model
Taking into account that the random vector (w(t)−w(s)) has a bivariate normal distribution
N2 (0, (t− s)I2) (where I2 denotes the 2 × 2 identity matrix), it can be deduced that x(t) |
x(s) = xs has a bivariate lognormal distribution Λ2 (µ(s, t, xs), (t− s)B) where µ(s, t, xs)
is the following 2-dimensional vector
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µ(s, t, x) = log(x) + a log

(
t

s

)
−
(
β +

b

2

)
(t− s) (2)

and therefore the transition density function of the process f(y, t | x, s) (for y = (y1, y2)′

and x = (x1, x2)′) has the form

f(y, t | x, s) = [2π]−1(t− s)−1 | B |− 1
2 (y1y2)

−1
exp

{
−Q

2

}
(3)

where | B | is the determinant of the matrix B, and Q is a quadratic form that is given by

Q = (log(y)− µ(s, t, x))
′
[(t− s)B]−1 (log(y)− µ(s, t, x))

where µ(s, t, x) is as given in Eq. (2).

The marginal conditional and non-conditional moments of order r (r ∈ N∗) can be obtained
from the function generating the random vector Z(t) = log [x(t) | x(s) = xs], which follows
the law N2 (µ(s, t, xs); (t− s)B), and is expressed as follows, for λ ∈ R2

E(eλ
′Z(t)) = exp

{
λ′µ(s, t, xs) +

t− s
2

λ′Bλ

}
.

For particular values of the vector λ = (0, r)′ or λ = (r, 0)′ ( r ∈ N∗ ), we obtain, for
example, the marginal conditional trend functions of order r of the process and which have
the following form, for i = 1, 2

E (xri (t) | xi(s) = xs,i) = exp

(
rµi(s, t, xs) +

r2(t− s)
2

bii

)
(4)

and for λ = (r1, r2)′ (r1, r2 ∈ N∗), we obtain the joint conditional trend of the process

E (xr11 (t)xr22 (t) | x(s) = xs) = exp (r1µ1(s, t, xs) + r2µ2(s, t, xs) (5)

+
(t− s)

2
(r2

1b11 + r2
2b22 + 2r1r2b12)

)
.

Using Eq. (4) in the particular case r = 1, we obtain the marginal conditional trend function
of the process

E (xi(t) | xi(s) = xs,i) = exp

(
µi(s, t, xs) +

1

2
(t− s)bii

)
. (6)

By assuming the initial condition P(x(t0) = xt0) = 1, and using Eq. (6) then the non
conditional marginal trend functions are
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E (xi(t)) = exp

(
µi(t0, t, xt0) +

1

2
(t− t0)bii

)
=

xt0,ie
βit0

tai0

taie−βit.

From Eq. (4) and Eq. (6), we can deduce that the marginal variance function of the process,
for i = 1, 2 is:

Var (xi(t)) = exp (2µi(t0, t;xt0) + (t− s)bii)
(
e(t−s)bii − 1

)
and the covariance function at the same instant is

Cov (x1(t), x2(t)) = exp

(
µ1(t0, t;xt0) + µ2(t0, t;xt0) +

1

2
(t− s)(b11 + b22)

)
(
e(t−s)b12 − 1

)
.

The correlation function of the process at the same instant is given by

%(x1(t), x2(t)) =

(
e(t−t0)b12 − 1

)(
e(t−t0)b11 − 1

)1/2 (
e(t−t0)b22 − 1

)1/2 .
§3. Statistical inference on the model

3.1. Parameter likelihood estimation
Let us now obtain the maximum likelihood estimators of the parameters corresponding to the
model β, a and B, using discrete sampling. To construct the likelihood function associated
with the process, the following discrete sampling is used: {x(t1) = xt1 ;x(t2) = xt2 ; . . . ,
x(tn) = xtn} at the instants t1, t2; . . . ; tn, in which each x(tα) represents the bidimen-
sional vector x(tα) = (x1(tα), x2(tα))′, which for the sake of simplicity we shall denote
as xtα = xα. We also considered the initial condition P[x(t1) = x1] = 1; by applying
the Markov property and making use of Eq. (3), the likelihood function associated with the
sample considered, of size (n− 1) is given by

L(x1, . . . , xn) =
n∏
α=2

f(xα, tα | xα−1, tα−1)

= (2π)−
k(n−1)

2 | B |−
(n−1)

2

n∏
α=2

(tα − tα−1)

(
k∏
i=1

x−1
α,i

)

exp

{
−1

2

[
log(xα/xα−1)− a log(tα/tα−1) +

(
β +

b

2

)
(tα − tα−1)

]′
(tα − tα−1)−1B−1

[
log(xα/xα−1)− a log(tα/tα−1) +

(
β +

b

2

)
(tα − tα−1)

]}
.
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By carrying out the following change of variable: v1 = x1 and vα = (tα − tα−1)−1/2

(log(xα)− log(xα−1)) for α = 2, . . . , n, then, in terms of vα, the likelihood function is
given by

Lv1,...,vn(Γ;B) = (2π)−(n−1)k/2 | B |−
(n−1)

2 (7)

exp

{
−1

2

n∑
α=2

(vα − Γuα)
′
B−1 (vα − Γuα)

}

where, uα = (tα − tα−1)−1/2 (log(tα/tα−1), tα − tα−1)
′, for α = 2, . . . , n, and Γ =(

a,−
(
β + b

2

))
is (2× 2)- matrix.

Let V = (v2, . . . , vn) and U = (u2, . . . , un). The likelihood function can then be written as
follows:

LV = (2π)−(n−1) | B |−
(n−1)

2 exp

{
−1

2
tr
[
B−1 (V − ΓU) (V − ΓU)

′]}
.

By taking the logarithm, we obtain

log(LV) = −(n− 1)
k

2
log(2π)− n− 1

2
log | B | −1

2
tr
[
B−1 (V − ΓU) (V − ΓU)

′]
.

Then, calculating the differential of this function, and making use of the following results
of matrix differential calculus (see, for example [13]): d [tr(B)] = tr (dB), d [log | B |] =
tr
(
B−1dB

)
and d

[
B−1

]
= B−1(dB)B−1, we have

d log(L) = −n− 1

2
tr
(
B−1dB

)
− 1

2
tr
[
−B−1(dB)B−1 (V − ΓU) (V − ΓU)

′]
−1

2
tr
[
B−1 (−dΓ) U (V − ΓU)

′
+B−1 (V − ΓU) U′ (−dΓ)

′]
.

By applying trace properties, the above differential can be written as follows:

d log(L) =
1

2
tr
{[
B−1 (V − ΓU) (V − ΓU)

′ − (n− 1)I2
]
B−1dB

}
+tr

{
U (V − ΓU)

′
B−1dΓ

}
.

From the relations tr(AB) = V ec′(A′)V ec(B) and dV ec(A) = V ec(dA), where V ec
denotes the matrix vectorization (given an n × m matrix X , the V ec(X) is the vector of
dimension nm× 1 that stacks the columns of X), we obtain

d log(L) =
1

2
V ec′

{[
B−1 (V − ΓU) (V − ΓU)

′ − (n− 1)I2
]
B−1

}
dVec(B)

+V ec′
{
B−1 (V − ΓU) U′

}
dVec(Γ).
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Then, making this differential equal to zero, with respect to the estimators of B and γ, we
obtain

B−1 (V − ΓU) U′ = 0 (8)[
B−1 (V − ΓU) (V − ΓU)

′ − (n− 1)I2
]
B−1 = 0. (9)

From Eq. (8) and Eq. (9), we obtain the maximum likelihood estimators of the matrices Γ
and B, which are given by

Γ̂ = VU′ (UU′)
−1 (10)

(n− 1)B̂ = VHUV′ (11)

where HU = In−1 −U′ (UU′)
−1

U is an idempotent symmetric matrix.

3.2. Likelihood estimator distribution
In order to study the estimator distributions obtained by the expressions Eq. (10) and Eq. (11),
it is necessary to examine some results of the matrix normal distribution (see, for example
[13]), which are presented as follows:

Definition 1. : Let Xm×n be a random matrix and let Mm×n, Cm×m and Dn×n be constant
matrices (C andD are non negative definite matrices). We then say that the random matrixX
has a normal distribution and it is denoted by Nm×n (M ;C ⊗D) (⊗ denotes the Kronecker
product of matrices: C ⊗D = [cijD] ) if the density function of X is

f(x) = (2π)−
mn
2 | C |−m2 | D |−n2 exp

{
−1

2
tr
[
C−1 (M − x)D−1 (M − x)

′]}
.

In the sense of the matrix vectorization, we have the following equivalence:

X ∼ Nm×n (M ;C ⊗D) if only if vec(X) ∼ Nmn (vec(M ′);C ⊗D) .

Corollary 1. : Let X ∼ Nm×n (M ;C ⊗D) and let Np×m be a constant matrix. We then
have

X ′ ∼ Nn×m (M ′;D ⊗ C) .

NX ∼ Nn×p (NM ;NCN ′ ⊗D) .

3.2.1. Distribution of Γ̂

The expression in Eq.(7) can be rewritten as follows

LV = (2π)−(n−1) | B |−
n−1
2 | In−1 |−1 exp

{
−1

2
tr
[
B−1 (V − ΓU) I−1

n−1 (V − ΓU)
′]}

.

From which we deduce the matrix

V ∼ N2×(n−1) (ΓU;B ⊗ In−1) .
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Then, by using Corollary 1, we have

VU′ (UU′)
−1 ∼ N2×2

(
ΓUU′ (UU′)

−1
;B ⊗ (UU′)

−1
UIn−1U

′ (UU′)
−1
)
.

Thus, we obtain that
Γ̂ ∼ N2×2

(
Γ, B ⊗ (UU′)

−1
)
.

3.2.2. Distribution of B̂

To obtain the distribution of the matrix B̂, we make use of the following result (see for
example [15], corollary 3.2):

Corollary 2. If Y ∼ Nn×p [µ,A⊗ Σ], then Y ′WY has a non central Wishart distribution
with m degrees of freedom, covariance Σ and noncentral matrix λ noted byWp(m,Σ, λ), if
and only if:

AWAWA = AWA, tr(AW ) = m

λ = µ′Wµ = µ′WAWµ = µ′WAWAWµ.

Using the latter result in the particular case: Y = V ′, A = In−1, Σ = B, W = HU and
µ = U ′Γ′, and so we have: tr(AW ) = m = n− 3 and λ = 0, and V HUV

′ ∼ W2(n− 3, B)
and therefore by symmetric properties of the Wishart distribution, we deduce that

(n− 1)B̂ ∼ W2(n− 3, B).

3.2.3. Independence of likelihood estimators

To show that Γ̂ and B̂ are independently distributed, we make use of the following indepen-
dence result between linear and quadratic forms (see for example [12] corollary 6):

Corollary 3. Let Y ∼ Nn×p [µ,A⊗ Σ], Then, the necessary and sufficient conditions for the
independence of YWY ′+ 1

2 (LY ′ + Y L′ + C) and YM ′ areAWM ′ = 0 and LWM ′ = 0.

By applying this result to the particular case Y = V , W = HU, A = B, Σ = In−1, L = 0,
C = 0 and M ′ = U′ (UU′)

−1, the necessary and sufficient conditions for independence are
satisfied and we have established that Γ̂ and B̂ are independently distributed.

3.3. Sufficiency and completeness

We have (V − ΓU) (V − ΓU)
′

=
(

[V − Γ̂U] + [Γ̂− Γ]U
)(

[V − Γ̂U] + [Γ̂− Γ]U
)′

.
Then, by developing and using Eq.(11), we obtain:

(V − ΓU) (V − ΓU)
′

=
(
V − Γ̂U

)(
V − Γ̂U

)′
+
(

Γ̂− Γ
)

UU′
(

Γ̂− Γ
)′

= (n− 1)B̂ +
(

Γ̂− Γ
)

UU′
(

Γ̂− Γ
)′
.
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The latter equation can be written as:

LV (Γ, B) = (2π)−(n−1) | B |−
n−1
2

exp

{
−1

2
tr

[
B−1

(
(n− 1)B̂ +

(
Γ̂− Γ

)
UU′

(
Γ̂− Γ

)′)]}
which means that

(
Γ̂, B̂

)
is conjointly sufficient for (Γ, B)

The completeness of
(

Γ̂, B̂
)

follows, by reasoning similar to that employed for the maxi-
mum likelihood estimators of the parameters of the multivariate normal distribution (see, for
example, Anderson [2]).

Finally, as the estimators Γ̂ and
n− 1

n− 3
B̂ are unbiased for Γ and B respectively, then we

deduce that they are the UMVUE.
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PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS IN DISCRETE

DISTRIBUTIONS USING δ-RECORDS

Lina Maldonado

Abstract. We present a selection of results on the properties of Maximum likelihood
estimators (MLE) developed in [7] for some discrete distributions (Geometric, Zeta and
Poisson distribution) from the information provided by δ-records (cf. [5]). Maximization
in the estimation is performed by numerical methods and the properties of the estimators
have been studied using simulations. We consider the properties of the estimators as bias
and mean squared error. In this paper we have shown that the incorporation of information
from δ-records provides better estimates that when we use only available information
from usual records or weak-records. Also, we observe that in the case of the light-tailed
discrete distributions, a smaller |δ| is needed for better quality in the MLE than in other
distributions.

Keywords: Maximum Likelihood Estimation, Weak Record, δ-records, Mean squared
error, Geometric distribution, Zeta distribution, Poisson Distribution, Bias.

AMS classification: 60G70, 62F12

§1. Introduction

In the literature there have been many efforts to study records, increased in recent years. The
motivations of the mathematicians in this study have been, among others, the large amount of
data on them in various fields such as sports, hydrology, meteorology and industry -to name a
few-, and the possibility of creating with these data, models that can predict the future record
values.
Suppose observations come sequentially X1, X2, . . .. As we observe then, we can also keep
track on the maximum values reached by these observations, M1,M2, . . .; several questions
can be asked about it, for example, if we can calculate how often there is a change in this
maximum. A change in the maximum value means that a value “record” has been observed.
Another question which may be raised whether these values of records are given by some
model. To answer these questions and some others, we need to see these values of records
under terms of stochastic process.The first time that a statistical study introduced the notion of
record was in 1952, with a basic model of records with observations i.i.d. made by Chandler
[2].

Definition 1. Let X1, X2, . . . , Xk a sequence of i.i.d. random variables with common cu-
mulative distribution cdf F . An observation Xj will be called an upper record (or simply a
record), if it value exceeds all previous observations. Thus, Xj is a record if Xj > Xi for
every i < j.[1]
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Weak records are obtained by replaced > by ≥ in Def.1. This concept was introduced by
[9] in the context of integer valued random variables, where the repetition of a record is also
counted as record. More result on the behavior of records and weak records can be consulted
in [1].
One concept derived from the definition of records is δ-records. Let δ ∈ <, an observation
Xj is called a δ-record if Xj > Xi + δ, for i < j, that is, if it is greater than the previous
maximun plus a (negative or positive) fixed quantity. For δ < 0, every record is a δ-record,
while for δ > 0 this is not the case. In [4][6], the authors introduced a law of large numbers
for the counting proccess of δ-records, in discrete and continuous distributions and a cen-
tral limit theorem in discrete distributions. They obtained that the number of δ-records, with
δ < 0, grows at the same speed as the number of records (that is, as the logarithm of the
number of observations) in heavy tailed distributions, proportional to the number of records
in distributions with exponential tails and, faster in lighter tailed distributions. In [7] also
studied, for δ < 0, how to calculate the likelihood of a sample, consisting of n records and
associated δ-records -both for continuous and discrete distributions-, and using that expres-
sion to calculate the MLE of parameters of several distributions (in particular, exponential
distribution in continuous case and geometric distribution in discrete case).
The pioneers in considering the MLE of a parameter of a distribution from records were
Samaniego and Whitaker [8], considering the parameter estimate σ of distribution Exp(σ)
using dataR

′

0,K0, R
′

1,K1, . . ., beingR
′

0, R
′

1, . . . the successive minima, andK0,K1, . . . the
number of trials needed to obtain new records. They also studied the nonparametric version of
this problem. Some authors have studied the maximum likelihood estimation of parameters of
discrete distributions, e.g. Doosparast and Ahmadi consider the estimation of the parameter
θ of a geometric distribution based on record values, via MLE [3].
In the present study, we present a selection of results of the properties of Maximum likelihood
estimators MLE developed in [7] for some discrete distributions (Geometric, Zeta and Poisson
distribution) from the information provided by δ-records. The paper is organized as follows:
in the next section, we introduce a short description of how δ-record statistics can be used
to estimate the parameters of the parent distribution F , performed in [7]. In section 3, we
compute the MLE of the parameters in some distributions. In section 4, we study the statistical
properties of the MLE obtained in section 3.

§2. Pre-Implementation Results

In the rest of the paper δ will be a negative integer. The results of this section are contained
in [7]. We consider nonnegative, integer-valued i.i.d. random variables Xn, n ≥ 1 with
common distribution F , such that P [Xn = k] = pk > 0 for k ∈ Z+ and n ≥ 1, with pm = 0
if m ≤ −1. The hazard rate rk is defined by,

rk = P [Xi = k|Xi ≥ k] =
P [Xi = k]

P [Xi ≥ k]

The sample is obtained from a series of observations of nonnegative, i.i.d. random variables.
Instead of collecting only records values, we have δ-records values (when a record value is
observed, we also collect the observations at a distance less than |δ| of record Ri until the
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next record Ri+1 appear), and so until there is an observation higher than a predetermined
amount n. Is important remark that, the δ-records associated to a record need not be ordered.

We compute the number of times that the integer j is equal to the previous maximum - k,
with j + k ≤ n, denoted by ξkj , with 0 ≤ k ≤ |δ| and 0 ≤ j ≤ n− k.

ξkj =
∑

m:Mm≤n

1{Xm=j,Mm=j+k},

where 1{·} is the indicator function.

From this, the likelihood of the sample is given by,

P
{
ξ0
0 = i00, . . . , ξ

0
n = i0n, ξ

1
0 = i10, . . . , ξ

1
n−1 = i1n−1, . . . , ξ

k
0 = ik0 , . . . , ξ

k
n−k = ikn−k

}
∝

n∏
j=0

r
skj
j (1− rj)1+

∑k
l=1 s

k−l
j+l (1)

with k = −δ, rj is the hazard rate and sij =
∑i
m=0 i

m
j the number of times j has been a

δ-record at a distance ≤ i of the previous maximum.

§3. Statistical inference on the model

3.1. Maximum likelihood estimators of parameters of discrete distribu-
tions

From the previous results on the likelihood of the sample (1), we are going to calculate
maximum likelihood estimates of three distributions (Geometric, similar to the Poisson and
similar to Zeta). These distributions are studied for their characteristics: a similar to the
Poisson distribution is a light-tailed distribution with rk → 1, the geometric distribution with
rk = r (r constant) and the similar to Zeta distribution, is a heavy-tail distribution with
rk → 0.

3.1.1. MLE p̂ in a geometric distribution

Expression (1) can be used to find the MLE p̂ of the parameter of the geometric distribution,
Geom(p). Since rk = p, with k = 0, 1, . . ., we have

L(p) ∝ p
∑n
j=0 s

k
j (1− p)(n+1)+

∑n
j=0

∑k
l=1 s

k−l
j+l (2)

From this, the log-likelihood function of equation (2) becomes

n∑
j=0

skj log (p) +

(n+ 1) +
n∑
j=0

k∑
l=1

sk−lj+l

 log (1− p)
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and finally, we have that MLE of p is given by

p̂ =

∑n
j=0 s

k
j

(n+ 1) +
∑n
j=0

∑k
l=1 s

k−l
j+l

(3)

3.1.2. MLE λ̂ in a similar to poisson distribution

Similarly to the previous subsection, we take the equation (1) for maximum likelihood es-
timation of a discrete variable λ (similar to the Poisson) with a failure rate rk = 1 − λ

k+a ,
with k = 0, 1, . . . and a known. Note that rk in the Poisson distribution has rk → 1, so this
distribution is, in fact, very close to Poisson. Performing a calculation similar to equation (2),
we obtain,

log(L) =
n∑
j=0

skj log

(
1− λ

j + a

)
+

n∑
j=0

(
1 +

k∑
l=1

sk−lj+l

)
log

(
λ

j + a

)

Thus, with aj = skj and bj =
(

1 +
∑k
l=1 s

k−l
j+l

)
, the value λ that maximizes the likelihood is

given by
n∑
j=0

aj
j+a(

1− λ
j+a

) +

∑n
j=0 bj

λ
= 0 (4)

Equation (4), can be solved numerical calculation, to yield the maximum likelihood estima-
tor of the parameter λ. It is important to note that, in similar studies using record values
maximization is done using numerical analysis.

3.1.3. MLE â in a similar to zeta distribution

Now, to calculate the MLE for a distribution similar to Zeta distribution. TheZeta(a) is given
by pk = (k+1)−a

ζ(a) for k ∈ Z+, a > 1 with ζ(a) =
∑∞
j=0(j + 1)−a and rk = (k+1)−a∑∞

j=k(j+1)−a .
We consider a distribution similar to zeta with a failure rate rk = a

j+b , j = 0, 1, . . ., with
a > 1 unknow and b known. Then, considering the likelihood function (1) we have

L(a) ∝
n∏
j=0

(
a

j + b

)skj (
1−

(
a

j + b

))1+
∑k
l=1 s

k−l
j+l

then,

log(L) =
n∑
j=0

aj ln (a) +
n∑
j=0

bj ln

(
1− a

j + b

)
(5)

where aj = skj and bj = 1 +
∑k
l=1 s

k−l
j+l . As in 3.1.2, the equation log(L) = 0 can be solved

numerically.
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§4. Results and Conclusions

4.1. Properties of likelihood estimators

The properties of the MLE are studied via computer simulations, in the three distributions
described above, and worked with a number of 10.000 replicates varying the maximum n
which fix the stopping value for the simulation run. We start with the results of the estimation
of the similar to Poisson distribution parameter (λ = 3). In Fig.1 we present the boxplots
corresponding to the estimates using information obtained from maximum - δ, with |δ| =
0 . . . 5, where |δ| = 0 correspond to records values and |δ| = 1 to weak records, and n = 12.
In the graph, we observe much greater variability in the boxplot corresponding to the estimate
made only with records and weak records than in the case |δ| > 1, that is, the estimations are
better when |δ| grows. Together with the decrease in variability, more simetric is observed in
the case |δ| = 5 than in the case |δ| = 0. The decrease of variability for |δ| = 5 is almost
70% with respect to use of records.

Figure 1: Boxplot-10000 simulations of λ = 3 of a similar to Poisson Distribution, with max=10

In Fig.2, the properties of the MLE can be evaluated by studying of the values of the estima-
tions and how acumulate around the real value of λ = 3.
Studying the Normal QQ-Plot, these observations are not sufficiently close to the line and
therefore, we can not establish that the MLE has a normal distribution (looks heavier tails
than normal), see Fig.3. Moreover, this is confirmed by K-S test. It is worth mentioning here
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Figure 2: Histograms - 10000 simulations of λ = 3 of a similar to Poisson Distribution, with max=10
(δ = 0 and δ = 5, respectively)

that, in other distributions, the same non-normal behavior was observed for the estimators.

Figure 3: QQplot-10000 simulations of λ = 3 of a similar to Poisson Distribution, with max=10
(δ = 0 and δ = 5, respectively)

Now, in Table 1, we can see the MSE and bias of parameter, showing a significant drop
in the MSE by incorporating the information from δ-records. Also, we can say that the
poisson distribution achieves the biggest change in the order of the MSE when comparing the
estimates obtained by the records values against the MSE with information of δ = −5 of all
three distributions studied. This order of variation is about MSE(δ=0)

MSE(δ=−5) = 238.92 in the case
of simulating until maximum 10. In the case of a maximum equal to 12 this order is doubled
Next, we present the results of the estimation of the geometric distribution with parameter
p = 0.5, simulated up to a maximum of 20 (see Fig.4). As in the previous case, the graph
shows greater variability in the boxplot corresponding to the estimate made only with records
values. In this case, there is a decrease of MSE around 67% (the variation order for maximum
until 10 is MSE(δ=0)

MSE(δ=−5) = 7.05, forMax = 15 this rate is doubled andMax = 20 is tripled).
Also, as we see in Table 2, the bias reduction was around 68 % with respect to the estimation
based on record values only.
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Simulations Maximum Measures δ-Records
0 -5

10000
10 MSE 0,48296 0,00202

Bias -0,10480 -0,00313

12 MSE 0,47125 0,00093
Bias -0,13403 -0,00183

Table 1: MSE and Bias of λ = 3 of a similar to Poisson Distribution

Figure 4: Boxplot - p = 0.5 of a Geometric Distribution, with max=20

Simulations Maximum Measures δ-Records
0 -5

10000
10 MSE 0,01260 0,00178

Bias -0,02293 -0,01050

20 MSE 0,00636 0,00033
Bias -0,01098 -0,00344

Table 2: MSE and Bias of p = 0.5 of a Geometric Distribution

In the zeta distribution, the estimates made by incorporating the information from δ-records
(especially in the case of δ = −5), produced better estimates as in previous distributions;
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however, the differences between them are not so marked. In this case, there is the presence
of many outliers in the estimates for the different δ-records, as seen in Fig.5. The MLE with
δ = −5 have high MSE (unlike previous distributions) and the negative bias is also high.
We consider now the boxplots in the estimates of the parameter a = 4 of zeta distribution.
As we see, there is a substantial improvement of the estimates (see Fig. 5). This is confirmed
in Table 3, where we see that the variation rate is MSE(δ=0)

MSE(δ=−5) = 6.74.

Figure 5: Boxplots - a = 4 of a similar to Zeta Distribution, with max=20

Simulations Maximum Measures δ-Records
0 -5

10000
10 MSE 0,59950 0,09513

Bias -0,28096 -0,07759

20 MSE 0,50051 0,07416
Bias -0,25027 -0,06996

Table 3: MSE and Bias of a = 4 of a similar to Zeta Distribution

4.2. Conclusions
In this paper, we have shown that the incorporation of information from δ-records provides
better estimates than when we use only available information from usual records or weak-
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records. We show that while |δ| grows, the estimates improve. Also, we noted that for light
tailed distributions, a delta smaller is required to obtain good results. In all cases, the dis-
tribution of the MLE using information provided by δ-records does not appear to be normal.
Finally, it is remarkable that the maximum likelihood estimates can be difficult to calculate
explicity, so it is necessary to use numerical methods for maximization.

§5. Future Work

As future work we consider the likelihood function by fixing the number of records in the
sample and propose confidence intervals for the Maximum Likelihood Estimators of the pa-
rameters of the distributions. Other proposals, such as the estimation of the hazard rate using
non-parametric estimation or the use of arguments similar to those developed in this work,
for F continuous, can also be considered.
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RE-IMPLEMENTING NSGA-II AND
SPEA2 USING PARETO BASED

OPERATORS

P.M. Mateo, I. Alberto

Abstract. In [2, 3] a mutation and a crossover operators, both based on Pareto rank-
ing, were presented. Individually, they showed very good performance when compared
with other usual operators. In this work we re-implement two well-known Evolutionary
Algorithms: NSGA-II and SPEA2, using our operators and three different Differential
Evolution variation operators. Then, the results obtained with the original versions of the
algorithms and those using Differential Evolution are compared with those reached when
introducing our operators in the algorithms. This comparison allows us to show that our
operators behave better, in general, than the others.

Keywords: Multiobjective Decision Making, Metaheuristics, Evolutionary Algorithms

AMS classification: 90C29, 90C59, 68T20

§1. Introduction

Evolutionary Algorithms, EAs, can be considered the most adequate methods for solving
complex Multiobjective Optimisation Problems (MOOPs). It was in [14], the PhD of the
author, where the Vector Evaluated Genetic Algorithm (VEGA) was presented. It constituted
the first actual implementation of what has been called a Multiobjective Evolutionary Algo-
rithm (MOEA). Since then, several different MOEAs have appeared. An extensive review on
this matter can be obtained, for instance, from [5] and [6].
NSGA-II by [7] and SPEA2 by [18] are two of the most competitive MOEAs available in
the literature and they are often used as a reference to determine the performance of new
approaches. Differential Evolution, DE, proposed by [15], is a relatively new heuristic tech-
nique initially designed for optimizing single-objective continuous problems. However, DE
has also been extended to the multiobjective case as for example in [1, 13, 16, 12].
In this work we present a re-implementation of the algorithms NSGA-II and SPEA2 using
the operators presented in [2, 3], as well as three different DE variation operators. The results
obtained with the original versions and those using DE are compared with the results reached
with our operators. This comparison allows us to show that our operators behave better, in
general, that the other ones in the proposed test problems.

§2. Multiobjective Optimisation and Evolutionary Algorithms

The aim of Multiobjective Optimisation is to optimise a set of objective functions which, in
general, may be of a conflicting nature. Hence, the term “optimise” means to find a solution
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satisfying the constraints, which would give reasonable values of all objective functions to
the decision maker. Formally, Multiobjective Optimisation Problems can be defined as:

min ~f(~x) = (f1(~x), . . . , fm(~x) s.t. ~x = (x1, . . . , xn) ∈ D ⊂ Rn

Contrary to single objective optimisation, in multiobjective optimisation it is usually impos-
sible to find one optimal solution. Instead, algorithms for optimising multiobjective problems
try to find a family of points known as the Pareto optimal set. These points verify that there
is no different feasible solution which strictly improves one component of the objective func-
tion vector without worsening at least one of the remaining ones. The two next definitions
describe mathematically these ideas.
Definition 1. If given a solution ~y, there exists another solution ~x such that ∀j = 1, . . . ,m
fj(~x) ≤ fj(~y) and ∃j ∈ {1, . . . ,m} such that fj(~x) < fj(~y), then we will say that solution
~x dominates solution ~y (denoted by ~x ≺ ~y).
Definition 2. A solution ~x ∈ D is said to be Pareto optimal or efficient if and only if @~y ∈ D
such that ~y ≺ ~x. The set of Pareto optimal solutions ~x ∈ D is called Pareto optimal set and
it will be denoted with P true. The image of P true in the objective function space is called
Pareto front and it will be denoted with PF true.
A clear description of the Strength Pareto Evolutionary Algorithm, SPEA2, and the Non-
dominated Sorting Genetic Algorithm, NSGA-II, (Evolutions of the original versions SPEA
and NSGA, respectively), can be found, for instance, in [5]. They propose techniques for ap-
proximating the Pareto-optimal set for MOOP’s and they have shown very good performance
in comparison to other MOEAs. For a detailed description of both algorithms the readers are
referred to [18] and [7].

§3. Operators based on Pareto rankings

In the experiments carried out we compare different versions of the algorithms mentioned
above. As it will be explained later in Section 4, in those algorithms we have substituted the
original mutation and crossover operators by the ones proposed in [2, 3], respectively. Both
operators are devoted to both exploitation and exploration depending on the quality of the
solution. The main idea of the operators is to use good parents (efficient ones) to improve the
quality of the offspring (exploitation) and to use not so good parents (non-efficient ones) to
explore the whole space (exploration). The outlines of these Pareto Based Operators, PBO,
are shown in the following paragraphs.
The rank based mutation operator, RBMO, has a doubly tuning behaviour. The amplitude
of the mutation depends on both, the iteration and an appropriate Pareto ranking of the indi-
vidual. In order to establish the rank of the individuals we have used the ranking proposed
by [10], but any other could be used. The novelty of the operator lies in the fact of using a
Pareto ranking (and therefore, the quality of the solution) to control the maximum amplitude:
the smaller the rank, the smaller the maximum amplitude.
Let ~x(h,t) ∈ P t be a solution in the iteration t of the algorithm and let k be the component
that is going to be mutated. It operates in the following way:

x
(h,t+1)
k = x

(h,t)
k + 2δk(x

(U)
k − x(L)

k )(u− 0.5)
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where u is a random number in [0, 1], δ(t,r) defines the amplitude, and it depends on both t
and r according to the expression:

δ(t,r) = δk(t, r) =

{
2ε(t) + 0.0001[1− ε(t)], if rmax = 1

ε(t) + [1− ε(t)]λ(r), if rmax ≥ 2

where

ε(t) = 0.25

(
tmax − t
tmax

)2

and λ(r) =

(
1− e−β(r−1)

1− e−β(rmax−1)

)
,

being tmax the maximum number of iterations allowed and rmax representing the maximal
rank of the individuals of the population in the current iteration. The parameter β in λ(r) is a
shape parameter which allows us to establish the trade-off between efficient and non-efficient
solutions. The value β = −0.1 has been taken as in [2]. The implementation of our mutation
operator also considers the incorporation of a modification of the probability of mutation,
which is 2p for the individuals with rank greater than [rmax/2], being p for the remaining
ones.
The Pareto based crossover operator, PBC, is a uniform crossover operator which has a
different maximum range of variation depending on the quality of the solutions. This oper-
ator takes into consideration whether the solutions to be recombined are efficient or not and
whether the solutions to be recombined are close to each other or not.
Let Pt be the current population in iteration t, POSt its Pareto optimal set and pt = |POSt|.
In order to decide whether or not the parents are close to each other, a fact that will be used
in the design of the operator, we use the following process:

Step 1: Let dist(~x, ~y) be a distance measure between ~x and ~y. Calculate d(eff,t)

the mean distance between all pairs of solutions in POSt and σ(eff,t) the standard
deviation. If there is only one efficient solution, we set d(eff,t) = 0.

Step 2: Let fNeff and f (eff,t) be the amplitude factors associated to the non-efficient
and efficient solutions, respectively, calculated according to

fNeff = 1 and f (eff,t) = 1− b10 · t

tmax
c · 0.11 (b·c ≡ floor function)

After the above establishments, let ~x(1,t) and ~x(2,t) be the parent solutions selected for
crossover. At that moment, and depending on the distance between ~x(1,t) and ~x(2,t) and
on the values of d(eff,t) and σ(eff,t), the factors f (eff,t) and fNeff are both multiplied by one
of the following quantities:

(i) 1 if d(eff,t) = 0 or σ(eff,t) = 0
(ii) 1− sign(d) · 1

3 if |d| > 3
(iii) (1− d · 0.11) if − 3 ≤ d ≤ 3

where d = (dist(~x(1,t), ~x(2,t))− d(eff,t))
/
σ(eff,t). Finally, a last correction in f (eff,t) is

done: f (eff,t) = min{1, f (eff,t)}.
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After these calculations we denote ∆(k) = 3
4 |x

(1,t)
k − x

(2,t)
k |. In order to carry out the

crossover, three cases are considered:

• Case 1: Neither of the parents is efficient. In this situation, the new components
x

(1,t+1)
k and x(2,t+1)

k , will be generated taking two random values in the interval

[x(1,t)
k + x

(2,t)
k

2
− 4

3
∆(k) fNeff,

x
(1,t)
k + x

(2,t)
k

2
+

4

3
∆(k) fNeff

]
• Case 2: Both parents are efficient solutions. Then, two values, x(h,t+1)

k , h = 1, 2, for
the new solutions are randomly created in the intervals[

xhk −∆(k) f (eff,t), xhk + ∆(k) f (eff,t)
]
, h = 1, 2,

where, when we are obtaining x(h,t+1)
k , xhk is equal to x(h,t)

k with probability 0.75 or
equal to x(3−h,t)

k with probability 0.25, h = 1, 2.
• Case 3: Only one of the parents is efficient. Assuming that ~x(1,t) is the efficient solu-

tion (the other case is analogous), then one value is obtained in each of the intervals[
x1
k −∆(k) f (eff,t), x1

k + ∆(k) f (eff,t)
]
,
[
x2
k −∆(k) fNeff, x2

k + ∆(k) fNeff
]

where, when we are obtaining x(h,t+1)
k , xhk is equal to x(h,t)

k with probability 0.75 or
equal to x(3−h,t)

k with probability 0.25, h = 1, 2.

In both operators, RBMO and PBC, the solutions are randomly generated in the corre-
sponding intervals using a uniform distribution. Besides this, if the solution obtained is not
feasible it is re-sampled until it fits the bounds.

§4. Elements of the computational experiment

In this section we present the elements carried out in order to accomplish the experiment
of Section 5. Regarding to the elaborated codes and the executions, we indicate that all
programmes were coded in C language and compiled with a GNU GCC compiler. All the
codes used in the paper were written by the authors except: The code for the hypervolume
calculation that was obtained from [9], and all the codes for the function evaluations that were
extracted from the codes provided by [4].

4.1. The test problems
The use of a set of test problems helps to guarantee that the proposed algorithms will confront
efficient solution spaces of different characteristics. We have used the extended and rotated
and/or shifted version of some of the well-known set of problems ZDT [17] and DTLZ [8]
proposed by [11]. A short description of their characteristics is shown in Table 1. In all of
these test problems, the Pareto optimal set is known and it is provided by [4].
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Table 1: Properties of the extended and rotated/shifted versions of the corresponding original
ones. S: Separable; NS: Nonseparable; U: Unimodal; M: Multimodal.

Test Objective No. of Total no. Separability
problem functions variables of variables and modality Geometry
1. S-ZDT1 f1 / f2 1 / > 1 30 S, U / S, U convex
2. S-ZDT2 f1 / f2 1 / > 1 30 S, U / S, U concave
3. S-ZDT4 f1 / f2 1 / > 1 30 S, U / S, M convex
4. R-ZDT4 f1:2 >1 10 NS, M convex
5. S-ZDT6 f1 / f2 1 / > 1 30 S, M / S, M concave
6. S-DTLZ2 f1:3 >1 30 S, U concave
7. R-DTLZ2 f1:3 >1 10 NS, M concave
8. S-DTLZ3 f1:3 >1 30 S, M concave

4.2. Variation operators
The crossover and mutation operators that NSGA-II and SPEA2 implement are the Simulated
Binary Crossover and the Polynomial Mutation Operator. These operators are common in the
literature. The readers can consult the book by [6] to obtain their descriptions.
On the other hand, Differential Evolution (DE) is a type of EA proposed by [15] whose main
difference lies in the way in which the variation operator is implemented, it uses weighted
differences between solutions to perturb the population instead of being based in probabil-
ity density functions. The first authors that apply DE to MOOPs were [1] in the so-called
Pareto Differential Evolution algorithm. There are several DE algorithms for multiobjective
optimization in the literature, we have selected three of them and we have extracted their
variation operators with the aim of incorporating them into NSGA-II and SPEA2:

DEMO [13] The variation operator extracted from this paper works as follows: Let ~x(h,t)

be the individual to be mutated, then the new individual is built according to:

~x(h,t+1) = ~x(h,t) + F · (~x(r1,t) − ~x(r2,t)) (1)

where ~x(rj ,t), j = 1, 2, are randomly selected with r1 6= r2 6= h, and F is a parameter
supplied by the user, we use F = 0.3.

MODE [16] In this work the definition of the mutation operator depends on whether the
solution ~x(h,t) to be mutated is efficient or not.

Efficient ~x(h,t+1) = ~x(h,t) + F ·
(

(~x(r1,t) − ~x(r2,t)) + (~x(r3,t) − ~x(r4,t))
)

No Efficient ~x(h,t+1) = γ · ~x(h,t)
best + (1− γ) · ~x(h,t) +

F ·
(
(~x(r1,t) − ~x(r2,t)) + (~x(r3,t) − ~x(r4,t))

)
.

Where r1 6= r2, r3 6= r4, F = 0.5, γ = 0.7 and ~x(h,t)
best is a randomly selected individual

from the set of non-dominated individuals of the population Pt that dominate ~x(h,t).

NSDE [12] The mutation operator works as follows:

~x(h,t+1) = ~x(h,t) +K · (~x(r3,t) − ~x(h,t)) + F · (~x(r1,t) − ~x(r2,t)).

In the expression we take K = 0.4 and F = 0.8, furthermore, ri 6= rj , ∀i 6= j.
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After the mutation, in the three cases a crossover operator is applied. The crossover operator
acts in the following way:

x
(h,t+1)
i =

{
x

(h,t+1)
i if rand(i) ≤ CR or i = rnbr(n)

x
(h,t)
i otherwise,

i = 1, . . . , n

where rand(i) is a random value in [0, 1], CR ∈ [0, 1] is the crossover probability and
rnbr(n) is a randomly chosen index component in {1, 2, . . . , n}.
In all the cases, the values of F , K and CR that we have used are those proposed by the
authors in their respective papers.

4.3. Measures for comparing the populations

In order to compare the different implementations of the algorithms NSGA-II and SPEA2,
we have considered three measures: Hypervolume difference to a reference set HD [4, 11],
generational distanceGD and set coverageC. The book by [5] can be consulted for a detailed
description of these two last indicators.
Given P ∗ the set of non-dominated solutions resulting from the execution of an optimisation
algorithm and PF ∗ its image in the objective space, HD calculates the difference between
the hypervolume of PF true and the hypervolume of PF ∗, this measure takes into consider-
ation the spread as well as the proximity of PF ∗ respect to PF true. GD reports how far,
on average, PF ∗ is from PF true. For both measures the smaller the value the better the ob-
tained population is. The real Pareto fronts, PF true, are provided by [4]. The third measure,
C, is a binary measure, given P ∗1 and P ∗2 the non-dominated sets resulting from the execu-
tion of two different algorithms, C calculates the proportion of solutions in set P ∗2 which are
weakly dominated by solutions in set P ∗1 and it is denoted as C(P ∗1 , P

∗
2 ); and reciprocally

C(P ∗2 , P
∗
1 ). If C(P ∗1 , P

∗
2 ) is greater than C(P ∗2 , P

∗
1 ), then P ∗1 will be better than P ∗2 and vice

versa.

§5. Computational experiment and results

First of all, we have to point out that the aim of this work is not to compare the algorithms
NSGA-II and SPEA2 but to show information about how the mutation and crossover opera-
tors we presented in [2, 3] improve the behaviour of these classical algorithms. With all the
previous information, the implemented algorithms are shown in Table 2.

Table 2: List of variations implemented in the algorithms NSGA-II and SPEA2.
Name Alteration in NSGA-II and SPEA2
(NSGAII/SPEA2)-O None: Original versions of the algorithms
(NSGAII/SPEA2)-PBO RBMO and PBC variation operators
(NSGAII/SPEA2)-DE1 DE variation operator of DEMO
(NSGAII/SPEA2)-DE2 DE variation operator of MODE
(NSGAII/SPEA2)-DE3 DE variation operator of NSDE
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For carrying out the experiments showed in this section, we have considered a usual fixed
population size equal to 100 individuals as in [18] and [7]. The values for the probabilities
of mutation and crossover are, respectively, equal to 1/n and 0.9 for algorithms NSGA-II
and SPEA2, as their authors use. For those algorithms that make use of the Pareto based
operators, these values are equal to 1/n or 2/n according to the description given in the
mutation operator, and for the crossover operator the probability is equal to 0.9. For the
algorithms that use DE operators, the values of these probabilities are those that their authors
proposed in their papers and commented on in subsection 4.2.
The comparison of the implementations of the algorithms of Table 2 is accomplished taking
into account three different values for the number of iterations executed: 100, 500 and 1000.
For each problem, 50 initial populations are generated. For each number of iterations and
after applying each implementation we obtain 50 final populations. In each of these popula-
tions, we get the set of efficient solutions, P ∗, and we calculate the measures of Subsection
4.3. For calculating HD, for each problem and number of iterations, the reference point
is placed by obtaining the worst objective function value among all the P ∗ populations ob-
tained. That is to say, for each problem the same reference point is used for all the P ∗ once
the number of iterations has been fixed.
Since only the mean values themselves are not enough to ensure whether an implementation
is better for a given measure than other or not, we have considered the carrying out of a statis-
tical test to determine this fact. To perform the statistical hypothesis tests for comparing the
implementations, the data are paired in the following way: For each number of iterations and
initial population, the measure obtained in the resulting population using one implementation
is paired with the measure obtained in the resulting population using another implementation.
After these preliminaries, we compare the implementations (NSGAII/SPEA2)-PBO with the
implementations (NSGAII/SPEA2)-(O/DE1/DE2/DE3) of Table 2 in order to decide whether
or not the ones we propose are better than the others attending to the measures of subsection
4.3. Table 3 shows the results of the statistical test accomplished, t-test for the paired differ-
ence of measures HD and GD, and C(non-PBO imp., PBO imp.)−C(PBO imp., non-PBO
imp.) for coverage. A ‘+’ sign represents that the hypothesis “PBO implementation is
better than non-PBO implementation” cannot be rejected, an ‘=’ sign represents that the
hypothesis “PBO implementation is equivalent to the non-PBO implementation” cannot be
rejected, and a ‘−’ sign appears otherwise, representing that PBO implementation is not
equal nor better than the non-PBO implementation. Then, in this tables, the fewer ‘−’ signs
appear, the better the PBO implementation is.
Before starting the analysis of the results obtained, note that, since there are three measures
for judging the behaviour of the algorithms to be compared, the decision of which algorithm
behaves better is, itself, a multiobjective problem. Then, we have decided to make the fol-
lowing compromise decision: For commenting on Table 3 we have organized the results in
such a way that if the difference between the number of ‘+’ and ‘−’ signs in a triplet corre-
sponding to HD, GD and C is positive, we will say that PBO implementation “performs
better than” non-PBO implementation; if that difference is negative, we will say that non-
PBO implementation “performs better than” PBO implementation; PBO and non-PBO
implementations performing in an equivalent way otherwise.

S-ZDT1 When 100 iterations are considered, only the implementation based on DE1 of both
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algorithms presents equivalent behaviour to PBO implementation. The remaining ones,
those based on DE1 with 500 and 1000 iterations and on O, DE2, DE3 with 100, 500
and 1000 iterations, show a worse behaviour than the ones based on PBO.

S-ZDT2 PBO implementations always perform better than the others except for: NSGAII-
DE3 with 500 iterations and SPEA2-DE2 with 1000 iterations in which PBO imple-
mentations are worse; and NSGAII-DE2 with 500 iterations and SPEA2-DE3 with
1000 iterations in which they are equivalent to the ones based on PBO.

S-ZDT4, S-DTLZ2, R-DTLZ2, S-DTLZ3 In these problems, NSGAII-PBO and SPEA2-
PBO present a clearly better behaviour than the others since the triplets are ‘(+ + +)’
except for NSGAII-O with 100 iterations in R-DTLZ2 in which a triplet ‘(+ ==)’
appears.

R-ZDT4 In this problem, only the implementations based on DE1 and DE2 are the ones that
try to confront the PBO implementations, but reaching only equivalent behaviours (it
can be observed some triplets ‘(=,=,=)’ or ‘(=,=,+)’ when 500 and 1000 iterations
are considered).

S-ZDT6 For this problem, implementation NSGAII-DE2 with 500 and 1000 iterations is the

Table 3: NSGA-II (top) and SPEA2 (bottom) results of the hypothesis tests performed for the
test problems separately.

NSGA-II
No.iter. Mea.

HD
100 GD

C

HD
500 GD

C

HD
1000 GD

C

S-ZDT1. PBO versus
O DE1 DE2 DE3
+ = + +
+ = + +
+ = + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

S-ZDT2. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + - -
+ + = -
+ + + +
+ + + +
+ + = -

S-ZDT4. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

R-ZDT4. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
- = = +
+ = = +
+ = = +
+ + = +
+ = = +
+ = = +

NSGA-II
No.iter. Mea.

HD
100 GD

C

HD
500 GD

C

HD
1000 GD

C

S-ZDT6. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + = +
+ + - +
+ + - +
+ + - +
+ + - +
+ + - =

S-DTLZ2. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

R-DTLZ2. PBO versus
O DE1 DE2 DE3
+ + + +
= + + +
= + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

S-DTLZ3. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

SPEA2
No.iter. Mea.

HD
100 GD

C

HD
500 GD

C

HD
1000 GD

C

S-ZDT1. PBO versus
O DE1 DE2 DE3
+ = + +
+ = + +
+ = + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

S-ZDT2. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + = +
+ + + +
+ + - =
+ + - =

S-ZDT4. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

R-ZDT4. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ = = +
+ = = +
+ = = +
+ = = +
+ = = +
+ = + +

SPEA2
No.iter. Mea.

HD
100 GD

C

HD
500 GD

C

HD
1000 GD

C

S-ZDT6. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ = + +
+ + + +
+ - + +
+ + = +
+ + + +
+ - + +

S-DTLZ2. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

R-DTLZ2. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

S-DTLZ3. PBO versus
O DE1 DE2 DE3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
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only one that beats NSGA-II-PBO, with triplets ‘(=,−,−)’ and ‘(−,−,−)’, for 500
and 1000 iterations, respectively. Besides this, SPEA2-DE1 with 500 iterations shows
equivalent behaviour to SPEA2-PBO (triplet ‘(= +−)’). In the remaining implemen-
tations and number of iterations NSGAII-PBO and SPEA2-PBO are the best.

As a summary of the previous comments we can establish the following: The original imple-
mentations of NSGA-II and SPEA2 are always beaten by the PBO implementation. For the
other ones, those based on DE1 only get equivalent results to the PBO in problem S-ZDT1
with 100 iterations. Our implementations beats those based on DE2 in the majority of the
cases. Nevertheless, NSGAII-DE2 and SPEA2-DE2 implementations could be considered as
equivalent to PBO in problem R-ZDT4, NSGAII-DE2 is better than NSGAII-PBO in problem
S-ZDT6 (500 and 1000 iterations) and SPEA2-DE2 beats SPEA2-PBO in S-ZDT2 with 100
iterations. Finally, only in problem S-ZDT2 with 500 iterations, the implementation NSGAII-
DE3 beats NSGAII-PBO; in all the other cases NSGAII-PBO and SPEA2-PBO behave better
than the ones based on DE3. In the light of these results we can say that implementations
based on PBO perform better than the others for the considered set of test problems.

§6. Conclusions

In this work we have presented the implementation of two well-known MOEA’s, NSGA-II
and SPEA2, with a different set of variation operators: The ones used by the original authors,
some based on differential evolution operators and the ones proposed by the authors in [2, 3].
After the experiment carried out we can conclude that the implementations of NSGA-II and
SPEA2 that use our operators behave, in general, better than the others.
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STOCHASTIC RECURSIVE TECHNIQUES
IN RESPONSE-ADAPTIVE DESIGNS

José A. Moler, Fernando Plo and Henar Urmeneta

Abstract. Urn models can be used to generate sequential, response-adaptive designs with
good properties. For instance, in the context of clinical trials they can allocate more
patients to the best treatment, which is a desirable property from an ethical point of view.

An adaptive design generated by a randomly reinforced urn has been thoroughly stud-
ied by May and Flournoy in [8] where its applications to clinical trials are also discussed.

Stochastic recurrence is a powerful tool to obtain asymptotic results for urn models
with random replacement matrices (see [6]). Our aim in this paper is to apply these
stochastic recurrence techniques to the model studied in [8] in order to obtain similar
asymptotic results in a more general setting. By means of a simulation, we also compare
an adaptive design based on this model with other well-known adaptive designs.

Keywords: Adaptive designs, Pólya urns, Optimality

AMS classification: 62K99, 62L05, 62L20

§1. Introduction

The classical Pólya urn model consists in an urn which initially contains W0 white balls and
B0 black balls. The composition of the urn is changed according to the following rule: a
ball is drawn and replaced in the urn and a > 0 balls of the same color are added to the
urn. Let (Wn, Bn) the composition of the urn after n draws. If Tn = Bn + Wn then
X1,n := Wn/Tn and X2,n := Bn/Tn represent the proportion of white balls and black
balls in the urn, respectively. We denote by Xn := (X1,n, X2,n) the vector of proportions.
It is well-known, see for instance [1], that {X1,n} converges with probability one to a beta
distributed random variable β(W0/a, B0/a).
As we have seen, in the classical Pólya urn model the following two actions are possible
in each step: extracting a white ball (action 1) or extracting a black ball (action 2). Let us
consider δtn = (δ1,n, δ2,n), where δi,n is the indicator variable of action i in the nth draw.
Now, if we associate the color white with number 1 and the color black with number 2, the
diagonal matrix

R =

(
a 0
0 a

)
indicates the replacement process because each component rij represents the number of balls
of color j that are added in the urn when action i happens. Besides, given the sequence of σ-
algebras {Fn} where Fn = σ(δ1, . . . , δn, X1, . . . , Xn), the replacement policy is given by
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the conditional probability distribution of δn, where δtn = (δ1,n, δ2,n). It is straightforward
to see that in the classical Pólya urn model

P (δtn = (1, 0)|Fn−1) = X1,n−1, P (δtn = (0, 1)|Fn−1) = 1−X1,n−1.

In the probabilistic literature several generalizations of the previous model have been stud-
ied by considering more general replacement matrices, more general replacement policies, or
both. It is necessary to impose some restrictions on these models in order to obtain asymp-
totic results for the proportion of balls in the urn or the proportion of times that each action
has been applied, see, for instance, [3], [1], [6] and the references therein. Even if these mod-
els are quite general, new generalizations appear that require new techniques to obtain their
asymptotic behavior.
In [2] the classical Pólya urn model was generalized in the following way. Consider two
sequences of independent and identically distributed random variables, {Mn} and {Nn}.
We assume that, for each n, Mn and Nn are positive, bounded by a constant value β and
independent of δn. Let E[Mn] = µ and E[Nn] = ν. We consider the classical Pólya urn
model and assume that in each step the replacement matrix is

Rn =

(
Mn 0
0 Nn

)
. (1)

The proportion of white balls, {X1,n}, converges to a beta distribution if and only if both
variables are degenerated in the same constant value a.
When {Mn} and {Nn} are non-negative, that is, when they can take the value zero, the
asymptotic behavior of this model has been considered again in several papers, see, for in-
stance, [8] and [10]. It is well-known that the proportion of white balls, {X1,n}, converges
to a random variable X∞, but the distribution of this limit and the speed of convergence are
still open problems. In what follows, this model will be called randomized classical Pólya
urn model (RCPU).
The paper is organized as follows. In section 2 we apply the techniques used in [6] for
generalized Pólya urn models (GPU) to the RCPU model in order to give a new insight to
those open problems. In section 3 the RCPU model is used to obtain a response-adaptive
design for a clinical trial, comparing its performance, using simulation techniques, with the
performances of other well-known response-adaptive designs.

§2. Stochastic recurrence for the randomized classical Pólya urn

It is easy to see that the evolution of the process {Xn} in a RCPU model follows a recurrence
scheme:

Xn+1 =
TnXn +Rn+1δn+1

Tn+1

= Xn +
Rn+1δn+1 − (1, 1)Rn+1δn+1Xn

Tn+1
. (2)

Then, the following result is obtained.
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Theorem 1. Consider the randomized classical Pólya urn model (RCPU). The process {Xn}
evolves as the Robbins-Monro recurrence equation

Xn+1 = Xn +
1

Tn+1
(F (Xn) + εn+1).

where

• F (Xn) := RXn − [(1, 1)RXn]Xn is the Robbins-Monro function, with

R := E[Rn] =

(
µ 0
0 ν

)
(3)

• {εn} is a sequence of martingale differences.

Proof. Let an+1 := Rn+1δn+1 − (1, 1)Rn+1δn+1Xn, and define

εn+1 := an+1 − E[an+1|Fn],

for each n. Now, the result follows straightforwardly from (2).

In order to obtain limit results for a Robbins-Monro process it is crucial to establish the
growing order of the step size {1/Tn}. This is obtained in the next result.

Theorem 2. Consider the randomized classical Pólya urn model (RCPU). Ifmax(µ, ν) > 0,
then there exist constants K1 > 0 and K2 > 0 such that, for any n

K1 ≤
Tn
n
≤ K2.

Proof. Let An := (1, 1)Rnδn.
From the hypotheses of the model we have that, for each n, An ∈ [0, β].

Observe that Tn = T0 +
n∑
i=1

Ai. Then, we have

Dn := T0 +
n∑
i=0

E[Ai| Fi−1] = T0 +
n∑
i=0

(ν +X1i(µ− ν))

= T0 + nν + (µ− ν)
n∑
i=0

X1i (4)

Without loss of generality we consider that µ ≥ ν ≥ 0. The three following cases are
possible:

• µ > ν = 0. Note that (W0 + x)/(T0 + x) ≥ W0/T0, for any non-negative real value
x. Then

T0 + nµ
W0

T0
≤ Dn ≤ T0 + n

β

T0
.
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• µ > ν > 0. Then
T0 + nν ≤ Dn ≤ T0 + nµ.

• µ = ν > 0. we observe that, for each n, Dn = T0 + nν.

So that, there exist constants K ′1 and K ′2 such that for all n, K ′1 ≤ Dn/n ≤ K ′2. Now from
Corollary 2.3 in [4] we have that Tn/Dn → 1, a.s, and the result follows.

Theorem 3. Consider the randomized classical Pólya urn model (RCPU). If µ > ν, then the
sequence {Xn} converges a.s. to (1, 0). If µ < ν, then the sequence {Xn} converges a.s. to
(0, 1).

Proof. Observe that if a is a positive real constant, the ordinary differential equation

ẋ = −ax2 + ax

has two stable points, and if x0 = 0, the solution is 0; but if x0 > 0 it converges to 1. From
Theorem 5.2.1 in [7] and taking a = µ− ν the result follows.

We denote ∆1 = {x ∈ R2 : x1 + x2 = 1, x1 ≥ 0 x2 ≥ 0}.
Theorem 4. Consider the randomized classical Pólya urn model (RCPU). If µ = ν, then F
is null for any point in ∆1. If {Mn} and {Nn} are identically distributed, then {X1,n} is a
martingale and converges to a random variable with support in [0, 1].

Proof. From Theorem 2.1, and using that Xn ∈ ∆1, we have that

F (Xn) = (µX1,n, νX2,n)t − [µX1,n + νX2,n](X1,n, X2,n)t

= (µ− ν)X1,nX2,n(1, −1)t,

so that when µ = ν the function F is identically null in ∆1. Moreover, with some algebra
we can obtain that

X1,n = X1,n−1 +
1

Tn
εn

= X0 +
n∑
i=1

εi
Ti

where εn := (Mnδ1,n − µX1,n−1)X2,n−1 − (Nnδ2,n − νX2,n−1)X1,n−1.
When µ = ν we have that

X1,n −X1,n−1 =
Mnδ1,nX2,n−1 −Nnδ2,nX1,n−1

Tn−1 +Mnδ1,n +Nnδ2,n

=
Mn

Tn−1 +Mn
δ1,nX2,n−1 −

Nn
Tn−1 +Nn

δ2,nX1,n−1.

Observe that δn is conditionally independent of Mn and Nn, so that

E[X1,n −X1,n−1|Fn−1] = E[
Mn

Tn−1 +Mn
− Nn
Tn−1 +Nn

]X1,n−1X2,n−1,

and it follows that {X1,n} is a martingale when Mn and Nn are identically distributed.
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Remark 1. When Mn and Nn are not identically distributed the sequence {X1,n} may not
be a martingale.

§3. Applications in response adaptive designs

We consider a clinical trial where two treatments are compared. The randomized classical
Pólya urn model (RCPU) can be used to design the trial. We assume that the patients’ re-
sponses to each treatment are identically distributed and independent random variables.
Each treatment is associated with a color, say, black or white. We assume that the patients’
responses are dichotomous (success or failures). When a patient arrives, a ball is drawn from
the urn and this ball is replaced in the urn together with a number of balls equal to the patient’s
response to the treatment: if the treatment is successful, one ball of the color associated to
this treatment is added in the urn, otherwise the urn remains unchanged.
As we have seen in the previous section, when the mean responses to both treatments are
not equal, all the patients will eventually be allocated in the best treatment. This is a good
property of this design from an ethical point of view. Besides, the asymptotic normality of
the difference of sample means, when the randomized classical Pólya urn design (RCPU) is
applied in a clinical trial, is proved in [8].
In this section, we present the results of a simulation study carried out to compare the perfor-
mance of several adaptive-designs, from the ethical and inferential point of view, when the
sample size n is small. Our goal is to see the advantages and disadvantages of the RCPU
design with respect to other designs.
We consider the hypothesis test:

H0 : µ = ν H1 : µ 6= ν

where µ and ν are the success probabilities for treatment white and black, respectively. We
consider the following designs: complete randomization (CR), Play-the-winner rule (PTW)
and Drop-the-loser rule (DL). For a complete description of these designs see, for instance,
[5] where, in Chapter 8, a comparative study among them can be found.
In this paper we seize table 8.3 in [5] as a benchmark and it is reproduced in Table 1, both
Play-the-winner rule and Drop-the-loser rule are initialized with 5 balls of each color in the
urn. As stated in [5], the DL rule overcomes the PTW rule because it has better power and
the number of failures is equal or smaller in some cases and, as they remark, any value of the
decrement in the number of failures is desirable because it means the recovery of a patient.
In Table 2, we show the results of a simulation study for the randomized classical Pólya urn
design (RCPU) for the same success probabilities and sample sizes as in Table 1. We denote
b and w the initial number of black balls and white balls in the urn, respectively. We have
considered three scenarios, b = w = 1, b = w = 3 and b = w = 5.
It is well-known that the complete randomization rule (CR) has the best properties from the
inferential point of view because the variability of the test statistic reaches its minimum value.
However, from the ethical point of view, this design does not use the information accrued in
the trial to allocate the following patient, which is a drawback from an ethical point of view.
In fact, there is no drift towards the treatment with the best performance as it happens in
response adaptive designs, as PTW, DL and RCPU.
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Table 1: Table 8.3 in [5] Simulated power and expected treatment failures(s.d) for complete
randomization, play the winner rule and drop the loser rule. 10000 replications, α = 0.05
two-sided. The sample size was selected that yielded simulated power of approximately 0.9
under complete randomization.

CR PTW DL

µ ν n power failures power failures power failures
0.9 0.3 24 90 10(2.4) 87 7(2.4) 90 7 (1.8)
0.9 0.5 50 90 15(3.2) 87 12(3.2) 89 12 (2.6)
0.9 0.7 162 90 32(5.1) 88 28(5.4) 89 27 (4.6)
0.9 0.8 532 90 80(8) 89 75(9) 89 73 (8)
0.7 0.3 62 90 31(4.0) 88 28(4.3) 89 27 (4.1)
0.7 0.5 248 90 99(7.8) 89 94(8.2) 89 93 (8.0)
0.5 0.4 1036 90 570(16) 89 565(16) 89 565 (16)
0.3 0.1 158 90 126(5.1) 89 125(5.4) 90 124(5.3)
0.2 0.1 532 90 452(8) 89 451(8) 90 451(8)

Table 2: Simulated power and expected treatment failures(s.d) for the randomized classical
Pólya urn designs with different initial number of black and white balls, denoted b and w
respectively, 10000 replications, α = 0.05 two-sided. The sample size was selected that
yielded simulated power of approximately 0.9 under complete randomization.

RCPU (b=w=1) RCPU (b=w=3) RCPU (b=w=5)

µ ν n power failures power failures power failures
0.9 0.3 24 79 6(3.1) 85 7(2.8) 87 8(2.6)
0.9 0.5 50 77 11(5) 84 12(3.9) 85 13(3.6)
0.9 0.7 162 70 28(9.4) 82 29(7) 86 29(6.5)
0.9 0.8 532 71 76(17) 83 75(12.2) 87 76(10.9)
0.7 0.3 62 79 25(6) 86 26(4.8) 86 27(4.5)
0.7 0.5 248 72 90(13.8) 83 91(10.7) 85 92(9.8)
0.5 0.4 1036 73 552(31.5) 84 553(23.4) 87 555(21.7)
0.3 0.1 158 83 116(7.1) 88 119(6.5) 89 120(6.4)
0.2 0.1 532 79 436(12.5) 87 439(10.8) 88 442(10.1)
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It is clear that ethicality and inferential properties are competitive goals because, for the same
sample size, the power of the t-test is greater in the complete randomization design than in the
three response-adaptive designs. There is no dramatic loss of power in any case, except when
the RCPU is started with b = w = 1. On the other hand, the expected number of failures
in all the response adaptive designs (PTW, DL and RCPU) is smaller than in the CR designs
for the same sample size, and specially when the RCPU is started with b = w = 1. The CR
design and the RCPU design with b = w = 1 are antagonists in the sense that the former is
the best one from the inferential point of view but the worst for ethical reasons, and the latter
is just the opposite.
The properties of adaptive designs depend heavily on the initial composition of the urn. This
dependence is shown in Table 2 for the RCPU design. Both power and number of failures
increase when we start the urn with more balls of both colors.
Comparing the RCPU (b = w = 5) in Table 2 with PTW and DL in Table 1 (also with
b = w = 5 as initial values) we can see that the simulated power in the RCPU is slightly
smaller than in PTW and DL. Besides, in the first four rows, when the success probability
of the first treatment is µ = 0.9, both PTW and DL have a smaller number of failures than
RCPU. When µ = 0.7, the number of failures of RCPU is smaller than PTW and it is similar
to the number of failures of DL. In the rest of rows, where µ ≤ 0.5, RCPU has a smaller
number of failures than both PTW and DL.
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ON THE CHOICE OF SCHOOLS LOCATED
OUTSIDE THE WALKABLE

NEIGHBOURHOOD OF THE HOUSEHOLD

Augustine A. Osagiede and Virtue U. Ekhosuehi

Abstract. In this study, we consider a school choice problem and formulate it into a math-
ematical model, allowing it to be simplified and solved. The results obtained are useful
for the household in making an objective choice of school for the child to be enrolled
among several secondary schools located outside his walkable neighbourhood which best
satisfies his budget constraint with emphasis on the most preferred travelling mode of a
given type.

Keywords: school choice modelling, Lagrangian function, Stone’s utility function, satu-
ration point.

AMS classification: 91B16, 97A80.

§1. Introduction

Earlier studies on school choice modelling [1] and mode of students’ travel to school [2]
have employed utility functions. Utility functions are well-known in literature see [3] and
[4]. Mancebon and Muniz [5] compared the efficiency of a set of Spanish public and private
high schools using data envelopment analysis (DEA) and also identified the school inputs.
In this study, we consider the school choice problem of a household H living in an XY
community in the Niger Delta region in Nigeria who is willing to enrol his child in basic
7 (formerly referred to as J.S.S. 1) in a standard private-independent secondary school far-
off from his residence. Three of such private-independent schools, denoted as Sch1, Sch2
and Sch3, are being considered by the household (see figure 1). In each of these schools
the number of teaching staff is exactly equal to the number of subjects taught at that level.
The household considered here wishes to enrol his child in a private-independent secondary
school based on the available human and physical resources in the school. These include,
in descending order of importance as perceived by the household, the following: qualified
teaching staff, laboratory, health centre, hostel, computers and sports. The household budgets
the sum of one hundred and fifteen thousand naira (N= 115,000) for a session for the child’s
education. A survey of the three standard private-independent secondary schools reveals the
following attributes and statistics for basic 7 for the academic year as presented in Table 1.
A river separates the household from the nearest motor park (denoted as node 1 in figure 1)
where the child can board taxi, bus or motor bike. Speed boats are available for transporting
people and their goods across the river at a cost of N= 150. The allowable speed limit of the
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Figure 1: Schematic representation of the transport network and school locations.



On the choice of schools located outside the walkable neighbourhood of the household 119

School
Fees

Schoolfees
A

vailable
inputvariables

M
axim

um
studentsize

and
attributes

particulars
(in

N
aira)

perattribute
distribution

foreach
attribute

f
i1

f
i2

f
i3

Sch
1

Sch
2

Sch
3

Sch
1

Sch
2

Sch
3

1.Teaching
staff

T uition
and

40,000
35,000

50,000
12

14
16

40
40

35
exam

ination
fees

2. H
ostel

A
ccom

m
odation

fees
35,000

40,000
45,000

2
2

2
80

60
60

and
living

cost

3.H
ealth

centre
M

edicalfees
5,000

10,000
6,500

1
1

1
6

8
6

4.L
aboratory

L
aboratory

fees
10,000

20,000
8,000

1
1

1
20

16
20

5. C
om

puter
U

tility
charge

4,000
5,000

3,500
6

8
4

20
16

16
utilization

6. Sports
C

om
m

on
services

2,000
2,500

1,000
3

4
2

22
22

22
charge

96,000
112

,500
114,000

Table
1:Schoolattributes

and
vitalstatistics



120 Augustine A. Osagiede and Virtue U. Ekhosuehi

boat is 80 km/h. There are eight other nodes linked to node 1. Some of the links are in
deplorable state; for this reason, only motor bikes ply such routes.
Each of the three schools is located at node 6, node 7 and node 8. The schematic represen-
tation of the network (without the winding routes), mode of transportation and its associated
costs (in Naira) enclosed in parenthesis are given in figure 1. For the safety of commuters and
pedestrians, buses, cars and bike often do not exceed 50 km/h, 60 km/h and 40 km/h, respec-
tively. The household prefers that the child takes a taxicab (or taxi in a shorter form) to school
regardless of the opportunity cost of transportation. The household, therefore, is in a quag-
mire of not only choosing a secondary school from the three standard private-independent
secondary schools but also to determine the number of trips to be made using taxi for the
child’s trip to school.

§2. Modelling the school choice problem

Since the household seeks a standard private-independent school for the child, we first of
all define what we mean here by standard schools as schools where the inputs per capita
exceed the minimum specification for accreditation. Although we could not obtain exact
information on the accreditation guide by the Ministry of Education in the state, we assume
here that the ministry accredits schools if such schools have adequate qualified teaching staff,
spacious classroom for at most 40 students per class, standard laboratory equipped for at least
practical in the natural and applied science subjects, health centre and computer laboratory.
We therefore modify the Stone’s utility function as given in [3] by adding the number of
trips by travelling modes and its corresponding parameters. By this modification, we develop
a model for a household who is willing to enrol his child in a school located outside his
walkable neighbourhood which best satisfies his budget constraint with emphasis on the most
preferred travelling mode.

2.1. Notations and definitions
In modelling the household school choice problem, we use the following notations. ai de-
notes the rank of input variable i according to its preference by the household. n is the
maximum number of school input variables under consideration. αi is the relative weight
assigned to input variable i according to its preference by the household. γH is amount to be
spent on the childŠs education for a session. fij is the fee charged (per student) for a session
for input variable i by school j. j = 1, . . . ,M are the schools under consideration. xij is
the existing input i per capita in school j. x∗ij is the household demand per capita for input
variable i in school j. βi(≥ 0)is the minimum standard requirement per capita for variable
i as specified by the Ministry of Education or any other recognised body for accreditation
of schools in the state. mq(r, s) is the trip from node r to node s by mode m of type q,
{q = 1, 2, 3, 4, 5}, where m stands for commercial engine-powered transport services. m1

stands for speed boat, m2 for bike, m3 for taxi, m4 for bus, and m5 for school bus of Sch3.
cqrHsj is the average cost of transportation per student commuter from node r near H to node

s (before reaching school j) using a mode of type q. mq ∈ Q =

p⋃
q=1

{mq} which is the set



On the choice of schools located outside the walkable neighbourhood of the household 121

of all transport modes. A(r, s) is the set of transport modes plying route (r, s). T ∗rHsj is the
alternative number of trips from the node r near H to the node s, before reaching school j
using modes of type q which give the minimum transport cost. kT qrHsj is the feasible number
of trips with minimum cost using mode of type q with emphasis on using the most preferred
travelling mode of type k. T k

∗

rHsj is the Lagrange determined number of trips using the most
preferred mode k at the household saturation point. T k

∗∗

rHsj is the household expected number
of trips using the most preferred mode k. T q

′

rHsj is the feasible number of trips with minimum
cost using mode of type q′, mq′ ∈ Q/{mk}. ℘q is the proportion of recommended safety
speed limit for mode of type q. The most preferred travelling mode is m3.

2.2. The budget constraint
Since the household has allocated a fixed amount for the child’s education, we assume that the
household is willing to choose the best private-independent secondary school located outside
the walkable neighbourhood of his residence for the child provided the total expenditure on
the child’s education for the session does not exceed his budget. We also assume that each
mode type returns via the route it took on the outgoing trip (tour). Thus, if the amount to be
spent on the childŠs education for a session is γH , then the household budget constraint is:(

total cost of school
input variables

)
+

(
total cost of

transportation

)
≤ γH . (1)

Equation 1 can be rewritten as

n∑
i=1

fijxij + 2

p∑
q=1

cqrHsjT
q
rHsj ≤ γH , (2)

xij ≥ 0, T qrHsj ≥ 0, j = 1, . . . ,M .
The transport mode m of type q may contribute more than once to the total number of trips.
Of note is that the existing input i per capita in school j can be computed as follows: for
i = 1 i.e. teaching staff,

x1j =
number of teaching staff in schj

(number of subjects taught in schj)× (maximum allowableclass size per subject in schj)

and xij =
available inputs for attribute i in schj

maximum student size for attribute i in schj
, for i = 2, . . . , 6.

2.3. The household utility function
To construct the household utility function, we take (xij − βi) > 0 ∀i, as the schools under consider-
ation are standard schools. Expressing the household utility function for school inputs as analogous to
Stone’s utility function [3], we have

U j1 =

n∑
i=1

αi loge(xij − βi), (j = 1, . . . ,M). (3)
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To ensure that
n∑

=1

αi = 1 (which is a constraint for the marginal budget shares in the Stone’s utility

function), we define the relative weight of preferences αi as

αi =
ai

n(n+ 1)
. (4)

The ranking of the household’s preferences to obtain ai follows from the indifference-curves theory [3].
The weights αi assigned to the rank of preferences ai in equation (4) are obtained as follows: recall

that the sum of ranks in the linear rank statistic is
n∑
i=1

ai =
n(n+ 1)

2
, see [6]; then divide each rank

ai by the sum of ranks to obtain its relative weight αi. We also assume that the utility from travelling
is given by the number of trips weighted by the proportion of speed limits as

U j2 =

p∑
q=1

℘qT qrHsj , (j = 1, . . . ,M). (5)

Assuming that the utility from school inputs and that of travelling are independent, then the household
utility function, UH , is UH = U j1 + U j2 , which can be rewritten as

UH =

n∑
i=1

αi loge(xij − βi)
p∑
q=1

℘qT qrHsj , (j = 1, . . . ,M). (6)

The implication of the assumption leading to the utility function in equation (6) is that there is no
possibility of substitution between the school inputs and the number of trips.

2.4. Mathematical representation of the problem
Let Fj denote the total fees charged by school j. The schools (j = 1, . . . ,M) considered by the
household are those satisfying the relation

Fj < γH (7)

IfM = 1 then the household has no alternative school. The school choice problem arises whenM > 1.
Since M > 1 for the problem under consideration, then the household has to identify which of the
schools best satisfies his demands per capita. To determine the household choice of school therefore,
we need to provide a match between the household H demand per capita and each available school
input variable i in school j as well as that of the number of trips. In line with the foregoing, we develop
a model for the household H school choice problem as:

Maximize

UH =

n∑
i=1

αi ln(xij − βi) +

p∑
q=1

℘qT qrHsj

subject to
n∑
i=1

fijxij + 2

p∑
q=1

cqrHsjT
q
rHsj ≤ γH

xij ≥ 0, T qrHsj ≥ 0, j = 1, . . . ,M


(8)
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2.5. Deriving solutions from the model
In this sub-section, we present the method for choosing the most desirable school for the household via
the theoretic solutions from problem (8) and the transport network. The transport network in figure 1 is
a graph of the form G = (V,E) where r, s ∈ V , is the set of nodes, including the household residence,
and E is the set of routes. For every route e = (r, s) ∈ E ⊆ V × V , a nonnegative cost per commuter
passing through the route r → s by a mode of type q, c[q; r, s], is associated with it. There is only one
source, H , which is the household residence and several sink nodes, sj , which are the school locations.
Now we develop the routines for finding the number of trips with minimum cost and the number of trips
with preference for the most preferred travelling mode of type k as follow.
Step 0: Identify the source, H , and the sinks, sj , j = 1, . . . ,M .
Step 1: Consider each node j∗, directly linked to H . Obtain c[q∗;H, j∗] = min

∀mq
{c[q;H, j∗]} for each

e = (H, j∗) ∈ E, and for the most preferred travelling mode of type k,

ck[q∗;H, j∗] =

{
c[k;H, j∗] if mk ∈ A(H, j∗) for each e = (H, j∗) ∈ E

min
∀mq′∈Q/{mk}

{c[q′;H, j∗]} if mk /∈ A(H, j∗) for each e = (H, j∗) ∈ E

(Ties are broken arbitrarily). Set ζ = 2.
General step ζ: Let ψj∗ be a sub-graph of G rooted at node j∗. Let e(τ) = (r(τ), s(τ)), τ = 1, . . . , ω,
be all possible routes leading to sj . Compute

C[r,sj ] = c[q∗;H, j∗] + min
∀mq

{∑
e∈∆

c[q; r, s]

}
, for each node j∗ (9)

where C[rH , sj ] is the minimum outgoing total cost for the child’s trip to school j, and ∆ = ψj∗ ∩(
ω⋃
τ=1

{e(τ)}

)
. For the most preferred travelling mode of type k, compute

Ck[rH , sj ] = ck[q∗;H, j∗] + min
∀mq

{∑
e∈∆

ck[q; r, s]

}
, for each node j∗ (10)

where

ck[q; r, s] =

{
c[k; r, s] for mk ∈ A(r, s)
c[q′; r, s] for mk /∈ A(r, s)

If j = M , stop.

The sequence
{
σ(τ)

}η
τ=1

, η ≤ ω,3 s(τ) = r(τ+1), σ(τ) ∈
ω⋃
τ=1

{e(τ)}, which yields the minimum

outgoing total cost C[rH , sj ], is the path with the minimum cost to school j. The number of trips with
minimum cost to school j is therefore: T q

∗
rHsj = η.

Number of trips using the most preferred travelling mode of type k to school j is:

kT krHsj = kT q
∗
rHsj −

kT q
′
rHsj , mq′ ∈ Q/{mk}, (11)

where kT q
∗
rHsj is the number of trips which yields the outgoing total cost Ck[rh, sj ], and ck

∗
rHsj is the

average cost of transportation per student commuter with emphasis on using a mode of type k.
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We maximize problem (8) for the case where the constraint takes the sign of equality (i.e. at the
household saturation point). The upper bound of the expenditure is then achieved by defining a variable
zj as zj = min(T k

∗
rHsj ,

kT krHsj ). Using the Lagrangian method, the Lagrangian function is

L =

n∑
i=1

αi loge(xij − βi +

p∑
q=1

℘qT qrHsj + λ

[
γH −

n∑
i=1

fijxij − 2

p∑
q=1

cqrHsjT
q
rHsj

]
, (12)

where λ is the Lagrange multiplier [7]. Differentiating L with respect to xij , T krHsj ,and λ, and solving
the resulting equations after setting the derivatives to zero, we obtain

x∗ij =
2αic

k∗
rHsj

fij℘k
, (j = 1, . . . ,M), (13)

and

T k
∗

rHsj =
1

2ck∗rHsj

γH − 2

ck∗rHsj
℘k

+
1

2

n∑
i=1

fijβi +

p∑
q=1
q 6=k

cq
′
rHsjT

q′
rHsj


 , (j = 1, . . . ,M). (14)

Equation (13) is the household demand per capita for input variable i in school j, while equation (14)
is the Lagrange determined number of trips from node r near H to node s, to be made using the
most preferred mode k at the household saturation point for the child’s trip to school j. Since x∗ij is
expressed as input per capita, it takes fractional values. However, if the child is a day student, then
cqrHsj is replaced by ρcrHsj , where ρ is the number of school days (excluding holidays) in a session.
We match the household H demand per capita for each of the school input variable i and the expected
number of trips from node r to node s, made using the most preferred mode k before reaching school
j as: min

j
(Θ′j ,Θj), where Θ′j = (θ1j , θ1j , . . . , θnj , θ(k)j) is the transposition of Θj which is an

(n+ 1)−dimensional row vector, θij is given as

θij =
1√
n+ 1

∣∣∣∣xij − x∗ijx∗ij

∣∣∣∣ (15)

and θ(k)j is

θ(k)j =
1√
n+ 1

∣∣∣∣∣T
k
rHsj − T

k∗∗
rHsj

T k∗∗rHsj

∣∣∣∣∣ . (16)

(The scaling factor
√
n+ 1 is employed so as to account for the number of entries in vector Θj). T k

∗∗
rHsj

is obtained as
T k
∗∗

rHsj = [zj ], (17)

where [zj ] is the largest integer ≤ zj . This is done so as to avoid situations where T k∗rHsj >
k T krHsj

and the possibility of having fractional values of T k
∗

rHsj . (Θ′jΘj) measures the extent to which school
j satisfies the household demands. If (Θ′jΘj) → 0, then school j is a perfect school choice for
the household; otherwise the school j is the least desirable school for the household. Hence, the best
school choice for the household among all potentially competitive schools is as given by the expression:
min
j

(Θ′j ,Θj). We obtain the household H most desirable school in the next session.
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§3. Results and discussion

We implement the algorithm in sub-section 2.5 in MATLAB. To obtain the verisimilitude of decision
variables, we first compute the existing input per capita in each of the schools. Thus, we have the
following results. For Sch1:
θ11 = 0.0578, θ21 = 3.2822, θ31 = 0.9054, θ41 = 0.0938, θ51 = 2.4526, θ61 = 3.0454, θ(3)1 =
0.3780.
Thus vector Θ1 is Θ1 = (0.0578, 3.2822, 0.9054, 0.0938, 2.4526, 3.0454, 0.3780) and Θ′1Θ1 =
27.0369. Similarly, we obtain for Sch2 and Sch3 respectively as: Θ′2Θ2 = 45.30 and Θ′3Θ3 = 11.47.
The most desirable school for household H is determined by: min

j=1,2,3
(Θ′jΘj) = Θ′3Θ3 = 11.47, and

the order of desirability is

Figure 2: Order of desirability

The result above implies that household H should enrol his child in Sch3. The decision to do this is
not motivated by the provision of school bus by Sch3, as the household prefers that the child takes taxi
to school, or because the trip using taxi to Sch3 is the cheapest relative to that of the other schools, as
the household has sufficient funds; rather it is based on the extent to which each of the three schools is
able to meet the household taste and preferences. Enrolling the child in Sch3, the household will incur
a total cost of N= 114, 640, and the shortfall from γH is the amount to be given to the child as pocket
money, which is: pocket money = γH −N= 114, 680 = N= 320. The child’s mode-trip pattern to Sch3
is of the form: m1(H, 1)→ m2(1, 5)→ m3(5, 8). Observe that although Sch1 is the cheapest of the
three schools, it is not selected as the most desirable school for the household by the model. By this
deduction, we recommend that when a household is faced with the problem of choosing a school among
several private-independent schools, the most desirable school should not be determined by the school
charging the lowest fees among them, but by the capacity of the school to meet his demands per capita.
This study therefore provides a decision-support tool for the household in making a rational choice of
school for the child.

§4. Conclusion

This work is a development of a normative prototype for school choice decision which enables the
household to choose a school located outside his walkable neighbourhood which best satisfies his budget
constraint for the school age child in an objective manner. It also employs existing school input variables
and most preferable mode of travelling for school choice rather than the ownership-type as in [1].
Further, it introduces minimum standard of input requirements for schools which directly relate to
the child’s educational development. Among three private-independent secondary schools considered
in this study denoted as Sch1, Sch2, and Sch3, was found to be the most desirable school for the
household.
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PRELIMINARY PHI-DIVERGENCE TEST
ESTIMATORS IN A CONTINGENCY TABLE

WITH SYMMETRY STRUCTURE

Leandro Pardo and Nirian Martín

Abstract. For the model of symmetry in a two way contingency table, shrinkage esti-
mators based on minimum φ-divergence estimators and φ-divergence test statistics are
considered. These estimators are based on the James-Stein type rule and incorporate the
idea of preliminary test estimator too. The asymptotic bias and risk are obtained under
null and contiguous alternative hypotheses.

Keywords: Minimum Phi-divergence estimator, phi-divergence statistics, Preliminary test
estimator, Symmetry model.

AMS classification: 62B10, 62H15.

§1. Introduction

Let X and Y denote two categorical response variables, X and Y having I levels. When
we classify subjects on both variables, there are I2 possible combinations of classifications.
The responses (X,Y ) of a subject randomly chosen from some population have a probability
distribution. Let pij = Pr(X = i, Y = j), with pij > 0, i, j = 1, ..., I and we denote
by p = (p11, ..., pII)

T the joint distribution of X and Y . We display this distribution in a
rectangular table having I rows for the categories ofX and I columns for the categories of Y .
Consider a random sample of size n, (X1, Y1), ..., (Xn, Yn) from (X,Y ) and and we denote

Nij =
∑n
l=1I{i,j}(Xl, Yl) (1)

and nij a particular result of Nij , i.e., nij represents the observed frequency in the (i, j)th
cell for (i, j) ∈ I × I with

∑I
i=1

∑I
j=1 nij = n. We shall denote p̂ = (n11/n, ..., nII/n)

T .
The classical problem of symmetry in a contingency table consists in testing

H0 : pij = pji, (i, j) ∈ I × I versus H1 : pij 6= pji, for at least one (i, j) pair. (2)

It was considered for the first time by Bowker (1948). Bowker used the Pearson’s statistic

X2 =
∑

i,j
i<j

(nij − nji)2

nij + nji
(3)

which for large n has a chi-square distribution with I(I − 1)/2 degrees of freedom. For this
problem the likelihood ratio test statistic is given by

G2 = 2
∑

i,j
i<j

nij log
2nij

nji + nij
. (4)
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and its asymptotic distribution coincides with the asymptotic distribution of X2.
We consider the set Θ, defined by{
θ : θ = (pij ; 1 ≤ i ≤ I, 1 ≤ j ≤ I, (i, j) 6= (I, I)) , pij > 0,

∑I
i=1

∑I
j=1

(i,j) 6=(I,I)

pij < 1

}
(5)

and we denote p (θ) = (p11, ..., pII)
T , pII = 1−

∑I
i=1

∑I
j=1

(i,j)6=(I,I)

pij .

We denote a = (a11, ..., a1I , a22,..., a2I , ..., aI−1I−1, aI−1I)
T and define

B = {a ∈ R
I(I+1)

2 −1 :
∑
i≤jaij < 1, 0 < aij , i, j = 1, .., I}.

Hypothesis (2) can be written as

H0 : θ=g(β), β= (p11, ..., p1I , p22, ..., p2I , ..., pI−1I−1, pI−1I)
T∈B (6)

where function g is defined by g = (gij ; i, j = 1, ..., I, (i, j) 6= (I, I)) with

gij(β) =

{
pij i ≤ j
pji i > j

, i, j = 1, ..., I − 1,

and gIj(β) = pjI , j = 1, ..., I − 1; giI(β) = piI , i = 1, ..., I − 1. Note that p (g(β)) =

(gij(β); i, j = 1, ..., I)
T , where

gII (β) = 1−
∑I

i,j=1
(i,j)6=(I,I)

gij(β).

The maximum likelihood estimator (MLE) of β can be defined as

β̂ = arg min
β∈B

D (p̂,p (g(β))) a.s.

where D (p̂,p (g(β))) is the Kullback-Leibler divergence measure defined by

D (p̂,p (g(β))) =
∑I
i=1

∑I
j=1p̂ij log

p̂ij
gij(β)

.

We denote by θ̂ = g(β̂) and by p(θ̂) =
(
p11(θ̂), ..., pII(θ̂)

)T
. It is well-known that

pij(θ̂) =
p̂ij+p̂ji

2 , i = 1, ..., I, j = 1, ..., I . Using the ideas developed in Morales et
al. (1995), we can consider the minimum φ2-divergence estimator (Mφ2E) replacing the
Kullback-Leibler divergence by a φ2-divergence measure in the following way

β̂
φ2

= arg min
β∈B

Dφ2
(p̂,p (g(β))) ; φ2 ∈ Φ∗, (7)

where

Dφ2
(p̂,p (g(β))) =

∑I
i=1

∑I
j=1gij(β)φ2

(
p̂ij

gij(β)

)
,
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Φ∗ is the class of all convex functions φ2 (x) , x > 0, such that at x = 1, φ2 (1) = 0,
φ′′2 (1) > 0, and at x = 0, 0φ2 (0/0) = 0 and 0φ2 (p/0) = p limu→∞ φ2 (u) /u. The φ2

-divergence measures were introduced simultaneously by Ali and Silvey (1966) and Csiszàr
(1963). For more details about φ-divergence measures see Pardo (2006) and references
therein. In the following we shall assume that the functions φ2 in the class Φ∗ are twice
continuously differentiable at x > 0.

We denote by θ̂
φ2

= g(β̂
φ2

) and by

p(θ̂
φ2

) =
(
p11(θ̂

φ2

), ...., pII(θ̂
φ2

)
)T

(8)

theMφ2E of the probability vector that characterizes the symmetry model. Based on p(θ̂
φ2

)
it is possible to define a new family of statistics for testing (2) that contains as a particular
case the statistics given in (3) and (4). This family of statistics is given by

Tφ1
n (θ̂

φ2

) ≡ 2n

φ′′1 (1)
Dφ1

(
p̂,p(θ̂

φ2

)
)

=
2n

φ′′1 (1)

I∑
i=1

I∑
j=1

pij(θ̂
φ2

)φ1

(
p̂ij

pij(θ̂
φ2

)

)
. (9)

We can observe that the family (9) involves two functions φ1 and φ2 ∈ Φ∗. We use the
function φ2 to obtain the Mφ2E and φ1 to obtain the family of statistics. The asymptotic

distribution of Tφ1
n (θ̂

φ2

) is chi-squared with m = I(I − 1)/2 degrees of freedom (see Chap-
ter 8 in Pardo (2006)). Thus, for a given level of significance α ∈ (0, 1), the critical value

of Tφ1
n (θ̂

φ2

) may be approximated by χ2
m,α, the upper 100α% of the chi-square distribu-

tion with m degrees of freedom. If we consider in (9), φ2 (x) = x log x − x + 1 we get
the Kullback-Leibler divergence and therefore the corresponding Mφ2E is the MLE. If in
addition we consider φ1 (x) = x log x − x + 1 or φ1 (x) = (x− 1)

2
/2 we obtain the test

statistics given in (3) and (4) respectively.

When the hypothesis of symmetry holds, p(θ̂
φ2

) has a smaller risk (with a quadratic loss)

than p̂. If the hypothesis of symmetry does not verify, the risk of p(θ̂
φ2

) may go to +∞, as
the sample size n increases. For this reason, when the prior knowledge about the hypothesis
of symmetry in (2) is rather uncertain, it may be desirable to use a preliminary test estimator.
We shall consider in this paper the preliminary phi-divergence test estimator, defined by

ppre
φ1

(θ̂
φ2

) = p(θ̂
φ2

)I(0,χ2
m,α)(Tφ1

n (θ̂
φ2

)) + p̂I[χ2
m,α,∞)(Tφ1

n (θ̂
φ2

)). (10)

Preliminary test estimation (PTE) was introduced by Bancroft (1944). Since then many pa-
pers studying the behavior of this procedure of estimation have been published. The book of
Saleh (2006) is a good example of the importance of this area of researching.
In Section 2 some asymptotic distributional results are given and in Section 3 we present

the asymptotic bias as well as the asymptotic distributional quadratic risk for p̂, p(θ̂
φ2

) and

ppre
φ1

(θ̂
φ2

).

§2. Asymptotic distributional results

The Fisher information matrix of θ∈ Θ is a
(
I2 − 1

)
×
(
I2 − 1

)
matrix given by
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ISF (θ) = Σθ −ΣθH (θ)
T
(
H (θ) ΣθH (θ)

T
)−1

H (θ) Σθ,

where Σθ = diag(θ)−θθT and H (θ) =
(
∂hij(θ)
∂θij

)
I(I−1)

2 ×(I2−1)
. The functions hij , are

given by
hij (θ) = pij − pji, i < j, i = 1, ..., I − 1, j = 1, ..., I.

For more details see Chapter 8 in Pardo (2006). It is not difficult to establish that the Fisher
information matrix ISF (θ) can be written as ISF (θ) = MT

βIF (β)−1Mβ, where IF (β) is
the Fisher information matrix corresponding to β∈B.
We consider a contiguous sequence of alternative hypotheses that approaches the null hy-
pothesis H0 : θ = p (g(β)) , for some unknown β∈B, at the rate O

(
n−1/2

)
. Consider the

multinomial probability vector pn,ij = pij (g(β)) + dijn
−1/2, i = 1, ..., I, j = 1, ..., I,

where d= (d11, ..., dII)
T is a fixed I2×1 vector such that

∑I
i=1

∑I
j=1dij = 0, recall that n is

the total count parameter of the multinomial distribution and β∈B. As n→∞, the sequence
of multinomial probabilities {pn}n∈N with pn = (pn,ij , i = 1, ..., I, j = 1, ..., I)

T
, con-

verges to a multinomial probability in H0 at the rate of O
(
n−1/2

)
. Let

H1,n : pn=p (g(β)) + dn−1/2, β∈B (11)

be a sequence of contiguous alternative hypotheses, here contiguous to the null hypothesis
H0 : θ = p (g(β)) , for some unknown β∈B. We can observe that p (g(β)) with β∈B is
given by p (g(β)) = (pij,i, j = 1, ..., I; pij = pji)

T . We shall denote

Θ0 = {θ∈ Θ :θ=g(β) for some β∈B}.

It is not difficult to obtain the asymptotic distribution of ppre
φ1

(θ̂
φ2

), i.e., the asymptotic den-

sity function of W n =
√
nD
−1/2
p(θ)

(
ppre
φ1

(θ̂
φ2

)− p (θ)
)

, under H1,n. The density function
fW (x) ofW n is given by

φN(0,K(θ)) (x−K (θ) δ)Gm
(
χ2
m,α; ∆

)
+
∫

E[δ]

φN (0,K(θ)) (x− δ − t)φN (0,B(θ)) (t) dt,

where φN (0,A) (x) is the density function of a normal random vector with mean vector 0

and variance-covariance matrix A, Gm
(
χ2
m,α; ∆

)
is the density function of a noncentral

chi-square distribution with m degrees of freedom and noncentrality parameter ∆,

∆ =
1

2

∑I
i,j
i<j

d2
ij

pij
−
∑

i,j
i<j

dijdji
pij

,

evaluated in χ2
m,α andE [δ] =

{
t : (t + J∗ (θ)δ)

T
(t + J∗ (θ)δ)≥ χ2

m,α

}
, where J∗ (θ) =

I−K (θ), beingK (θ) = A (θ) (A (θ)
T
A (θ))−1A (θ)

T andA (θ) = D
−1/2
p(θ)

∂p(θ)
∂θ . Da

denotes the diagonal matrix with vector a in the main diagonal.
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§3. Asymptotic bias and asymptotic distributional quadratic risk

Let θ=g(β) for some β∈B. For a suitable estimator p(θ̂
∗
) of p(θ) its asymptotic bias, under

H1,n, is defined by

B
(
p(θ̂
∗
)
)

= lim
n→∞

E
[√

nD
−1/2
p(θ)

(
p(θ̂
∗
)− pn

)]
.

In the next theorem we shall obtain the asymptotic bias for p̂, p(θ̂
φ2

) and ppre
φ1

(θ̂
φ2

).

Theorem 1. Under H1,n we have,

B (p̂) = 0, B
(
p(θ̂

φ2

)
)

= −J∗ (θ) δ and B
(
ppre
φ1

(θ̂
φ2

)
)

= −J∗ (θ) δGm+2(χ2
m,α; ∆)

Proof. Under H1,n, limn→∞ E
[√

nD
−1/2
p(θ) (p̂− pn)

]
= 0. Therefore, B (p̂) = 0. Now

√
nD
−1/2
p(θ)

(
p(θ̂

φ2

)− pn
)

=
√
nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)
− δ = Zn − δ.

Therefore, B
(
p(θ̂

φ2

)
)

= limn→∞E [Zn]− δ=K (θ) δ−δ= (K (θ)− I) δ= −J∗ (θ) δ.

Finally,

B
(
ppre
φ1

(θ̂
φ2

)
)

= lim
n→∞

E
[√

nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)
I(0,χ2

m,α)(Tφ1
n (θ̂

φ2

)
]

+ lim
n→∞

E
[√

nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)
I[0,χ2

m,α)(Tφ1
n (θ̂

φ2

)
]
− δ

= lim
n→∞

E [Zn]Gm(χ2
m,α; ∆) +

∫
xdF2(x)−δ = K(θ)δGm(χ2

m,α; ∆)

+
∫

x
∫
E[δ]

φN(0,K(θ)) (x− δ − t) dΦN(0,B(θ)) (t)− δ

= K(θ)δGm(χ2
m,α; ∆) + δ

(
1−Gm(χ2

m,α; ∆)
)

+
∫
E[δ]

tdΦN(0,B(θ)) (t)− δ,

beingB (θ) = I − p(θ)1/2(p(θ)T )1/2 −K (θ).
It is well-known, see formula 5.6 in Sen (1979), that∫

E∗[a]

tdΦN(0,A) (t) = a
[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
being E∗ [a] =

{
t : (t + a)

T
A−1 (t + a) > χ2

m,α

}
.

In our case it is not possible to apply directly this result because in our case in the set E [a] ,
E [δ] , does not appear matrix A−1 but we can overcome this problem in the following way:
B (θ) is an idempotent matrix with rankm < I2. Therefore there exists an orthogonal matrix
C = (C1,C2) such that

CTB (θ)C =

(
Im 0
0 0

)
. (12)
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and
CTC = II2 . (13)

Based on (12) we have CT
1B (θ)C1 = Im and based on (13)(
CT

1C1 CT
1C2

CT
2C1 CT

2C2

)
=

(
Im 0
0 0

)
.

We define the random normal vectorX= (X1, ..., Xm)T with mean vector CT
1 J
∗ (θ) δ and

variance-covariance matrix Im. We can write T=C1X and we have
E [T ] = C1C

T
1 J
∗ (θ) δ=B (θ)J∗ (θ) δ=J∗ (θ) δ (the last equality follows because the

matrixB (θ) is idempotent and its eigenvalues are 0 or 1), V ar [T ] = CT
1C1 = B (θ). The

last equality follows because

CT
1B (θ)C1 = Im ⇐⇒ C1C

T
1B (θ)C1 = C1 ⇐⇒ B (θ)C1 = C1

⇐⇒ B (θ)C1C
T
1 = C1C

T
1 ⇐⇒ B (θ) = C1C

T
1 .

We can also observe that T TT=XTCT
1C1X=XTX. Now we can write∫

E[δ]

tdΦN(0,B(θ)) (t) =
∫

E[0]

tdΦN(J∗(θ)δ,B(θ)) (t) = C1

∫
{x:xTx>χ2

m,α}
xdΦN (CT1 J∗(θ)δ,I) (x)

= C1

∫
{
x:(x+CT1 J∗(θ)δ)

T
(x+CT1 J∗(θ)δ)>χ2

m,α

}xdΦN(0,I) (x)

= J∗ (θ) δ
[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
.

Therefore,

B
(
ppre
φ1

(θ̂
φ2

)
)

= K(θ)δGm(χ2
m,α; ∆) + δI − δGm(χ2

m,α; ∆)

+ δGm(χ2
m,α; ∆)−K(θ)δGm(χ2

m,α; ∆)− δ−J∗ (θ) δGm+2(χ2
m,α; ∆)

= J∗ (θ) δGm+2(χ2
m,α; ∆).

Let p(θ̂
∗
) be a suitable estimator of p(θ) and W a given semi-definite matrix. The standard

loss function is

L
(
p(θ̂
∗
),p(θ)

)
=
(
p(θ̂
∗
)− p(θ)

)T
W
(
p(θ̂
∗
)− p(θ)

)
and the asymptotic distributional quadratic risk (ADQR) of p(θ̂

∗
), under H1,n, is given by

R
(
p(θ̂
∗
);W

)
= lim
n→∞

E

[√
nD
−1/2
p(θ)

(
p(θ̂
∗
)− pn

)T
W
√
nD
−1/2
p(θ)

(
p(θ̂
∗
)− pn

)]
.

We have the following result:
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Theorem 2. Let θ=g(β) for some β∈B. Under H1,n we have,

R (p̂;W ) = trace (J(θ))

R
(
p(θ̂

φ2

);W
)

= trace (WK(θ)) + δTJ∗ (θ)
T
WJ∗ (θ) δ

R
(
ppre
φ1

(θ̂
φ2

);W
)

= trace (WJ(θ))− trace (B(θ)W )Gm+2(χ2
m,α; ∆)

− δTJ∗ (θ)
T
WJ∗ (θ) δ

{
−2Gm+2(χ2

m,α; ∆) +Gm+4(χ2
m,α; ∆)

}
.

Proof. We shall use in the proof of this theorem the following well-known fact,

E
[
(Y −a)

T
A (Y −a)

]
= trace (AΣ) + (µ−a)

T
A (µ−a)

for a normal random vector Y with mean vector µ and variance-covariance matrix Σ.

We know that
√
nD
−1/2
p(θ) (p̂− pn)

L→
n→∞

N (0,D
−1/2
p(θ) Σ

p(θ)
D
−1/2
p(θ) ) and

√
n(p̂− pn)

L→
n→∞

N (0,Σp(θ)), butD−1/2p(θ) Σ
p(θ)

D
−1/2
p(θ) = J(θ). Therefore,

R (p̂;W ) = lim
n→∞

E
[√

nD
−1/2
p(θ) ((p̂− pn)

T
W
√
nD
−1/2
p(θ) ((p̂− pn)

]
= trace (J(θ)) ,

and

R
(
p(θ̂

φ2

);W
)

= lim
n→∞

E

[√
nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)T
W
(√

nD
−1/2
p(θ) p(θ̂

φ2

)− p(θ)
)]

− lim
n→∞

E

[√
nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)T]

Wδ

− δTW lim
n→∞

E
[√

nD
−1/2
p(θ)

(
p(θ̂

φ2

)− p(θ)
)]

+ δTWδ

= trace (WK(θ)) + δTK(θ)TWK(θ)δ−δTWK(θ)δ

− δTK(θ)TWδ+δTWδ

= trace (WK(θ)) + δT (K(θ)− I)
T
W (K(θ)− I) δ.

In relation to ppre
φ1

(θ̂
φ2

) we have,

R
(
ppre
φ1

(θ̂
φ2

);W
)

= lim
n→∞

E

[√
nD
−1/2
p(θ)

(
ppre
φ1

(θ̂
φ2

)− pn
)T
W
√
nD
−1/2
p(θ)

× ppre
φ1

(θ̂
φ2

)− pn
]
− lim
n→∞

E

[(√
nD
−1/2
p(θ)

(
ppre
φ1

(θ̂
φ2

)− p(θ)
)
− δ
)T]

Wδ

− δTW lim
n→∞

E
[√

nD
−1/2
p(θ)

(
ppre
φ1

(θ̂
φ2

)− p(θ)
)]

+ δTWδ = l1 + l2 + l3 + δTWδ.

Now we are going to get l1, l2 and l3. In relation to l1 we have,

l1 =
∫

xTWxfW (x) dx =
∫

xTWxdF1 (x) +
∫

xTWxdF2 (x)
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but ∫
xTWxdF1 (x) = Gm(χ2

m,α; ∆)
∫

xTWxφN (0,K(θ))(x−K(θ)δ)dx

= Gm(χ2
m,α; ∆)

(
trace (WK(θ) + (K(θ)δ)

T
WK(θ)δ

)
.

On the other hand∫
xTWxdF2 (x) = trace (WK(θ))

(
1−Gm

(
χ2
m,α; ∆

))
+ δTWδ

(
1−Gm

(
χ2
m,α; ∆

))
+ b1 + b2 + b3.

But

b1 =
∫
E[δ]

tTWδφN (0,B(θ)) (t) dt =δTJ∗ (θ)
T [
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
Wδ

b2 =
∫

E[δ]

δTW tφN (0,B(θ)) (t) dt =δTW
[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
J∗ (θ) δ.

In relation to b3 we have,

b3 =
∫

E[δ]

t
T
W tφN (0,B(θ)) (t) dt =

∫
E[0]

t
T
W tφN (J∗(θ)δ,B(θ)) (t) dt

=
∫

E[0]

x
T
CT

1WC1xφN (CT1 J
∗(θ)δ,I) (x) dx =

∫
E∗[δ]

x
T
CT

1WC1xφN (0,I) (x) dx,

being E∗ [δ] =

{
t :
(
t+CT

1 J
∗ (θ) δ

)T (
t+CT

1 J
∗ (θ) δ

)
> χ2

m,α

}
. Therefore

b3 =
(
1−Gm+2(χ2

m,α; ∆)
)

trace
(
CT

1WC1

)
− δTJ∗ (θ)

T
C1C

T
1WC1C

T
1 δJ

∗ (θ)

×
(
Gm(χ2

m,α; ∆)− 2Gm+2(χ2
m,α; ∆) +Gm+4(χ2

m,α; ∆)
)

We can conclude that

l1 = Gm(χ2
m,α; ∆)

(
trace (WK(θ) + δTK(θ)

T
WK(θ)δ

)
+ trace (WK(θ))

(
1−Gm

(
χ2
m,α; ∆

))
+ δTWδ

(
1−Gm

(
χ2
m,α; ∆

))
+ δTJ∗ (θ)

T
Wδ

[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
+ δTWJ∗ (θ) δ

[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
+
(
1−Gm+2(χ2

m,α; ∆)
)

trace (B (θ)W )− δTJ∗ (θ)
T
WJ∗ (θ) δ

×
(
Gm(χ2

m,α; ∆)− 2Gm+2(χ2
m,α; ∆) +Gm+4(χ2

m,α; ∆)
)

Now it is not very difficult to see l2 is given by

l2 = δTJ∗ (θ)WδGm+2(χ2
m,α; ∆)−δTWδ.
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In relation to l3 we have,

l3 = −δTW lim
n→∞

E
√
nD
−1/2
p(θ)

(
ppre
φ1

(θ̂
φ2

)− p(θ)
)

= −δTW
(
B
(
ppre
φ1

(θ̂
φ2

)
)

+ δ
)

= δTWJ∗ (θ) δGm+2(χ2
m,α; ∆)−δTWδ.

Finally we have,

R
(
ppre
φ1

(θ̂
φ2

);W
)

= Gm(χ2
m,α; ∆)

(
trace (WK(θ) + (K(θ)δ)

T
WK(θ)δ

)
+ trace (WK(θ))

(
1−Gm

(
χ2
m,α; ∆

))
+ δTWδ

(
1−Gm

(
χ2
m,α; ∆

))
+ δTJ∗ (θ)

T
Wδ

[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
+ δTWJ∗ (θ) δ

[
Gm(χ2

m,α; ∆)−Gm+2(χ2
m,α; ∆)

]
−
(
1−Gm+2(χ2

m,α; ∆)
)

trace (B (θ)W )

− δTJ∗ (θ)
T
WJ∗ (θ) δ

{
Gm(χ2

m,α; ∆)− 2Gm+2(χ2
m,α; ∆)

+Gm+4(χ2
m,α; ∆)

}
+ δTJ∗ (θ)WδGm+2(χ2

m,α; ∆)−δTWδ

+ δTWJ∗ (θ) δGm+2(χ2
m,α; ∆)−δTWδ + δTWδ.

Simplifying, we get

R
(
ppre
φ1

(θ̂
φ2

);W
)

= trace (WJ(θ))− trace (B(θ)W )Gm+2(χ2
m,α; ∆)

+Gm(χ2
m,α; ∆)δTK(θ)

T
WK(θ)δ−δTWδGm(χ2

m,α; ∆)

+ δTWδGm(χ2
m,α; ∆)− δTK(θ)

T
WδGm(χ2

m,α; ∆)

+ δTWδGm(χ2
m,α; ∆)− δTWK(θ)δGm(χ2

m,α; ∆)

− δTJ∗ (θ)
T
WJ∗ (θ) δ

{
Gm(χ2

m,α; ∆)− 2Gm+2(χ2
m,α; ∆)

+Gm+4(χ2
m,α; ∆)

}
.

Finally,

R
(
ppre
φ1

(θ̂
φ2

);W
)

= trace (WJ(θ))− trace (B(θ)W )Gm+2(χ2
m,α; ∆)

− δTJ∗ (θ)
T
WJ∗ (θ) δ

{
−2Gm+2(χ2

m,α; ∆) +Gm+4(χ2
m,α; ∆)

}
.
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OPTIMAL LOT SIZE FOR AN INVENTORY
SYSTEM WITH A STEP FUNCTION OF THE

CUSTOMERS’ WAITING TIME

Luis A. San-José, Joaquín Sicilia and Juan García-Laguna

Abstract. In this work we consider a continuous review inventory control system where
demand on the stockout period is partially backlogged. More specifically, the backlogged
demand ratio is a two piece function of time the customers have to wait up to receiving the
next replenishment. This ratio is a known constant when the waiting time is less than the
maximum time the customers are willing to wait. Otherwise, the ratio vanishes when the
waiting time exceeds that maximum. Moreover, we suppose that both backorder unit cost
and lost sale cost are made up of a fixed cost and a variable cost which depends on the
length of the shortage time. A general procedure to determine the optimal policy and the
minimum inventory cost is developed. This model generalizes several inventory systems
analyzed by different authors. Numerical examples are used to illustrate the theoretical
results.

Keywords: inventory models, partial backlogging, stockout costs.

AMS classification: AMS 90B05.

§1. Introduction

In any inventory system it can happen that a part of the demand may not be satisfied with
the current stock. In this event, we speak about the system is out of stock. Frequently, when
there are shortages, the classical inventory models suppose that either all customers wait until
the arrival of the next order (complete backorder case) or all customers leave the system (lost
sales case). However, in many real systems, some customers are able to wait for the next
order to satisfy their demands during the stockout period, while others do not wish to or
cannot wait and they have to fill their demands from other sources. This situation is modeled
by the consideration of partial backordering in the formulation of the mathematical models.
A common characteristic of the models with partial backlogging is to assume a fixed penalty
cost per lost unit. However, in practice, the customers usually make decision to wait until
the next replenishment or not, according to the time they would have to wait and the possible
compensation from the firm if they wait. Consequently, in both cases (backordered or lost
demand), the commercial prestige depends on the time that elapses until the arrival of the next
replenishment. This point of view is assumed in Chern, Chan & Teng (2005) and San-José,
Sicilia & García-Laguna (2009).
In this work, we propose and study an inventory model where the customers are willing to
wait for their orders to be filled at most a fixed time. This situation is cited in Lee and
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Nahmias (1993, p. 8). Moreover, we will consider that both backorder unit cost and lost
sale cost are made up of a fixed cost and a variable cost which depends on the length of the
shortage time. As a result, the proposed model is a general framework that includes several
previous models.

§2. Assumptions and notation

The mathematical model discussed in this work is based on the following assumptions:

1. The item is a single product with independent demand.

2. The planning horizon is infinite.

3. The replenishment rate is infinite.

4. The inventory is continuously revised.

5. The demand rate is known and constant.

6. The ordering cost per order is known and constant.

7. The unit purchasing cost and the selling price per unit are constant.

8. The holding cost is a linear function based on average inventory.

9. The model allows shortages, which are partially backlogged.

10. The fraction of backlogged demand is described by a function, which depends on the
amount of time a customer waits before receiving the item.

11. The cost of a backorder includes a fixed cost and a cost which is proportional to the
length of time for which backorder exists.

12. The goodwill cost of a lost sale includes a fixed cost and a cost which is proportional
to the length of time for which lost sales exist.

We adopt the following notation for the model to be studied:

Input parameters

D demand per unit time (> 0).
K ordering cost per order (> 0).
p unit purchasing cost (> 0).
s unit selling price (s > p).
h holding cost per unit per unit of time (> 0).
ωo fixed backorder cost per unit, independent of time (≥ 0).
ω backorder cost per unit and per unit time (≥ 0).
πo fixed goodwill cost per lost unit, independent of time, that is, the fixed cost derived of

a unit lost sale excluding the loss of profit (≥ 0).
π goodwill cost per lost unit and per unit time (≥ 0).
ρ maximum fraction of backordered demand (0 ≤ ρ ≤ 1).
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Additional notation

π̃ fixed cost of a lost sale, including the profit loss and the fixed goodwill cost, that is,
π̃ = πo + s− p.

ξo fixed unit shortage cost including the loss of profit, ξo = ρωo + (1− ρ)π̃.
ξ average shortage cost dependent on time, ξ = ρω + (1− ρ)π.
I(t) net stock (on hand – backorders) level at time t.
τ amount of time the customers wait before receiving the good during the stockout pe-

riod (> 0).
q order quantity or lot size per cycle (≥ 0).
b demand during the stockout period (≥ 0).
β(τ) fraction of demand which is backlogged.

Decision variables

T length of the inventory cycle (> 0).
Ψ length of the inventory cycle over which the net stock level is less than or equal to zero

(≥ 0).

§3. The model

Next, we analyze an inventory model with partial backlogging, where the backlogged de-
mand rate is a step function of the customers’ waiting time. Moreover, we suppose that the
cumulative unit stockout cost (backordered cost and lost sale cost) is a linear function of the
length of time for which the shortage exists. We also consider that the fraction of backlogged
demand, which represents the behavior of the customers faces with stockout, is given by

β(τ) =

{
ρ if 0 < τ ≤ a
0 if τ > a

, with 0 ≤ ρ ≤ 1 and a ≥ 0,

being ρ the maximum fraction of backordered demand and a the maximum waiting time that
the customers are willing to wait up to receiving the product.
Taking into account the above assumptions, the net inventory level during the stockout period
can be expressed as

I(t) =

 −Dρ(Ψ− T + t) if a ≥ Ψ
0 if a < Ψ and T −Ψ ≤ t ≤ T − a

−Dρ(a− T + t) if a < Ψ and T − a < t < T
(1)

Evidently, the objective is to maximize the profit per unit time. The significant amounts at
each cycle are the following:

• Total revenue: s[D(T −Ψ)− IT ].

• Purchasing cost: p[D(T −Ψ)− IT ].

• Ordering cost: K.

• Total holding cost: h
∫ T−Ψ

0
I(t)dt = Dh

2 (T −Ψ)2.
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• Total backordering cost: Dωo
∫ Ψ

0
β(τ)dr +

∫ T
T−Ψ

ω[−I(t)]dt =

=

{
DρωoΨ +DρωΨ2/2 if 0 ≤ Ψ ≤ a
Dρωoa+Dρωa2/2 if Ψ > a

.

• Total lost sale cost: Dπo
∫ Ψ

0
[1− β(τ)]dτ + πD

∫ Ψ

0
τ [1− β(τ)]dτ =

=

{
D(1− ρ)πoΨ +D(1− ρ)πΨ2/2 if 0 ≤ Ψ ≤ a
Dπo(Ψ− ρa) +Dπ(Ψ2 − ρa2)/2 if Ψ > a

.

Therefore, the gain or profit per unit time can be written as

G(T,Ψ) = (s− p)D − C(T,Ψ), (2)

where

C(T,Ψ) =

{
C1(T,Ψ) if 0 ≤ Ψ ≤ a
C2(T,Ψ) if Ψ > a

,

with
C1(T,Ψ) =

1

T

[
K + Dh

2 (T −Ψ)
2

+DξoΨ + Dξ
2 Ψ2

]
and

C2(T,Ψ) = 1
T

[
K + Dh

2 (T −Ψ)
2

+D(ξo − π̃)a+ D(ξ−π)a2

2 + π̃DΨ + Dπ
2 Ψ2

]
.

Hence, the problem consists of determining the decision variables T and Ψ, with T > 0,
Ψ ≥ 0 and Ψ ≤ T , such that the function G(T,Ψ) given in (2) is maximized.

Note. The lot size q and the demand b during the stockout period are given by

q =

{
D [T − (1− ρ)Ψ] if 0 ≤ Ψ ≤ a
D [T −Ψ + ρa] if Ψ > a

and b = DΨ.

Thus, if we calculate the optimal policy (T ∗,Ψ∗), we will specific the lot size q and the
reorder point.

§4. Solution of the model

After some algebraic manipulations, the functions C1(T,Ψ) and C2(T,Ψ) also can be ex-
pressed as

C1(T,Ψ) = K+DξoΨ+D(ξ+h)Ψ2/2
T + Dh

2 T −DhΨ

and

C2(T,Ψ) = K+D(ξo−π̃)a+D(ξ−π)a2/2+π̃DΨ+D(π+h)Ψ2/2
T + Dh

2 T −DhΨ.

Therefore, for a fixed value of Ψ, the function C(T,Ψ) is strictly convex. In consequence, it
attains its minimum at the point
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T ∗(Ψ) =


√

2K+2DξoΨ+D(ξ+h)Ψ2

Dh if 0 ≤ Ψ ≤ a√
2K+2D(ξo−π̃)a+D(ξ−π)a2+2π̃DΨ+D(h+π)Ψ2

Dh if Ψ > a

with optimal value
C(T ∗(Ψ),Ψ) = Dh [T ∗(Ψ)−Ψ] . (3)

Note thatC(T ∗(0), 0) =
√

2KDh, C(T ∗(∞),∞) = π̃D if π = 0, andC(T ∗(∞),∞) =∞
for all π > 0. Moreover, the first derivative of the function C(T ∗(Ψ),Ψ) is

dC(T ∗(Ψ),Ψ)

dΨ
=

L(Ψ)

α(Ψ)T ∗(Ψ)
, (4)

where

α(Ψ) =

{
Dξo +D(h+ ξ)Ψ +DhT ∗(Ψ) if 0 ≤ Ψ < a
Dπ̃ +D(h+ π)Ψ +DhT ∗(Ψ) if Ψ > a

, (5)

and

L(Ψ) =

{
L1(Ψ) if 0 ≤ Ψ < a
L2(Ψ) if Ψ > a

, (6)

with

L1(Ψ) = (ξoD)2 − 2KhD + 2D2ξoξΨ +D2ξ(h+ ξ)Ψ2,

L2(Ψ) = θ + 2D2[π̃ + (h+ π)a]π(Ψ− a) +D2π(h+ π)(Ψ− a)2

and
θ = (Dπ̃)2 − 2KDh+ 2D2[π̃(h+ π)− hξo]a+D2(π2 + 2hπ − hξ)a2.

Since T ∗(Ψ) > 0 and α(Ψ) > 0 for all Ψ ≥ 0, we have

sign
dC(T ∗(Ψ),Ψ)

dΨ
= sign L(Ψ). (7)

Thus, we can determine the optimal value of Ψ by studying the function L(Ψ). According to
this approach, the following theorem provides a criterion to determine the optimal policy.

Theorem 1. Let θ = (Dπ̃)2 − 2KDh+ 2D2[π̃(h+ π)− hξo]a+D2(π2 + 2hπ − hξ)a2;
∆ = (ξoD)2 − 2KDh; L1(a) = ∆ + 2D2ξoξa+D2ξ(h+ ξ)a2; Co =

√
2KDh;

C1 = D

(
ξ
√

2Kh
Dξ(h+ξ) −

hξ2o
ξ(h+ξ)2 + ξoh

h+ξ

)
;C2 = D

(√
π2(a+ π̃

h+π )2 − θπ
D2(h+π) + hπ̃

h+π

)
.

The optimal solution (T ∗,Ψ∗) which maximizesG(T,Ψ) is given in Table 1, where the values
of the decision variables are:

Ψ1 =
√

2Kh
Dξ(h+ξ) −

hξ2o
ξ(h+ξ)2 −

ξo
h+ξ ; Ψ2 =

√
(a+ π̃

h+π )2 − θ
D2π(h+π) −

π̃
h+π ;

To =
√

2K/Dh; Ta =
√

(2K + 2Dξoa+D(h+ ξ)a2)/Dh;
T1 = Ψ1 + (ξo + ξΨ1)/h and T2 = Ψ2 + (π̃ + πΨ2)/h.

Let us mention one important consequence of the previous theorem.

Corollary 2. With the notation used in Theorem 1, the maximum total inventory profit is
shown in Table 2.
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π > 0 π = 0

∆ > 0


θ ≥ 0

θ < 0

{
C2 ≥ Co
C2 < Co

(s− p)−
√

2KDh (s−p)D−
√

2KDh

(s−p)D−
√

2KDh (s−p)D−
√

2KDh

(s− p)D − C2 (s− p− π̃)D

∆ = 0


θ > 0

θ = 0

θ < 0

{
C2 ≥ Co
C2 < Co

(s−p)D−
√

2KDh (s−p)D−
√

2KDh

(s−p)D−
√

2KDh (s−p)D−
√

2KDh

(s−p)D−
√

2KDh (s−p)D−
√

2KDh

(s− p)D − C2 (s− p− π̃)D

∆ < 0



L1(a) ≥ 0


θ ≥ 0

θ < 0

{
C2 ≥ C1

C2 < C1

L1(a) < 0


θ > 0

θ = 0

θ < 0

(s− p)D − C1 (s− p)D − C1

(s− p)D − C1 (s− p)D − C1

(s− p)D − C2 (s− p− π̃)D

D[s−p+h(Ta−a)] D[s−p+h(Ta−a)]

D[s−p+h(Ta−a)] (s− p− π̃)D

(s− p)D − C2 (s− p− π̃)D

Table 2: Maximum inventory profit

§5. Numerical examples

In this section, we illustrate with some examples the solution procedure developed in the
previous section.
Example 1 We consider an inventory system which verifies the assumptions described in
Section 2. The input data and parameters are D = 25, K = 50, h = 0.5, ωo = 1, ω = 0,
πo = 0, π = 1, p = 9, s = 12, ρ = 0.9 and a = 2. Following the development given in the
previous section, we have: ∆ = −350, ξ = 0.1, L1(a) = 100 and θ = 19000. Therefore,
applying Theorem 1, the function G(T,Ψ) attains its maximum at the point (T1,Ψ1), where
Ψ1 = 1.65148 and T1 = 4.38178. Moreover, from Corollary 2, we obtain G(T ∗,Ψ∗) =
40.87129.

Example 2 We consider the same input data and parameters of Example 1, but changing the
value of the maximum waiting time to a = 1.5. Now L1(a) = −40.625 and θ = 14429.7
(∆ y ξ remain unalterable because they do not depend on the parameter a). From Theorem
1, it follows that T ∗ = Ta = 4.23084, Ψ∗ = a = 1.5 and from Corollary 2, G(T ∗,Ψ∗) =
40.8645.

Example 3 We use the same data given in Example 1, but let us change the values of D and
K toD = 5 andK = 1100. We obtain ∆ = −5464, L1(a) = −5446 and θ = −4690. Since
Ψ2 = 9.87715, we have C2 = 64.3857 < Co = 74.1620. Therefore, the optimal policy is
given by (T2,Ψ2), where T2 = 35.6314 and Ψ2 = 9.87715, with G(T ∗,Ψ∗) = 10.6143.

Example 4 We consider the same input data and parameters of Example 1, but change the
value of D to D = 100. Now ∆ = 9400 y θ = 319000. Applying Theorem 1, we see that
the optimal policy is (To, 0), where To = 1.41421, with profit G(T ∗,Ψ∗) = 4.28932.
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Example 5 We now assume the same input parameters as in Example 3, but modify the value
of π to π = 0. We obtain ξ = 0 and θ = −5185 (∆ remains unalterable because it does
not depend on the parameter π). Applying again Theorem 1, we have T ∗ = Ψ∗ = ∞ and,
therefore, G(T ∗,Ψ∗) = 0. Obviously, in this case, the item should not be stocked.

§6. Particular models

Next, we prove that the inventory system studied here generalizes several inventory models
analyzed by other authors. So, we have the following results:

1. If we consider a→∞ then, at the limit, we have β(τ) = ρ for τ > 0, and we revert to
the model with fixed partial backlogging studied by San-José, Sicilia & Garcia-Laguna

(2009). Now, we get lima→∞ θ =∞ and lima→∞ L(a) =

{
∞ if ξ > 0
∆ if ξ = 0

.

Thus, applying the results shown in Table 1, our optimal policy coincides with the one
obtained by those authors. Moreover, several particular cases are deduced:

(a) If π = 0 and ρω > 0, we obtain the model studied by Montgomery, Bazaraa &
Keswani (1973) and Rosenberg (1979).

(b) If π = 0 and ωo = 0, the problem is equivalent to the one studied by Park (1982),
Chu & Chung (2004), Yang (2007) and Leung (2008).

2. If we suppose π = 0 and ρ = 1, then we revert to the model developed by San-Jose,
Sicilia & Garcia-Laguna (2005).

§7. Conclusions

In this work we study a continuous review inventory control system with deterministic de-
mand where the demand on the shortage period is partially backlogged. We consider that the
customers are impatient and, therefore, a part of the demand during the stockout period may
not be satisfied. We suppose that the fraction of the customers who are willing to wait for the
next replenishment is a step function on the waiting time. We assume that the stockout costs
(backorder cost and lost sales cost) are both made up of a fixed cost and a variable cost which
linearly depends on the length of the waiting time for the next replenishment. We develop
a procedure to determine the optimal policy and the maximum inventory profit. This model
generalizes several known inventory systems.
Further extensions to the developed model can be done for demand rate depending on inven-
tory level, deteriorating items, demand rate depending on selling price, production finite rate
(EPQ model), etc. Also, we could generalize the inventory system considering that the cumu-
lative stockout unit cost is described by an increasing and quadratic function of the waiting
time up to the next replenishment. These extensive problems will be considered in our future
research.
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ON CLASSIFICATION OF MINIMA AND
MAXIMA FROM SOME BIVARIATE
DISTRIBUTIONS WITH BOUNDED

SUPPORT

Juana-María Vivo and Manuel Franco

Abstract. Some well-known continuous models with bounded support have been studied
in the literature, such as uniform and triangular distributions. Despite its long history, the
recognition of its importance as analytical tools has been relatively recent (see e.g. Kotz
and van Dorp (2004)).

Unfortunately, a univariate distribution does not have a unique extension to the bi-
variate case. Several bivariate models have been proposed for a univariate model (see e.g.
Kotz et al. (2000)), the most of them defined on either the whole R2 or on a positive
orthant. Recently, a bivariate triangular model under independence have been used in
Glickman and Xu (2008).

Furthermore, the log-concavity properties of the distribution models have interest-
ing qualitative implications in many fields, a good review and applications can be found
in Bagnoli and Bergstrom (2005). Therefore, the main aim of this paper is focused on
the log-concavity properties associated to some continuous bivariate distributions on a
bounded support, which can be considered as bivariate extensions of models on a bounded
interval.

Keywords: Bounded models, Bivariate distributions, Log-concavity

AMS classification: 62H10, 62N05, 91B02

§1. Introduction

The minimum and maximum order statistics play an important role in various statistical ap-
plications in which most of the systems have dependent structures. For instance, in survival
analysis with different unobserved causes, the minimum is the observable time of death in
a competing risks model, and the maximum represents the observable time of death in a
complementary risks model. In reliability theory, minima and maxima can be viewed as the
lifetimes of series and parallel systems, which are determined by the working of all or at
least one of the components, respectively. Thus, their ageing classifications or log-concavity
properties are of interest in that scheduling.
In general, the log-concavity of the survival function is defined by the conditional survival
function of a unit of age x: S(t|x) = S(t + x)/S(x) where S(x) = P (X > x) is the
survival or reliability function of a random variable (rv) X , i.e., the survival probability over
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an additional period of duration t of a unit of age x. Here, the physical principle of no ageing
associated to the exponential, also called loss of memory property (LMP ) S(t|x) = S(t),
represents that it does not age stochastically, i.e. its survival probability over an additional
period of duration t is the same regardless of its present age x. So, the monotonicity of
the conditional survival function with respect to its actual age points out the ageing of the
unit, and then it is said that a nonnegative rv X is increasing (decreasing) failure rate, IFR
(DFR), if S(t|x) is decreasing (increasing) in x for each t ≥ 0. A good reference for these
ageing notions is the text of Barlow and Proschan (1981).
Note that the log-concavity of the survival can be analyzed through the density function
(pdf) since the log-concavity of the density function implies the log-concavity of the survival
function (see Ross (1996) and Franco and Vivo (2002) among others). Specially, the log-
concave density function class includes among others the normal, truncated normal, exponen-
tial, Weibull, gamma, beta, uniform and Laplace. In some of these models, the log-concavity
requires restrictions on the parameter values. For example, the proofs and constraints for
exponential, gamma and Laplace distributions are derived from their definitions, see Johnson
et al. (1994). Likewise, the parametric restrictions to ensure the log-concavity of generalized
mixtures have been studied in Baggs and Nagaraja (1996) and Franco and Vivo (2002, 2006,
2007, 2009). A list of distributions with log-concave density functions in its support can be
found in Bagnoli and Bergstrom (2005) wherein only the uniform and beta distributions have
bounded domain. Also, Bagnoli and Bergstrom (2005) provide an excellent review on the
log-concavity properties and several applications with interesting qualitative implications in
many areas of economics, political science, actuarial science, biology and engineering, in
which explicit assumptions on the underlying distribution are usually required.
Furthermore, bivariate data frequently arise in real life applications, and in these situations
it is important to consider different bivariate distributions. Most of the bivariate distribu-
tions have been constructed as extensions of univariate distributions; unfortunately, these
extensions are not unique (see e.g. Kotz et al. (2000) and Balakrishnan and Lai (2009)).
Moreover, many of these applications are associated to a bounded domain, which are usually
analyzed by using unbounded distributions, although bounded models can be more appropri-
ate in some situations (see e.g. Kotz and van Dorp (2004)). Thus, it seems reasonable to use
bivariate distributions with bounded support as underlying distributions in those problems.
For example, in reliability engineering, an association measure is used between an external
factor and the failure of each unit of a two-component system, such as the ratio of ”how much
the external factor increases the probability of failure” compared with ”how much an always
fatal factor would increase the probability of failure”. The joint support of both ratios is the
unit square. Therefore, the main aim of this work is focused on the log-concavity properties
of minima and maxima from some bivariate distributions with bounded support. Note that
the log-concavity of the minimum order statistic from a bivariate model is related with the
weak bivariate ageing notions.
The paper is organized as follows. Section 2 displays some definitions and properties of the
log-concavity or ageing classes. Section 3 introduces some usual continuous bivariate distri-
butions with bounded support which can be considered as bivariate extensions of univariate
models. The extreme order statistics from these bivariate models are given, and then, their
log-concavities are also classified in this section.
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§2. Preliminaries

In the first place, we show some concepts and previous results, which will be used in the
remaining sections.
Let (X1, X2) be a generic two-dimensional random vector, whose components are neither
necessarily independent nor identically distributed, with cumulative distribution functions
Fi(x), survival functions Si(x), and pdf’s fi(x), i = 1, 2. Let F (x1, x2) = P (X1 ≤
x1, X2 ≤ x2) be its joint distribution function, and S(x1, x2) = P (X1 > x1, X2 > x2)
its survival function. Some continuous bivariate models can be seen in Kotz et al. (2000) and
Balakrishnan and Lai (2009).
Let T1 = min(X1, X2) and T2 = max(X1, X2) be the minimum and maximum order statis-
tics, and S(i)(x) and f(i)(x) denote their survival and density functions, i = 1, 2, respectively.
Thus, the survival functions of both extreme statistics are given by

S(1)(x) = S(x, x) = P (X1 > x,X2 > x) (1)

and
S(2)(x) = S1(x) + S2(x)− S(1)(x). (2)

On the other hand, letX be a non-negative rv with survival function S(x). It is said thatX has
a log-concave (log-convex) survival function, if logS(x) is concave (convex) in its support.
In the absolutely continuous case, the log-concavity of the survival function is determined
by the monotonicity of its failure rate function, wherein the failure rate function r(x) =

− d
dx logS(x) = f(x)

S(x) represents the probability of failure or death in each moment. So, the
log-concave (log-convex) survival function is also well-known by IFR (DFR) ageing class.
Now, let us see a technical lemma which is often used to study the log-concavity of the
survival function, see e.g. Barlow and Proschan (1981).

Lemma 1. Let X be an absolutely continuous rv with survival function S(x) and density
function f(x). If

f ′(x) · S(x) + f(x)2 ≥ (≤)0

for all x, then X has a log-concave (log-convex) survival function, i.e., X is IFR (DFR).

Likewise, it is said that X has a log-concave (log-convex) density function, if log f(x) is
concave (convex) in its support. It is well-known by increasing (decreasing) likelihood ratio,
shortly denoted by ILR (DLR) ageing class, wherein the likelihood ratio function l(x) =
− d
dx log f(x). Thus, the log-concavity of the pdf is determined by the monotonicity of the

likelihood ratio function, see e.g. Ross (1996). Note that DLR class only makes sense for
a random variable with support not upper bounded. In practice the intuitive meaning of the
assumption that a pdf is log-concave is that: (a) it does not have multiple separate maxima
(although it could be flat on top), and (b) the tails of the density function are not "too thick".
The following technical lemma will be used to explore the log-concavity and log-convexity
of the pdf, see e.g. Franco and Vivo (2002).

Lemma 2. Let X be an absolutely continuous rv with density function f(x). If

f ′′(x) · f(x) ≤ (≥)f ′(x)2

for all x, then X has log-concave (log-convex) pdf, i.e., X is ILR (DLR).
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Moreover, the log-concavity of the survival and density functions satisfies the following rela-
tionships, see Ross (1996) and Franco and Vivo (2002) among others.

Lemma 3. Let X be an absolutely continuous rv. If the pdf is log-concave (log-convex) in
its support then the survival function is log-concave (log-convex) in its support.

Finally, we shall use the following technical lemma about the concavity (convexity) of the
piecewise differentiable function in its support, see e.g. Vivo and Franco (2008).

Lemma 4. Let g(x) be a real continuous and piecewise differentiable function in its support.
If g(x) is piecewise concave and g′(x−) ≥ g′(x+), then it is concave in its support. Analo-
gously, if g(x) is piecewise convex and g′(x−) ≤ g′(x+), then it is convex in its support.

§3. Minima and maxima from bivariate models with bounded support

In this section, we analyze three bivariate probability models on a bounded domain which
have been utilized for the treatment of the uncertainty in valuation methodology (see Her-
rerías (2006)). They can be considered as bivariate extensions of continuous univariate dis-
tributions with bounded support which arise in several papers dealing with the PERT and risk
analysis. Without loss of generality, we will consider their standardized versions, i.e., on the
unit square (0, 1)× (0, 1) ⊂ R2.
The minimum and maximum order statistics from these models are obtained. The log-
concavity of their survival functions is also established, and then for their pdf’s.

3.1. Cubic model
Definition 1. Let (X1, X2) be a bivariate rv. It is said that (X1, X2) follows a cubic model
on (0, 1)× (0, 1), if its joint pdf is given by

f(x1, x2) =

{
1 if 0 < x1 < 1, 0 < x2 < 1

0 elsewhere.

The cubic model or bivariate rectangular distribution on (0, 1) × (0, 1) is also known as
bivariate uniform model, which is formed by two independent and identically distributed
uniform components, and its joint survival function is easily obtained.
Besides, from (1) and (2), the survival functions of the minimum and maximum statistics
from a cubic model can be expressed as

S(1)(x) =


1 if x < 0

(1− x)
2

if 0 ≤ x < 1

0 if 1 ≤ x
and S(2)(x) =


1 if x < 0

1− x2 if 0 ≤ x < 1

0 if 1 ≤ x.
(3)

Proposition 5. The minimum and maximum order statistics from a cubic model have log-
concave survival functions in its support.
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Proof. The proof follows from Lemma 1 and (3), taking into account that

f(1)(x) =

{
2(1− x) if 0 < x < 1

0 elsewhere
and f(2)(x) =

{
2x if 0 < x < 1

0 elsewhere

are the pdf’s of the minimum and maximum statistics, respectively.

Proposition 6. The minimum and maximum order statistics from a cubic model have log-
concave pdf’s in its support.

Proof. It is obvious from Lemma 2 and the pdf’s given in the proof of Proposition 5.

3.2. Rectangular-triangular model
Definition 2. Let (X1, X2) be a bivariate rv. It is said that (X1, X2) has a rectangular-
triangular model on (0, 1)× (0, 1), with parameter m ∈ (0, 1), if its joint pdf is given by

f(x1, x2) =


2x2

m if 0 < x1 < 1, 0 < x2 < m

2 1−x2

1−m if 0 < x1 < 1, m ≤ x2 < 1

0 elsewhere.

The rectangular-triangular model corresponds to a bivariate rv with independent components.
One of them is uniformly distributed and another component has a triangular distribution with
parameter m, and hence, its joint survival function is easily obtained.
Moreover, from (1) and (2), the survival functions of their extreme statistics can be written as

S(1)(x) =


1 if x < 0
1
m (1− x)(m− x2) if 0 ≤ x < m

1
1−m (1− x)3 if m ≤ x < 1

0 if 1 ≤ x

(4)

and

S(2)(x) =


1 if x < 0

1− 1
mx

3 if 0 ≤ x < m

1− x
(

1− 1
1−m (1− x)2

)
if m ≤ x < 1

0 if 1 ≤ x.

(5)

Proposition 7. The minimum and maximum order statistics from a rectangular-triangular
model have log-concave survival functions in its support.

Proof. From (4) and (5), the pdf’s of the minimum and maximum statistics from a rectangular-
triangular model are given by

f(1)(x) =


1− x

m (3x− 2) if 0 < x < m
3

1−m (1− x)
2

if m ≤ x < 1

0 elsewhere
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and

f(2)(x) =


3
mx

2 if 0 < x < m

1− 1
1−m (1− x) (1− 3x) if m ≤ x < 1

0 elsewhere

and from Lemma 1, S(1)(x) and S(2)(x) are both log-concave in each interval, i.e., logS(1)(x)
and logS(2)(x) are piecewise concave in (0, 1). Moreover, their failure rate functions can be
expressed as

r(1)(x) = − d

dx
logS(1)(x) =

{
1

1−x + 2x
m−x2 if 0 < x < m

3
1−x if m ≤ x < 1

and

r(2)(x) = − d

dx
logS(2)(x) =

{
3x2

m−x3 if 0 < x < m
1

1−x + 2x−1
1−m+x(1−x) if m ≤ x < 1.

Thus, we have that r(1)(m−) = r(1)(m+) and r(2)(m−) = r(2)(m+), and consequently,
from Lemma 4, both survival functions are log-concave in (0, 1).

Proposition 8. The minimum and maximum order statistics from a rectangular-triangular
model have log-concave pdf’s in its support.

Proof. From the pdf’s given in the proof of Proposition 7, it is easy to prove that both pdf’s
are piecewise log-concave in (0, 1) by Lemma 2. Moreover, we have that

(
log f(1)(x)

)′
=
f ′(1)(x)

f(1)(x)
=

{
−2 3x−1

m−x(3x−2) if 0 < x < m

− 2
1−x if m ≤ x < 1

and (
log f(2)(x)

)′
=
f ′(2)(x)

f(2)(x)
=

{
2
x if 0 < x < m

2(2−3x)
1−m−(1−x)(1−3x) if m ≤ x < 1

and from Lemma 4, we obtain that the pdf’s of the minimum and maximum statistics are
log-concave in (0, 1), since (log f(i)(m−))′ ≥ (log f(i)(m+))′, i = 1, 2.

3.3. Pyramidal model
Definition 3. Let (X1, X2) be a bivariate rv. It is said that (X1, X2) follows a pyramidal
model on (0, 1) × (0, 1), with parameters (m1,m2), such that m1,m2 ∈ (0, 1), if its joint
pdf is given by

f(x1, x2) =



3
m2
x2 if (x1, x2) ∈ R1

3
1−m1

(1− x1) if (x1, x2) ∈ R2

3
1−m2

(1− x2) if (x1, x2) ∈ R3

3
m1
x1 if (x1, x2) ∈ R4

0 elsewhere �
�
�
�
�
�

S
S
S
S
S
S

HHH
�����q

(m1,m2)

R1

R2

R3

R4
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where the regions Ri’s are defined by the following triangles of the unit square

R1 =
{

(x1, x2) : m1

m2
x2 ≤ x1 ≤ 1− (1−m1)

m2
x2, 0 < x2 ≤ m2

}
R2 =

{
(x1, x2) : m1 ≤ x1 < 1, m2(1−x1)

1−m1
≤ x2 ≤ 1− (1−m2)(1−x1)

1−m1

}
R3 =

{
(x1, x2) : m1(1−x2)

1−m2
≤ x1 ≤ 1− (1−m1)(1−x2)

1−m2
, m2 ≤ x2 < 1

}
R4 =

{
(x1, x2) : 0 < x1 ≤ m1,

m2

m1
x1 ≤ x2 ≤ 1− 1−m2

m1
x1

}
.

The joint survival function of a pyramidal model can be obtained by S(x1, x2) = F (x1, x2)−
F (x1, 1)− F (1, x2) + 1, being F (x1, x2) its joint distribution function

F (x1, x2) =



0 if x1 ≤ 0 or x2 ≤ 0

3x1x
2
2

2m2
− m1x

3
2

2m2
2

if (x1, x2) ∈ R1

m2(1−x1)3

2(1−m1)2 −
x3
2

2m2
2

+
3x2

2

2m2
− 3x2(1−x1)2

2(1−m1) if (x1, x2) ∈ R2, x2 < m2

1 + (1−x2)3

2(1−m2)2 + m2(1−x1)3

2(1−m1)2 −
3(1−x2)2

2(1−m2)

− 3x2(1−x1)2

2(1−m1)

if (x1, x2) ∈ R2, m2 ≤ x2 < 1

m1(1−x2)3

2(1−m2)2 −
x3
1

2m2
1

+
3x2

1

2m1
− 3x1(1−x2)2

2(1−m2) if (x1, x2) ∈ R3, x1 < m1

1 + (1−x1)3

2(1−m1)2 + m1(1−x2)3

2(1−m2)2 −
3(1−x1)2

2(1−m1)

− 3x1(1−x2)2

2(1−m2)

if (x1, x2) ∈ R3, m1 ≤ x1 < 1

3x2
1x2

2m1
− m2x

3
1

2m2
1

if (x1, x2) ∈ R4

3x2
1

2m1
− x3

1

2m2
1

if 0 ≤ x1 < m1, 1 ≤ x2

1 + (1−x1)3

2(1−m1)2 −
3(1−x1)2

2(1−m1) if m1 ≤ x1 < 1, 1 ≤ x2

3x2
2

2m2
− x3

2

2m2
2

if 0 ≤ x2 < m2, 1 ≤ x1

1 + (1−x2)3

2(1−m2)2 −
3(1−x2)2

2(1−m2) if m2 ≤ x2 < 1, 1 ≤ x1

1 if 1 ≤ x1, 1 ≤ x2.

Note that the pyramidal model can be considered as a more appropriate bivariate version of
the triangular model in dependent scenarios.
Furthermore, using the notation m = min(m1,m2) and M = max(m1,m2), from (1)
and (2), and taking into account that the diagonal of unit square intersects the line between
the triangles R1 and R2 in x = m2

1+m2−m1
, and the line between the triangles R3 y R4

in x = m1

1+m1−m2
, the survival functions of the minimum and maximum statistics from a
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pyramidal model can be expressed as

S(1)(x) =



1 if x < 0

1− x2(3m−x)
2m2 − x2(3M−x)

2M2 + x3(3M−m)
2M2 if 0 ≤ x < m

(2+x−3m)(1−x)2

2(1−m)2 + x3(3M−m)
2M2 − x2(3M−x)

2M2 if m ≤ x < M
1+M−m

(2+M−3m)(1−x)3

2(1−m)2 if M
1+M−m ≤ x < 1

0 if 1 ≤ x

(6)

and

S(2)(x) =



1 if x < 0

1− x3(3M−m)
2M2 if 0 ≤ x < M

1+M−m

1− M(1−x)3

2(1−m)2 −
3x2

2M + x3

2M2 + 3x(1−x)2

2(1−m) if M
1+M−m ≤ x < M

3(1−x)2

2(1−M) + 3x(1−x)2

2(1−m) −
(1−x)3

2(1−M)2 −
M(1−x)3

2(1−m)2 if M ≤ x < 1

0 if 1 ≤ x.

(7)

Now, we obtain the log-concavity of the pdf’s of the minimum and maximum order statistics
from a pyramidal model, and consequently, from Lemma 3 we shall have the log-concavity
of the survival functions of minima and maxima from this model.

Proposition 9. The minimum and maximum order statistics from a pyramidal model have
log-concave pdf’s in its support.

Proof. From the survival functions (6) and (7) of the minimum and maximum statistics from
a pyramidal model, their corresponding pdf’s can be written as

f(1)(x) =



3x(2mM(M+m)−(M2+m2(3M−m+1))x)
2m2M2 if 0 < x < m

3(m−3M−1)x2

2M2 − 3Mx2−6(mM+(1−m)2)x−3(1−2m)M
2(1−m)2M if m ≤ x < M

1+M−m
3(2−3m+M)(1−x)2

2(1−m)2 if M
1+M−m ≤ x < 1

0 elsewhere

and

f(2)(x) =



3x2(3M−m)
2M2 if 0 < x ≤ M

1+M−m
3x
M −

3M(1−x)2

2(1−m)2 −
3x2

2M2 − 3(1−4x+3x2)
2(1−m) if M

1+M−m < x ≤M
3(1−x)
1−M − 3(1−x)2

2(1−M)2 −
3M(1−x)2

2(1−m)2 −
3(1−4x+3x2)

2(1−m) if M < x ≤ 1

0 elsewhere.

Taking into account the first and second derivatives of both pdf’s in each interval, from
Lemma 2, the log-concavity of f(i)(x) (i = 1, 2) is determined by the signs of the numerators
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of the first derivative of their likelihood ratio functions

l′(1)(x) =


F 2x2+(Fx−2mM)2

(2mM(M+m)x−Fx2)2
if 0 < x < m

2H(1−2m)M2+x2H2+(G−xH)2

((1−2m)M2+2Gx−Hx2)2
if m ≤ x < M

1+M−m
2

(1−x)2
if M

1+M−m ≤ x < 1

and

l′(2)(x) =


2
x2 if 0 < x < M

1+M−m
2(Ax+M(M+1−m)2)

2
+2M2(M+1−m)(1−m)2(3M−m)

(Ax2−2M(M+1−m)2x+M2(M+1−m))
2 if M

1+M−m ≤ x < M

2((Cx−B)2+B2+2CD)
(2D+2Bx−Cx2)2

if M ≤ x < 1

where
A = M3 + (1−m)2 + 3(1−m)M2

B = M(M −m)2 + 2(1−M)(1−m)

C = (1−m)2 + (1−M)2(M + 3(1−m))

D = 1
2

(
(1−m)2(1− 2M) + (1−M)2(1−M −m)

)
F = M2 +m2(3M −m+ 1)

G = M
(
mM + (1−m)2

)
H = M2 + (1−m)2(3M −m).

Therefore, f(i)(x) is log-concave in each interval of its support, i = 1, 2. Moreover, log f(i)(x)

verifies the conditions of Lemma 4, i = 1, 2, since l′(1)(m−) = l′(1)(m+), l′(1)(
M

1+M−m−) =

l′(1)(
M

1+M−m+), l′(2)(
M

1+M−m−) = l′(2)(
M

1+M−m+) and l′(2)(M−) = l′(2)(M+). So, we
have that the pdf’s of the minimum and maximum statistics are log-concave in (0, 1).

Corollary 10. The minimum and maximum order statistics from a pyramidal model have
log-concave survival functions in its support.

Proof. It is obvious from Lemma 3 and Proposition 9.
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On random contractions of generalized order statistics
Milena Bieniek

159



Some new complexity results on fuzzy integer programming
Vı́ctor Blanco and Justo Puerto

On the optimization of the quotient of DC functions
Rafael Blanquero and Emilio Carrizosa

Robust estimation of the scale parameter in weighted models
Pawe l B lażej
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Eĺıas F. Combarro and Pedro Miranda

Studying for operating problems of Mould and Die Industry in Thailand
Mongkon Deeudom and Surapun Yimman

The Efficiency of Population Mean Estimation and Population Proportion Estimation
for Normal and Skewed Data

Boonkong Dhakonlayodhin

On the Change Point Estimation of Exponentially Distributed Quality Characteristics
Eralp Dogu

Disintegration, Construction and Formulation of a Rostering Problem by Mathemat-
ical Programming
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Parameter estimation in linear and non linear models with general heteroscedastic
structure

Ali Hadi, Beatriz Lacruz and Ana Pérez-Palomares
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Confidence intervals for the difference between two log-normal means
Thongkam Maiklad

Multiplicative algorithms for the construction of Optimum Designs of experiments for
Discriminating between two rival models
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21. A. Elipe y L. Floŕıa (eds.): III Jornadas de Mecánica Celeste, 2001, ii + 202
pp., ISBN: 84-95480-21-2.
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Sanz, J.J. Torrens (eds.): Ninth International Conference Zaragoza–Pau on Applied
Mathematics and Statistics, 2006, xxxii +440 pp., ISBN: 84-7733-871-X.
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35. M. C. López de Silanes, M. Palacios, G. Sanz, J. J. Torrens, M. Madaune –
Tort, C. Paroissin, D. Trujillo (eds.): Tenth International Conference Zaragoza–Pau
on Applied Mathematics and Statistics, 2010, xxx +272 pp., ISBN: 978-84-15031-53-6.





mo
no

gr
af

ia
s m

at
em

at
ica

s “
ga

rc
ia

 d
e 

ga
ld

ea
no

”
´

´

“garcia de galdeano”

n.o 36              

monografias matemáticas

2010
´

A. Pérez-Palomares

L. M. Esteban
B. Lacruz
F.J. López
P.M. Mateo

(Editors)

36    

´

´

garcía de galdeano
monografías

C. Paroissin
G. Sanz

9 7 8 8 4 1 5 0 3 1 9 2 5

ISBN 978-84-15031925

The Pyrenees 
International Workshop 
and Summer School 
on Statistics, Probability 
and Operations Research
SPO 2009 ´́

on.

´




