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Preface

The International Conference Zaragoza-Pau on Applied Mathematics and Statistics is orga-
nized normally every two years since 1989 by the Departamento de Matemática Aplicada,
the Departamento de Métodos Estadísticos, both from the Universidad de Zaragoza (Spain),
and the Laboratoire de Mathématiques Appliquées et leurs Applications, from the Univer-
sité de Pau et des Pays de l’Adour (France). The aim of this conference is to present recent
works in Applied Mathematics and Statistics, putting special emphasis on subjects linked to
petroleum engineering and environmental problems.

The Eleventh Conference took place in Jaca (Spain) from 15th to 17st September 2010.
The official opening ceremony was graced by the presence of the Chancellor of the University
of Zaragoza, Rector Mgfco. D. Manuel J. López Pérez, and the Chancellor of the University
of Pau, M. le Président Jean-Louis Gout. During those three days, 87 mathematicians, coming
from different universities, research institutes or the industrial sector, attended 13 plenary
lectures, 39 contributed talks and a poster session with a total of 10 posters.

This edition had the pleasure of a special event. A mini-symposium in honour of Monique
Madaune-Tort, Professor of the Université de Pau et des Pays de l’Adour. Monique is one
of the pioneers of this conference and several other French-Spanish events in Mathematics.
She belongs to the group of French and Spanish researchers who are deeply involved in the
academic and scientific cooperation between the Université de Pau et des Pays de l’Adour
and the Universidad de Zaragoza. In this mini-symposium, 11 invited conferences were held.

The principal talks were about theoretical and numerical analysis of deterministic models
described by differential equations, statistics and stochastics processes, surface approxima-
tion and image analysis. At the same time, there was also a session devoted to Algebra and
Geometry. These proceedings contain 1 paper based on the corresponding invited lectures
along with 19 full length refereed research papers. In a special volume, 9 papers based on
invited lectures given in the mini-symposium, as a special tribute to Monique Madaune-Tort,
are published as a Monografía de la Real Academia de Ciencias de Zaragoza.

We would like to thank the following institutions for their regular financial and material
support in our cooperation programs: Université de Pau et des Pays de l’Adour, Universidad
de Zaragoza, Conseil Régional d’Aquitaine, Gobierno de Aragón, Conseil Régional de Midi-
Pyrénées, Gobierno de Navarra, and Pyrenean Work Community. Thanks are also due to the
Centre National de la Recherche Scientifique (CNRS), Common Funds Aquitaine-Aragón
and European Social Fund (ESF), for the grants specially allotted at the time of the Eleventh
Conference.

We wish to express our gratitude to Mohamed Amara (U. Pau), Enrique Artal (U. Zarago-
za), Mehdi Badra (U. Pau), Roland Becker (U. Pau), Laurent Bordes (U. Pau), Mira Bozzini
(U. Milano-Bicocca), Bénédicte Chassat-Alziary (U. Toulouse I), Marc Dambrine (U. Pau),
Alberto Elduque (U. Zaragoza), Raúl Gouet (U. Chile), Laurent Lévi (U. Pau), Francisco
Lisbona (U. Zaragoza), Miguel Pasadas (U. Granada), Juan Manuel Peña (U. Zaragoza),
Tomas Sauer (U. Justus-Leibig-Geissen) and Jean Vallès (U. Pau), who, together with us,



xii Preface

formed the Scientific Committee, and Mehdi Badra, Jacky Cresson, Marc Dambrine, Daniele
Faenzi, Vicent Florens, Laurent Lévi and Marie-Laure Rius, from the Université de Pau et des
Pays de l’Adour, and Diego Izquierdo, Javier López and Pedro Mateo, from the University of
Zaragoza, who shared with us, the tasks of the Organizing Committee. We are also indebted
to all the others who helped in the organization of the Conference, in particular, Carmen
Paniagua and José Manuel Palacios.

We finally acknowledge the assistance provided for the realization of the proceedings
by the Instituto Universitario de Matemáticas y Aplicaciones, contained in the Monografías
Matemáticas García de Galdeano, and the Servicio de Publicaciones of the University of
Zaragoza, as well as the kind cooperation of the referees.

The next edition of the Conference Zaragoza-Pau will be held in Jaca from 17th to 19th
September 2012. All of you are cordially invited to participate in this event.

Pau and Zaragoza, Mars 2012
The Editors

María Cruz López de Silanes
Manuel Palacios
Departamento de Matemática Aplicada
Universidad de Zaragoza

Gerardo Sanz
Departamento de Métodos Estadísticos
Universidad de Zaragoza

Juan José Torrens
Departamento de Ingeniería Matemática e
Informática
Universidad Pública de Navarra

Jacques Giacomoni
Monique Madaune-Tort
Christian Paroissin
Guy Vallet
Laboratoire de Mathématiques Appliquées
et leurs Applications
Université de Pau et des Pays de l’Adour
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González, D., 123

Hernández, M. A., 123
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VERY WEAK SOLUTIONS OF STOKES
PROBLEM IN EXTERIOR DOMAIN

Chérif Amrouche and Mohamed Meslameni
Abstract. The existence and the uniqueness of very weak solutions of Stokes system are
well known in the classical Sobolev spaces Wm,p(Ω) when Ω is bounded (see [3]). When
Ω is an exterior domain, a similar approach would fail (in particular because Poincare’s
inequalities do not hold in such domains). Therefore, a specific functional framework
based on density arguments is necessary to do this work.

Keywords: Stokes equations, very weak solutions, weighted Sobolev spaces, exterior do-
main.
AMS classification: 35Q30, 76D03, 76D05, 76D07.

§1. Introduction

Let Ω′ be a bounded connected open domain in R3 with boundary ∂Ω′ = Γ of class C1,1

representing an obstacle and let Ω its complement, i.e. Ω = R3 \ Ω′. In this work, we are
interested in the existence and the uniqueness of very weak solution concerning the Stokes
problem in exterior domain:

−∆u + ∇q = f and ∇ · u = h in Ω, u = g on Γ, (S)

where u denote the velocity and q the pressure and both are unknown, f the external forces,
h the compressibility condition and g the boundary condition for the velocity, the three func-
tions being known. This problem is well done in 2005 by R. Farwig [4], with data f = divF0,
h and g satisfying

F0 ∈ Lr(Ω), h ∈ Lr(Ω), g ∈W −1/p,p(Γ), 3 < p < ∞,
1
3

+
1
p

=
1
r

yielding 3
2 < r < 3.

In this paper, we are interested in the following data:

f = divF0 + ∇ f1, h ∈ Lr(Ω) and g ∈W−1/p,p(Γ),

with
F0 ∈ Lr(Ω), f1 ∈ W−1,p

0 (Ω),
3
2
< p < ∞, and

1
3

+
1
p

=
1
r
,

or
F0 ∈W0,r

−1(Ω), f1 ∈ W−1,p
−1 (Ω) and h ∈ W0,r

−1 (Ω),

with
3
2
< p < ∞, p , 3 and

1
3

+
1
p

=
1
r
.
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§2. Basic concepts on Sobolev spaces

Let x = (x1, x2, x3) be a typical point in R3 and let r = |x| = (x2
1 +x2

2 +x2
3)1/2 denote its distance

to the origin. We define the weight function ρ(x) = 1 + r. For each p ∈ R and 1 < p < ∞,
the conjugate exponent p′ is given by the relation 1/p + 1/p′ = 1. Then, for any nonnegative
integers m and real numbers p > 1 and α, setting

k = k(m, p, α) =

−1, if 3
p + α < {1, . . . ,m} ,

m − 3
p − α, if 3

p + α ∈ {1, . . . ,m} ,

we define the following space:

Wm,p
α (Ω) = { u ∈ D′(Ω);

∀ λ ∈ N3 : 0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(1 + ρ))−1Dλu ∈ Lp(Ω);

∀ λ ∈ N3 : k + 1 ≤ |λ| ≤ m, ρα−m+|λ|Dλu ∈ Lp(Ω) }.

It is a reflexive Banach space equipped with its natural norm:

||u||Wm,p
α (Ω) =

( ∑
0≤|λ|≤k

||ρα−m+|λ|(ln(1 + ρ))−1Dλu||pLp(Ω)

+
∑

k+1≤|λ|≤m

||ρα−m+|λ|Dλu||pLp(Ω)

)1/p

.

We note that the logarithmic weight only appears if p = 3 or p = 3/2 and all the local
properties of W1,p

0 (Ω) (respectively, W2,p
0 (Ω)) coincide with those of the corresponding clas-

sical Sobolev space W1,p(Ω) (respectively, W2,p(Ω)). For m = 1 or m = 2 we set W̊m,p
α (Ω) as

the adherence of D(Ω) for the norm ‖ · ‖Wm,p
α (Ω). Then, the dual space of W̊m,p

α (Ω), denoting

by W−m,p′
−α (Ω), is a space of distributions. When Ω = R3, we have W1,p

α (R3) = W̊
1,p
α (R3).

If Ω is a Lipschitz exterior domain, then for α = 0 we have

W̊
1,p
0 (Ω) =

{
u ∈W1,p

0 (Ω), u = 0 on ∂Ω
}
,

and
W̊

2,p
0 (Ω) =

{
u ∈W2,p

0 (Ω), u =
∂u

∂n
= 0 on ∂Ω

}
,

where ∂u/∂n is the normal derivate of u.
The spaces W1,p

α (Ω) or W2,p
α (Ω) sometimes contain some polynomial functions. We have

for m = 1 or m = 2:

P j ⊂Wm,p
α (Ω) with

 j = [m − (3/p + α)], if 3/p + α < Z−,

j = −(3/p + α), otherwise,

where [s] denotes the integer part of the real number s and P j is the space of polynomials of
degree less then j.
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We recall the following Sobolev embeddings for α = 0 or α = 1

W1,p
α (Ω) ↪→ W0,p∗

α (Ω) where p∗ =
3p

3 − p
and 1 < p < 3.

Consequently, by duality, we have

W0,q
−α (Ω) ↪→ W−1,p′

−α (Ω) where q =
3p′

3 + p′
and p′ > 3/2.

On the other hand, if 3/p + α < {1, 2}, we have the following continuous embedding:

W2,p
α (Ω) ↪→W1,p

α−1(Ω) ↪→W0,p
α−2(Ω).

§3. Preliminary results

In the sequel, we need to introduce the following spaces:

Dσ(Ω) = {ϕ ∈D(Ω); ∇ · ϕ = 0} and Dσ(Ω) =
{
ϕ ∈D(Ω); ∇ · ϕ = 0

}
.

Then, we show some density results that are essential for the proofs below. We begin by
introducing the space

X`
r,p(Ω) =

{
ϕ ∈ W̊

1,r
` (Ω); ∇ · ϕ ∈ W̊

1,p
` (Ω)

}
.

Thank’s to Poincaré-type inequality (see [2]), we can equipped this space with the following
norm:

‖u‖X`
r,p(Ω) =

∑
1≤i, j≤3

∥∥∥∥∥ ∂ui

∂x j

∥∥∥∥∥
W0,r

`
(Ω)

+ ‖∇ · u‖W1,p
`

(Ω) .

Lemma 1. Let Ω be a Lipschitz open set in R3 and suppose that 0 6 1/p − 1/r 6 1/3. We
have the following properties:

i) The space D(Ω) is dense in X1
r,p(Ω) and, for all q ∈ W−1,p

−1 (Ω) and ϕ ∈ X1
r′,p′ (Ω), we

have
〈∇q,ϕ〉[X1

r′ ,p′ (Ω)]′×X1
r′ ,p′ (Ω) = − 〈q,∇ · ϕ〉

W−1,p
−1 (Ω)×W̊

1,p′

1 (Ω)
.

ii) If in addition p , 3 and r , 3, then the space D(Ω) is dense in X0
r,p(Ω) and, for all

q ∈W−1,p
0 (Ω) and ϕ ∈ X0

r′,p′ (Ω), we have

〈∇q,ϕ〉[X0
r′ ,p′ (Ω)]′×X0

r′ ,p′ (Ω) = − 〈q,∇ · ϕ〉
W−1,p

0 (Ω)×W̊
1,p′

0 (Ω)
.

Proof. The density of D(Ω) in X`
r,p(Ω) relies on an adequate truncation procedure and reg-

ularization. The truncation function that we shall use has been defined by: ϕ ∈ D(R3) such
that 0 6 ϕ(t) 6 1 for any t ∈ R3, and

ϕ(t) =

1, if 0 6 |t| 6 1,
0, if |t| > 2.
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Now, let u ∈ X`
r,p(Ω) and ũ be the extension by 0 of u to R3, then we have ũ ∈ X`

r,p(R3). We
begin to apply the cut off functions ϕk, defined on R3 for any k ∈ N∗, by ϕk(x) = ϕ(x/k).
Set uk = ϕk̃u. It is easy to prove that uk → ũ in X`

r,p(R3) when k → ∞. Now, we start the
regularization of our sequence uk. In a first step we consider that Ω′ is strictly star-shaped
with respect to one of its points which is taken to the origin. Under this assumption, we set
uk,θ(x) = uk(θx) for any real number θ > 1 and x ∈ R3. Then uk,θ ∈ X`

r,p(R3) and supp uk,θ is
compact in Ω. Moreover

lim
θ→1

uk,θ = uk in X`
r,p(R3).

Consequently, for any real number ε > 0 small enough, the restriction of ρε ∗uk,θ to Ω belongs
toD(Ω) and

lim
ε→0

lim
θ→1

lim
k→∞

ρε ∗ uk,θ = ũ in X1
r,p(R3),

where ρε is a mollifier. Consequently,D(Ω) is dense in X`
r,p(Ω). In the case where Ω′ is only

a Lipschitz open set in R3, we have to recover Ω′ by a finite number of star open sets and
partitions of unity. Clearly, it suffices to apply the above argument to each of these sets to
derive the desired result on the entire domain. �

Remark 1. Observe that for f ∈ (X`
r,p(Ω))

′

with ` = 1 or ` = 0, there exist F0 = ( fi j)1≤i, j≤3 ∈

W0,r′
−`

(Ω) and f1 ∈ W−1,p′

−`
(Ω) such that:

f = ∇ · F0 + ∇ f1. (1)

Moreover,
‖ f‖[X`

r,p(Ω)]′ = max
{ ∥∥∥ fi j

∥∥∥
W0,r′
−`

(Ω) , 1 ≤ i, j ≤ 3, ‖ f1‖W−1,p′
−`

(Ω)

}
.

Conversely, if f satisfies (1), then f ∈ (X`
r,p(Ω))

′

.

Giving a meaning to the trace of a very weak solution of the Stokes problem is not trivial:
remember that we are not in the classical variational framework. In this way, we need to
introduce some spaces. First, we consider the space:

Yp′,`(Ω) =
{
ψ ∈W2,p′

`
(Ω), ψ|Γ = 0, (∇ · ψ)|Γ = 0

}
.

The following lemma gives another characterization to the space Yp′,`(Ω) very useful in the
Green’s formula defined in Corolllary 4.

Lemma 2. We have the identity

Yp′,`(Ω) =

{
ψ ∈W2,p′

`
(Ω), ψ|Γ = 0,

∂ψ

∂n
· n|Γ = 0

}
(2)

and the range space of the normal derivative γ1 : Yp′,`(Ω) −→W1/p,p′ (Γ) is

Zp′ (Γ) =
{
z ∈W1/p,p′ (Γ); z · n = 0

}
.
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Proof. Let u ∈W2,p′

`
(Ω) such that u = 0 on Γ. Then div u = (∂u/∂n) · n on Γ and the identity

(2) holds. Moreover, it is clear that Im(γ1) ⊂ Zp′ (Γ). Conversely, let µ ∈ Zp′ (Γ). As Ω′ is
bounded, we can fix once for all a ball BRo , centered at the origin and with radius R0, such
that Ω′ ⊂ BRo . Thus we have the existance of u ∈ W2,p′ (ΩR0 ) such that u = 0, ∂u/∂n = µ
on Γ ∪ ∂BRo (ΩR0 = Ω ∩ BR0 ). The function u can be extended by zero outside BRo and
owing to its boundary conditions on ∂BRo , the extended function, still denoted by u, belongs
to W2,p′

`
(Ω), for any ` since its support is bounded. Since µ · n = 0 on Γ, we have u ∈ Yp′,`(Ω)

and µ ∈ Im(γ1). �

Secondly, we shall use the space:

T`
r,p(Ω) =

{
u ∈W0,p

−`
(Ω); ∆u ∈ [X`

r′,p′ (Ω)]
′
}
,

equipped with the norm:

‖u‖T`
r,p(Ω) = ‖u‖W0,p

−`
(Ω) + ‖∆u‖[X`

r′ ,p′ (Ω)]′ .

We also introduce the following space:

Hr
p,`(div,Ω) =

{
u ∈W0,p

`−1(Ω); ∇ · u ∈W0,r
`−1(Ω)

}
.

This space is equipped with the graph norm. The following lemma proves that the tan-
gential trace of functions u ∈ T`

r,p(Ω) belong to the dual space of Zp′ (Γ), wich is

(Zp′ (Γ))
′

=
{
µ ∈W−1/p,p(Γ); µ · n = 0

}
.

Observe that we can decompose u into its tangential and normal parts, that is: u = uτ+ (u ·n)n.
The proof of the following lemma is similar to the case of bounded domain (see [3]).

Lemma 3. Suppose that 3/2 < p < ∞ and 1/p + 1/3 = 1/r. Then the space D(Ω) is dense
in T0

r,p(Ω). If in addition p , 3, we haveD(Ω) is dense in T1
r,p(Ω).

Corollary 4. Let 3/2 < p < ∞ and 1/p + 1/3 = 1/r. Then the mapping γτ : u −→ uτ|Γ on the
spaceD(Ω) can be extended by continuity to a linear and continuous mapping, still denoted
by γτ, from T0

r,p(Ω) into W−1/p,p(Γ), and we have the Green formula: for any u ∈ T0
r,p(Ω) and

ψ ∈ Yp′,0(Ω),

〈∆u,ψ〉[X0
r′ ,p′ (Ω)]′×X0

r′ ,p′ (Ω) =

∫
Ω

u · ∆ψ dx −
〈
uτ,

∂ψ

∂n

〉
W−1/p,p(Γ)×W1/p,p′ (Γ)

.

If in addition p , 3, we have for any u ∈ T1
r,p(Ω) and ψ ∈ Yp′,1(Ω),

〈∆u,ψ〉[X1
r′ ,p′ (Ω)]′×X1

r′ ,p′ (Ω) =

∫
Ω

u · ∆ψ dx −
〈
uτ,

∂ψ

∂n

〉
W−1/p,p(Γ)×W1/p,p′ (Γ)

.

The following lemma gives a precise sense to the normal trace of functions u ∈ Hr
p,`(div,Ω)

and the proof is very classical.

Lemma 5. Let Ω be a Lipschitz open set in R3. Suppose that 0 6 1/r − 1/p 6 1/3 and ` = 0
or ` = 1. Then
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i) The spaceD(Ω) is dense in Hr
p,`(div,Ω).

ii) The mapping γn : u −→ u · n|Γ on the space D(Ω) can be extended by continuity to a
linear and continuous mapping, still denoted by γn, from Hr

p,`(div,Ω) into W−1/p,p(Γ).
If in addition 1/r−1/p = 1/3 and 3/2 < p < ∞, we have the following Green formula:
for any u ∈ Hr

p,`(div,Ω) and ϕ ∈ W1,p′

1−` (Ω),∫
Ω

u · ∇ϕ dx +

∫
Ω

ϕ∇ · u dx = 〈u · n, ϕ〉W−1/p,p(Γ)×W1/p,p′ (Γ) .

§4. Very weak solutions in Lp(Ω) ×W−1,p
0 (Ω)

In this section, we prove the existence and the uniqueness of very weak solutions to the
Stokes problem via an argument of duality. We begin by specifying the meaning of very
weak variational formulation.

Let
f ∈ [X0

r′,p′ (Ω)]
′

, h ∈ Lr(Ω) and g ∈W−1/p,p(Γ), (3)

with
3
2
< p < ∞ and

1
p

+
1
3

=
1
r

(A1)

yielding 1 < r < 3.

Definition 1 (Very weak solution for the Stokes problem). Suppose that (A1) is satisfied and
let f , h and g verifying (3). We say that (u, q) ∈ Lp(Ω) ×W−1,p

0 (Ω) is a very weak solution of
(S) if the following equalities hold: For any ϕ ∈ Yp′,0(Ω) and π ∈ W1,p′

0 (Ω),

−

∫
Ω

u · ∆ϕ dx − 〈q,∇ · ϕ〉W−1,p
0 (Ω)×W̊1,p′

0 (Ω) = 〈 f ,ϕ〉Ω −
〈
gτ,

∂ϕ

∂n

〉
Γ

, (4)

∫
Ω

u · ∇π dx = −

∫
Ω

hπ dx + 〈g · n, π〉W−1/p,p(Γ)×W1/p,p′ (Γ) , (5)

where the dualities on Ω and Γ are defined by

〈 · , · 〉Ω = 〈 · , · 〉[X0
r′ ,p′ (Ω)]′×X0

r′ ,p′ (Ω) , 〈 · , · 〉Γ = 〈 · , · 〉W−1/p,p(Γ)×W1/p,p′ (Γ) .

Note that if 3/2 < p < ∞ and 1/p + 1/3 = 1/r, we have:

W1,p′

0 (Ω) ↪→ Lr′ (Ω) and Yp′,0(Ω) ↪→ X0
r′,p′ (Ω),

which means that all the brackets and integrals have a sense.

Proposition 6. Under the assumptions of Definition 1, the following two statements are
equivalent:

i) (u, q) ∈ Lp(Ω) ×W−1,p
0 (Ω) is a very weak solution of (S),

ii) (u, q) satisfies the system (S) in the sense of distributions.
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Proof. i) ⇒ ii) Let (u, q) ∈ Lp(Ω) × W−1,p
0 (Ω) a very weak solution of (S), then if we take

ϕ ∈D(Ω) and π ∈ D(Ω) we can deduce by (4) and (5) that

−∆u + ∇q = f in Ω and ∇ · u = h in Ω,

and that u ∈ T0
r,p(Ω). Now let ϕ ∈ Yp′,0(Ω) ⊂ X0

r′,p′ (Ω), then we have

〈−∆u,ϕ〉Ω = 〈−∇q + f ,ϕ〉Ω .

As (A1) is satisfied, it follows from Corollary 4 that

〈−∆u,ϕ〉Ω = −

∫
Ω

u · ∆ϕ dx +

〈
uτ,

∂ϕ

∂n

〉
Γ

and since 1/r − 1/p = 1/3, it follows from Lemma 1 ii) that

〈∇q,ϕ〉Ω = − 〈q,∇ · ϕ〉
W−1,p

0 (Ω)×W̊
1,p′

0 (Ω)
.

Thus we have

−

∫
Ω

u∆ϕdx +

〈
uτ,

∂ϕ

∂n

〉
Γ

= 〈q,∇ · ϕ〉
W−1,p

0 (Ω)×W̊
1,p′

0 (Ω)
+ 〈 f ,ϕ〉Ω ,

and we can deduce that for any ϕ ∈ Yp′,0(Ω)〈
uτ,

∂ϕ

∂n

〉
Γ

=

〈
gτ,

∂ϕ

∂n

〉
Γ

.

Now let µ ∈ W1/p,p′ (Γ), then we have
〈
uτ − gτ,µ

〉
Γ =

〈
uτ − gτ,µτ

〉
Γ. It is clear that µτ ∈

Zp′ (Γ), thus it follows from Lemma 2 that there exists ϕ ∈ Yp′,0(Ω) such that ∂ϕ/∂n = µτ
on Γ. Then from this we can deduce that uτ = gτ in W−1/p,p(Γ). From the equation ∇ · u = h,
we deduce that u ∈ Hr

p,1(div,Ω), then it follows from Lemma 5 ii), that for any π ∈W1,p′

0 (Ω),

〈u · n,π〉Γ = 〈g · n,π〉Γ .

Consequently u · n = g · n in W−1/p,p(Γ) and finally u = g on Γ.
ii)⇒i) We suppose that (u, q) satisfies the system (S) in the sense of distributions. Then for
any ϕ ∈ Yp′,0(Ω) ↪→ X0

r′,p′ (Ω) we have

〈−∆u,ϕ〉Ω = 〈 f − ∇ q,ϕ〉Ω ,

Using Corollary 4 and Lemma 1 ii) we prove (4).
Now from the equation ∇ · u = h, we can deduce that for any π ∈ W1,p′

0 (Ω)∫
Ω

π∇ · u dx =

∫
Ω

hπ dx,

this integral has a sense because we have W1,p′

0 (Ω) ↪→ Lr′ (Ω). Using Lemma 5 ii) we de-
duce (5).

�
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Before stating the theorem of the existense and the uniqueness of the very weak solution
for Stokes problem, we need to introduce the following null spaces for α ∈ {−1, 0, 1} and
k ∈ {0, 1, 2}:

N
k,p
α (Ω) =

{
(u, π) ∈Wk,p

α (Ω) ×Wk−1,p
α (Ω); T (u, π) = (0, 0) in Ω and u|Γ = 0

}
,

with
T (u, π) = (−∆ u + ∇ π, div u).

If p < {3/2, 3}, we can prove thatN2,p
1 (Ω) = N

1,p
0 (Ω) = N

0,p
−1 (Ω). Note that if u ∈W0,p

−1 (Ω)
and −∆ u + ∇ π = 0 in Ω with π ∈ W−1,p

−1 (Ω), then the tangential component uτ of u belongs
to W−1/p,p(Γ) and if div u = 0 in Ω, then u · n ∈W− 1

p ,p(Γ). That means that u = 0 on Γ makes
sense.
Theorem 7. Let Ω be an exterior domain with C1,1 boundary and let p and r satisfy (A1) and
let f , h and g satisfying (3). Then the Stokes problem (S) has exactly one solution u ∈ Lp(Ω)
and q ∈W−1,p

0 (Ω) if and only if for any (u, η) ∈ N2,p′

0 (Ω):

〈 f , u〉 − 〈h, η〉 + 〈g, (ηI − ∇u) · n〉Γ = 0.

Moreover, there exists a constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖q‖W−1,p
0 (Ω) ≤ C(‖ f‖[X0

r′ ,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ) .

Proof. It remains to consider the equivalent problem: Find (u, q) ∈ Lp(Ω) ×W−1,p
0 (Ω) such

that for any w ∈ Yp′,0(Ω) and π ∈ W1,p′

0 (Ω) it holds:∫
Ω

u · (−∆w+∇π) dx−〈q,∇ · w〉W−1,p
0 (Ω)×W̊1,p′

0 (Ω) = 〈 f ,w〉Ω−
〈
gτ,

∂w

∂n

〉
Γ

+〈g · n, π〉Γ−
∫

Ω

h π dx.

Let T be a linear form defined by:

T : Lp′ (Ω) × W̊1,p′

0 (Ω) −→ R

(F, ϕ) 7−→ 〈 f ,w〉Ω −
〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx,

with (w, π) ∈W2,p′

0 (Ω) ×W1,p′

0 (Ω) is a solution of the following Stokes problem:

−∆w + ∇ π = F and ∇ · w = ϕ in Ω, w = 0 on Γ,

and satisfying the following estimate (see [1, Theorem 3.1]):

inf
(u,η)∈N2,p′

0 (Ω)

(
‖w + u‖W2,p′

0 (Ω) + ‖π + η‖W1,p′
0 (Ω)

)
6 C

(
‖F‖Lp′ (Ω) + ‖ϕ‖W1,p′

0 (Ω)

)
. (6)

Then we have for any pair (F, ϕ) ∈ Lp′ (Ω) × W̊1,p′

0 (Ω) and for any (u, η) ∈ N2,p′

0 (Ω)∣∣∣∣∣〈 f ,w〉Ω − 〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx
∣∣∣∣∣

=

∣∣∣∣∣〈 f ,w + u〉Ω −
〈
gτ,

∂(w + u)
∂n

〉
Γ

+ 〈g · n, π + η〉Γ −

∫
Ω

h (π + η) dx
∣∣∣∣∣

≤ C
(
‖ f‖[X0

r′ ,p′ (Ω]′ + ‖g‖W−1/p,p(Ω) + ‖h‖Lr(Ω)

)(
‖w + u‖W2,p′

0 (Ω) + ‖π + η‖W1,p′
0 (Ω)

)
.
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Using (6), we prove that∣∣∣∣∣〈 f ,w〉Ω − 〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx
∣∣∣∣∣

≤ C
(
‖ f‖[X0

r′ ,p′ (Ω]′ + ‖g‖W−1/p,p(Ω) + ‖h‖Lr(Ω)

)(
‖F‖Lp′ (Ω) + ‖ϕ‖W1,p′

0 (Ω)

)
,

from this we can deduce that the linear form T is continuous on Lp′ (Ω) × W1,p′

0 (Ω) and
according to the Riesz’ Theorem we deduce that there exists a unique (u, q) ∈ Lp(Ω) ×
W−1,p

0 (Ω) solution of (S) satisfying the appropriate estimate. �

§5. Very weak solutions in W0,p
−1 (Ω) ×W−1,p

−1 (Ω)

Here, we are interested in the case of the following assumptions:

f ∈ [X1
r′,p′ (Ω)]

′

, h ∈ W0,r
−1 (Ω) and g ∈W−1/p,p(Γ), (7)

with
3
2
< p < ∞, p , 3 and

1
p

+
1
3

=
1
r
, (A2)

yielding 1 < r < 3.

Definition 2 (Very weak solution for the Stokes problem). Suppose that (A2) is satisfied and
let f , h and g satisfying (7). We say that (u, q) ∈W0,p

−1 (Ω) ×W−1,p
−1 (Ω) is a very weak solution

of (S) if the following equalities hold: For any ϕ ∈ Yp′,1(Ω) and π ∈ W1,p′

1 (Ω),

−

∫
Ω

u · ∆ϕ dx − 〈q,∇ · ϕ〉W−1,p
−1 (Ω)×W̊1,p′

1 (Ω) = 〈 f ,ϕ〉Ω −
〈
gτ,

∂ϕ

∂n

〉
Γ

,

∫
Ω

u · ∇π dx = −

∫
Ω

hπdx + 〈g · n, π〉W−1/p,p(Γ)×W1/p,p′ (Γ) ,

where the dualities on Ω and Γ are defined by:

〈 · , · 〉Ω = 〈 · , · 〉[X1
r′ ,p′ (Ω)]′×X1

r′ ,p′ (Ω) , 〈 · , · 〉Γ = 〈 · , · 〉W−1/p,p(Γ)×W1/p,p′ (Γ) .

Note that if 3/2 < p < ∞ and 1/p + 1/3 = 1/r, we have:

W1,p′

1 (Ω) ↪→ W0,r′
1 (Ω), and Yp′,1(Ω) ↪→ X1

r′,p′ (Ω),

which means that all the brackets and integrals have a sense. As previously we prove under
the assumption (A2), that if f , h and g satisfying (7), then (u, q) ∈W0,p

−1 (Ω)×W−1,p
−1 (Ω) is a very

weak solution of (S) if and only if (u, q) satisfy the system (S) in the sense of distributions.

Theorem 8. Let Ω be an exterior domain with C1,1 boundary and let p and r satisfy (A2) and
let f , h and g satisfying (7). Then the Stokes problem (S) has a solution u ∈ W0,p

−1 (Ω) and
q ∈W−1,p

−1 (Ω) if and only if, for any (u, η) ∈ N2,p′

1 (Ω):,

〈 f , u〉 − 〈h, η〉 + 〈g, (ηI − ∇u) · n〉Γ = 0.
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In W0,p
−1 (Ω) ×W−1,p

−1 (Ω), each solution is unique up to an element of N0,p
−1 (Ω) and there exists

a constant C > 0 depending only on p and Ω such that

inf
(u,η)∈N1,p

0 (Ω)

(
‖u + u‖W0,p

−1 (Ω) + ‖q + η‖W−1,p
−1 (Ω)

)
≤ C

(
‖ f‖[X1

r′ ,p′ (Ω)]′ + ‖h‖W0,r
−1 (Ω) + ‖g‖W−1/p,p(Γ)

)
.

Proof. It remains to consider the equivalent problem: Find (u, q) ∈W0,p
−1 (Ω)×W−1,p

−1 (Ω) such
that for any w ∈ Yp′,0(Ω) and π ∈ W1,p′

1 (Ω) it holds:∫
Ω

u · (−∆w + ∇π) dx − 〈q,∇ · w〉W−1,p
−1 (Ω)×W̊1,p′

1 (Ω)

= 〈 f ,w〉Ω −
〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx.

Let T be a linear form defined from
(
W0,p′

1 (Ω) × W̊1,p′

1 (Ω)) ⊥ N1,p
0 (Ω)

)
onto R by:

T (F, ϕ) = 〈 f ,w〉Ω −
〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx,

with (w, π) ∈W2,p′

1 (Ω) ×W1,p′

1 (Ω) is a solution of the following Stokes problem:

−∆w + ∇ π = F and ∇ · w = ϕ in Ω, w = 0 on Γ,

and satisfying the following estimate (see [1, Theorem 3.1]):

inf
(u,η)∈N2,p′

1 (Ω)

(
‖w + u‖W2,p′

1 (Ω) + ‖π + η‖W1,p′
1 (Ω)

)
6 C

(
‖F‖W0,p′

1 (Ω) + ‖ϕ‖W1,p′
1 (Ω)

)
. (8)

Then for any pair (F, ϕ) ∈ (W0,p′

1 (Ω) × W̊1,p′

1 (Ω))⊥N1,p
0 (Ω) and for any (u, η) ∈ N2,p′

1 (Ω)∣∣∣∣∣〈 f ,w〉Ω − 〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx
∣∣∣∣∣

=

∣∣∣∣∣〈 f ,w + u〉Ω −
〈
gτ,

∂(w + u)
∂n

〉
Γ

+ 〈g · n, π + η〉Γ −

∫
Ω

h (π + η) dx
∣∣∣∣∣

≤ C
(
‖ f‖[X1

r′ ,p′ (Ω]′ + ‖g‖W−1/p,p(Ω) + ‖h‖W0,r
−1 (Ω)

)(
‖w + u‖W2,p′

1 (Ω) + ‖π + η‖W1,p′
1 (Ω)

)
.

Using (8), we prove that∣∣∣∣∣〈 f ,w〉Ω − 〈
gτ,

∂w

∂n

〉
Γ

+ 〈g · n, π〉Γ −
∫

Ω

h π dx
∣∣∣∣∣

≤ C
(
‖ f‖[Xp′ (Ω]′ + ‖g‖W−1/p,p(Ω) + ‖h‖W0,r

−1 (Ω)

) (
‖F‖W0,p′

1 (Ω) + ‖ϕ‖W1,p′
1 (Ω)

)
,

From this we derive that the linear form T is continuous on
(
W0,p′

1 (Ω) × W̊1,p′

1 (Ω) ⊥ N1,p
0 (Ω)

)
and according to the Riesz’ Theorem, we deduce that there exists (u, q) ∈ (W0,p

−1 (Ω) ×
W−1,p
−1 (Ω)) solution of (S) unique up to an element of N1,p

0 (Ω) and satisfying the appropriate
estimate. �
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Q-RESOLUTIONS
AND INTERSECTION NUMBERS

Enrique Artal Bartolo, Jorge Martín-Morales,
Jorge Ortigas-Galindo

Abstract. In this paper we introduce the notion of embedded Q-resolution, which is a
special class of toric resolutions, and explain briefly how to compute it for plane curve
singularities and obtain invariants from them. The main difference with standard resolu-
tions is that we allow both the ambient space and the hypersurface to contain quotient sin-
gularities in some mild conditions. We develop an intersection theory on V-manifolds that
allows us to calculate the intersection numbers of the exceptional divisors of the weighted
blow-ups. An illustrative example is given at the end showing that the intersection matrix
has the expected properties.

Keywords: Quotient singularity, intersection number, embedded Q-resolution.

AMS classification: 32S25, 32S45.

Introduction

In Singularity Theory, resolution is the most important tool. In the embedded case, the start-
ing point is a singular hypersurface; after a sequence of suitable blow-ups this hypersurface
is replaced by a long list of smooth hypersurfaces (the strict transform and the exceptional
divisors) which intersect in the simplest way (at any point we see coordinate hyperplanes
for suitable local coordinates). This process can be very expensive from the computational
point of view and, moreover, only a few amount of the obtained data is used for the under-
standing of the singularity. The experimental work shows that most of these data can be
recovered if we allow some mild singularities to survive in the process (the quotient singu-
larities). These partial resolutions, denoted as Q-resolutions, can be obtained as a sequence
of weighted blow-ups and their computational complexity is extremely lower compared with
standard resolutions. Moreover, the process is optimal in the sense that we do not obtain
useless data. To do this, we develop an intersection theory on varieties with quotient singu-
larities and study weighted blow-ups at points. By using these tools we will be able to get a
big amount of information about the singularity.

The paper is organized as follows. In §1 we give a general presentation of varieties
with quotient singularities and list their basic properties; we introduce the main example, the
weighted projective spaces. In §2 we describe the rational Weil and Cartier divisors on V-
varieties and §3 introduces their intersection numbers. We discuss briefly in §4 the concepts
of weighted blow-ups and embedded Q-resolutions and their relationship with intersection
theory. Finally an example on how to use Q-resolutions to compute intersection numbers is
given. Detailed proofs and further application will appear in a forthcoming work, see [1, 2, 6].
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§1. V-manifolds and quotient singularities

Definition 1. A V-manifold of dimension n is a complex analytic space which admits an
open covering {Ui} such that Ui is analytically isomorphic to Bi/Gi where Bi ⊂ C

n is an open
ball and Gi is a finite subgroup of GL(n,C).

V-manifolds were introduced in [9] and have the same homological properties over Q as
manifolds. For instance, they admit a Poincaré duality if they are compact and carry a pure
Hodge structure if they are compact and Kähler, see [3]. They have been classified locally
by Prill [8]. In this paper special attention is paid to V-manifolds where all groups Gi are
abelian. In particular, the following notation is used.

Let G B µd1 × · · · × µdr be an arbitrary finite abelian group written as a product of finite
cyclic groups, that is, µdi is the cyclic group of di-th roots of unity. Consider a matrix of
weight vectors A B (ai j)i, j = [a1 | · · · | an] ∈ Mat(r × n,Z) and the action

(µd1 × · · · × µdr ) × C
n −→ Cn,(

(ξd1 , . . . , ξdr ), (x1, . . . , xn)
)
7−→ (ξa11

d1
· · · ξar1

dr
x1, . . . , ξ

a1n
d1
· · · ξarn

dr
xn).

Note that the i-th row of the matrix A can be considered modulo di. The set of all orbits Cn/G
is called (cyclic) quotient space of type (d; A) and is denoted by

X(d; A) B X


d1 a11 · · · a1n
...

...
. . .

...
dr ar1 · · · arn

 .
The following result shows that the family of varieties which can locally be written like

X(d, A) is exactly the same as the family of V-manifolds with abelian quotient singularities.

Lemma 1. Let G be a finite abelian subgroup of GL(n,C). Then Cn/G is isomorphic to some
quotient space X(d; A).

We finish this section with one of the classical examples of V-manifold, cf. [4], the
weighted projective spaces.

Let ω = (q0, . . . , qn) be a weight vector, that is, a finite set of positive integers. There is a
natural action of the multiplicative group C∗ on Cn+1 \ {0} given by

(x0, . . . , xn) 7−→ (tq0 x0, . . . , tqn xn).

The set of orbits (Cn+1 \ {0})/C∗ under this action is denoted by Pn
ω and is called the

weighted projective space of type ω. The class of a nonzero element (x0, . . . , xn) ∈ Cn+1 is
denoted by [x0 : . . . : xn]ω and the weight vector is omitted if no ambiguity seems likely to
arise. When (q0, . . . , qn) = (1, . . . , 1) one obtains the usual projective space and the weight
vector is always omitted.

As in the classical case, the weighted projective spaces can be endowed with an analytic
structure. However, in general they contain cyclic quotient singularities. Consider the decom-
position Pn

ω = U0∪· · ·∪Un, where Ui is the open set consisting of all elements [x0 : . . . : xn]ω
with xi , 0. The map

ψ̃0 : Cn −→ U0, ψ̃0(x1, . . . , xn) B [1 : x1 : . . . : xn]ω
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is clearly a surjective analytic map but it is not a chart since injectivity fails. In fact, [1 : x1 :
. . . : xn]ω = [1 : x′1 : . . . , x′n]ω if and only if there exists ξ ∈ µq0 such that x′i = ξqi xi for all
i = 1, . . . , n. Hence the map above induces the isomorphism

ψ0 : X(q0; q1, . . . , qn) −→ U0,

[(x1, . . . , xn)] 7−→ [1 : x1 : . . . : xn]ω.

Analogously, X(qi; q0, . . . , q̂i, . . . , qn) � Ui under the obvious analytic map. Therefore Pn
ω

is an analytic space with cyclic quotient singularities as claimed.

§2. Cartier and Weil divisors on V-manifolds: Q-divisors

Given X a complex analytic surface, the intersection product D · E is well understood when-
ever D is a compact Weil divisor on X and E is a Cartier divisor on X. Over varieties with
quotient singularities the notion of Cartier and Weil divisor coincide after tensoring with Q,
see Theorem 2 below. A rational intersection theory can be defined on this kind of varieties.

Let us start with X an irreducible complex analytic variety. As usual, consider OX the
structure sheaf of X and KX the sheaf of total quotient rings of OX . Denote by K∗X the
(multiplicative) sheaf of invertible elements in KX . Similarly O∗X is the sheaf of invertible
elements in OX .

Definition 2. A Cartier divisor on X is a global section of the sheaf K∗X/O
∗
X , that is, an

element in Γ(X,K∗X/O
∗
X) = H0(X,K∗X/O

∗
X). Any Cartier divisor can be represented by giving

an open covering {Ui}i∈I of X and, for all i ∈ I, an element fi ∈ Γ(Ui,K
∗
X) such that

fi
f j
∈ Γ(Ui ∩ U j,O

∗
X), ∀i, j ∈ I.

Two systems {(Ui, fi)}i∈I and {(V j, g j)} j∈J represent the same Cartier divisor if and only if
on Ui ∩ V j, fi and g j differ by a multiplicative factor in OX(Ui ∩ V j)∗. The abelian group of
Cartier divisors on X is denoted by CaDiv(X). If D B {(Ui, fi)}i∈I and E B {(V j, g j)} j∈J then
D + E = {(Ui ∩ V j, fig j)}i∈I, j∈J .

Definition 3. A Weil divisor on X is a locally finite linear combination with integral coeffi-
cients of irreducible subvarieties of codimension one. The abelian group of Weil divisors on
X is denoted by WeDiv(X).

Let V ⊂ X be an irreducible subvariety of codimension one. It corresponds to a prime
ideal in the ring of sections of any local complex model space meeting V . The local ring of
X along V , denoted by OX,V , is the localization of such ring of sections at the corresponding
prime ideal; it is a one-dimensional local domain. For a given f ∈ OX,V define ordV ( f ) to be
ordV ( f ) B lengthOX,V

(
OX,V/〈 f 〉

)
, where lengthOX,V

denotes the length as an OX,V -module.
Now if D is a Cartier divisor on X, one writes ordV (D) = ordV ( fi) where fi is a local

equation of D on any open set Ui with Ui ∩ V , ∅. This is well defined since fi is uniquely
determined up to multiplication by units and the order function is a homomorphism. Define
the associated Weil divisor of a Cartier divisor D by setting

TX : CaDiv(X) −→WeDiv(X) : D 7−→
∑
V⊂X

ordV (D) · [V],
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where the sum is taken over all codimension one irreducible subvarieties V of X. By the
additivity of the order function, the mapping TX is a homomorphism of abelian groups.

Example 1. Let X be the surface in C3 defined by the equation z2 = xy. The line V = {x =

z = 0} defines a Weil divisor which is not a Cartier divisor. The associated Weil divisor of
{(X, x)} is TX

(
{(X, x)}

)
=

∑
Z⊂XordZ(x) · [Z] = 2[V]. Thus [V] is principal as an element in

WeDiv(X) ⊗Z Q and corresponds to the Q-Cartier divisor 1
2 {(X, x)}.

This fact can be interpreted as follows. First note that identifying our surface X with
X(2; 1, 1) under [(x, y)] 7→ (x2, y2, xy), the previous Weil divisor corresponds to D = {x = 0}.
Although f = x defines a zero set on X(2; 1, 1), it does not induce a function on the quotient
space. However, x2 : X(2; 1, 1) → C is a well-defined function and gives the same zero set
as f . Hence as Q-Cartier divisors one writes D = 1

2 {(X(2; 1, 1), x2)}.

The preceding example illustrates the general behaviour of Cartier and Weil divisors on
V-manifolds as the following result shows.

Theorem 2. Let X be a V-manifold. Then the notion of Cartier and Weil divisor coincide
over Q. More precisely, the linear map

TX ⊗ 1 : CaDiv(X) ⊗Z Q −→WeDiv(X) ⊗Z Q

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor D on X there
exists k ∈ Z such that kD ∈ CaDiv(X).

Definition 4. Let X be a V-manifold. The vector space of Q-Cartier divisors is identified
under TX with the vector space of Q-Weil divisors. A Q-divisor on X is an element in
CaDiv(X) ⊗Z Q = WeDiv(X) ⊗Z Q. The set of all Q-divisors on X is denoted by Q-Div(X).

The proof of the previous result is constructive. Let us summarize here how to write a
Weil divisor as an element in CaDiv(X) ⊗Z Q where X is an algebraic V-manifold.

1. Write D =
∑

i∈I ai[Vi] ∈ WeDiv(X), where ai ∈ Z and Vi ⊂ X irreducible. Also choose
{U j} j∈J an open covering of X such that U j = B j/G j where B j ⊂ C

n is an open ball and
G j is a small1 finite subgroup of GL(n,C).

2. For each (i, j) ∈ I × J choose a polynomial function fi, j : U j → C satisfying the
condition [( fi, j)x ∈ OB j,x reduced ∀x ∈ B j] and such that Vi ∩ U j = { fi, j = 0}. Then,

[Vi|U j ] =
1
|G j|

{(
U j, f |G j |

i, j

)}
.

3. Identifying {(U j, f |G j |

i, j )} with its image under CaDiv(U j) ↪→ CaDiv(X), one finally
writes D as a sum of locally principal Cartier divisors over Q,

D =
∑

(i, j)∈I×J

ai

|G j|

{(
U j, f |G j |

i, j

)}
.

1A finite subgroup G of GL(n,C) is called small if no element of G has 1 as an eigenvalue of multiplicity
precisely n − 1, that is, G does not contain rotations around hyperplanes other than the identity.
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§3. Rational intersection number on V-surfaces

Now we are going to develop an intersection theory on varieties with quotient singularities,
without getting into technical details.

Definition 5. Let C be an irreducible analytic curve. Given a Weil divisor on C with finite
support, D =

∑r
i=1 ni · [Pi], its degree is defined to be deg(D) =

∑r
i=1 ni ∈ Z. The degree of a

Cartier divisor is the degree of its associated Weil divisor.

Definition 6. Let X be an analytic surface and consider D1 ∈WeDiv(X) and D2 ∈ CaDiv(X).
If D1 is irreducible then the intersection number is defined as D1 · D2 B deg

(
j∗D1

D2

)
∈ Z,

where jD1 : D1 ↪→ X denotes the inclusion and j∗D1
its pull-back functor. The expression

above extends linearly if D1 is a finite sum of irreducible divisors. This number is only well
defined if either D1 * D2 and D1 ∩ D2 is finite, or the divisor D1 is compact, cf. [5, Ch. 2].

In the case D1 * D2, the number (D1 · D2)P B ordP( j∗D1
D2) with P ∈ D1 ∩ D2 is well

defined too and it is called local intersection number at P.

Definition 7. Let X be a V-manifold of dimension 2 and consider D1,D2 ∈ Q-Div(X). The
intersection number is defined as D1 · D2 B (k1k2)−1 (k1D1 · k2D2) ∈ Q, where k1, k2 ∈ Z are
chosen so that k1D1 ∈ WeDiv(X) and k2D2 ∈ CaDiv(X). Analogously, it is defined the local
intersection number at P ∈ D1 ∩ D2, if the condition D1 * D2 is satisfied.

In the following result the main usual properties of the intersection product are collected.
Their proofs are straightforward since they are well known for the classical case (i.e. without
tensoring withQ), cf. [5], and our generalization is based on extending the classical definition
to rational coefficients.

Proposition 3. Let X be a V-manifold of dimension 2 and D1,D2,D3 ∈ Q − Div(X). Then
the local and the global intersection numbers, provided the indicated operations make sense
according to Definition 7, satisfy the following properties: (α ∈ Q, P ∈ X)

1. The intersection product is bilinear over Q.

2. Commutative: If D1 · D2 and D2 · D1 are both defined, then D1 · D2 = D2 · D1.
Analogously (D1 · D2)P = (D2 · D1)P if both local numbers are defined.

3. Non-negative: Assume D1 and D2 are effective, irreducible and distinct. Then D1 · D2
and (D1 · D2)P are greater than or equal to zero. Moreover, (D1 · D2)P = 0 if and only
if P < |D1| ∩ |D2|, and hence D1 · D2 = 0 if and only if |D1| ∩ |D2| = ∅.

4. Non-rational: If D2 ∈ CaDiv(X), D1 ∈ WeDiv(X) then D1 · D2 and (D1 · D2)P are
integral numbers. By the commutative property, the same holds if D1 is a Cartier
divisor and D2 is a Weil divisor.

5. Q-Linear equivalence: Assume D1 has compact support. If D2 and D3 are Q-linearly
equivalent, i.e. [D2] = [D3] ∈ Pic(X) ⊗Z Q, then D1 · D2 = D1 · D3. Due to the
commutativity, the roles of D1 and D2 can be exchanged.

6. Normalization: Let ν : |̃D1| → |D1| be the normalization of the support of D1 and
jD1 : |D1| ↪→ X the inclusion. Then D1 · D2 = deg

(
jD1 ◦ ν

)∗D2. Observe that in this
situation the normalization is a smooth complex analytic curve.
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7. Pull-back: Let Y be another irreducible V-surface and let F : Y → X be a proper
morphism. Given D1,D2 ∈ Q − Div(X), if the intersection product D1 · D2 is defined,
then so is F∗(D1) · F∗(D2) and one has F∗(D1) · F∗(D2) = deg(F)(D · E).

Remark 1. This rational intersection product was first introduced by Mumford for normal
surfaces, see [7, pag. 17]. Our Definition 7 coincides with Mumford’s because it has good
behavior with respect to the pull-back. The main advantage is that ours does not involve
a resolution of the ambient space and, for instance, this allowed us to easily find formulas
for the self-intersection numbers of the exceptional divisors of weighted blow-ups, without
computing any resolution, see Proposition 4 below.

The rest of this section is devoted to reviewing some classical results concerning the
intersection multiplicity.

Classical blow-up at a smooth point. Let X be a smooth analytic surface. Let π : X̂ → X
be the classical blow-up at a (smooth) point P. Consider C and D two Cartier or Weil
divisors on X with multiplicities mC and mD at P. Denote by E the exceptional divisor
of π, and by Ĉ (resp. D̂) the strict transform of C (resp. D). Then there are following
equalities:

1. E · π∗(C) = 0, π∗(C) = Ĉ + mC E, E · Ĉ = mC .
2. E2 = −1, Ĉ · D̂ = C · D − mCmD, D̂2 = D2 − m2

D (when D is compact).

Note that the exceptional divisor has multiplicity 1 at every point. This is why one
only has to subtract 1 for the self-intersection number of the exceptional divisors every
time we blow up a point on them, when computing an embedded resolution on a plane
curve.

Bézout’s Theorem on P2. Every analytic Cartier or Weil divisor on P2 is algebraic and thus
can be written as a difference of two effective divisors. On the other hand, every effec-
tive divisor is defined by a homogeneous polynomial. The degree of an effective divisor
on P2 is the degree, deg(F), of the corresponding homogeneous polynomial. This de-
gree map is extended linearly yielding a group homomorphism deg : Div(P2)→ Z.
Let D1, D2 be two divisors on P2, then D1 · D2 = deg(D1) deg(D2). In particular the
self-intersection number of a divisor D on P2 is D2 = deg(D)2.

The rest of this paper is devoted to generalizing the classical results above to V-manifolds
of dimension 2, weighted blow-ups, and quotient weighted projective planes, respectively.

§4. Weighted blow-ups and embedded Q-resolutions

Classically an embedded resolution of { f = 0} ⊂ Cn is a proper map π : X → (Cn, 0) from a
smooth variety X satisfying, among other conditions, that π−1({ f = 0}) is a normal crossing
divisor. To weaken the condition on the preimage of the singularity we allow the new ambient
space X to contain abelian quotient singularities and the divisor π−1({ f = 0}) to have “normal
crossings” over this kind of varieties. This notion of normal crossing divisor on V-manifolds
was first introduced by Steenbrink in [10].

Definition 8. A hypersurface D on a V-manifold X with abelian quotient singularities is said
to be with Q-normal crossings if it is locally isomorphic to the quotient of a normal crossing
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divisor under a group action of type (d; A). That is, given x ∈ X, there is an isomorphism of
germs (X, x) ' (X(d; A), [0]) such that (D, x) ⊂ (X, x) is identified under this morphism with
a germ of the form

({
[x] ∈ X(d; A) | xm1

1 · · · x
mk
k = 0

}
, [(0, . . . , 0)]

)
.

Definition 9. Let M = Cn+1/G be an abelian quotient space. Consider H ⊂ M an analytic
subvariety of codimension one. An embedded Q-resolution of (H, 0) ⊂ (M, 0) is a proper
analytic map π : X → (M, 0) such that:

1. X is a V-manifold with abelian quotient singularities.

2. π is an isomorphism over X \ π−1(Sing(H)).

3. π−1(H) is a hypersurface with Q-normal crossings on X.

Usually one uses weighted or toric blow-ups with smooth center as a tool for finding
embedded Q-resolutions. Here we only discuss briefly the surface case. Let X be an analytic
surface with abelian quotient singularities. Let us define the weighted blow-up π : X̂ → X at
a point P ∈ X with respect to ω = (p, q). We distinguish two different situations.

(i) The point P is smooth. Assume X = C2 and π = πω : Ĉ2
ω → C2 the weighted blow-up

at the origin with respect to ω = (p, q),

Ĉ2
ω B

{
((x, y), [u : v]ω) ∈ C2 × P1

ω | (x, y) ∈ [u : v]ω
}
.

Here the condition about the closure means that ∃t ∈ C , x = tpu, y = tqv. The new
ambient space is covered as Ĉ2

ω = U1 ∪ U2 = X(p;−1, q) ∪ X(q; p,−1) and the charts
are given by

X(p;−1, q)−→U1, X(q; p,−1)−→U2,

[(x, y)] 7−→ ((xp, xqy), [1 : y]ω); [(x, y)] 7−→ ((xyp, yq), [x : 1]ω).

The exceptional divisor E = π−1
ω (0) is isomorphic to P1

ω which is in turn isomorphic
to P1 under the map [x : y]ω 7→ [xq : yp]. The singular points of Ĉ2

ω are cyclic quotient
singularities located at the exceptional divisor. They actually coincide with the origins
of the two charts.

(ii) The point P is of type (d; a, b). Assume that X = X(d; a, b). The group µd acts also on
Ĉ2
ω and passes to the quotient yielding a map π = π(d;a,b),ω : ̂X(d; a, b)ω → X(d; a, b),

where by definition ̂X(d; a, b)ω B Ĉ2
ω/µd. The new space is covered as

̂X(d; a, b)ω = Û1 ∪ Û2 = X
(

p −1 q
pd a pb − qa

)
∪ X

(
q p −1

qd qa − pb b

)
and the charts are given by

X
(

p −1 q
pd a pb − qa

)
−→ Û1, X

(
q p −1

qd qa − pb b

)
−→ Û2,[

(x, y)
]
7−→

[
((xp, xqy), [1 : y]ω)

]
(d;a,b);

[
(x, y)

]
7−→

[
((xyp, yq), [x : 1]ω)

]
(d;a,b).

The exceptional divisor E = π−1
(d;a,b),ω(0) is identified with P1

ω(d; a, b) B P1
ω/µd. Again

the singular points are cyclic and correspond to the origins of the two charts.
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Proposition 4. Let X be a surface with abelian quotient singularities. Let π : X̂ → X
be the weighted blow-up at a point of type (d; a, b) with respect to ω = (p, q). Assume
(d, a) = (d, b) = (p, q) = 1 and write e = gcd(d, pb − qa).

Consider two Q-divisors C and D on X and, as usual, denote by E the exceptional divisor
of π, and by Ĉ (resp. D̂) the strict transform of C (resp. D). Let ν and µ the (p, q)-multiplicities
of C and D at P, i.e. x (resp. y) has (p, q)-multiplicity p (resp. q). Then there are the following
equalities:

1. E · π∗(C) = 0, π∗(C) = Ĉ +
ν

e
E, E · Ĉ =

eν
pqd

.

2. E2 = −
e2

pqd
, Ĉ · D̂ = C · D −

νµ

pqd
, D̂2 = D2 −

µ2

pqd
(when D is compact).

§5. Bézout’s Theorem for Quotient Weighted Projective Planes

For a given weight vector ω = (p, q, r) ∈ N3 and an action on C3 of type (d; a, b, c), con-
sider the quotient weighted projective plane P2

ω(d; a, b, c) B P2
ω/µd and the corresponding

morphism τ(d;a,b,c),ω : P2 → P2
ω(d; a, b, c) defined by τ(d;a,b,c),ω([x : y : z]) = [xp : yq : zr]ω.

The space P2
ω(d; a, b, c) is a V-manifold with abelian quotient singularities; its charts are

obtained as in Section 1. The degree of a Q-divisor on P2
ω(d; a, b, c) is the degree of its pull-

back under the map τ(d;a,b,c),ω, that is, by definition,

D ∈ Q-Div
(
P2
ω(d; a, b, c)

)
, degω(D) B deg

(
τ∗(d;a,b,c),ω(D)

)
.

Thus if D = {F = 0} is a Q-divisor on P2
ω(d; a, b, c) given by a ω-homogeneous polynomial

that indeed defines a zero set on the quotient projective space, then degω(D) is the classical
degree, denoted by degω(F), of a quasi-homogeneous polynomial.

Proposition 5. Let us denote by m1, m2, m3 the determinants of the three minors of order
2 of the matrix

( p q r
a b c

)
. Assume gcd(p, q, r) = 1 and write e = gcd(d,m1,m2,m3). Then the

intersection number of two Q-divisors, D1 and D2, on P2
ω(d; a, b, c) is

D1 · D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

Corollary 6. Let X, Y, Z be the Weil divisors on P2
ω(d; a, b, c) given by {x = 0}, {y = 0} and

{z = 0}, respectively. Using the notation above one has:

X2 =
ep
dqr

, Y2 =
eq

dpr
, Z =

er
dpq

, X · Y =
e
dr
, X · Z =

e
dq
, Y · Z =

e
dp
.

Remark 2. If d = 1, then e equals one too and the formulas become a bit simpler.

§6. Example of an Embedded Q-Resolution

Let us consider the following divisors onC2: C1 = {((x3−y2)2−x4y3) = 0}, C2 = {x3−y2 = 0},
C3 = {x3 + y2 = 0}, C4 = {x = 0} and C5 = {y = 0}. We shall see that the local intersection
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E1(− 1
6 ) E1(− 17

30 )

C4

(3)

C3

C1

C2
(2)

E2(− 1
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(5)(2)

C5

(2) (3)

C2 C3 C4C5

C1

P

π2←−

Figure 1: Embedded Q-resolution of C =
⋃5

i=1 Ci ⊂ C
2.

numbers (Ci · C j)0, i, j ∈ {1, . . . , 5}, i , j, are encoded in the intersection matrix associated
with any embedded Q-resolution of C =

⋃5
i=1 Ci.

Let π1 : C2
(2,3) → C2 be the (2, 3)-weighted blow-up at the origin. The new space has

two cyclic quotient singular points of type (2; 1, 1) and (3; 1, 1) located at the exceptional
divisor E1. The local equation of the total transform in the first chart is given by the function

x29 ((1 − y2)2 − x5y3) (1 − y2) (1 + y2) y : X(2; 1, 1) −→ C,

where x = 0 is the equation of the exceptional divisor and the other factors correspond in the
same order to the strict transform of C1,C2,C3,C5 (denoted again by the same symbol). To
study the strict transform of C4 one needs the second chart, the details are left to the reader.

Hence E1 has multiplicity 29 and self-intersection number −1/6; it intersects transversally
C3, C4 and C5 at three different points, while it intersects C1 and C2 at the same smooth
point P, different from the other three. The local equation of the divisor E1 ∪ C2 ∪ C1 at this
point P is x29 y (x5 − y2) = 0, see Figure 1 below.

Let π2 be the (2, 5)-weighted blow-up at the point P above. The new ambient space has
two singular points of type (2; 1, 1) and (5; 1, 2). The local equations of the total transform of
E1 ∪C2 ∪C1 are given by the following two functions.

1st chart 2nd chart

x73︸︷︷︸
E2

· y︸︷︷︸
C2

· (1 − y2)︸  ︷︷  ︸
C1

: X(2; 1, 1) −→ C x29︸︷︷︸
E1

· y73︸︷︷︸
E2

· (x5 − 1)︸   ︷︷   ︸
C1

: X(2; 1, 1) −→ C

Thus the new exceptional divisor E2 has multiplicity 73 and intersects transversally the
strict transform of C1, C2 and E1. Hence the composition π2◦π1 is an embedded Q-resolution
of C =

⋃5
i=1 Ci ⊂ C

2. As for the self-intersection numbers, E2
2 = −1/10 and E2

1 = −1/6 −
22/(1 · 2 · 5) = −17/30. The following figure illustrates the whole process. The intersection
matrix associated with the embedded Q-resolution obtained is A =

(
−17/30 1/5

1/5 −1/10

)
and B =

−A−1 =
(

6 12
12 34

)
.

Now one observes the intersection number is encoded in B as follows. For i = 1, . . . , 5,
set ki ∈ {1, . . . , 5} such that ∅ , Ci ∩ Eki =: {Pi}. Denote by O(Ci) the order of the cyclic
group acting on Pi. Then, (

Ci ·C j

)
0

=
bki,k j

O(Ci) O(C j)
.
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Looking at the figure one sees that (k1, . . . , k5) = (2, 2, 1, 1, 1) and (O(C1), . . . ,O(C5)) =

(1, 2, 1, 3, 2). Hence, for instance,

(C1 ·C2)0 =
bk1,k2

O(C1) O(C2)
=

b22

1 · 2
=

34
2

= 17,

which is indeed the intersection multiplicity at the origin of C1 and C2. Analogously for the
other indices.
Remark 3. Consider the group action of type (5; 2, 3) on C2. The previous plane curve C is
invariant under this action and then it makes sense to compute an embedded Q-resolution of
C B C/µ5 ⊂ X(5; 2, 3). Similar calculations as in the previous example, lead to a figure as
the one obtained above with the following relevant differences:

• E1 ∩ E2 is a smooth point.

• E1 (resp. E2) has self-intersection number −17/6 (resp. −1/2).

• The intersection matrix is A′ =
(
−17/6 1

1 −1/2

)
and B′ = −(A′)−1 =

(
6/5 12/5
12/5 34/5

)
.

Hence, for instance, (C1 · C2)0 = b′22/(1 · 2) = (34/5)/2 = 17/5, which is exactly the
intersection number of the two curves, since that local number can also be computed as
(C1 ·C2)0 = 5−1(C1 ·C2)0.

Conclusion. The combinatorial and computational complexity of embedded Q-resolutions
is much simpler than the one of the classical embedded resolutions, but they keep as much
information as needed for the comprehension of the topology of the singularity. This will
become clear in the second author’s Ph.D. thesis. We will prove in a forthcoming paper
another advantages of these embedded Q-resolutions, e.g. in the computation of abstract
resolutions of surfaces via Jung method, see [1, 2, 6].
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A REMARK ABOUT SYMMETRY OF
SOLUTIONS TO SINGULAR EQUATIONS

AND APPLICATIONS
Kaushik Bal and Jacques Giacomoni

Abstract. In this article we will use the moving plane method to discuss the symmetry
of solution to an elliptic equation with singularity. Moreover by choosing a particular
type of nonlinearity we will show some a priori estimates with the help of moving plane
method.

Keywords: Symmetry, singularity, a priori estimate.
AMS classification: 35K55, 35J25, 35J65.

§1. Introduction

Suppose that Ω is a bounded domain in Rn. Consider the equation

− ∆u =
1
uδ

+ f (u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

where δ > 0 given and f is a locally lipchitz in R. Extensive studies have been done on this
equation in the past by many authors [1], [2], [5], [10], [12] and [13]. This kind of problem
arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids as
well as chemical heterogeneous chemical reactions.

In a famous paper [2] it was proved that equations of this kind admits a unique solution
u ∈ C2+α(Ω) ∩C(Ω). Moreover there exists positive constants R and Q s.t

Rp(d(x)) ≤ u(x) ≤ Qp(d(x))

near ∂Ω, where d(x) = dist(x, ∂Ω) and p ∈ C([0, a]) ∩ C2((0, a]) is the local solution of the
problem

−p
′′

= g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0,

where a > 0 and g is a monotone decreasing continuous function.
In another famous paper [7] it was proved by the help of the moving plane method that if

u ∈ C(B) ∩C2(B) is a positive solution of

∆u + f (u) = 0 in B

u = 0 on ∂B

where B is the unit ball and f is a locally lipchitz in R. Then u is radially symmetric in B and
∂u
∂r (x) < 0.
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The original proof requires that solutions be C2 up to the boundary. The main feature
of our paper is to find the symmetry of the solution to the problem with singularity without
any assumptions on the smoothness of the solutions up to the boundary. We also prove the
existence of universal bounds for superlinear and singular problems following the idea of [9].

§2. Main results and preliminaries

Our main result is the following:

Theorem 1. Suppose that Ω is a bounded domain which is convex in x1 direction and sym-
metric with respect to the plane x1 = 0. Suppose u ∈ C2(Ω) ∩C(Ω) is a positive solution of

∆u +
1
uδ

+ f (u) = 0 in Ω

u = 0 on ∂Ω, u > 0 in Ω

where δ > 0 given and f is a locally lipchitz in R. Then u is symmetric w.r.t x1 and Dx1 (x) < 0
for any x ∈ Ω with x1 > 0.

To proof the main theorem we need preliminary which we are going to state now. Let Ω

be a bounded domain in Rn. Consider the operator L in Ω

Lu =

n∑
i, j

ai j(x)Di j(x)u +

n∑
i

bi(x)Diu + c(x)u

for u ∈ C2(Ω) ∩ C(Ω). We assume that ai j, bi and c are continuous in Ω. The coefficient
matrix A = (ai j) is positive definite everywhere in Ω. Likewise, we denote D∗ B

(
det(A)

)1/n

as the geometric mean of the eigenvalues of A.

Definition 1. Define for every u ∈ C2(Ω),

Γ+(u) = {y ∈ Ω; u(x) ≤ u(y) + Du(y).(x − y), x ∈ Ω}.

The set Γ+(u) is called the upper contact set of u and the Hessian matrix (D2u) is nonpositive
on Γ+(u).

Let us state a lemma from [11] (see Lemma 2.24) required to the proof of Alexandroff

Maximum Principle.

Lemma 2. Suppose g ∈ L1
loc(Ω) is nonnegative. Then for any u ∈ C2(Ω) ∩C(Ω), there holds∫

Bk(0)
g ≤

∫
Γ+(u)

g(Du)
∣∣∣det D2u

∣∣∣ ,
where Γ+(u) is the upper contact set of u, Bk(0) is the ball with radius k and center 0 and
k = (1/d)(supΩ u − sup∂Ω u+), where d is the diameter of Ω.

Now we give the Alexandroff Maximum Principle
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Theorem 3. Suppose u ∈ C2(Ω) ∩C(Ω) satisfies Lu ≥ f in Ω with the following conditions

|b|
D∗
,

f
D∗
∈ Ln(Ω) and c ≤ 0 in Ω.

Then there holds

sup
Ω

u ≤ sup
∂Ω

u+ + C
∥∥∥∥∥ f −

D∗

∥∥∥∥∥
Ln(Γ+(u))

,

where C is a constant depend only on n, diam(Ω) and ‖ f −/D‖Ln(Γ+(u)).
Note here that c(x) is assumed to be only measurable and no assumption on the bounded-

ness is required. We are providing the sketch of the proof for the convenience of the reader.

Proof. Without loss of generality we assume u < 0 on ∂Ω. Set Ω+ = {u > 0}. Take g(p) =

(|p|n + µn)−1 and then let µ→ 0+.
Recall the area-formula for Du in Γ+ ∩Ω+ ⊂ Ω gives∫

Du(Γ+∩Ω+)
≤

∫
Γ+∩Ω+

g(Du)
∣∣∣det(D2(u))

∣∣∣ ,
where D2(u) is the Jacobian of the map Du : Ω→ Rn.

First we have,

−ai jDi ju ≤ biDiu + cu − f ,

−ai jDi ju ≤ biDiu − f in Ω+ = {x; u(x) > 0},
−ai jDi ju ≤ |b||Du| + f −.

Then by Cauchy inequality we have,

−ai jDi ju ≤ 2
(
|b|n +

( f −)n

µn

)1/n

.(|Du|n + µn)1/n.

So, by Lemma 2 and recalling that

det(−D2u) ≤
1
D

(
−ai jDi ju

n

)n

on Γ+,

where D = det(A), we have ∫
Bk(0)

g ≤
2n

nn

∫
Γ+∩Ω+

|b|n + µ−n( f −)n

D
.

Now evaluating the integral in the left-hand side we have,∫
Bk(0)

g =
ωn

n
log

(
kn

µn + 1
)
,

where ωn is the volume of the unit ball in Rn. Therefore we obtain

kn ≤ µn
{

exp
{

2n

ωnnn

[∥∥∥∥∥ b
D∗

∥∥∥∥∥n

Ln(Γ+∩Ω+)
+ µ−n

∥∥∥∥∥ f −

D∗

∥∥∥∥∥n

Ln(Γ+∩Ω+)

]}
− 1

}
.

If f . 0 then choose any µ > 0 and then let µ→ 0. This completes the proof. �
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Next we give a statement of Hopf Maximum Principle and a Strong Maximum Principle
adapted to our situation (see [11]). Let us assume the operator L as described above with the
assumption that ai j, bi are continuous and hence bounded in Ω and c(x) is bounded below.

Then we have the following results:

Lemma 4 (Hopf Lemma). Let B an open ball in Rn with x0 ∈ ∂B. Suppose u ∈ C2(B)∩C(B∪
{x0}) satisfies Lu ≥ 0 in B with c(x) ≤ 0 and uniformly bounded in B. Assume in addition that

u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0.

Then for each outward direction ν and an outward normal direction n at x0 with ν.n > 0 there
holds:

lim inf
t→0+

1
t

[u(x0) − u(x0 − tν)] > 0.

Remark 1. If in addition u ∈ C2(Ω) ∩C1(Ω ∪ {x0}) then we have

∂u
∂ν

(x0) > 0.

The proof of Lemma 4 can be found in [11]. From Lemma 4 we can prove the following
strong maximum principle:

Theorem 5 (Strong Maximum Principle). Let Ω be a bounded and connected domain in Rn.
Suppose u ∈ C2(Ω) ∩ C(Ω) satisfies Lu ≥ 0 in Ω with c(x) ≤ 0. Then, the nonnegative
maximum of u can be assumed only on ∂Ω unless u is constant in Ω.

We adapt the proof given in [11].

Proof. Let M be the nonnegative maximum of u in Ω. Set Σ B {x ∈ Ω; u(x) = M}. It is
relatively closed in Ω. We want to show Σ = Ω.

We prove by contradiction. If Σ is a proper set of Ω, then we may find an open ball
B ⊂ Ω \ Σ with a point on its boundary belonging to Σ. (In fact, we may choose a point
p ∈ Ω \ Σ such that d(p,Σ) < d(p, ∂Ω) first and then extend the ball. It hits Σ before hitting
∂Ω). Suppose x0 ∈ ∂B ∩ Σ. Obviously we have Lu ≥ 0 in B and

u(x) < u(x0) for any x ∈ B and u(x0) = M ≥ 0.

Lemma 4 (note that c is bounded in B since by construction, B ⊂ Ω) implies ∂u
∂ν
> 0 where ν

is the outward normal direction at x0 to the ball B. While x0 is the interior maximal point of
Ω, hence Du(x0) = 0. This leads to a contradiction. �

A straightforward consequence of Theorem 5 is the following result:

Corollary 6 (Comparison Principle). Suppose u ∈ C2(Ω) ∩ C(Ω) satisfies Lu ≥ 0 in Ω with
c(x) ≤ 0 in Ω. If u ≤ 0 on ∂Ω, then u ≤ 0 in Ω. In fact, either u < 0 in Ω or u ≡ 0 in Ω.
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§3. Proof of the main result

Write x = (x1, y) ∈ Ω for y ∈ Rn−1. We will prove

u(x1, y) < u(x∗1, y) for any x1 > 0 and x∗1 < x1 with x∗1 + x1 > 0.

Then letting x∗1 → −x1, we get u(x1, y) ≤ u(−x1, y) for any x1. Then by changing the direction
x1 → −x1,we get the symmetry.

We let a = sup x1 for (x1, y) ∈ Ω and for 0 < λ < a, we define

Σλ = {(x1, . . . , xn) ∈ Ω | x1 > λ},

Tλ = {(x1, . . . , xn) ∈ Ω | x1 = λ},

Σ′λ = {(2λ − x1, ..., xn) ∈ Ω | (x1, . . . , xn) ∈ Σλ}.

Notice that Σ′λ is the reflection of Σλ with respect to Tλ. In the following we denote by xλ the
image of x with respect to Tλ.

In Σλ, we define wλ(x) = u(x) − u(xλ) for x ∈ Σλ. Then by Mean Value Theorem we have

∆wλ + c(x, λ)wλ −
δwλ

uδ+1
γ

= 0 in Σλ.

wλ ≤ 0 and wλ , 0 on ∂Σλ.

(1)

where uγ(x) = u(xγ) with xγ is a suitable convex combination of x and xλ and c(x, λ) is a
bounded function in Σλ .

We need to show wλ < 0 in Σλ for any λ ∈ (0, a). We divide the proof in three steps.

Step 1. For any λ close to a, we first show wλ ≤ 0, i.e we can actually start the moving plane.
For λ close to a, we are rearranging (1) as:

∆wλ −
[
c−(x, λ) +

δ

uδ+1
γ

]
wλ = −c+(x, λ)wλ in Σλ,

wλ ≤ 0 and wλ , 0 on ∂Σλ.

Now, since sup∂Σλ
wλ = 0, we have by Theorem 3 that for λ close to a,

sup
Σλ

wλ ≤ C(n, d) ‖c+w+
λ ‖Ln(Σλ),

sup
Σλ

wλ ≤ C(n, d) ‖c+‖L∞(Σλ)|Σλ|
1/n sup

Σλ

wλ ≤
1
2

sup
Σλ

wλ,

where d denotes the diameter of Ω. So we have wλ ≤ 0 for λ close to a.
Applying Corollary 6, we get wλ < 0 in Σλ for λ close to a.
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Step 2. Let (λ0, a) be the largest interval of values of λ such that wλ < 0 in Σλ. We want to
show λ0 = 0. If λ0 > 0 by continuity wλ0 ≤ 0 in Σλ0 and wλ0 , 0 on ∂Σλ0 . Now by Theorem 5
we have wλ < 0 in Σλ0 . We will show that for a small ε > 0 we have wλ0−ε < 0 in Σλ0−ε , thus
getting a contradiction that (λ0, a) is the largest interval of values of λ such that wλ < 0 in Σλ.

Fix θ > 0 (to be determined). Let K be a closed subset in Σλ0 such that |Σλ0−ε \ K| < θ/2.
The fact wλ0 < 0 in Σλ0 implies wλ0 (x) ≤ −p < 0 for any x ∈ K and some p > 0. By continuity
we have wλ0−ε < 0 in K. For ε > 0 small, |Σλ0−ε \ K| < δ.

We choose δ in such a way that we may apply Theorem 3 to wλ0−ε in Σλ0−ε \K. Hence we
get wλ0−ε ≤ 0 in Σλ0−ε \ K.

Therefore we obtain that for any ε > 0 small enough, we have wλ0−ε(x) ≤ 0 in Σλ0−ε .
Again, using corollary 6, we get wλ0−ε(x) < 0 in Σλ0−ε . Therefore, λ0 = 0.

Step 3. We have wλ ≤ 0 for all λ ∈ (0, a). Applying now Corollary 6 and Lemma 4 to the
equation

∆wλ −
[
c−(x, λ) +

δ

uδ+1
γ

]
wλ = c+(x, λ)wλ in Σλ,

wλ ≤ 0 and wλ , 0 on ∂Σλ,

we have wλ < 0 for λ ∈ (0, a).
Note that wλ admits its maximum along Σλ ∩ Ω. Again applying the next part of Lemma 4
we have

Dx1wλ|x1=λ = 2Dx1 uλ|x1=λ < 0.

The proof of Theorem 1 is now complete.

§4. Some a priori estimates

In this section we will produce some a priori results for (1) with the function f being replaced
by a specific type of non-linearity. The equation is given by:

−∆u −
1
uδ

= R(x)uα in Ω,

u = 0 on ∂Ω, u > 0 in Ω,
(2)

where R is continuous and strictly positive function in Ω and 1 < α < n+2
n−2 with δ > 0 is given.

We want to find some a priori estimates on the solutions of the above equation i.e., we
show a uniform bound for the solutions and we achieve that goal with the help of a blow-up
technique in a compact subset of Ω. For the rest of the domain, we apply Theorem 1 for
deriving a uniform bound of solutions in a neighborhood of ∂Ω.

We start by a lemma which is a global result of Liouville type (see [8]).

Lemma 7. Let u(x) be a non-negative C2 solution of

∆u + uα = 0 in Rn (3)

with 1 < α < (n + 2)/(n − 2). Then u(x) ≡ 0.
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Remark 2. Our main result is for f depending only on u but the same thing holds for f (x, u)
with f is a locally lipchitz w.r.t the second variable and continuous w.r.t the first variable.

To prove the result we need few lemmata. First we state here a result of [2].

Lemma 8. Consider the equation given by

−∆u =
1
uδ

in Ω

u = 0 on ∂Ω.

Then there exists unique solution u ∈ C2(Ω) ∩ C(Ω). Moreover we can find 0 < c0 ≤ c1 such
that

1. For 0 < δ < 1, we have c0d(x) ≤ u ≤ c1d(x).

2. For δ = 1, we have c0d(x) ln (A/d(x))1/2 ≤ u ≤ c1d(x) ln (A/d(x))1/2 where A > 1 is
large enough.

3. For δ > 1, we have c0{d(x)}2/(δ+1) ≤ u ≤ c1{d(x)}2/(δ+1).

The above result together with the comparison principle show that any non trivial solution
u to (2) satisfies u(x) ≥ cd(x) with c > 0 independent of u. Next we state a strong comparison
principle (see [6] for the extension in the case of quasilinear elliptic operators):

Lemma 9. Let u, v(≥ 0) ∈ C2(Ω) ∩C(Ω) and satisfies

−∆u − u−δ = f ,

−∆v − v−δ = g,

with u = v = 0 on ∂Ω, 0 < β < 1 with f , g ∈ C(Ω) such that 0 ≤ f ≤ g pointwise everywhere
in Ω and f . g. Then 0 < u < v in Ω.

Now we are ready to proceed to the main result of this section:

Theorem 10. Suppose that Ω is a bounded domain which is strictly convex. Suppose u ∈
C2(Ω) ∩C(Ω) is a positive solution of

−∆u −
1
uδ

= R(x)uα in Ω

u = 0 on ∂Ω.
(4)

where δ > 0, 1 < α < (n + 2)/(n − 2) and R is continuous and strictly positive function in Ω.
Then u(x) < C for some uniform constant C where C only depends α and Ω .

Proof. We are going to divide the domain into two parts given by:

Ωη = {x ∈ Ω | dist(x, ∂Ω) ≥ η},
Ω \Ωη = {x ∈ Ω | dist(x, ∂Ω) < η},

where η > 0 is small enough.
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We proof the theorem by contradiction. Let on the contrary there exists a sequence of
solutions uk(x) of (4) and a sequence of points Pk ∈ Ωη such that Mk = supΩ uk(x) = uk(Pk)→
+∞ as k → +∞.

We first prove that Pk → P ∈ Ωη. For that, we apply the moving plane method as in the
previous section . Applying the method used for the proof of Theorem 1 (see also [3]) and the
convexity of Ω (precisely, we move the hyperplane in a direction close to the outward normal
in a neighborhood of any point of the boundary), we have a H > 0 (depending on the domain
and independent of k) and a T > 0 such that:

uk(x − tγ) is decreasing for t ∈ [0,T ] for γ ∈ Rn satisfying |γ| = 1 and
(γ.n(x)) ≥ H, n(x) is the unit normal to ∂Ω at x and for x ∈ ∂Ω.

The fact that uk(x − tγ) is non-decreasing in t for x, t and γ decribed above we have to
positive numbers α1 and α2 both depending on Ω such that, for any x belonging to Ω \Ωα2 =

{x ∈ Ω | dist(x, ∂Ω) < α2}, we have a measurable set Ix with

• |Ix| ≥ α1,

• Ix ⊂ {x ∈ Ω | dist(x, ∂Ω) ≥ α2/2},

• uk(κ) ≥ uk(x) for all κ in Ix.

Then, multiplying the equation satisfied by uk by the L1-normalised positive eigenfunc-
tion φ1 associated to the first eigenvalue,

λ1(Ω) B inf
u∈H1

0 (Ω), u.0

∫
Ω
|∇u|2∫

Ω
u2

,

we get that

λ1(Ω)
∫

Ω

ukφ1dx =

∫
Ω

φ1

uδk
dx +

∫
Ω

R(x)uαkφ1 dx.

Observing that, for any ` > λ1(Ω), there exists C > 0 such that

1
tδ

+ R(x)tα ≥ `t −C for any t ∈ R+ and uniformly for x ∈ Ω.

Then, fixing ` > λ1(Ω), it follows that

(` − λ1(Ω))
∫

Ω

ukφ1 ≤ C.

Thus, from above, we get for x ∈ Ω \Ωα2

uk(x)
∫

Ix

φ1dx ≤
∫

Ix

ukφ1 ≤ C.

Then, uk(x) ≤ C/|Ix|
1/2 ≤ C/α1 for x ∈ Ω \Ωα2 . Therefore, dist(Mk, ∂Ω) ≥ α2. We now apply

the blow-up analysis of [9].
Let BR(a) denote a ball with radius R and centre a ∈ Rn. Let λk be a sequence of positive

numbers(to be defined later) and y = (x − Pk)/λk. Define the scaled function

vk(y) = λ2/(α−2)
k uk(x).
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We choose λk so that λ2/(α−2)
k Mk = 1. Since Mk → +∞, we have λk → 0 as k → +∞. For

large k, vk(y) is well-defined in Bη/λk (0), and

sup
y∈Bη/λk (0)

vk(y) = vk(0) = 1.

Moreover, vk(y) satisfies in Bη/λk (0) the following equations:

−λ−2α/(α−1)
k ∆uk − λ

2δ/(α−1)
k [vk]−δ = R(λky + Pk)λ−2α/(α−1)

k [vk]α,

−∆vk = λ2(α+δ)/(α−1)
k [vk]−δ + R(λky + Pk)[vk]α.

From Lemma 9, we have uk ≥ c0{d(x)}α, where α depends on δ. Again by Lemma 10 we have
vk ≥ λ

2/(α−2)
k uk. Combining these two results we have vk ≥ p(> 0) in Ωη with p depending

upon η and δ
Therefore given any radius R such that BR(0) ⊂ B η

λk
(0) we can, by elliptic Lp estimates,

find uniform bounds for ‖vk‖W2,p(BR(0)). Choosing p large we obtain by Morrey’s embedding
theorem that ‖vk‖C1,β(BR(0)) for 0 < β < 1 is also uniformly bounded. So for any sequence
k → +∞, there exists a subsequence k j → +∞ such that vk j → v in W2,p ∩ C1,β, p > n on
BR(0). By Holder Continuity v(0) = 1 again since R(λky + Pk) → R(P) as k → +∞, we have
that

−∆v = R(P)vα,
v(0) = 1.

We claim that v is well-defined in all of Rn and vk j → v in W2,p ∩C1,β, p > n on compact
subsets. To show this we consider BR(0) ⊂ B′R(0). Repeating the above argument with
B′R(0), the subsequence vk′j has a convergent subsequence vk′j → v′ on B′R(0), v′ satisfies
λ2/(α−2)

k Mk = 1 and if restricted to BR(0) gives v. By unique continuation, the entire original
sequence converges and v is well defined. By Lemma 4, we have v = 0 in Rn, a contradiction
since v(0) = 1.

This completes the proof. �

The existence of a priori bounds together with the theory of global bifurcation in the
context of singular problems (see [12] and the extension for more singular nonlinearities [4])
can be used to prove existence of multiple solutions. Precisely, let us consider the following
problem where λ ∈ R+ is a parameter:

−∆u = λ

(
1
uδ

+ R(x)uα
)

in Ω,

u = 0 on ∂Ω, u > 0 in Ω.

(5)

In particular, we can prove the following result:

Theorem 11. Let δ ∈ (0, 3) and 1 < α < (n + 2)/(n − 2). Then, there exists an unbounded
connected set C ⊂ R+ ×

(
L∞(Ω) ∩ H1

0(Ω)
)

of solutions (λ, u) to (5) such that

(i) there exists Λ > 0 such that ΠRC = [0,Λ];



34 Kaushik Bal and Jacques Giacomoni

(ii) for any λ ∈ (0,Λ), there exists two solutions (λ, uλ) and (λ, vλ) belonging to C and such
that uλ < vλ in Ω.

The above theorem can be proved by showing that the conected component set of the
minimal solutions curve admits a turning point at λ = Λ and from the existence of universal
bounds at λ > 0 bends back to λ = 0 where the branch admits an asymptotic bifurcation
point.
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NUMERICAL SIMULATION OF
ANISOTHERMAL NEWTONIAN FLOWS

Nelly Barrau and Daniela Capatina

Abstract. We are interested in the finite element approximation of the Navier-Stokes
equations with variable density and with heat transfer. We discuss the choice of compat-
ible discretizations and we investigate the stability of the Jacobian matrix in a simplified
framework. We propose to introduce the mass flux and to use Raviart-Thomas elements
for its discretization, nonconforming elements for the velocity and a DG method for the
temperature. Finally, some numerical tests are presented.

Keywords: Compressible Navier-Stokes equations, anisothermal flow, finite elements, sta-
bilization.
AMS classification: 65M60, 76M10, 80A20.

§1. Introduction

We are interested here in the approximation of 2D anisothermal flows for Newtonian fluids.
The governing equations are the momentum, mass and energy conservation laws together
with the constitutive equation and a state equation, in a polygonal domain Ω ⊂ R2:

ρ

(
∂v
∂t

+ v · ∇v
)
− div τ + ∇p = f,

∂ρ

∂t
+ div(ρv) = 0,

ρCp

(
∂T
∂t

+ v · ∇T
)
− k4T = Q,

ρ = ρ (p,T ) ,
τ = 2ηD(v).

(1)

We close the system by imposing initial and boundary conditions. The unknowns are
the velocity v, the stress tensor τ, the pressure p, the temperature T and the density ρ. The
viscosity η, the thermal conductivity k and the heat capacity Cp are given constants.

This preliminary study is devoted to the development of a stable finite element approxi-
mation of problem (1) and to its implementation in the C++ library Concha. The further goal
is the extension to more complex anisothermal flows, for instance to compressible gases or to
viscoelastic non-Newtonian fluids. Therefore, we propose to keep the density as an unknown
of the problem in order to allow the treatment of different state equations, such as p = ρRT
for a gas or ρ = ρ0 (1 − β (T − T0)) for a polymeric liquid, with R the gas constant, β the
dilatation coefficient and ρ0 , T0 some reference values.
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As regards the constitutive law, it is obvious that in the Newtonian case the stress tensor
can be eliminated from the equations, which is no longer possible when dealing with non-
Newtonian fluids. For instance, for the polymeric liquids which we want to treat in the future
the constitutive law can be usually written as follows:

λ

(
∂

∂t
τ + v · ∇τ − τ∇vT − ∇vτ

)
+ τ + f (τ) = 2ηD(v)

and yields, at constant density and constant temperature, a three-fields formulation in (v, p, τ).
This aspect has been treated in the incompressible isothermal case in [3]. Here, we only focus
on the velocity-pressure formulation for Newtonian fluids.

§2. Choice of compatible discretizations

We present in the sequel some numerical difficulties related to the approximation of (1), as
well as our choice of discretization.

2.1. Incompressible Navier-Stokes equations
We begin by considering the stationary Stokes equations:−η4v + ∇p = f in Ω,

div v = 0 in Ω,
(2)

with homogeneous Dirichlet boundary conditions, for simplicity of presentation.
Its finite element discretization is very well studied in the literature and several methods

exist, each one with its own advantages and disadvantages. Thus, one may employ finite
element spaces for the velocity and the pressure which satisfy an inf-sup condition (see [2] for
a review), or choose the two discrete spaces independently but then add a stabilization term
in order to ensure the uniform coercivity of the matrix. Completely discontinuous discrete
spaces can also be employed, leading to a discontinuous Galerkin (DG) method which is
known to be flexible but quite expensive from a computational point of view.

Among the inf-sup stable spaces, there are the conforming and the nonconforming ap-
proximations. We have chosen to use here low-order nonconforming finite elements either
on triangles or on quadrilaterals, due to their well-known stability and their reduced stencil.
Note that in the triangular case, the mass matrix is diagonal and we recover a divergence free
discrete velocity. These spaces also present certain advantages concerning the adaptivity. We
are using Crouzeix-Raviart [1] elements on triangles, respectively Rannacher-Turek [6] ele-
ments on quadrilaterals, whose degrees of freedom are the mean values across the edges. The
finite dimensional spaces for the velocity are defined as follows:

VCR
h =

{
v ∈ L2(Ω) ; ∀T ∈ Th, v|T ∈ P1, ∀ e ∈ Sh,

∫
e
[v] ds = 0

}
,

VRT
h =

{
v ∈ L2(Ω) ; ∀T ∈ Th, v|T ∈ QT , ∀ e ∈ Sh,

∫
e
[v] ds = 0

}
,
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where QT = (QT )2 with QT = {v ; v◦ΨT ∈ Q̂rot}, Q̂rot = vect{1, x̂, ŷ, x̂2 − ŷ2} and ΨT : T̂ → T
the bilinear one-to-one transformation of the square T̂ = [−1, 1]2. We employ the usual
notation [·] for the jump across en edge e ∈ Sh of the triangulation; the jump is equal to the
trace if e ⊂ ∂Ω. The pressure is looked for in

Mh =
{
p ∈ L2

0(Ω); ∀T ∈ Th, p|T ∈ P0

}
.

As regards now the instationary Navier-Stokes equations, it is well-known that the dis-
cretization of the additionnal nonlinear term v · ∇v is more delicate since it necessitates sta-
bilization. Several schemes such as SUPG, LPS or edge stabilization were proposed in the
literature and are implemented in the library Concha. The approximation of the time deriva-
tive ∂v/∂t is more standard, and several schemes (implicit and explicit Euler, Crank-Nicolson,
BDF) are available in Concha. These aspects will be detailed in the next section, since their
treatment is specific to the change of variables that we propose in the compressible case.

2.2. Compressible Navier-Stokes equations
The density ρ is now an additionnal unknown, and we have to solve the following system :

ρ

(
∂v
∂t

+ v · ∇v
)
− η4v + ∇p = f in Ω,

∂ρ

∂t
+ div(ρv) = 0 in Ω,

ρ = ρ(p) in Ω.

(3)

The numerical treatment of the convective term ρv · ∇v necessitates the design of ade-
quate stabilization techniques, and is still an active and open research topic. To tackle it, we
have chosen here to introduce the mass flux as an auxiliary variable G = ρv belonging to
H (div, Ω). For its discretization, we employ lowest-order Raviart-Thomas finite elements
(see [7]), which are known to be H(div,Ω)-conforming. More precisely, Gh is looked for
in the space Wh = {w ∈ H(div, Ω) ; ∀T ∈ Th, w|T ∈ RT0} where RT0 is defined as follows:
RT0 = P0 ⊕ xP0 on triangles, respectively RT0 = P1[x] × P1[y] on quadrilaterals. The de-
grees of freedom are the normal fluxes across the edges of the triangulation. It is useful to
recall that the interpolation operator Eh of [7] satisfies, besides classical errors estimates, the
following properties on every T ∈ Th and e ∈ Sh respectively:

div (Ehw) = π0 (div w) , Ehw · n = π0(w · n),

where π0 is the L2-orthogonal projection on P0.
We are next interested in the stability of the discrete steady problem. To highlight the

structure of the corresponding operator, let us consider a simple state equation, let’s say
ρ = C p with C constant: 

−η4v + ∇p = f in Ω,

−Cpv + G = 0 in Ω,

div G = 0 in Ω.
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We apply Newton’s method and at each iterate, we obtain the variational formulation:

(vh, Gh, ph) ∈ Vh ×Wh × Mh,

∀v′h ∈ Vh, η

∫
Ωh

∇vh · ∇v′h dx −
∫

Ω

ph div v′h dx =

∫
Ω

f · v′h dx,

∀G′h ∈Wh, −C
∫

Ω

pn
hvh ·G′h dx −C

∫
Ω

phvn
h ·G

′
h dx +

∫
Ω

Gh ·G′h dx = 0,

∀p′h ∈ Mh,

∫
Ω

p′h div Gh dx = 0.

The corresponding Jacobian matrix can be written as follows:

J =


A 0

... B1

A1 I
... B2

. . . . . . . . . . . . . . .

0 B3
... 0


=

A B1

B2 0

 ,

with B1 , B
T
2 and A non-symmetric. In order to show that J is invertible, we shall apply

a generalization of the Babuska-Brezzi theorem which was given by Nicolaides in [5]. We
have then to check three discrete inf-sup conditions on B1, B2 and A respectively, the latter
one on KerB2 × KerB1.

Proposition 1. There exists β1 > 0 independent of h such that

inf
p∈Mh

sup
(v,G)∈Vh×Wh

−
∫

Ω
p div v dx −C

∫
Ω

pvn
h ·G dx

‖p‖0,Ω
(
|v|1,h + ‖G‖H(div,Ω)

) ≥ β1.

Proof. The proof is identical to the one of the classical inf-sup condition for the two-fields
formulation of the Stokes problem on Vh × Mh (see for instance [2]), by taking G = 0. �

Proposition 2. There exists β2 > 0 independent of h such that

inf
p∈Mh

sup
G∈Wh

−
∫

Ω
p div G dx

‖p‖0,Ω ‖G‖H(div,Ω)
≥ β2.

Proof. The proof is well-known, see [7]. For p ∈ Mh, one considers the auxiliary problem:−4z = p in Ω,

z = 0 on ∂Ω,

and takes w = ∇ z which belongs, thanks to the regularity of the Laplace operator, to Ha(Ω)
with a > 1/2. Let then the Raviart-Thomas interpolate G = Ehw. According to the properties
of Eh, one has div G = −p and ‖G‖H(div,Ω) ≤ c ‖p‖0,Ω, which implies the uniform inf-sup
condition on B2. �
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Proposition 3. There exists α > 0 such that:

inf
(v,G)∈KerB2

sup
(v′,G′)∈KerB1

A ((v,G), (v′,G′))
‖(v,G)‖H1

0(Ω)×H(div,Ω) ‖(v′,G′)‖H1
0(Ω)×H(div,Ω)

≥ α,

inf
(v′,G′)∈KerB1

sup
(v,G)∈KerB2

A ((v,G), (v′,G′))
‖(v,G)‖H1

0(Ω)×H(div,Ω) ‖(v′,G′)‖H1
0(Ω)×H(div,Ω)

> 0.

Proof. These two inf-sup conditions translate the fact that the matrix A is invertible on
KerB2 × KerB1. Since A =

(
A 0
A1 I

)
is block triangular, it is therefore sufficient to show the

invertibility of A. Thanks to the discrete Poincaré inequality on the nonconforming spaces, A
is uniformly invertible on the whole space Vh. Thus, the statement is established. �

Let us now discuss the complete system (3). One may choose between two options: write
the particular derivative of the first equation in conservative form ∂G/∂t + div(G ⊗ v), or
keep ρ∂v/∂t + (G · ∇)v. We have chosen here the latter variant. For the discretization of the
convective term, we propose the stabilization:∫
Th

(Gh · ∇)vh · v′h dx ≈ −
∫
Th

(
(div Gh)vh · v′h + (Gh · ∇)v′h · vh

)
dx +

∫
Sh

Fe (Gh, vh) ·
[
v′h

]
ds,

where Fe(Gh, vh) = (Gh · ne)+ vin
h + (Gh · ne)− vex

h represents the numerical flux and ne is a
unit normal to the edge e . For a given piecewise continuous function ϕ, we have denoted
ϕex(x) = limε→0ϕ(x−εne), ϕin(x) = limε→0ϕ(x+εne) and [ϕ] = ϕex−ϕin. Then we end up with
another matrix A∗ =

(
A∗ A2
A1 I

)
instead of A, for which the inf-sup conditions of Proposition 3

should be established. Note that for div Gh = 0, the diffusion-convection operator A∗ is
uniformly coercive on Vh since one can show that

A∗(vh, vh) = η |vh|
2
1,h +

1
2

∫
Sh

|Gh · ne| [vh] · [vh] ds.

For the discretization of the time derivative ρ∂v/∂t, we have employed the BDF (Back-
ward Differential Formula) scheme of order 2, for its robustness and stability. The variable at
tn+1 is expressed in terms of the solutions at the two previous time steps as follows:

ρn+1
∂vn+1

∂t
≈ ρn+1

(
1
4t

(
3
2

vn+1 − 2vn +
1
2

vn−1

)
+ O

(
4t2

))
.

The coercivity of the diagonal blocks corresponding to the velocity and the pressure is thus
enhanced, but the block B1 is also modified and a new inf-sup condition should be satisfied.

2.3. Anisothermal flow
Taking into account the thermodynamics is essential in order to obtain realistic simulations.

The energy equation is convection-dominated due to the large value of the heat capacity
coefficient Cp. We have chosen to employ a DG method for its discretization, which is known
to be well-adapted to such problems (see for instance Lesaint and Raviart [4]). In order
to reduce the computational cost and also because k � 1 while ρCp ≈ 106, we use here
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piecewise constant elements for T . Thus, the discrete diffusion operator on T is reduced to
the stabilization term on the edges while the convective term G ·∇T is approximated similarly
to [4]. The density is approximated by the same finite elements as the temperature.

For the analysis of the corresponding discrete problem, one could apply twice the general
results of [5]. To illustrate this, let us consider for the sake of simplicity the steady case and
let us neglect the convection in the momentum law. Then the governing equations are:

−η4v + ∇p = f,
G − ρv = 0,

−k4T + CpG · ∇T = 0,
ρ + ρ0βT = ρ0 (1 + βT0) ,

div G = 0,

and the Jacobian matrix of the discrete problem in the unknowns (v,G,T, ρ, p) can be written
as follows

J ′ =

A
′ B

′

1

B
′

2 0

 , with: A′ =


A 0 0 0
A1 I 0 B1
0 B2 D 0
0 0 B3 I

 , B
′

1 =


B4
0
0
0

 , B
′

2 =


0
B5
0
0


T

.

The inf-sup conditions on B
′

1 and B
′

2 are the same as in the previous section, so one only
has to check the inf-sup condition forA′ on KerB

′

2 × KerB
′

1 in order to conclude that J ′ is
invertible. For this purpose, one can decomposeA′ in mixed form as follows

A′ =

A
′′ B

′′

1

B
′′

2 C

 ,
where

A′′ =

 A 0 0
A1 I 0
0 B2 D

 , B
′′

1 =

 0
B1
0

 , B
′′

2 =

 0
0
B3


T

, C = I.

Since C is clearly positive definite, we can establish inf-sup conditions for A
′′

, B
′′

1 and
B
′′

2 . Note that the latter is obvious, since B3 corresponds to
∫

Ω
(ρ0β)Tρ dx. Moreover, A being

the nonconforming diffusion operator on v and D the DG diffusion-convection operator on T ,
they are uniformly coercive, so that the block triangular matrixA

′′

is clearly invertible.
In the unsteady case, the time-discretization enforces the coercivity of the diagonal blocks

A and D, but also modifies the bilinear forms B
′

2 and B
′′

1 . Finally, when taking into account
the convective term G · ∇v, the first line ofA

′′

is modified and the matrix is no longer block
triangular; nevertheless, the new diagonal block A is still uniformly coercive.

§3. Numerical experiments

We present some of our first numerical results, carried out on two academic tests. Two dif-
ferent fluids have been considered, a polymer with a high viscosity and a liquid with physical
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(a) t = 60 s (b) t = 90 s (c) t = 120 s

Figure 1: Polymer flow: temperature at different time steps

(a) t = 60 s (b) t = 90 s (c) t = 120 s

Figure 2: Polymer flow: density at different time steps

properties similar to those of water. We have taken into account the gravity force and we have
considered an affine dependence of the density on the temperature, which corresponds to the
case of polymers and which yields the state equation: ρ = ρ0 (1 − β (T − T0)). The next tests
are carried out on quadrilateral meshes. The parameters which are common to the numerical
experiments are given in the table below:

Parameter Value
ρ0: initial density 1000 kg/m3

T0: initial temperature 273 K
β: dilatation coefficient 10−4 m3/kg · K

3.1. Driven cavity: polymer flow
We consider first the driven cavity test in a square Ω. We impose a velocity v = (0.03, 0) m/s
on the top boundary and 0 elsewhere, while the temperature equals 350 K on the top and
273 K elsewhere. The parameters specific to a polymeric liquid are: the heat capacity Cp =

2000 J/kg · K, the thermal conductivity k = 0.05 W/m · K and the viscosity η = 1000 Pa · s.
One can see in Figures 1 and 2 the evolution of the temperature and of the density. The

results of the simulation are physically acceptable. The vortex drags the warm fluid towards
the bottom. Due to the gravity force, this one raises slowly to the top and thus it warms the
fluid situated between the upper edge and the warm convected fluid.
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(a) t = 25 s (b) t = 50 s (c) t = 75 s

Figure 3: Water flow: temperature at different time-steps

(a) t = 25 s (b) t = 50 s (c) t = 75 s

Figure 4: Water flow: density at different time steps

3.2. Driven cavity: water flow

The specific parameters are now: Cp = 4186 J/kg · K, k = 0.6 W/m · K and η = 0.001 Pa · s.
We show in Figures 3 and 4 the temperature and the density (as well as the velocity field) at
different time steps. Since the water has a turbulent flow, the stabilization employed in this
case is not so efficient; we couldn’t simulate a time interval as long as previously.

3.3. Confined flow

The domain is now a rectangle of sides 12 cm and 4 cm. We consider the polymeric liquid
previously described and we impose v = 0 on the whole boundary, a constant temperature
273 K on the top and a temperature depending on time and on the abscissa x on the bottom:
T (x, t) = 273 + 100t + 250x if T < 350 and T (x, t) = 350 otherwise. On the vertical
boundaries, a homogeneous Neumann condition is set for the temperature.

We show in Figures 5 and 6 the first component of the velocity and the density, as well
as the streamlines, at the end of the simulation. Due to the gravity force and to the non-
symmetric boundary condition on the bottom, the heat goes up slowly and generates a veloc-
ity field.
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Figure 5: Confined flow: first component of the velocity at the end of simulation

Figure 6: Confined flow: density at the end of simulation

§4. Conclusion and further developments

The anisothermal Navier-Stokes model set up in this work is a first step towards the numerical
simulation of more complex flows with heat tranfer, by using the library Concha. We have
proposed a finite element method based on the introduction of an additionnal unknown, the
mass flux, and investigated the stability of the Jacobian matrix in a simplified framework. In
perspective, this study should be extended to a more general case. It will also be interesting
to compare this approach with the classical one, written only in the primitive variables.

Although the considered model presents some simplifications (simplified state equation,
absence of viscous dissipation in the energy equation), it contains the main difficulties related
to this type of problem: compressibility, turbulent flow, dominant convection, significant
number of unknowns etc. From a numerical point of view, its treatment necessitated the
enrichment of the library Concha in order to take into account a variable density, as well as
the implementation of a specific stabilization for certain nonlinear convective terms.

The first numerical results are encouraging, and show that the code gives physically ac-
ceptable results. More numerical experiments and comparisons with other softwares such
as PolyFlow R© or OpenFoam should be carried out in order to further validate the code. As
future improvements, we think of using adaptive time steps, iterative solvers and also a local
elimination procedure for the mass flux, which amounts to a different stabilization of ρv · ∇v.
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ANALYSIS OF BIFURCATIONS
APPEARING IN THE NONLINEAR
HELICOPTER FLIGHT DYNAMICS

P-M. Basset, S. Kolb and C. Poutous
Abstract. The bifurcation theory is interested in the changes of the qualitative structure
of dynamical system solutions when control parameters are varied. It is exploited here
in order to analyse the highly nonlinear flight dynamics of a helicopter. This feature
comes from the couplings between different constituting elements and physical variables
and also from the overwhelming role of the main rotor whose dynamics is inherently
quite complex. After describing the framework of the physical model i.e. the states, the
control parameters and the dynamics, the appearing bifurcations are here analysed and
characterised mathematically. Then the influence of the present nonlinearities over the
global helicopter behaviour is assessed.

It is first shown that the formalism of a system of differential algebraic equations is
here required so as to impose some algebraic constraints on some translational and rota-
tional velocities, thus avoiding any inappropriate divergent movement. On the one hand,
a bifurcation of equilibrium points associated to a real eigenvalue is linked to the vor-
tex ring state phenomenon which occurs during steep descent flight. In this case, jumps
and hysteresis reveal to be responsible for the dangerousness of such a situation. On the
other hand, bifurcations of periodic orbits are observed and evaluated as triggering harm-
ful pilot-aircraft couplings. Their type and characteristics are determined. To put in a
nutshell, the nonlinear rotorcraft dynamics gives raise to interesting bifurcations whose
description and characterisation need to be successfully performed in order to help avoi-
ding dangerous configuration and recovering from these last ones.

Keywords: Bifurcation theory, dynamical systems, flight dynamics.
AMS classification: 34K18, 34K20.

Introduction

Helicopter flight dynamics is highly nonlinear because of its complex rotor dynamics and of
the numerous physical couplings. In this paper, several types of bifurcations are studied and
related to bifurcations of equilibrium points and of periodic orbits. The focus is stressed on
the mathematical aspects of the analysis of a real rotorcraft behaviour.

First the mathematical framework must be defined and the type of mathematical equations
involved must be made explicit. We can notice that the classical formulation of a system of
ordinary differential equations does not fit well with this issue and that a system of differential
algebraic equations must be employed. Secondly concrete bifurcations will be examined. On
the one hand, a fold bifurcation of equilibrium points is diagnosed as underlying the vortex
ring state phenomenon and gives raise to a hysteresis dynamics. On the other hand, bifur-
cations of periodic orbits trigger a jump in the oscillation amplitude and are responsible for
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harmful rotorcraft-pilot couplings. Finally it is shown how efficient the bifurcation theory
can be for the analysis of nonlinear rotorcraft flight dynamics. This study presents the adap-
tations necessary in order to employ such a methodology in this particular case. It also gives
concrete mathematical propositions and statements relative to helicopter flight dynamics.

§1. Mathematical modelling and numerical aspects for the helicopter
flight dynamics analysis

Before being able to analyse such a dynamical system, it is first necessary to define the math-
ematical model i.e. to describe the dynamical system and the type of equations involved (and
perhaps to complete also the modelling of the helicopter flight dynamics). Then numerical
algorithms need to be developed and employed so as to calculate the characteristic loci of
bifurcation theory.

1.1. Mathematical model

In order to define a dynamical system (1), we must specify the vector of state variables X ∈
Rn, the vector of command variables (or control parameters) U ∈ Rk and the vector field
corresponding to the state dynamics F ∈ C∞

(
Rn × Rk,Rn

)
with n, k ∈ N∗.

Ẋ = F (X,U) . (1)

First the state variables describing the rotorcraft flight dynamics are:

X = (Uhel,Vhel,Whel, Phel,Qhel,Rhel, φ, θ,VimMR,VimTR) . (2)

They correspond on the one hand to the classical variables of flight dynamics, i.e. Uhel, Vhel,
Whel, Phel, Qhel, Rhel, φ and θ, which are the translational velocities, the rotational velocities
and the Euler angles. On the other hand, (VimMR,VimTR) are the (mean) induced velocities
of the main and tail rotors which are specific rotorcraft variables. Secondly the helicopter has
four controls:

U = (DT0,DTC,DTS ,DT A) . (3)

The three first ones command the main rotor i.e. DT0 is the collective pitch, DTC the
lateral cyclic pitch, DTS the longitudinal cyclic pitch, whereas the last one DT A is the collec-
tive pitch of the tail rotor. Thirdly the expression of dynamics function F results here from the
fundamental principle of dynamics and from aerodynamics modelling works. It corresponds
to

F (X,U) =
(
U̇hel, V̇hel, Ẇhel, Ṗhel, Q̇hel, Ṙhel, φ̇, θ̇, V̇imMR, V̇imTR

)
(4)

The physical model derives from Newton’s laws of motion and is written in the body-fixed
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axes at the centre of gravity of the rotorcraft [8].

U̇hel = − (Whel · Qhel − Vhel · Rhel) +
FX

Mhel
− g sin θ,

V̇hel = − (Uhel · Rhel −Whel · Phel) +
FY

Mhel
+ g cos θ sin φ,

Ẇhel = − (Vhel · Phel − Uhel · Qhel) +
FZ

Mhel
+ g cos θ cos φ,

IXX Ṗhel = (IYY − IZZ) Qhel · Rhel + IXZ

(
Ṙhel + Phel · Qhel

)
+ MX ,

IYY Q̇hel = (IZZ − IXX) Rhel · Phel + IXZ

(
R2

hel − P2
hel

)
+ MY ,

IZZṘhel = (IXX − IYY ) Phel · Qhel + IXZ

(
Ṗhel − Qhel · Rhel

)
+ MZ .

(5)

The forces (FX , FY , FZ) and the moments (MX ,MY ,MZ) contains the contributions of the
main rotor, the tail rotor, the fuselage, the horizontal tailplane, the vertical fin. These external
forces are taken into account in addition to the weight (mass Mhel). IXX , IYY , IZZ , IXZ are the
fuselage moments of inertia along the body reference axes.

The corner stone of the computation procedures linked to dynamical system problems
consists in a so-called continuation algorithm. Such a software was developed for example
by P. Guicheteau at ONERA for his studies on nonlinear fixed-wing aircraft flight dynamics
[6, 7]. The continuation algorithm consists basically in the repetition of four steps: seeking
a point on the solution curve, evaluating the tangent direction (Jacobian matrix calculation),
predicting a new point and correcting the predicted point such that the calculated point is
effectively on the curve. The characteristic loci can and must always be expressed under
the form of an implicit system of n equations and (n + 1) variables (with n ∈ N∗). As a
consequence, there can only be one single control parameter.

In this study, the vortex ring state phenomenon will be examined. As a consequence,
the focus is stressed on the dynamics along the vertical axis and the influence of a descent
rate variation. The main rotor collective pitch DT0 which mainly governs VZ and which
determines the main rotor thrust is therefore selected as control parameter U. Unfortunately
for a helicopter, all the physical variables are often coupled. When the collective pitch DT0
is reduced, the main rotor (torque) moment decreases also. But since the tail rotor still creates
the same (anti-torque) moment as before, the helicopter begins to turn. To stabilise the yaw
rate Rhel and to prevent the helicopter from turning, it is necessary to change the value of the
tail rotor collective pitch DT A.

By imposing Rhel to zero by means of an additional algebraic constraint, the adapted trim
value of the tail rotor collective pitch DT A is indirectly calculated. For equivalent reasons,
the lateral velocity VY is forced to zero by determining the required lateral cyclic pitch angle
DTC and the longitudinal cyclic pitch angle DTS is chosen such that the forward velocity
VX is equal to a fixed forward velocity VH0 (null here). Finally the movement can be imposed
in a vertical plane by means of the following system of algebraic equations:

Rhel (X,DT0,DTC,DTS ,DTA) = 0,
VX (X,DT0,DTC,DTS,DT A) = 0,
VY (X,DT0,DTC,DTS ,DT A) = 0.

(6)
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Thus, as a partial conclusion of this modelling part, for a helicopter flight dynamics prob-
lem, it can be stated that the description must be made by means of a system of differential
algebraic equations (DAE). The classical formulation under the form of a system of (au-
tonomous) differential equations is not convenient.

1.2. Local bifurcations
The current study deals with local bifurcations of vector fields whose analysis is accom-
plished by examining the vector field in the neighbourhood of the (degenerate) equilibrium
points or periodic orbits. The associated theory makes the assumption that considering the
linearised system or truncated Taylor series of the vector fields allows to draw directly a con-
clusion for the nonlinear problem and the global (asymptotic) behaviour of its solutions. The
methodology relies partly on the theorem 1.

Theorem 1 (Hartman-Grobman). If DXF
(
X̄
)

has no zero or purely imaginary eigenvalues
then there is a homeomorphism h defined on some neighbourhood U of X̄ ∈ Rn locally
taking orbits of the nonlinear flow to those of the linear flow etDX F(X̄). The homeomorphism
preserves the sense of orbits and can also be chosen to preserve parametrisation by time.

Definition 1. If no eigenvalues of the Jacobian matrix DXF
(
X̄
)

has a zero real part, then X̄
is called a hyperbolic fixed point.

In such a situation, linearisation is sufficient to determine the asymptotic behaviour of
solutions. On the contrary, when one of the eigenvalues has got a zero real part, the fixed point
is said to be nonhyperbolic. Then it may be necessary to calculate higher order coefficients
in the Taylor series and to evaluate the dynamics on the center manifold [5] so as to be able
to conclude about the asymptotic behaviour of the overall system.

After describing the mathematical model and presenting elements concerning bifurcation
theory, a concrete case is then examined with the help of this methodology.

§2. Fold bifurcation of equilibrium points, hysteresis (Vortex Ring State)

For a phenomenon such as the vortex ring state, the nonlinear behaviour comes from the
nonlinear evolution of the induced velocity of the main rotor during descent flight. Indeed
for a certain range of descent velocity (and forward speed), the rotor enters in its own wake
and a doughnut-shaped ring appears around the rotor disk. The induced velocity of the main
rotor increases strongly but its thrust is falling off and is not sufficient any more to stabilise
the rotorcraft. The heave dynamics is affected, it corresponds approximatively to a change
of sign of the derivative Zw = ∂Ẇhel/∂Whel of the vertical dynamics and thus a behavioural
change of the solution of the equation

Ẇhel − ZwWhel = 0, (7)

with the approximate analytic expression [8]

ZW = −
2CZαAblade ρ (ΩR) Vi/ (ΩR)(

16Vi/ (ΩR) + CZαNblade c/ (πR)
)

Mhel
(8)
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Figure 1: Bifurcation diagram associated to the vortex ring state [3] and presenting the de-
scent rate VZ in function of the collective pitch DT0

in hover or vertical flight and

ZW = −
CZαAblade ρ (ΩR)

2Mhel

4(
8VX/ (ΩR) + CZαNblade c/ (πR)

) (9)

in forward flight where CZα is the blade lift curve slope, Ablade the blade surface, Mhel the
total mass, Nblade the blade number, c the blade chord, Ω the nominal main rotor speed, R the
main rotor radius and ρ the air density.

The bifurcation theory is interested in the determination of the bifurcation diagram (locus
of equilibrium points), the locus of the bifurcation points and the equilibria surface. They are
calculated in the following sections.

2.1. Locus of equilibrium points (bifurcation diagram)
The continuation algorithm allows to compute the bifurcation diagram of the system made of
equations (1), (2), (3) and (6). Its result is shown in Figure 1.

According to [5], the “generic” saddle-node bifurcation looks qualitatively like the family
of equations ẋ = u − x2 in the zero eigenvector direction (and with hyperbolic behaviour in
the complementary directions).

In Figure 1, the equilibrium curve contains two stable branches (green) and in the middle
of them an unstable branch (red). The two bifurcations are linked to a zero real eigenvalue
and are turning points [7]. For the range of control parameters DT0 between the two critical
values, there are three equilibrium points whereas outside this region there is only one single
equilibrium point. Such a bifurcation diagram is the typical one of a hysteresis. For flight
dynamics engineers, the flight regimes at low descent rates is called “helicopter branch” and
the one at high descent rates is named “windmill branch”.

Concretely when the system is in a steady configuration near the bifurcation point, a little
variation of the control parameter induces a situation where the system does not succeed any
more in stabilising itself. As a consequence, a jump occurs on the other branch of equilibria
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Figure 2: Boundaries of the vortex ring state region

(and isn’t reversible with little opposite variations). From the viewpoint of flight dynamics,
this jump from the helicopter branch to the windmill branch shows the loss of stability and
the sudden increase in descent rate of the helicopter which appear when entering in vortex
ring state.

After having determined the locus of equilibrium points and the type of dynamics associ-
ated to this bifurcation diagram, it is interesting to compute the locus of bifurcations points.
It provides the analysis with new powerful information.

2.2. Locus of bifurcation points
The locus of bifurcation points is composed of the equilibria for which a behavioural change
occurs (such as stability loss) that is to say here equilibria such that one real eigenvalue of
the Jacobian matrix is equal to zero. The associated mathematical criterion is det

(
DX Ẋ

)
= 0

which can also be written with the notation employed in the equation (1):

det (DXF (X,U)) = 0. (10)

The continuation algorithm permits to compute the locus of bifurcation points by solving
the following system of equations whose control parameters are VH0 and VZ0:

Ẋ = F (X,U) ,
det (DXF (X,U)) = 0,

Rhel (X,DT0,DTC,DTS ,DTA) = 0,
VX (X,DT0,DTC,DTS,DT A) = VH0,

VY (X,DT0,DTC,DTS ,DT A) = 0,
VZ (X,DT0,DTC,DTS ,DT A) = VZ0.

(11)

In Figure 2, the locus of the bifurcation points (labelled “Bifurcation Criterion” and
purple-coloured) is compared with data resulting from flight tests organised by ONERA at
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Figure 3: Surface of equilibria near the vortex ring state region

the French flight test centre of Istres and other criteria delimiting the VRS zone. The sudden
drops are represented with blue triangles and the stabilisation points with red triangles.

As observed in the diagram presenting the forward velocity VH and the descent rate VZ

normalised by the main rotor induced velocity in hover Vih (cf. again Figure 2), the locus of
bifurcation points fits well with the flight tests and predicts well the zone of instabilities.

Besides the gap for the lower frontier can be explained by the fact that the flight tests
diagnose the conditions for which the aircraft stabilises after the drop whereas the bifurcation
point represents the conditions for which the jump from the windmill branch to the helicopter
branch occurs. The first point has got a bigger descent rate than the second one.

Moreover another relevant information can be obtained by scrutinising the surface of
equilibrium points.

2.3. Surface of equilibria
Practically the surface of equilibria is actually determined by calculating the loci of equilib-
rium points for several longitudinal velocity VH . The algebraic equations are (12) and the
control parameters are DT0 and VH0:

Rhel (X,DT0,DTC,DTS ,DTA) = 0,
VX (X,DT0,DTC,DTS,DT A) = VH0,

VY (X,DT0,DTC,DTS ,DT A) = 0,
(12)

The surface of equilibria in the neighbourhood of the vortex ring state is exposed in Figure 3.
From the point of view of dynamical system theory, such a surface is called a cusp (cf.
[5, page 355] or [9, pages 344-346]). There is a turning fold [7] i.e. a zone with three
equilibrium points and another one with only one single equilibrium point. By considering
the surface where the stable blue points are distinguished from the unstable red ones and
by examining the configuration, an escape strategy can be deduced. When the aircraft jumps
from the helicopter branch to the (windmill) branch with high descent rate, it is in a zone with
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three equilibriums. By increasing its forward velocity, the unstable zone reduces itself and
disappears at the end. The helicopter is then in a zone with only one single stable equilibrium
which means in a safe situation.

Conclusion about the analysis of a real bifurcation of equilibria in the
case of the vortex ring state phenomenon

The mathematical formulation as a system of differential algebraic equations (DAE) seems
to be necessary for the description and analysis of rotorcraft flight dynamics. Indeed many
variables are coupled and some algebraic constraints must be added in order to avoid senseless
configurations. As far as nonlinear analysis is concerned, on the one hand, the bifurcation
theory reveals an underlying hysteresis phenomenon triggered by saddle-node bifurcations of
equilibrium points. On the other hand, the locus of bifurcations points proves to be a relevant
criterion in order to delimit the zone of instabilities linked to the vortex ring state [2].

This first part was devoted to the thorough analysis of a bifurcation of equilibria associ-
ated to a real eigenvalue and corresponding to the phenomenon of vortex ring state. After
describing the mathematical model, the bifurcation diagram, the surface of equilibria and the
locus of the bifurcation points were determined and interpreted from the both points of view
of a mathematician and a flight dynamics engineer. In the next part, a bifurcation of periodic
orbits will be studied. The mathematical model comes from the representation of a rotorcraft
command channel with the use of the describing function theory.

§3. Bifurcation of limit cycles (Pilot-Induced Oscillations)

In order to perform the analysis of the rotorcraft command channel, the describing function
method is employed and some elements about its mathematical justification is first intro-
duced. Then the equations associated to the flight control system are made explicit. Finally
the solution is computed thanks to the continuation algorithm and the results are interpreted
with the bifurcation theory formalism.

3.1. Methodology

In order to exploit the describing function method [4], two conditions must hold. The first
one states that there must be a clearly identifiable nonlinear element which can be isolated
from the linear part whereas the second one stipulates that the linear part must behave like
a low-pass filter. For the closed-loop system, the determination of the existence of possible
periodic orbits and of their first-harmonic properties requires to solve the harmonic balance
equation:

1 + L ( jω) · N (A, ω) = 0, (13)

where ω is the pulsation of the possible limit cycle, A the amplitude of its first harmonic,
N (A, ω) the describing function of the nonlinear element (i.e. the rate-limited actuator) and
L ( jω) the linear part including the bare airframe, the pilot and the linear actuators.
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Figure 4: Closed-loop ADOCS command channel

Some elements relative to the mathematical foundation of the describing function method
were explained in the previous section. The handled flight control system is exposed before
beginning its concrete examination.

3.2. Command channel
The rotorcraft command channel presented in Figure 4 is the longitudinal one of the ADOCS
helicopter as described by the NASA technical memorandum [10]. It contains the command
block which filters the possible too aggressive pilot inputs, the blocks modelling the dynamics
of the rotor and of the fuselage and the feedback loop block. The displacement velocity of
the swashplates which command directly the motion of the main rotor blades is limited to
10 inches/s. This last one is here responsible for the observed nonlinear behaviour.

The longitudinal flight control system is analysed by means of the describing function
method. According to (13), the equation (14) requires to be solved so as to diagnose the
possible existence of a periodic orbit and to estimate the amplitude A and phase delay φ of its
first harmonic for various values of input oscillation amplitude θc and for a pilot gain Kp = 1
(fixed nervousness here):(

1 + Rotor · RigidBody · N(A, ω) · Actuator ·
(
Kp · CommandBlock + Feedback

))
× A exp( jφ) = Actuator · CommandBlock · θc. (14)

The characterisation of a saddle-node bifurcation of periodic orbits can be found in [9]
and indeed it can be observed that Figure 5 is typical of a saddle-node bifurcation of peri-
odic orbits [1, 9]. When the reference amplitude is increased from 0.33 rad to 0.34 rad, the
amplitude of the entry state of the rate limiter jumps from 6 to 10.

Concretely the sudden increase may surprise, disturb greatly the pilot which does not
succeed any more in controlling the aircraft, what leads to a risky situation.

Conclusion

During this study, two different phenomena coming from the field of rotorcraft flight dynam-
ics were dealt with. Their underlying dynamics is governed by different types of bifurcations.

A fold bifurcation of equilibrium points of real eigenvalue proves to be responsible for a
sudden jump of one branch of equilibria (helicopter branch) to another one (windmill branch)
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Figure 5: Jump of the oscillation amplitude

for a little variation of the (collective pitch) control. According to the bifurcation diagram, the
underlying dynamics is a hysteresis. This last one explains mathematically the appearance of
the vortex ring state phenomenon.

As far as pilot induced oscillations are concerned, a saddle-node bifurcation of periodic
orbits is here observed. Amongst others, they imply jumps in amplitude of the periodic orbits
and trigger some flying qualities cliffs.

Several important results were presented in this research paper. The detection of real
bifurcations allows to delimit successfully the region of vortex ring state. The determination
of the existence and of the properties of a bifurcation of limit cycles shows that the command
channel of the ADOCS helicopter demonstrator which was adapted for this study is likely to
have some flying qualities cliffs.

As a conclusion, the bifurcation theory reveals to be a useful tool for the nonlinear analy-
sis of rotorcraft flight dynamics. It provides criteria helping delimiting dangerous regions of
flight or detecting changes of flying qualities.
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CONCEPTS OF THE FINITE ELEMENT
LIBRARY Concha

Roland Becker and David Trujillo

Abstract. We describe the concepts underlying the finite element library Concha. The
library intends to provide tools for implementing general finite element methods based on
continuous, non-conforming, and discontinuous finite element spaces defined on different
types of meshes in two and three space dimensions. It also provides different stabilization
methods, a posteriori error estimators, and local mesh refinement. Concrete examples
are shown for incompressible and compressible flows described by the Navier-Stokes and
Euler equations, respectively.

Keywords: Finite element methods, adaptivity, C++.

AMS classification: 65N30, 65N50, 65N55, 65M30, 65M50, 65M55.

§1. Introduction

The finite element library Concha is developed by the team with the same name, Concha
https://sites.google.com/site/conchapau, which is an “équipe” supported by the
University of Pau and INRIA Bordeaux-Sud Ouest since 2008. The objective of this inter-
disciplinary team is the development and analysis of algorithms and efficient software for
the simulation of complex flow problem. We are specially interested in modern discretization
methods (adaptivity, high-order and stabilized methods) and in goal-oriented simulation tools
(prediction of physical quantities, numerical sensitivities, and optimization). Concha is the
common computing platform used to implement our algorithms and to perform numerical
experiments. For the moment, it has been used to perform the following tasks:

• Numerical simulation of viscoelastic flows,

• Study of adaptive mesh-refinement algorithms,

• Numerical simulation of incompressible flows with heat transfer,

• Study of discontinuous finite element methods for the Euler equations,

• Numerical experiments of stabilized finite element methods for convection-dominated
problems.

This article is organized as follows: in Section 2 we describe the general purposes of the
library concerning physical models and finite element techniques. Section 3 is devoted to
adaptive mesh refinement algorithms, which are then used in Section 4 in order to illustrate
a typical work flow. The concepts of the C++-part of the library are described in Section 5.
Sections 6 and 7 present typical examples for the Navier-Stokes and Euler equations. Finally,
further development is outlined in Section 8.
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Figure 1: Geometrical singularities: solution of the Poisson equation for a domain with reen-
trant corner (left) and slit domain (right).

§2. Purpose of the library

The purpose of the library is to provide tools for the development of finite element methods
in fluid mechanics. It is intended to become an academic tool able to tackle applications
related to industrial problems from different areas. Therefore a high level of abstraction is
required, at the same time with respect to physical models and numerical algorithms. Ideally,
the addition of new equations or the change of constitutive laws should be simple. At the
same time, switching to another discretization or solution method should be possible with a
minimum amount of programming work. The benefits of object oriented programming with
respect to these objectives are clear nowadays, and we have chosen to develop the core of the
library in the C++-language. This part of the library is organized in different layers, varying
in generality. In addition, a large effort was made to orthogonalize as much as possible the
different computational tasks. We therefore use different executables, which communicate by
files and are piloted by scripts written in the python-language. This also allows a simple use
of external tools for mesh generation and refinement, as well as solution algorithms.

We consider unstructured meshes containing triangles, quadrilaterals, tetrahedra, and hex-
aedra, allowed to contain hanging nodes. The library contains tools for the construction of
the following finite element spaces:

• Continuous finite element spaces Pk,Qk,

• Non-conforming finite element spaces (Crouzeix-Raviart, Rannacher-Turek),

• Vector-spaces (Raviart-Thomas elements),

• Completely discontinuous finite elements.

In summary, the guidelines of our library are to a) reuse code as much as possible, b)
orthogonalize different computational parts, and c) guarantee flexibility with respect to meth-
ods and models. The chosen technical tools for this are a) use of different executables, b) use
of inheritance and polymorphism, c) project-oriented design.

§3. Adaptive finite element methods

Local mesh refinement has become an important tool in finite element simulations, since it
allows to recover optimal convergence rates in many situations, where a loss of regularity
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Figure 2: Geometrical singularities: sequences of meshes generated for a domain with reen-
trant corner (above) and slit domain (below).

leads to slow convergence under uniform mesh refinement. Sources for such a loss of regu-
larity are corners in the geometry of the computational domain, see Figure 1, boundary and
internal layers, see Figure 4.

The domain singularities lead to singular higher-order derivatives of the solutions, which
do not allow for optimal order interpolation error estimates; but the situation is even worth:
the error is transported by the differential operator and slows down convergence away from
the corner, the well-known ’pollution effect’.

In order to recover the optimal order of convergence, the mesh has to be refined at the
corner, and this local refinement has to be done with a certain concentration of mesh points
depending on the desired accuracy.

Such sequences of meshes can be constructed in automatic way by an adaptive finite
element method, see Figure 2.

An adaptive finite element method is based on a local refinement algorithm and an a
posteriori error estimator. The algorithm is initialized by construction of the initial mesh and
the choice of certain paramaters. It consists of an iterative loop, which performs, at each step,
the following tasks:

Solve −→ Estimate −→Mark −→Refine −→ · · ·

The algorithm, which is completed by a stopping criterion, generates a sequence of meshes
(hk)k≥1 and discrete solutions (uk)k≥1. Each mesh hk is a member of the family of admissible
meshesH , defined through the initial mesh h1 and the refinement algorithm; each solution uk,
generated by Solve, lies in the finite element space Vk depending on mesh hk and the chosen
finite element method. In addition, we also have a sequence of estimators (ηk)k≥1, generated
by Estimate, errors (ek)k≥1, and sets of marked cells (Mk)k≥1. The set of marked cellsMk is
a subset of the cells of hk, denoted by Kk. It is generated by Mark using information from
the estimator ηk and serves as an input to the local mesh refinement algorithm Refine. In any
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input output
Initialization domain geometry, external mesh ConchaMesh

Solve ConchaMesh computed solution
Estimate computed solution cell-wise error indicators

Mark cell-wise error indicators set of marked cells
Refine ConchaMesh and cell-wise error indicators refined ConchaMesh

Table 1: Executables and their in- and output.

event, the local refinement algorithm is supposed to verify the following complexity estimate:

#Kn ≤ #K1 + C
n−1∑
k=1

#Mk, (1)

where C is a mesh-independent constant. The estimate (1) is necessary for any complexity
estimate.

For simple model problems, the number of cells generated by the adaptive algorithm can
be related to the achieved accuracy. More precisely, let εk be the norm of the error at iteration
k and Nk = #Kk be the number of cells. Then recent results prove that Nk ≈ ε

−1/s
k where s > 0

is the speed of convergence. For this, a certain regularity on the continuous solution u of the
problem has to be made. This assumption basically states that for given ε > 0 there exists a
mesh h ∈ H such that N ≈ ε−1/s. For example, for two-dimensional elliptic problems and
piece-wise linear approximation, the assumption holds with s = 1/2.

The optimality of an adaptive finite element method thus states that, if ever u can be ap-
proximated with the help of H at speed s, the algorithm automatically selects a sequence
of meshes, that leads to convergence with speed s. Such results have first been obtained
for continuous finite element approximations of the Poisson problem by [8, 16]. They have
been generalized to mixed and non-conforming finite elements [5, 7] and to the Stokes equa-
tions [6].

§4. Work flow: pilotage of executables

As an example, we consider the adaptive algorithm of the preceding section. In our imple-
mentation, each task corresponds to an executable, which takes certain parameters and data
as an input and produces other data. The whole loop is then written in python. This al-
lows for a simple treatment of the parameters and eases modification of the scripts, avoiding
compilation. We end up with the ingredients detailed in Table 1.

We remark that the Mark-executable is independent of the precise form of the estimator
or problem at hand. A typical strategy for marking is the bulk criterion: FindM with min-
imal cardinality such that

∑
K∈M η2

K ≥ θ
∑

K∈K η
2
K for a given parameter 0 < θ < 1. Other

marking strategies are available, especially in the case that several estimators are computed,
for example an additional data approximation term.

The Solve- and Estimate-executables must know about the finite element method and
need to connect the solution data to these spaces. They are therefore based on common parts
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of the C++-library. These executables use parameter-files which are adapted appropriately
by the python script.

The Refine-executable is written in the mesh part of our library. It uses a standard pointer-
based data-structure to represent the mesh in tree form. There are also tools to convert exter-
nal mesh-types into our data structures. This procedure allows us the use of external mesh
tools without changing the solvers.

§5. Structure of the C++-code

In order to avoid code duplication and allow for abstraction, the C++-part of the library
heavily depends on inheritance and polymorphism. The library basically presents classes
which can be adapted by the developer. The following classes play a fundamental role in
our design: Loop, Solver, Model, Variable, Integrator, and Application. The role of Loop
is to define abstract algorithms such as iterative solution of a nonlinear system of equations,
StaticLoop, time-stepping for dynamic problems, DynamicLoop, or computation of postpro-
cessing, PostProcessLoop. The essential memory, that is vectors and matrices, are stored in
the Solver. The last class also provides implementation of Newton-type algorithms and time
discretization. The physical model and its finite element representation are described in the
class Model. Its task is to define the set of variables representing the physical unknowns and
the different terms of the equations in variational form. A Variable gives the name and size
of a physical quantity together with its finite element space and some other useful informa-
tion, as for example its output format. The core of the variational formulation is described
by the Integrators. An Integrator defines a set of output and input variables and provides
the implementation of the integrals used in the computation of residuals and Jacobians. All
output variables that are not unknowns are considered as PostprocessVariables, which are not
involved in the solution of the system of equations, but produce other values, such as error
estimators and physical functionals. Finally, the class Application describes the variable part
of the problem: boundary conditions, different forms of right-hand sides and possibly fixes
some physical and numerical paramaters.

§6. Example: Incompressible viscous flows

Here we consider the stationary Navier-Stokes equations in a bounded two-dimensional do-
main Ω for the set of physical unknowns u = (v, p) consisting of velocity vector v and pres-
sure p: 

ρv · ∇v − µ∆v + ∇p = 0 in Ω,

div v = 0 in Ω,

v = vD in ΓD,

µ∂nv − pn = −pDn in ΓN ,

where ρ and µ are positive constants and the boundary ∂Ω is cut in a Dirichlet part ΓD and
a Neumann part ΓN . In addition vD and pN are given data representing for example in and
outflow data.
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Figure 3: Driven cavity: domain and stream lines.

As an example we consider a driven cavity problem in the domain Ω = ]−1, 1[× ]−1, 1[∪
]−1.5, 1.5[× ]1, 1.5[. At the left inflow a parabolic inflow with maximal velocity 1.0 is given,
the outflow is described by the Neumann-type condition. The viscosity is µ = 0.000025. We
use a stabilized Taylor-Hood scheme. The domain and streamlines of the velocity field are
shown in Figure 3.

§7. Example: Compressible inviscid flows

We denote by u the vector of physical variables, i.e. u = (ρ, ρv, ρE) where ρ, v, and E are the
density, the velocity field, and the total energy. The pressure is related to ρ and E by the ideal
gas law. We write the system of equations as

ut + div f (u) = 0,

completed by a set of appropriate initial and boundary conditions. The flux function f is
given by f (u) B

(
f1(u), f2(u)

)
, where

f1(u) =
(
u1, u1v1 + p, u1v2, (u3 + p)v1

)
,

f2(u) =
(
u2, u2v1, u2v2 + p, (u3 + p)v2

)
.

The discontinuous finite element method is based on a piecewise polynomial approxima-
tion over a mesh h (either triangular or quadrilateral). The set of cells of h is denoted by Kh

and the set of interior sides by Sh; the set of boundary sides is denoted by S∂h. In addition,
we denote by TK the transformation of a reference cell to the physical cell K (it is linear in
the case of triangles and bilinear in the case of quadrilaterals) and by Rk the set of polyno-
mials of either total or maximal degree k (Pk for triangles and Qk for quadrilaterals). The
discontinuous finite element space is then defined as

Vk
h B {vh ∈ L2(Ω) : vh|K ◦ TK ∈ (Rk(K)4 ∀K ∈ Kh}.

The discrete variational formulation now reads: Find uh ∈ Vh such that for all vh ∈ Vh:

ah(uh)(vh) = lh(vh) ∀vh ∈ Vh,
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Figure 4: The scramjet test case: density and locally refined mesh.

where lh is linear functional representing the inflow data and the form ah is composed of three
terms corresponding tho the mesh cells, interior sides, and boundary sides:

ah(uh)(vh) = aKh
h (uh)(vh) + aSh

h (uh)(vh) + a
S∂h
h (uh)(vh).

The three terms are given by

aKh
h (uh)(vh) B −

∑
K∈Kh

∫
K

f (uh) : ∇vh dx,

aSh
h (uh)(vh) B

∫
Sh

F(uh, nS ) · [vh] ds,

a
S∂h
h (uh)(vh) B

∫
S∂h

Φ(u, ud, nS ) · v ds.

Here Φ and F are numerical fluxes representing the boundary conditions and the inter-
element continuity. As numerical flux, we use here the Vijayasundaram flux. As a test case,
we consider the scramjet configuration [11]. A steady supersonic flow enters the computa-
tional domain at Mach number 3 and hits two sharp-cornered internal obstacles. This con-
figuration leads to multiple shock wave reflections. A typical solution and a locally refined
mesh are shown in Figure 4.

§8. Further developement

The further development of the library is oriented towards the following topics:

Multigrid solvers
We develop multigrid solvers for the resolution of the linear systems arising in the
Newton algorithm to solve the nonlinear problems. To this end, a hierarchy of meshes
is created by maximal derefinement of the finest locally refined mesh, as described
in [1].

Nitsche Extended Finite Element Method
NXFEM is a variational formulation of XFEM based on Nitsche’s method [3, 13]. It
allows for accurate discretization of interface problems on non-matching meshes, and
can be used for fictitious domain approaches [3].
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New stabilized FEM
As an alternative to SUPG, new stabilization techniques have been developed recently
[2, 10, 4]. We are interested in a comparative study with respect to other methods such
as the so-called discontinuous Galerkin methods.

Parallelization
The parallelization of the library is an ongoing projected, supported by INRIA in form
of the ADT (action de développement technologique) Ampli.

Sharp error estimators
Based on the reconstruction of locally conservative fluxes, it is possible to derive sharp
error estimators [17, 15, 12, 9].

Goal-oriented error estimation and sensitivity computations
Goal-oriented error estimation is an important tool for numerical simulation, since it
allows to directly control the error in the computation of physical quantities. We are
working on an automatization of the solution of the additional problems, which are
required in this approach. Our techniques will also allow to compute sensitivities with
respect to certain physical or modeling parameters.

Robust finite element discretizations for all-Mach-number flows
The efficient solution of flow at arbitrary Mach numbers remains a challenging prob-
lem. Although stable discretizations based on physical or entropy variables are known
[14], some important questions such as the efficient solution are still unclear.

Robust finite element discretizations for high Reynolds numbers
High Reynolds number flows require in practice the use of some kind of turbulence
models. We are interested in the development of variational multi-scale methods re-
lated to stabilization.

Robust finite element discretizations for high Weissenberg numbers
Another ongoing project is the development of robust methods for high Weissenberg
numbers in viscoelastic flows.
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VARIATIONAL INTEGRATORS
OF FRACTIONAL LAGRANGIAN SYSTEMS

IN THE FRAMEWORK
OF DISCRETE EMBEDDINGS

Loïc Bourdin
Abstract. This paper is a summary of the theory of discrete embeddings introduced in [5].
A discrete embedding is an algebraic procedure associating a numerical scheme to a given
ordinary differential equation. Lagrangian systems possess a variational structure called
Lagrangian structure. We are specially interested in the conservation at the discrete level
of this Lagrangian structure by discrete embeddings. We then replace in this framework
the variational integrators developed in [10, Chapter VI.6] and in [12]. Finally, we extend
the notion of discrete embeddings and variational integrators to fractional Lagrangian
systems.

Keywords: Lagrangian systems, variational integrator, fractional calculus.
AMS classification: 70H03, 37K05, 26A33.

Introduction

The theoretical framework of embeddings of dynamical systems is initiated by Cresson and
Darses in [7]. A review of the subject is given in [6]. An embedding of an ordinary or partial
differential equation is a way to give a sense to this equation over a larger set of solutions.
As an example, the stochastic embedding developed in [7] allows to give a meaning of a
differential equation over the set of stochastic processes.

We are specially interested in Lagrangian systems covering a large set of dynamical be-
haviors and widely used in classical mechanics, [2]. These systems possess a variational
structure called Lagrangian structure, i.e. their solutions correspond to critical points of La-
grangian functionals, [2, p. 57]. The Lagrangian structure is intrinsic and induces strong
constraints on the qualitative behavior of the solutions. The conservation of this structure by
embedding seems then important. In [7], the authors construct stochastic embeddings which
preserve the variational structure of Lagrangian systems, i.e. the generalized solutions are
also characterized as critical points of generalized Lagrangian functionals.

This paper is a summary of the theory of discrete embeddings introduced in [5] where,
as in [7], we are interested in the conservation of the Lagrangian structure of Lagrangian
systems. We then refer to [5] for more details and for the proof of some results.

A discrete embedding is an algebraic procedure associating a numerical scheme to a given
differential equation, in particular to a given Lagrangian system. On the other hand, defining
a discrete embedding induces a discretization of the Lagrangian functional associated and we
can develop a discrete calculus of variations on this one: this leads to a numerical scheme
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called variational integrator. The variational integrators, developed in [10, Chapter VI.6]
and [12], are then numerical schemes for Lagrangian systems preserving their variational
structures.

Thus, we propose the following definition: a discrete embedding is said to be coherent
if the two discrete versions obtained (the direct one and the variational integrator) of a La-
grangian system coincide. Hence, a coherent discrete embedding conserves at the discrete
level the Lagrangian structure of a Lagrangian system.

Recently, many studies have been devoted to fractional Lagrangian systems, [1, 7]. They
arise for example in fractional optimal control theory, [9]. They are difficult to solve explic-
itly, it is then interesting to develop efficient numerical schemes to such systems.

Some preliminary results on fractional discrete operators and on the discretization of
fractional Euler-Lagrange equations have been discussed by several authors, [3, 4, 8]. In
this paper, we extend the discrete embedding point of view, the corresponding problem of
coherence and the associated notion of variational integrator to the fractional case.

The paper is organized as follows. In Section 1, we define the notion of discrete em-
beddings of differential equations. Section 2 recalls definitions and results concerning La-
grangian systems and we apply the previous theory of discrete embeddings to Lagrangian
systems. Then, we recall the strategy of variational integrators of Lagrangian systems in
the framework of discrete embeddings and we finally present the problem of coherence of
a discrete embedding. Section 3 is devoted to the extension of discrete embeddings to the
fractional case.

§1. Notion of discrete embeddings

In this paper, we consider classical and fractional differential systems in Rd where d ∈ N∗ is
the dimension. The trajectories of these systems are curves q in C0([a, b],Rd) where a < b
are two reals. For smooth enough functions q, we denote q̇ = dq/dt and q̈ = d2q/dt2.

1.1. Discrete embeddings

Definition 1. Defining a discrete embedding means giving a discrete version of the following
elements: the curves q ∈ C0([a, b],Rd), the derivative operator d/dt and the functionals a :
C0([a, b],Rd) −→ R. More precisely, it means giving:

• an application q 7−→ qh where qh ∈ (Rd)m1 ,

• a discrete operator ∆ : (Rd)m1 −→ (Rd)m2 discretizing the differential operator d/dt,

• an application a 7−→ ah where ah : (Rd)m1 −→ R,

where m1,m2 ∈ N
∗.

In order to illustrate Definition 1, we define backward and forward finite differences em-
beddings. For all the rest of the paper, we fix σ = ± and N ∈ N∗. We denote by h = (b−a)/N
the step size of the discretization and τ = (tk)k=0,...,N the following partition of [a, b]:

∀k = 0, . . . ,N, tk = a + kh.
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Definition 2 (Case σ = −). We call backward finite differences embedding denoted by
FDE− the definition of the following elements: the application

disc : C0([a, b],Rd) −→ (Rd)N+1

q 7−→ (q(tk))k=0,...,N ,

and the discrete operator

∆− : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

(Qk − Qk−1

h

)
k=1,..,N

.

Definition 3 (Case σ = +). We call forward finite differences embedding denoted by FDE+

the definition of the following elements: the application disc and the discrete operator

∆+ : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

(Qk − Qk+1

h

)
k=0,..,N−1

.

Let us notice that the discrete analogous of d/dt in FDEσ is then −σ∆σ. We use these
notations in order to be uniform with the fractional notations (see Section 3).

1.2. Direct discrete embeddings
Defining a discrete embedding allows us to define a direct discrete version of a given differ-
ential equation:
Definition 4. Let be fixed a discrete embedding as defined in Definition 1 and let (E) be an
ordinary differential equation of unknown q ∈ C0([a, b],Rd) given by:

O(q) = 0, (E)

where O is a differential operator shaped as O =
∑

i fi(·)(d/dt)i◦gi(·) where fi, gi are functions.
Then, the direct discrete embedding of (E) is (Eh) the system of equations of unknown qh ∈

(Rd)m1 given by:
Oh(qh) = 0, (Eh)

where Oh is the discretized operator of O given by Oh =
∑

i fi(·)∆i ◦ gi(·).

As an example, we consider the Newton’s equation with friction of unknown q∈C0([a, b],Rd)
given by:

∀t ∈ [a, b], q̈(t) + q̇(t) + q(t) = 0. (NE)

Then, the direct discrete embedding of (NE) with respect to FDE− is (NEh) the system
of equations of unknown Q ∈ (Rd)N+1 given by:

∀k = 2, . . . ,N,
Qk − 2Qk−1 + Qk−2

h2 +
Qk − Qk−1

h
+ Qk = 0. (NEh)

The direct discrete embedding of an ordinary differential equation is strongly dependent on
the form of the differential operator O (and not on its equivalence class). The process O −→
Oh is not an application. For example, the discretized operator Oh of O = d/dt ◦ sin(·) =

d/dt(·) cos(·) is different depending on the writing of O.
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1.3. Direct discrete embeddings of Lagrangian systems
We recall now classical definitions and theorems concerning Lagrangian systems. We refer
to [2] for a detailed study and for a detailed proof of Theorem 1.

Definition 5. A Lagrangian functional is an application defined by:

L : C2([a, b],Rd) −→ R

q 7−→
∫ b

a
L(q(t), q̇(t), t) dt,

where L is a Lagrangian i.e. a C2 application defined by:

L : Rd × Rd × [a, b] −→ R

(x, v, t) 7−→ L(x, v, t).

An extremal (or critical point) of a Lagrangian functional L is a trajectory q such that
DL(q)(w) = 0 for any variations w (i.e. w ∈ C2([a, b],Rd), w(a) = w(b) = 0), where
DL(q)(w) is the differential of L in q along the direction w. Extremals of a Lagrangian
functional can be characterized as solution of a differential equation of order 2:

Theorem 1 (Variational principle). Let L be a Lagrangian functional associated to the La-
grangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of L if and only if q is solution
of the Euler-Lagrange equation given by:

∀t ∈ ]a, b[ ,
∂L
∂x

(q(t), q̇(t), t) −
d
dt

(
∂L
∂v

(q(t), q̇(t), t)
)

= 0. (EL)

We now apply definitions of Section 1 on Lagrangian systems.

Proposition 2. Let L be a Lagrangian and let (EL) be its associated Euler-Lagrange equa-
tion. The direct discrete embedding of (EL) with respect to FDEσ is given by:

∂L
∂x

(Q,−σ∆σQ, τ) + σ∆σ

(
∂L
∂v

(Q,−σ∆σQ, τ)
)

= 0, Q ∈ (Rd)N+1. (1)

We refer to [5] for a concrete example illustrating Theorem 1 and Proposition 2.

§2. Discrete embeddings and variational integrators of Lagrangian
systems

A direct discrete embedding is only based on the form of the differential operator which is
dependent of the coordinates system and consequently is not intrinsic. Then, a natural ques-
tion arises: what can be said about the conservation of intrinsic properties of a differential
equation by a discrete embedding? This paper is devoted to the conservation by discrete
embeddings of the Lagrangian structure of Lagrangian systems. More precisely, Theorem 1
shows that (EL) possesses a variational structure: the direct discrete embedding being a pro-
cedure mainly algebraic, does (1) possess a variational structure too? It is not always true.
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However, a variational integrator, developed in [10, Chapter VI.6] and in [12], is a dis-
cretization of a Lagrangian system preserving its variational structure. Indeed, it is based
on the discrete analogous of the variational principle on a discrete version of the associated
Lagrangian functional.

In our framework, the discretization of the Lagrangian functional is induced by giving a
discrete embedding.

2.1. Discrete Lagrangian functionals and discrete calculus of variations
In this subsection, as an example, we are going to work exclusively in the framework of
FDEσ. Giving FDEσ induces the discretization of a Lagrangian functional as long as a
quadrature formula is fixed in order to approximate integrals. We choose the usual σ-
quadrature formula of Gauss: for a continuous function f on [a, b], we discretize

∫ b
a f (t)dt

by h
∑

k∈Iσ f (tk) where I+ = {0, . . . ,N − 1} and I− = {1, . . . ,N}.
This process defines the Gauss finite differences embedding denoted by Gauss-FDEσ.

Such a choice allows to keep at the discrete level the following fundamental result:∫ b

a
q̇(t) dt = q(b) − q(a)

Gauss-FDEσ
−−−−−−−−−−−−−−→ h

∑
k∈Iσ

(−σ∆σQ)k = QN − Q0.

Proposition 3. LetL be a Lagrangian functional associated to a Lagrangian L. The discrete
Lagrangian functional associated to L with respect to Gauss-FDEσ is given by:

Lσh : (Rd)N+1 −→ R

Q = (Qk)k=0,...,N 7−→ h
∑
k∈Iσ

L(Qk, (−σ∆σQ)k, tk).

Once the discrete version of the Lagrangian functional is formulated, we can develop
a discrete calculus of variations on it: this leads to a variational integrator. Let L be a
Lagrangian functional and Lσh the discrete Lagrangian functional associated with respect
to Gauss-FDEσ. A discrete extremal (or discrete critical point) of Lσh is an element Q
in (Rd)N+1 such that DLσh (Q)(W) = 0 for any discrete variations W (i.e. W ∈ (Rd)N+1,
W0 = WN = 0). Discrete extremals of Lσh can be characterized as solution of a system of
equations:

Theorem 4 (Discrete variational principle). Let Lσh be the discrete Lagrangian functional
associated to the Lagrangian L with respect to Gauss-FDEσ. Then, Q in (Rd)N+1 is a discrete
extremal ofLσh if and only if Q is solution of the following system of equations (called discrete
Euler-Lagrange equation) given by:

∂L
∂x

(Q,−σ∆σQ, τ) − σ∆−σ

(
∂L
∂v

(Q,−σ∆σQ, τ)
)

= 0, Q ∈ (Rd)N+1. (ELσh )

(ELσh ) is obtained from (EL) by variational integrator. Its variational origin allows us to
say that it possesses a Lagrangian structure. Then, we have conservation at the discrete level
of the Lagrangian structure by variational integrator.
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Let us note that an asymmetry appears in (ELσh ): indeed, we have a composition between
the two discrete operators ∆+ and ∆−. We notice that this asymmetry does not appear in the
continuous space in (EL).

2.2. Problem of coherence of a discrete embedding
Hence, defining a discrete embedding leads to two discrete versions of an Euler-Lagrange
equation: the first one (1) obtained by direct discrete embedding and the second one (ELσh )
corresponding to a variational integrator. The direct discrete embedding is an algebraic proce-
dure (respecting for example the law of semi-group of the differential operator d/dt). On the
contrary, a variational integrator is mainly based on a dynamical approach via the extremals
of a functional.

However, we are interested in the conservation at the discrete level of the Lagrangian
structure of Lagrangian systems. We then propose the following definition: a discrete em-
bedding is said to be coherent if the two numerical schemes coincide. Precisely, a discrete
embedding is coherent if it makes the following diagram commutative:

Lagrangian functional Functional discretization //

Variational principle

��

Discrete Lagrangian functional

Discr. var. principle

��
Euler-Lagrange equation

Direct discrete embedding
//

Variational integrator

&&
Numerical scheme

Thus, a coherent discrete embedding provides a direct discrete version of a Lagrangian system
preserving its Lagrangian structure.

The previous study leads to a default of coherence of Gauss-FDEσ. Indeed, algorithms
obtained by direct discrete embedding (1) and obtained by discrete variational principle (ELσh )
do not coincide. The problem is to understand why there is not asymmetry appearing in the
direct discrete embedding? It seems that we miss dynamical informations in the formulation
of Lagrangian systems at the continuous level which are pointed up in the discrete space with
the asymmetric discrete operators (−σ∆σ)σ=±. Nevertheless, this default of coherence can be
corrected using a different writing of the initial Euler-Lagrange equation.

2.3. Rewriting of the Euler-Lagrange equation and discrete embeddings
The usual way to derive differential equations in Physics is to built a continuous model using
discrete data. However, this process gives only an information in one direction of time. As
a consequence, a discrete evaluation of the velocity corresponds in general at the continuous
level to the evaluation of the right or left derivative. In general, we replace the right (or
left) derivative by the classical derivative d/dt. However, this procedure assumes that the
underlying solution is differentiable. This assumption is not only related to the regularity
of the solutions but also to the reversibility of the systems (the right and left derivatives are
equal). In this section, we introduce asymmetric Lagrangian systems which are obtained
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with functionals depending only on left or only on right derivatives. We prove in this case
that Gauss-FDEσ is coherent.

Definition 6. For f : [a, b] −→ Rd smooth enough function, we denote:

∀t ∈]a, b], d− f (t) = lim
h→0+

f (t) − f (t − h)
h

and

∀t ∈ [a, b[, d+ f (t) = lim
h→0+

f (t) − f (t + h)
h

.

Although we have d− f = −d+ f = ḟ for a differentiable function f , it is interesting to use
these notations in order to keep dynamical informations.

Definition 7. An asymmetric Lagrangian functional is an application:

Lσ : C2([a, b],Rd) −→ R

q 7−→
∫ b

a
L(q(t),−σdσq(t), t) dt,

where L is a Lagrangian.

Then, by calculus of variations, we obtain the following characterization of the extremals
of an asymmetric Lagrangian functional:

Theorem 5 (Variational principle). Let Lσ be an asymmetric Lagrangian functional associ-
ated to the Lagrangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of Lσ if and only
if q is solution of the asymmetric Euler-Lagrange equation:

∀t ∈ ]a, b[ ,
∂L
∂x

(q(t),−σdσq(t), t) − σd−σ

(
∂L
∂v

(q(t),−σdσq(t), t)
)

= 0. (ELσ)

Hence, (ELσ) possesses a variational structure. Is it conserved by discrete embeddings?
In order to embed (ELσ), we have to discretize two differential operators at the same time.
We then define the following asymmetric version of Gauss-FDEσ:

Definition 8. We call the asymmetric version of Gauss-FDEσ the definition of the following
elements: the application disc, the σ-quadrature formula of Gauss and the discrete operators
∆− and ∆+ discretizing respectively the operators d− and d+.

Proposition 6. The asymmetric version of Gauss-FDEσ is a coherent discrete embedding.
Indeed, the direct discrete embedding and the variational integrator of (ELσ) in the frame-
work of the asymmetric Gauss-FDEσ lead to the same numerical scheme: (ELσh ).

We notice that the rewriting (ELσ) of (EL) provides additional dynamical informations
which allows the asymmetric Gauss-FDEσ to unify the algebraic and the dynamical ap-
proaches in the discretization of a Lagrangian system. Moreover, this rewriting can be justi-
fied by the fractional calculus as we will see in Section 3.
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§3. Discrete embeddings and variational integrators
of fractional Lagrangian systems

3.1. Fractional derivatives and fractional Lagrangian systems
Fractional calculus is the generalization of the derivative notion to real orders. We refer
to [11, 14] for many different ways generalizing this notion. For the whole paper, we fix
0 < α < 1 and for any r ∈ N∗, we denote by αr = (−α)(1 − α) · · · (r − 1 − α)/r! and α0 = 1.
We are going to use the classical notions of Grünwald-Letnikov. The following definition is
extracted from [13].

Definition 9. Let f be an element of C1([a, b],Rd). The Grünwald-Letnikov fractional left
derivative of order α with inferior limit a of f is:

∀t ∈ ]a, b] , Dα
− f (t) = lim

h→0
nh=t−a

1
hα

n∑
r=0

αr f (t − rh)

and the Grünwald-Letnikov fractional right derivative of order α with superior limit b of f is:

∀t ∈ [a, b[ , Dα
+ f (t) = lim

h→0
nh=b−t

1
hα

n∑
r=0

αr f (t + rh).

Recently, an important activity has been devoted to fractional Lagrangian systems for
the purpose of optimal control, mechanics, engineering and Physics, [1, 3, 9]. We recall
definitions and results concerning these fractional systems, we refer to [1] for a detailed
study and for a detailed proof of Theorem 7.

Definition 10. A fractional Lagrangian functional of order α is an application defined by:

Lσ,α : C2([a, b],Rd) −→ R

q 7−→
∫ b

a
L(q(t),−σDα

σq(t), t) dt,

where L is a Lagrangian.

We can give a characterization of extremals of a fractional Lagrangian functional as solu-
tions of a fractional differential equation:

Theorem 7 (Variational principle). Let Lσ,α be a fractional Lagrangian functional of order
α associated to the Lagrangian L and let q be an element of C2([a, b],Rd). Then, q is an
extremal of Lσ,α if and only if q is solution of the fractional Euler-Lagrange equation:

∀t ∈]a, b[,
∂L
∂x

(q(t),−σDα
σq(t), t) − σDα

−σ

(
∂L
∂v

(q(t),−σDα
σq(t), t)

)
= 0. (ELσ,α)

We refer to [1] for a detailed proof. Hence, in the fractional case, we find an asymmetry
again making a link with the asymmetric rewriting of (EL) into (ELσ).

As in the classical case, we conclude that (ELσ,α) possesses a Lagrangian structure and
we are iterested by its conservation at the discrete level by discrete embeddings.
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3.2. Discrete embeddings of fractional Lagrangian systems
There exist many studies concerning the discretization of fractional differential equations but
without the point of view of discrete embeddings. We refer to [3, 4]. By referring to the
notion of Grünwald-Letnikov [8], we give the following definition:

Definition 11. The Gauss Grünwald-Letnikov embedding denoted by Gauss-GLEσ is the
definition of the following elements: the application disc, the σ-quadrature formula of Gauss
and the discrete operators

∆α
− : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

 1
hα

k∑
r=0

αrQk−r


k=1,...,N

and
∆α

+ : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

 1
hα

N−k∑
r=0

αrQk+r


k=0,...,N−1

.

These discrete operators are respectively the discrete versions of Dα
− and Dα

+.

We are first interested in the variational integrator of (ELσ,α) in the framework of Gauss-
GLEσ. Giving Gauss-GLEσ allows us to formulate the discrete version of a fractional La-
grangian functional:

Proposition 8. Let Lσ,α be the fractional Lagrangian functional associated to the Lagran-
gian L. The discrete fractional Lagrangian functional associated to Lσ,α with respect to
Gauss-GLEσ is given by:

L
σ,α
h : (Rd)N+1 −→ R

Q = (Qk)k=0,...,N 7−→ h
∑
k∈Iσ

L(Qk, (−σ∆α
σQ)k, tk).

Then, discrete extremals of the discrete fractional Lagrangian functional can be charac-
terized as solutions of a system of equations:

Theorem 9 (Discrete variational principle). Let Lσ,αh be a discrete fractional Lagrangian
functional associated to the Lagrangian L with respect to Gauss-GLEσ. Then, Q in (Rd)N+1

is a discrete extremal of Lσ,αh if and only if Q is solution of the following system of equations,
called the discrete fractional Euler-Lagrange equation:

∂L
∂x

(Q,−σ∆α
σQ, τ) − σ∆α

−σ(
∂L
∂v

(Q,−σ∆α
σQ, τ)) = 0, Q ∈ (Rd)N+1. (ELσ,αh )

We conclude with the following proposition:

Proposition 10. Gauss-GLEσ is a coherent discrete embedding. Indeed, the direct discrete
embedding and the variational integrator of (ELσ,α) in the framework of Gauss-GLEσ lead
to the same numerical scheme: (ELσ,αh ).
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AN APPLICATION
OF CARLEMAN INEQUALITIES

FOR A CURVED QUANTUM GUIDE
Laure Cardoulis

Abstract. We consider in this paper the Schrödinger operator −i∂t − ∆ on a curved quan-
tum guide in R2 for which the reference curve is asymptotically straight. Using an adapted
Carleman estimate, we establish a local estimation result for the curvature with a single
observation.

Keywords: Schrödinger Operators, quantum guide, curvature, Carleman estimate, inverse
problem.
AMS classification: 35J10.

§1. Introduction

Let Ω ⊂ R2 be a curved quantum guide with a fixed width d > 0 and let T > 0. We consider
the Schrödinger operator

H B −i∂t − ∆ in Ω × (0,T ).

We proceed as in [8] and [4]. We denote by Γ = (Γ1,Γ2) the function which characterizes the
reference curve and by N = (N1,N2) the outgoing normal. We denote by

Ω1 B R × (d, 2d).

Each point (x, y) of Ω is described by the curvilinear coordinates (s, u) as follows:

f : Ω1 −→ Ω with (x, y) = f (s, u) = Γ(s) + uN(s). (1)

We assume Γ′1(s)2 + Γ′2(s)2 = 1 and we recall that the signed curvature γ of Γ is defined
by γ(s) = −Γ′′1 (s)Γ′2(s) + Γ′′2 (s)Γ′1(s), named so because |γ(s)| represents the curvature of the
reference curve at s. We assume throughout this paper that:

Assumption 1.
• γ ∈ C3(R), γ(k) ∈ L∞(R) for each k = 0, 1, 2, 3, where γ(k) denotes the k-th derivatives

of γ.

• γ(s)→ 0 as |s| → ∞ and 1 − 2d‖γ‖∞ > 0, where ‖γ‖∞ B sups∈R |γ(s)| = ‖γ‖L∞(R).

Note that, by the inverse function theorem, the map f defined by (1) is a diffeomorphism
provided 1 − uγ(s) , 0, for all u, s, which is guaranteed by Assumption 1. The curvilinear
coordinates (s, u) are locally orthogonal so the metric in Ω is expressed with respect to them
through a diagonal metric tensor

(
(1−uγ(s))2 0

0 1

)
. The transition to the curvilinear coordinates
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Figure 1: Geometry of the problem

represents an isometric map of L2(Ω) to L2(Ω1, g
1/2 dsdu), where g(s, u) B (1 − uγ(s))2 is

the Jacobian ∂(x, y)/∂(s, u). Therefore we can replace the operator H (with the metric dx dy
on Ω) by the operator Hg (with the metric g1/2ds du on Ω1), where

Hg B −i∂t − g
−1/2∂s(g−1/2∂s) − g−1/2∂u(g1/2∂u).

Then we can rewrite the operator Hg into a Schrödinger-type operator (with the metric ds du
on Ω1). Indeed, using the unitary transformation Ug(ψ) = g1/4ψ, setting Hγ B UgHgU−1

g , we
get

Hγ = −i∂t − ∂s(cγ(s, u)∂s) − ∂2
u + Vγ(s, u)

with
cγ(s, u) =

1
(1 − uγ(s))2 (2)

and

Vγ(s, u) = −
γ2(s)

4(1 − uγ(s))2 −
uγ′′(s)

2(1 − uγ(s))3 −
5u2γ′2(s)

4(1 − uγ(s))4 .

Let R B (R1,R2) ∈ R2 and ε > 0. We denote by

ΩR,ε B ωR,ε ∪
(
]R1 + ε,R2 − ε[ × ]2d − 2ε, 2d[

)
a regular bounded domain in Ω1, with

ωR,ε B ωR1,ε ∪ ωR2,ε ,

ωR1,ε B {(s, u) ∈ R2, R1 < s < R1 + ε, 2d − 2ε < u < 2d, (s − R1 − ε)2 + (u − 2d + ε)2 < ε},

ωR2,ε B {(s, u) ∈ R2, R2 − ε < s < R2, 2d − 2ε < u < 2d, (s − R2 + ε)2 + (u − 2d + ε)2 < ε}.

Note that ωR1,ε and ωR2,ε are half-balls and let (see Figure 1)

Σ+
R,ε B [R1 + ε,R2 − ε] × {2d}, ΓR,ε B ∂ΩR,ε − Σ−R,ε ,

Σ−R,ε B [R1 + ε,R2 − ε] × {2d − 2ε}, Γε B (∂ωR1,ε ∪ ∂ωR2,ε) ∩ ∂ΩR,ε .

We now consider the following Schrödinger equation
Hγz B −i∂tz(s, u, t) − ∂s(cγ(s, u)∂sz(s, u, t)) − ∂2

uz(s, u, t) + Vγ(s, u)z(s, u, t) = 0,
(s, u, t) ∈ ΩR,ε × (0,T ),
z(s, u, t) = l(x, y, t), (s, u) ∈ ∂ΩR,ε , t ∈ (0,T ),
z(s, u, 0) = z0(s, u), (s, u) ∈ ΩR,ε .

(3)
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Our problem can be stated as follows: Is it possible to determine the curvature γ from the
measurement of ∂ν(∂tz) on Σ+

R,ε?
Let z, depending on ε (resp. z̃, depending on ε too) be a solution of (3) associated with

(γ, l, z0) (resp. (̃γ, l, z0)). We assume that z0 is a real-valued function and that (γ − γ̃)(s) , 0
and (γ′ − γ̃′)(s) , 0 for all s ∈ [R1,R2]. Our main result is

‖γ − γ̃‖2L2(ΩR,ε )
≤ C‖∂ν(∂tz − ∂t̃z)‖2L2(Σ+

R,ε×(−T,T )) + Cε,

where C is a positive constant which depends on d,T and where the above norms are weighted
Sobolev norms.

This paper gives a quantum mechanics application of an inverse problem and we use for
that the important tool of Carleman estimates. Indeed, the method of Carleman inequalities
has been introduced in the field of inverse problems by Bukhgeim and Klibanov [2, 3, 11,
12, 13, 14] and constitutes a very efficient tool to derive observability estimates. Note also
that even if the spectral properties of curved quantum guides have been intensively studied for
several years (see [7, 8, 9] e.g.), up to our knowledge there are few results for inverse problems
associated with curved quantum guide (see [4]). The main difficulty here is to recover the
curvature γ via two coefficients cγ and Vγ. Few results have already been obtained for the
simultaneous identification of two coefficients with one observation and these two coefficients
were not linked up (see [6]). This is not the case here where the coefficients cγ and Vγ both
depend on γ. Another difficulty when we work with Carleman estimates is the existence of
the weight function β̃ (see Assumption 2). And usually this imposes restrictive conditions for
the diffusion coefficient i.e. in our case for cγ and therefore for γ. This is why, due to these
two difficulties which come from our model (a curved guide with an asymptotically straight
curvature γ), we work in the subdomain ΩR,ε instead of the whole strip Ω1 and we get an
additional term Cε in the right hand side of our main result (which was not the case in [5,6]).
This paper is organized as follows: Section 2 is devoted to the Carleman inequality adapted
to our problem. In Section 3 we state and prove our main result.

§2. Carleman inequality

In this section we obtain a Carleman estimate for a function q equal to zero on ∂ΩR,ε×(−T,T )
and solution of the Schrödinger equation Hγq ∈ L2(ΩR,ε × (−T,T )). We prove a Carleman
estimate for q with a single observation acting on ΓR,ε × (−T,T ) in the right-hand side of
the estimate. Note that this estimate is quite similar to the one obtained in [1] or [5] but the
computations are different. Indeed the weight function β̃ does not satisfy the same pseudo-
convexity assumptions (see Assumption 2(iii)). This is the main difference compared to [5]
and this is due to the particular form of the operator Hγ where the diffusion coefficient cγ
only appears in the derivatives respect to s.

We use the following notations

c B cγ, ∇cβ B

(√
c∂sβ
∂uβ

)
and νc B

(√
c∂sν
∂uν

)
,

where ν denotes the unit outward normal to ∂ΩR,ε and we proceed as in [1] or [5]. Let
β̃ := β̃(s, u) be a positive function such that there exists positive constants β0 and Cpc which
satisfy:
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Assumption 2.
(i) β̃ ∈ C4(ΩR,ε), and β̃(s, u) ≥ 0 for all (s, u) ∈ ΩR,ε .

(ii) |∇cβ̃| ≥ β0 > 0 in ΩR,ε , and ∇cβ̃ · νc ≤ 0 in Σ−R,ε .

(iii) 2 Re D2
c β̃(ξ, ξ) − 1

c∇cc · ∇cβ̃|ξ1|
2 + 2|∇cβ̃ · ξ|

2 ≥ Cpc|ξ|
2 for all ξ = (ξ1, ξ2) ∈ C, where

D2
c β̃ =

 ∂s(c∂sβ̃)
√

c ∂2
suβ̃

1
√

c ∂u(c∂sβ̃) ∂2
uβ̃

 . (4)

This assumption imposes restrictive conditions for the choice of the coefficient c B cγ
and thus for the curvature γ in connection with the function β̃ as in [5, 6]. Note that there
exists functions satisfying such conditions. Indeed if we assume that β̃(s, u) B β1(s) + β2(u),
these conditions can be written in the following form:

A B 2∂s(c∂sβ1) − c∂sc∂sβ1 − ∂uc∂uβ2 + 2c(∂sβ1)2 ≥ cst > 0 and 2AC − B2 ≥ cst > 0,

with B B (1/
√

c)∂uc∂sβ1 + 2
√

c∂sβ1∂uβ2 and C B ∂2
uβ2 + (∂uβ2)2. For example if β̃(s, u) =

es + eu, these two last conditions become

A = (1 − uγ(s))−3[(2 − c(s, u))2uγ′(s)es − 2γ(s)eu] + 2c(s, u)(es + e2s)

and

2AC − B2 = 4c(s, u)
[
(2 − c(s, u))uγ′(s)(1 − uγ(s))−1es(eu + e2u)

− γ(s)(1 − uγ(s))−1eu(eu + e2u) + eseu(1 + es + eu)

− γ(s)(1 − uγ(s))−1e2s(γ(s)(1 − uγ(s))−1 + 2eu)
]
.

We have A ≥ cst > 0 and 2AC − B2 ≥ cst > 0 for any curvature γ in

{γ ∈ C1(R), γ′ ≥ 0, γ ≤ 0, (1 − 2d‖γ‖∞)−2 < 2, γ(s) > −2e2d−2ε(1 − 2d‖γ‖∞) ∀s ∈ [R1,R2]}.

Similar restrictive conditions upon the function c in connection with the function β̃ have also
been highlighted for the hyperbolic case in [13, 14].

Then we define β = β̃ + K with K = m‖β̃‖L∞(ΩR,ε ) and m > 1. For λ > 0 we define on
ΩR,ε × (−T,T ) the functions φ and η by

φ(s, u, t) =
eλβ(s,u)

(T − t)(T + t)
and η(s, u, t) =

e2λK − eλβ(s,u)

(T − t)(T + t)
. (5)

For S > 0 we set ψ = e−S ηq and Mψ B e−S ηHγq. Following [1], we write Mψ − Vγψ =

M1ψ + M2ψ, with

M1ψ B −i∂tψ − ∆cψ − S 2λ2φ2ψ|∇cβ|
2, (6)

M2ψ B −iS ∂tηψ + 2Sλφ∇cβ · ∇cψ + Sλ2φψ|∇cβ|
2 + Sλφψ∆cβ, (7)

where

∇cβ B

(√
c∂sβ
∂uβ

)
, ∆cβ B ∂s(c∂sβ) + ∂2

uβ, ∇cβ · ∇cψ = c∂sβ∂sψ + ∂uβ∂uψ.

Then the following result holds:
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Theorem 3. Let Hγ, M, M1, M2 be the operators defined as above. Assume that Assump-
tions 1 and 2 are satisfied. Then, there exist Λ0 > 0, S 0 > 0 and a positive constant C
depending on T such that, for any λ > Λ0 and any S > S 0,

Sλ
∫

ΩR,ε×(−T,T )
φ|∇q|2e−2S η + S 3λ4

∫
ΩR,ε×(−T,T )

φ3|q|2e−2S η +

∫
ΩR,ε×(−T,T )

|M1(e−S ηq)|2

+

∫
ΩR,ε×(−T,T )

|M2(e−S ηq)|2 ≤ C
∫

ΩR,ε×(−T,T )
|Hγq|2e−2S η + CSλ

∫
ΓR,ε×(−T,T )

φ|∂νq|2e−2S η

for all q satisfying Hγq ∈ L2(ΩR,ε × (−T,T )), q ∈ L2(−T,T ; H1
0(ΩR,ε)), ∂νq = ∇q · ν, and

∂νq ∈ L2(−T,T ; L2(ΓR,ε)).

Proof. We proceed as in [1], [5] or [6]. We have:∫
ΩR,ε×(−T,T )

|Mψ − Vγψ|
2 =

∫
ΩR,ε×(−T,T )

(|M1ψ|
2 + |M2ψ|

2) + 2 Re
∫

ΩR,ε×(−T,T )
M1ψM2ψ. (8)

Multiplying each term of M1ψ by each term of M2ψ (see (6) and (7)), we will calculate under
the following form:

Re
∫

ΩR,ε×(−T,T )
M1ψM2ψ = I11 + I12 + I13 + I21 + I22 + I23 + I31 + I32 + I33. (9)

We denote by Q B ΩR,ε × (−T,T ). We obtain by integrating by parts:

I11 = Re
∫

Q
(−i∂tψ)(−iS ∂tηψ) = −

S
2

∫
Q
∂2

t η |ψ|
2. (10)

Since I12 = Re
∫

Q(−i∂tψ)2Sλφ∇cβ ·∇cψ = Sλ Im
∫

Q φ∂tψ∇cβ ·∇cψ−Sλ Im
∫

Q φ∂tψ∇cβ ·∇cψ,
integrating by parts in time for the first term and in space for the second term, we get

I12 = Sλ2 Im
∫

Q
φ∂tψψ|∇cβ|

2 + Sλ Im
∫

Q
φ∂tψψ∆cβ − Sλ Im

∫
Q
∂tφψ∇cβ · ∇cψ. (11)

Moreover, I13 = Re
∫

Q(−i∂tψ)[Sλ2φψ|∇cβ|
2 + Sλφψ∆cβ] becomes

I13 = −Sλ Im
∫

Q
φ∂tψψ∆cβ − Sλ2 Im

∫
Q
φ∂tψψ|∇cβ|

2 (12)

and integrating by parts in space we have

I21 = Re
∫

Q
(−∆cψ)(−iS ∂tηψ) = −Sλ Im

∫
Q
∂tφψ∇cβ · ∇cψ. (13)

So from (11)–(13) note that I12 + I13 + I21 = −2Sλ Im
∫

Q ∂tφψ∇cβ · ∇cψ. Furthermore, I22 =

Re
∫

Q(−∆cψ)2Sλφ∇cβ · ∇cψ. By integrating by parts twice in space we obtain that

I22 = 2Sλ2
∫

Q
φ|∇cβ · ∇cψ|

2 + 2SλRe
∫

Q
φD2

cβ(∇cψ,∇cψ)
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− Sλ
∫

Q
φ

1
c
∇cc · ∇cβ|

√
c∂sψ|

2 − Sλ
∫
∂ΩR×(−T,T )

φ∇cβ · νc|∇cψ|
2 (14)

− Sλ2
∫

Q
φ|∇cβ|

2|∇cψ|
2 − Sλ

∫
Q
φ∆cβ|∇cψ|

2,

with D2
cβ defined by (4). We have also I23 = Re

∫
Q(−∆cψ)[Sλ2φψ|∇cβ|

2 + Sλφψ∆cβ] and, by
integrations by parts twice in space, we obtain:

I23 = Sλ
∫

Q
φ|∇cψ|

2∆cβ − Sλ3
∫

Q
|ψ|2φ|∇cβ|

2∆cβ − Sλ2
∫

Q
|ψ|2φ∇cβ · ∇c(∆cβ)

−
Sλ2

2

∫
Q
|ψ|2φ∆c(|∇cβ|

2) −
Sλ2

2

∫
Q
|ψ|2φ(∆cβ)2 −

Sλ
2

∫
Q
|ψ|2φ∆c(∆cβ) (15)

−
Sλ4

2

∫
Q
|ψ|2φ|∇cβ|

4 − Sλ3
∫

Q
|ψ|2φ∇cβ · ∇c(|∇cβ|

2) + Sλ2
∫

Q
φ|∇cβ|

2|∇cψ|
2.

And we obviously have

I31 = Re
∫

Q
(−S 2λ2φ2ψ|∇cβ|

2)(−iS ∂tηψ) = 0. (16)

Moreover

I32 = Re
∫

Q
(−S 2λ2φ2ψ|∇cβ|

2)2Sλφ∇cβ · ∇cψ

= S 3λ3
∫

Q
φ3|ψ|2(∇cβ · ∇c(|∇cβ|

2) + |∇cβ|
2∆cβ) + 3S 3λ4

∫
Q
φ3|∇cβ|

4|ψ|2,

(17)

I33 = Re
∫

Q
(−S 2λ2φ2ψ|∇cβ|

2)[Sλ2φψ|∇cβ|
2 + Sλφψ∆cβ]

= −S 3λ3
∫

Q
φ3|ψ|2|∇cβ|

2∆cβ − S 3λ4
∫

Q
φ3|∇cβ|

4|ψ|2.

(18)

Therefore, from (10) to (18), (9) becomes

Re
∫

Q
M1ψM2ψ = −

S
2

∫
Q
∂2

t η|ψ|
2 − Sλ

∫
Q
φ

1
c
∇cc · ∇cβ|

√
c∂sψ|

2

− 2Sλ Im
∫

Q
∂tφψ∇cβ · ∇cψ + 2Sλ2

∫
Q
φ|∇cβ · ∇cψ|

2

+ 2SλRe
∫

Q
φD2

cβ(∇cψ,∇cψ) − Sλ
∫
∂ΩR,ε×(−T,T )

φ|∇cψ|
2∇cβ · νc

− Sλ3
∫

Q
φ|ψ|2|∇cβ|

2∆cβ − Sλ2
∫

Q
φ|ψ|2∇cβ · ∇c(∆cβ) (19)

−
Sλ2

2

∫
Q
φ|ψ|2(∆cβ)2 − Sλ3

∫
Q
φ|ψ|2∇cβ · ∇c(|∇cβ|

2)

−
Sλ2

2

∫
Q
φ|ψ|2∆c(|∇cβ|

2) −
Sλ
2

∫
Q
φ|ψ|2∆c(∆cβ)
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−
Sλ4

2

∫
Q
φ|ψ|2|∇cβ|

4 + 2S 3λ4
∫

Q
φ3|ψ|2|∇cβ|

4

+ S 3λ3
∫

Q
φ3|ψ|2∇cβ · ∇c(|∇cβ|

2). (20)

Now, if we call by X the terms in (19) which are neglectable with respect to the quatities
Sλ2

∫
Q φ|∇cβ · ∇cψ|

2 or S 3λ4
∫

Q φ
3|ψ|2|∇cβ|

4, we get:

X = −
S
2

∫
Q
∂2

t η|ψ|
2 − 2Sλ Im

∫
Q
∂tφψ∇cβ · ∇cψ − Sλ3

∫
Q
φ|ψ|2|∇cβ|

2∆cβ

− Sλ2
∫

Q
φ|ψ|2∇cβ · ∇c(∆cβ) −

Sλ2

2

∫
Q
φ|ψ|2(∆cβ)2 −

Sλ
2

∫
Q
φ|ψ|2∆c(∆cβ)

−
Sλ4

2

∫
Q
φ|ψ|2|∇cβ|

4 − Sλ3
∫

Q
φ|ψ|2∇cβ · ∇c(|∇cβ|

2) −
Sλ2

2

∫
Q
φ|ψ|2∆c(|∇cβ|

2)

+ S 3λ3
∫

Q
φ3|ψ|2∇cβ · ∇c(|∇cβ|

2).

So (19) becomes

Re
∫

Q
M1ψM2ψ = X + 2Sλ2

∫
Q
φ|∇cβ · ∇cψ|

2 + 2SλRe
∫

Q
φD2

cβ(∇cψ,∇cψ)

− Sλ
∫

Q
φ

1
c
∇cc · ∇cβ|

√
c∂sψ|

2 − Sλ
∫
∂ΩR,ε×(−T,T )

φ|∇cψ|
2∇cβ · νc

+ 2S 3λ4
∫

Q
φ3|ψ|2|∇cβ|

4

and there exists a positive constant k such that

|X| ≤ kSλ4
∫

Q
φ|ψ|2 + kS 3λ3

∫
Q
φ3|ψ|2 + kSλ

∫
Q
φ|∇cβ · ∇cψ|

2. (21)

Moreover, from (8), (21) and Assumption 2, we get∫
Q

[|M1ψ|
2 + |M2ψ|

2] + 4Sλ2
∫

Q
φ|∇cβ · ∇cψ|

2 − 2Sλ
∫

Q
φ

1
c
∇cc · ∇cβ|

√
c∂sψ|

2

+ 4SλRe
∫

Q
φD2

cβ(∇cψ,∇cψ) + 4S 3λ4β4
0

∫
Q
φ3|ψ|2 (22)

≤ Csλ
∫
∂ΩR,ε×(−T,T )

φ|∇cψ|
2∇cβ · νc + CSλ4

∫
Q
φ|ψ|2 + CS 3λ3

∫
Q
φ3|ψ|2

+ CSλ
∫

Q
φ|∇cβ · ∇cψ|

2 + C
∫

Q
|Mψ|2 + C

∫
Q

V2
γ |ψ|

2.

Since Vγ is bounded on ΩR,ε and since φ is a positive continuous function there exists a
positive constant depending upon T such that Vγ ≤ cst φ3. Choosing such S and λ sufficiently
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large, we deduce that there exists a positive constant C1 such that (22) becomes∫
Q

[|M1ψ|
2 + |M2ψ|

2] + Sλ2
∫

Q
φ|∇cβ · ∇cψ|

2

+ SλRe
∫

Q
φD2

cβ(∇cψ,∇cψ) + S 3λ4
∫

Q
φ3|ψ|2 − Sλ

∫
Q
φ

1
c
∇cc · ∇cβ|

√
c∂sψ|

2

≤ C1Sλ
∫

ΓR,ε×(−T,T )
φ|∇cψ|

2∇cβ · νc + C1

∫
Q
|Mψ|2.

Finally, we come back to q = eS ηψ. And this concludes the proof. �

§3. Inverse problem

First, using an idea developed in [10], we prove the following lemma:

Lemma 4. Let z0 be a real function in C2(ΩR,ε) and define the following first order differential
operator P0g B ∂sz0∂sg. Let η0 be a real function in C2(ΩR,ε). Assume that for all (s, u) ∈
ΩR,ε , (∂sz0∂sη0)2 ≥ cst > 0. Then there exists a positive constant C such that for S sufficiently
large

S 2
∫

ΩR,ε

e−2S η0 |g|2 ≤ C
∫

ΩR,ε

|P0g|
2e−2S η0 + CS

∫
Γε

e−2S η0 |g|2|∂sη0νs|

for any g ∈ H1(ΩR,ε).

Proof. Let g ∈ H1(ΩR,ε). Define w = e−S η0g and Q0w B e−S η0 P0(eS η0w). If we set q0 =

∂sz0∂sη0, then we get Q0w = S q0w + P0w. Therefore we have:∫
ΩR,ε

|Q0w|
2 =

∫
ΩR,ε

|P0g|
2e−2S η0 = S 2

∫
ΩR,ε

q2
0|w|

2 +

∫
ΩR,ε

|P0w|
2 + 2S Re

∫
ΩR,ε

q0wP0w

≥ S 2
∫

ΩR,ε

q2
0|w|

2 + S
∫

ΩR,ε

q0∂sz0∂s(|w|2)

and so, integrating by parts, since νs = 0 on Σ+
R,ε ∪ Σ−R,ε , we get

∫
ΩR,ε

|P0g|
2e−2S η0

≥ S 2
∫

ΩR,ε

q2
0e−2S η0 |g|2 + S (−

∫
ΩR,ε

∂s(q0∂sz0)e−2S η0 |g|2 +

∫
Γε

e−2S η0 |g|2q0∂sz0νs).

Since ∂s(q0∂sz0) is a bounded function in ΩR,ε and q0∂sz0νs = (∂sz0)2∂sη0νs, we can
conclude. �

Then, we consider γ and γ̃ two functions satisfying Assumption 1.
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Let z be a solution of
−i∂tz(s, u, t) − ∂s(cγ(s, u)∂sz(s, u, t)) − ∂2

uz(s, u, t) + Vγ(s, u)z(s, u, t) = 0,
(s, u, t) ∈ ΩR,ε × (0,T ),
z(s, u, t) = l(s, u, t), (s, u) ∈ ∂ΩR,ε , t ∈ (0,T ),
z(s, u, 0) = z0(s, u), (s, u) ∈ ΩR,ε ,

(23)

and let z̃ be a solution of
−i∂t̃z(s, u, t) − ∂x(cγ̃(s, u)∂s̃z(s, u, t)) − ∂2

ũz(s, u, t) + Vγ̃(s, u)̃z(s, u, t) = 0,
(s, u, t) ∈ ΩR,ε × (0,T ),
z̃(s, u, t) = l(s, u, t), (s, u) ∈ ∂ΩR,ε , t ∈ (0,T ),
z̃(s, u, 0) = z0(s, u), (s, u) ∈ ΩR,ε .

(24)

Let ΛN B { f ∈ C1([R1,R2]), | f ′(s)| ≤ N| f (s)| and | f (s| ≤ N for all s ∈ [R1,R2]} with N a
positive real given. We obtain the following theorem:

Theorem 5. Let γ and γ̃ be functions both satisfying Assumption 1 and such that (γ− γ̃)(s) ,
0 and (γ′ − γ̃′)(s) , 0 for all s ∈ [R1,R2]. Assume that β is a function which satisfies
Assumption 2 w.r.t. cγ with cγ defined by (2). Assume also that

(i) z0 is a real function such that z0 ∈ C2(ΩR,ε).

(ii) For all (s, u) ∈ ΩR,ε , (∂sz0(s, u)∂sη(s, u, 0))2 ≥ cst > 0 (where η is defined by (5)).

(iii) ∂t̃z ∈ L∞(ΩR,ε × (0,T )), ∂s(∂t̃z) ∈ L∞(ΩR,ε × (0,T )), ∂2
s(∂t̃z) ∈ L∞(ΩR,ε × (0,T )),

∂ν(∂t(z− z̃)) ∈ L∞(Γε×(0,T )) and the L∞-norm of each of these functions is less than N.

(iv) γ − γ̃ ∈ ΛN and γ′ − γ̃′ ∈ ΛN .

Then there exists a positive constant C, depending upon N, T , ‖β‖L∞ , ‖∂sβ‖L∞ such that, for
S and λ sufficiently large, we have:∫

L2(ΩR,ε )
e−2S η0 |γ(s) − γ̃(s)|2 dsdu ≤ C

∫
Σ+

R,ε×(−T,T )
φe−2S η|∂ν(∂t(z − z̃))|2 + Cε. (25)

Note that ∂sz0∂sη B −λ∂sz0
(
eλβ/T 2) ∂sβ satisfies the above hypothesis (ii) for any func-

tion z0 such that ∂sz0 is a continuous and non null function in ΩR,ε (by assuming also that
∂sβ is a non null function in ΩR,ε , which is true for β(s, u) = es + eu for example). Note that
since γ − γ̃ is assumed satisfying (γ − γ̃)(s) , 0 and (γ′ − γ̃′)(s) , 0 for all s ∈ [R1,R2], then
γ′−γ̃′

γ−γ̃
and γ′′−γ̃′′

γ′−γ̃′
are bounded functions in [R1,R2] and therefore the previous hypothesis iv)

is verified for some N. Note also that the above hypothesis (iii) is satisfied for any function
z̃ ∈ C3(ΩR,ε × (0,T )).

Proof. Now, recall that z (resp. z̃) is a solution of (23) (resp. (24)). If we set w = z − z̃, v =

∂tw, g = cγ − cγ̃ and h = Vγ − Vγ̃, we get
−i∂tw − ∂s(cγ∂sw) − ∂2

uw + Vγw = ∂s(g∂s̃z) − h̃z in ΩR,ε × (0,T ),
w = 0 on ∂ΩR,ε × (0,T ),
w(s, u, 0) = 0, (s, u) ∈ ΩR,ε ,
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
−i∂tv − ∂s(cγ∂sv) − ∂2

uv + Vγv = ∂s(g∂s(∂t̃z)) − h∂t̃z in ΩR,ε × (0,T ),
v = 0 on ∂ΩR,ε × (0,T ),
v(s, u, 0) = i(∂s(g(s, u)∂sz0(s, u)) − hz0(s, u)), (s, u) ∈ ΩR,ε .

As in [1] or [5], we extend the function v on ΩR,ε×(−T,T ) by the formula v(s, u, t) = v(s, u,−t)
for every (s, u, t) ∈ ΩR,ε × (−T, 0). Note that this extension is available if the initial data is a
real valued function. Note also that this extension satisfies the previous Carleman estimate.
We set ψ = e−S ηv with η defined by (5). We recall that M1ψ = −i∂tψ − ∆cψ − S 2λ2φ2ψ|∇cβ|

2

with c = cγ.
In a first step, we define I B Im

∫
ΩR,ε×(−T,0) M1ψψ. Then by integrations by parts, we

obtain: I = (−1/2)
∫

ΩR,ε
|ψ(s, u, 0)|2ds du. If we denote by η0(s, u) B η(s, u, 0) and by

φ0(s, u) B φ(s, u, 0), recalling that ψ = e−S ηv = e−S η∂tw, we get:

I = −
1
2

∫
ΩR,ε

e−2S η0(s,u)|∂tw(s, u, 0)|2 ds du. (26)

Moreover, we have:

|I| ≤ S −3/4λ−1
(∫

Q
|M1ψ|

2
)1/2

S 3/4λ

(∫
Q
|ψ|2

)1/2

≤
S −3/2λ−2

2

(∫
Q
|M1(e−S ηv)|2 + S 3λ4

∫
Q

e−2S η|v|2
)
.

Since Hγv = ∂s(g∂s(∂t̃z)) − h∂t̃z, applying the Carleman inequality, we get:

|I| ≤ CS −3/2λ−2
∫

Q
e−2S η|∂s(g∂s(∂t̃z)) − h∂t̃z|2 + CS −1/2λ−1

∫
ΓR,ε×(−T,T )

φe−2S η|∂νv|
2,

with C a positive constant. Since ∂t̃z ∈ L∞(ΩR,ε×(0,T )), ∂s(∂t̃z) ∈ L∞(ΩR,ε×(0,T )), ∂2
s(∂t̃z) ∈

L∞(ΩR,ε × (0,T )) and e−2S η(s,u,t) ≤ e−2S η(s,u,0) we have:

|I| ≤ CS −3/2λ−2
∫

Q
e−2S η0 [|∂sg|

2 + |g|2 + |h|2] + CS −1/2λ−1
∫

ΓR,ε×(−T,T )
φe−2S η|∂νv|

2, (27)

with C a positive constant depending on T . Moreover, from −i∂tw(s, u, 0) = ∂s(g∂sz0)−hz0 =

∂sg∂sz0 +g∂2
sz0−hz0, applying the Lemma 2 for the function g = cγ−cγ̃ and P0g = ∂sz0∂sg =

−i∂tw(s, u, 0) − g∂2
sz0 + hz0, we obtain:

S 2
∫

ΩR,ε

e−2S η0 |g|2 ≤ C
∫

ΩR,ε

| − i∂tw(s, u, 0) − g∂2
sz0 + hz0|

2e−2S η0 + CS
∫

Γε

e−2S η0 |g|2|∂sη0νs|.

And so

S 2
∫

ΩR,ε

e−2S η0 |g|2 ≤ C
∫

ΩR,ε

[|∂tw(s, u, 0)|2 + |g|2 + |h|2]e−2S η0 + CSλ
∫

Γε

e−2S η0 |g|2|∂sβφ0νs|.

(28)
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From (26)–(28) we get:

S 2
∫

ΩR,ε

e−2S η0 |g|2 ≤ CS −3/2λ−2
∫

ΩR,ε

[|∂sg|
2 + |g|2 + |h|2]e−2S η0 +CSλ

∫
Γε

e−2S η0 |g|2|∂sβφ0νs|

+ CS −1/2λ−1
∫

ΓR,ε×(−T,T )
φe−2S η|∂νv|

2 + C
∫

ΩR,ε

[|g|2 + |h|2]e−2S η0 . (29)

Finally note that

0 < cst|γ − γ̃| ≤ |g| ≤ cst|γ − γ̃|, |∂sg| ≤ cst[|γ − γ̃| + |γ′ − γ̃′|],

|h| ≤ cst[|γ − γ̃| + |γ′ − γ̃′| + |γ′′ − γ̃′′|]. (30)

Combining (29) and (30) we can conclude for S sufficiently large. �

Remark 1. Such result (25) can be generalized on the whole space Ω1 (
∫

Ω1
e−2S η0 |γ − γ̃|2 ≤

C
∫

Σ+
R×(−T,T ) φe−2S η|∂ν(∂t(z − z̃))|2) under the condition that there exists a function β̃ which

satisfies Assumption 2 on the whole Ω1.
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DETECTING AN OBSTACLE IMMERSED
IN A FLUID: THE STOKES CASE

Fabien Caubet

Abstract. This paper presents a theoretical study of a detection of an object immersed in
a fluid. The fluid motion is governed by the Stokes equations. We detail the Dirichlet case
for which the results are just stated in [3]. We make a shape sensitivity analysis of order
two in order to prove the existence of the first and the second orders shape derivatives.
The strategy adopted to detect the object is to minimize a least-squares functional. We
characterize the gradient of the functional using an adjoint problem. Finally, we study
the stability of this setting. We give the expression of the shape Hessian at a critical
point and the compactness of the Riesz operator corresponding to this shape Hessian is
shown. The ill-posedness of the identification problem follows which explains the need
of regularization to numerically solve this problem.

Keywords: Stationary Stokes problem, sensitivity with respect to the domain of order two,
geometric inverse problem.

AMS classification: 35R30, 35Q30, 49Q10, 49Q12, (76D07).

§1. Introduction

Notations and references on the Stokes equations. For a domain Ω, 〈· , ·〉Ω and 〈· , ·〉∂Ω will
denote respectively the duality products 〈· , ·〉H−1(Ω),H1

0(Ω) and 〈· , ·〉H−1/2(∂Ω),H1/2(∂Ω). Moreover,
n represents the external unit normal to ∂Ω.

In this paper, we use some existence, uniqueness and regularity results concerning the
Stokes equations: we refer for example to [9, Chapter 1]. Moreover, we also use some local
regularity arguments: see [5, Theorem IV.5.1] for details.

Setting of the problem. Let Ω a bounded, connected open subset of RN (with N = 2 or
N = 3) with a C1,1 boundary. Let δ > 0 fixed (small). We define Oδ the set of all open subsets
ω of Ω with a C2,1 boundary such that d(x, ∂Ω) > δ for all x ∈ ω and such that Ω \ ω is
connected. We also define Ωδ an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > δ/2} ⊂ Ωδ ⊂ {x ∈ Ω ; d(x, ∂Ω) > δ/3} .

Let fb be an admissible boundary measurement. Let g ∈ H3/2(∂Ω) such that g , 0 and
satisfying the following condition: ∫

∂Ω

g · n = 0. (1)
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Let us consider, for ω ∈ Oδ, the following overdetermined Stokes boundary values problem:

− div(σ(u, p)) = 0 in Ω \ ω,

div u = 0 in Ω \ ω,

u = g on ∂Ω,

u = 0 on ∂ω,
σ(u, p)n = fb on ∂Ω,

(2)

whereσ(u, p) = ν(∇u+t∇u)−p I is the stress tensor and ν > 0 is a given constant representing
the kinematic viscosity of the liquid.

We assume there exists ω ∈ Oδ such that (2) has a solution. This means that the mea-
surement fb is perfect, i.e. without error. Thus, we consider the following geometric inverse
problem:

find ω ∈ Oδ and a pair (u, p) which satisfies the overdetermined system (2). (3)

To solve this inverse problem, we consider, for ω ∈ Oδ, the least-squares functional

J(ω) =
1
2

∫
∂Ω

|σ(u(ω), p(ω)) n − fb|
2,

where (u(ω), p(ω)) ∈ H2(Ω \ ω) × H1(Ω \ ω) is a solution of the Stokes problem
− div(σ(u, p)) = 0 in Ω \ ω,

div u = 0 in Ω \ ω,

u = g on ∂Ω,

u = 0 on ∂ω.

(4)

Since we imposed the compatibility condition (1), problem (4) has a unique solution once a
normalization condition on the pressure p is imposed (see for example [9, Chapter 1]). Such
a solution (u, p) is called the state of the system. Here, we choose the normalization∫

∂Ω

(σ(u, p)n) · n =

∫
∂Ω

fb · n. (5)

Then, we try to minimize the least-squares criterion J:

ω∗ = arg min
ω∈Oδ

J(ω). (6)

Indeed, if ω∗ is solution of the inverse problem (3), then J(ω∗) = 0 and (6) holds. Conversely,
if ω∗ solves (6) with J(ω∗) = 0, then this domain ω∗ is a solution of the inverse problem.

Introduction of the needed functional tools. Let U = {θ ∈ W3,∞(RN); supp θ ⊂ Ωδ} and
U =

{
θ ∈ U; ‖θ‖3,∞ < 1

}
be the space of admissible deformations. Notice that if θ ∈U then

(I + θ) is a diffeomorphism. For such a θ ∈ U and ω ∈ Oδ, we check Ω = (I + θ)(Ω) and we
define the perturbed domain ωθ = (I + θ)(ω) which is so that Ω \ ωθ ∈ Oδ.
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Let T > 0, that we will have to fix small. We will use the shape calculus introduced in [7]
by F. Murat and J. Simon. Thus, we consider the function

φ : t ∈ [0,T ) 7→ I + t V ∈W3,∞(RN),

where V ∈ U. Note that for small t, φ(t) is a diffeomorphism of RN and that φ′(0) = V
vanishes on ∂Ω and even on the tubular neighborhood Ω \Ωδ of ∂Ω. For t ∈ [0,T ), we define
ωt = φ(t)(ω) and nt the external unit normal of Ω \ ωt.

Outlines of the paper. This paper is organized as follows. In Section 2, we state the main
results of this work. We first mention an identifiability result proved by C. Alvarez et al. in
[1]. We claim the existence of the first order shape derivative of the state and we characterize
this derivative. We then give the expression of the gradient of the least-squares functional
introducing an adjoint problem. Furthermore, we discuss higher order shape derivatives and
we characterize the shape Hessian at a possible solution of the original inverse problem.
Finally, we justify the instability of the problem: the Riesz operator corresponding to the
shape Hessian at a critical shape is compact, which means that the functional is degenerate
for the high frequencies. In Section 3, we present some preliminary results: we recall an
extension of the usual implicit functions Theorem proved by J. Simon in [8] and we prove
some results used in section 4 where the main results of this work are proved. In Section 5,
we compare the Neumann case exposed in [3] and the Dirichlet case treated in this paper: we
point out the difficulties and the mistakes made in the statement of the Dirichlet case in [3].

§2. Statement of the main results

Identifiability result. According to [1, Theorem 1.2] proved by C. Alvarez et al., the inverse
problem (3) is well posed, in the sense that the solution (which exists by assumption) is
unique. Indeed, this identifiability result claims that given a fixed g, two different geometries
ω0 and ω1 in Oδ yield two different measures fb1 and fb2.

Sensitivity with respect to the domain. Secondly, we aim to make a sensitivity (with respect
to the shape) analysis. The Stokes problem on Ω \ ωt

− div(σ(ut , pt)) = 0 in Ω \ ωt,

div ut = 0 in Ω \ ωt,

ut = g on ∂Ω,

ut = 0 on ∂ωt,

(7)

admits a unique solution (ut , pt) ∈ H2(Ω \ ωt) × H1(Ω \ ωt) satisfying the normalization
condition

∫
∂Ω

(σ(ut , pt)n) · n =
∫
∂Ω

fb · n.

Proposition 1 (First order shape derivatives of the state). The solution (u, p) is differentiable
with respect to the domain and the derivatives (u′, p′) ∈ H2(Ω \ ω) × H1(Ω \ ω) is the only
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solution of the following boundary values problem
− div(σ(u′, p′)) = 0 in Ω \ ω,

div u′ = 0 in Ω \ ω,

u′ = 0 on ∂Ω,

u′ = −∂nu (V · n) on ∂ω,

(8)

with the normalization condition
∫
∂Ω

(σ(u′, p′)n) · n = 0.

Proposition 2 (First order shape derivatives of the functional). For V in U, the least-squares
functional J is differentiable at ω in the direction V with

D J(ω) · V = −

∫
∂ω

[
(σ(w, q)n) · ∂nu

]
(V · n),

where (w, q) ∈ H1(Ω \ω) × L2(Ω \ω) is the solution of the Stokes boundary values problem:
2 − div(σ(w, q)) = 0 in Ω \ ω,

divw = 0 in Ω \ ω,

w = σ(u, p)n − fb on ∂Ω,

w = 0 on ∂ω,

(9)

with the normalization condition 〈σ(w, q)n , n〉∂Ω = 0.

Remark 1. Propositions 1 and 2 remain true under weaker assumptions. Indeed, the proofs are
still valid if ω has a C1,1 boundary and V ∈W2,∞(RN). However, in this case, the expression
of D J(ω) ·V has to be understood as a duality product H−1/2 ×H1/2 and (u′, p′) only belongs
to H1(Ω\ω)×L2(Ω\ω). Moreover, we will prove Proposition 1 only assuming Ω is Lipschitz.

Second order analysis: justification of the instability. Finally, we want to study the stabi-
lity of the optimization problem (6) at ω∗.

Proposition 3 (Characterization of the shape Hessian at a critical shape). The solution (u, p)
is twice differentiable with respect to the domain. Moreover, for V ∈ U, we have

D2J(ω∗) · V · V = −

∫
∂ω∗

[
(σ(w′, q′)n) · ∂nu

]
(V · n),

where (w′, q′) ∈ H1(Ω \ ω∗) × L2(Ω \ ω∗) is the solution of the following problem:
− div(σ(w′, q′)) = 0 in Ω \ ω∗,

divw′ = 0 in Ω \ ω∗,

w′ = σ(u′, p′)n on ∂Ω,

w′ = 0 on ∂ω∗,

with the normalization condition 〈σ(w′, q′)n , n〉∂Ω = 0.
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Proposition 4 (Compactness at a critical point). The Riesz operator corresponding to D2J(ω∗)
defined from H1/2(∂ω∗) to H−1/2(∂ω∗) is compact.

This last statement points out the lack of stability of the optimization problem (6). This
compactness result means, roughly speaking, that in a neighborhood of ω∗ (i.e. for t small),
J behaves as its second order approximation and one cannot expect an estimate of the kind
C t ≤

√
J(ωt) with a constant C uniform in V. This proposition emphasizes that the gradient

has not a uniform sensitivity with respect to the deformation directions: J is degenerate for the
high frequencies. This explains the numerical difficulties encountered to solve numerically
this problem. For more details, we refer to [3, §2.3].

§3. Differentiability results

To prove the existence of the shape derivatives of the state, we have to prove the existence
of the total first variations. In order to prove it, we use a generalized implicit function the-
orem proved by J. Simon (see [8, Theorem 6]) that we recall the statement for the reader’s
convenience.

Theorem 5 (J. Simon [8]). We give us

• an open setU in a Banach space U, u0 ∈ U, two reflexive Banach spaces E1 and E2,

• a map F : U × E1 → E2, such that F(u, ·) ∈ L(E1, E2) for all u ∈ U,

• a function m : U → E1 and a function f : U → E2 such that

F(u,m(u)) = f (u) ∀u ∈ U.

(i) Assume that

• u 7→ F(u, ·) is differentiable at u0 into L(E1, E2),

• f is differentiable at u0,

• ‖F(u0, x)‖E2 ≥ α‖x‖E1 ∀x ∈ E1, for some α > 0.

Then, the map u 7→ m(u) is differentiable at u0. Its derivative m′(u0, ·) is the unique solution
of

F(u0,m′(u0, v)) = f ′(u0, v) − ∂uF(u0,m(u0), v) ∀v ∈ U.

(ii) In addition, assume that for some integer k ≥ 1, u 7→ F(u, ·) and f are k times differen-
tiable at u0. Then, the map u 7→ m(u) is k times differentiable at u0.

Let θ ∈U. We set (uθ, pθ) the unique solution in H1(Ω \ ωθ) × L2(Ω \ ωθ) of
− div(σ(uθ, pθ)) = 0 in Ω \ ωθ,

div uθ = 0 in Ω \ ωθ,

uθ = g on ∂Ω,

uθ = 0 on ∂ωθ,

with 〈(σ(uθ, pθ)n) · n , 1〉∂Ω = 〈 fb · n , 1〉∂Ω. Let us consider G ∈ H1(Ω) such that

G = g on ∂Ω, div G = 0 in Ω and G = 0 in Ωδ.
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Thus (zθ = uθ − G, pθ) ∈ H1
0(Ω \ ωθ) × L2(Ω \ ωθ) is such that

∫
Ω\ωθ

σ(zθ, pθ) : ∇ϕθ = −

∫
Ω\ωθ

ν∇G : ∇ϕθ, ∀ϕθ ∈ H1
0(Ω \ ωθ),∫

Ω\ωθ

ξθ div zθ = 0, ∀ξθ ∈ L2(Ω \ ωθ),

〈(σ(zθ, pθ)n) · n , 1〉∂Ω = 〈( fb − σ(G, 0)n) · n , 1〉∂Ω .

(10)

Let us define the key objects of our differentiability proof:

uθ = zθ ◦ (I + θ) ∈ H1
0(Ω \ ω) and qθ = pθ ◦ (I + θ) ∈ L2(Ω \ ω).

For k ≥ −1 and m ≥ 0 integers with k < m, we note Xk,m(Ω \ω,Ωδ \ω) the space of functions
in Hk(Ω \ω) such that their restriction to Ωδ \ω belongs to Hm(Ωδ \ω). This space endowed
with the norm ‖u‖Xk,m(Ω\ω,Ωδ\ω) =

(
‖u‖2Hk(Ω\ω) + ‖u‖2Hm(Ωδ\ω)

)1/2
is hilbertian.

First order differentiability. To prove the existence of the first order shape derivative, we
first have to prove the following three lemmas:

Lemma 6 (Characterization of (uθ, qθ)). For θ ∈ U, the pair (uθ, qθ) satisfies for all test
functions ϕ ∈ H1

0(Ω \ ω) and ξ ∈ L2(Ω \ ω)

∫
Ω\ω

[
(ν∇uθA(θ)) : ∇ϕ − qθB(θ) : ∇ϕ

]
=

∫
Ω\ω

−ν∇G : ∇ϕ,∫
Ω\ω

(∇uθ : B(θ)) ξ = 0,

〈(σ(u, q)n) · n , 1〉∂Ω = 〈( fb − σ(G, 0)n) · n , 1〉∂Ω ,

with

Jθ = det (I + ∇θ) ∈W2,∞
(
Ωδ

)
,

A(θ) = Jθ (I + ∇θ)−1(I + t∇θ)−1 ∈W2,∞
(
Ωδ,MN,N

)
,

B(θ) = Jθ(I + t∇θ)−1 ∈W2,∞
(
Ωδ,MN,N

)
.

Lemma 7 (Differentiability of θ 7→ (uθ, qθ)). The function

θ ∈U 7→ (uθ, qθ) ∈ X1,2(Ω \ ω,Ωδ \ ω) × X0,1(Ω \ ω,Ωδ \ ω)

is differentiable in a neighborhood of 0.

Lemma 8 (Differentiability of θ 7→ (uθ, pθ)). There exists ũθ, p̃θ some respective extensions
of uθ ∈ H1(Ω \ ω), pθ ∈ L2(Ω \ ω) such that the functions

θ ∈U 7→ ũθ ∈ H1(Ω) and θ ∈U 7→ p̃θ ∈ L2(Ω)

are differentiable at 0.
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Remark 2. We will prove this three lemmas under weaker assumptions: ω with a C1,1 bound-
ary, Ω with a Lipschitz boundary and θ ∈W2,∞(RN).

Proof of Lemma 6: characterization of (uθ, qθ). We make a change of variables in (10). First,
notice that, since div zθ = 0 in Ω \ ωθ,∫

Ω\ωθ

σ(zθ, pθ) : ∇ϕθ =

∫
Ω\ωθ

(
ν∇zθ : ∇ϕθ − pθ divϕθ

)
, ∀ϕθ ∈ H1

0(Ω \ ωθ).

Let ϕ ∈ H1
0(Ω \ ω), ξ ∈ L2(Ω \ ω) and θ ∈U. Then we proceed in the same manner than the

proof of Lemma 3.1 in [3]: we use the test functions ϕθ = ϕ ◦ (I + θ)−1 ∈ H1
0(Ω \ ωθ) and

ξθ = ξ ◦ (I + θ)−1 ∈ L2(Ω \ωθ) in the variational formulation (10) and we make the change of
variables x = (I + θ)y. Noticing that θ ≡ 0 in Ω \Ωδ (and therefore on ∂Ω) and that G ≡ 0 in
Ωδ, we obtain the result. �

The proof of Lemma 7 is based on Simon’s Theorem: we adapt the method used in the
proof of Lemma 3.2 in [3].

Proof of Lemma 7: differentiability of θ 7→ (uθ, qθ). Let us check the assumptions of Simon’s
Theorem.

First step: notations. We need some additional tools: a third domain Ω̃δ which is an open
set with a C∞ boundary such that Ωδ ⊂⊂ Ω̃δ ⊂⊂ Ω and a truncation function Φ ∈ C∞c (Ω̃δ)
such that Φ ≡ 1 in Ωδ. Then, we define the spaces

E1 =
{
(u, q) ∈ H1

0(Ω \ ω) × L2(Ω \ ω) ; (Φu,Φq) ∈ H2(Ω \ ω) × H1(Ω \ ω)
}
,

E2 =
{
( f , g) ∈ H−1(Ω \ ω) × L2(Ω \ ω); (Φ f ,Φg) ∈ L2(Ω \ ω) × H1(Ω \ ω)

}
× R.

Note that E1 and E2 are Hilbert spaces with respective norms

‖(u, q)‖2E1
= ‖u‖2H1(Ω\ω) + ‖q‖2L2(Ω\ω) + ‖Φu‖2H2(Ω\ω) + ‖Φq‖2H1(Ω\ω),

‖(( f , g), r)‖2E2
= ‖ f‖2H−1(Ω\ω) + ‖g‖2L2(Ω\ω) + ‖Φ f‖2L2(Ω\ω) + ‖Φg‖2H1(Ω\ω) + |r|2.

Moreover, we can also notice that E1 ↪→ X1,2(Ω \ ω,Ωδ \ ω) × X0,1(Ω \ ω,Ωδ \ ω) and that
E2 ↪→ X−1,0(Ω \ ω,Ωδ \ ω) × X0,1(Ω \ ω,Ωδ \ ω) × R. Using the notations introduced in
Lemma 6, we also define, for θ ∈ U and (u, q) ∈ E1, the following functions:

• f1(θ) ∈ H−1(Ω \ ω) by ∀ϕ ∈ H1
0(Ω \ ω),

〈 f1(θ) , ϕ〉Ω\ω = −

∫
Ω\ω

νJθ∇G : ∇ϕ = −

∫
Ω\Ωδ

ν∇G : ∇ϕ,

• F1(θ, (u, q)) ∈ H−1(Ω \ ω) by ∀ϕ ∈ H1
0(Ω \ ω),

〈F1(θ, (u, q)) , ϕ〉Ω\ω =

∫
Ω\ω

{[ν∇u A(θ)] : ∇ϕ − q B(θ) : ∇ϕ} ,

• m(θ) = (uθ , qθ) and f (θ) =
(
f1(θ) , 0 , 〈( fb − σ(G, 0)n) · n , 1〉∂Ω

)
,
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• F(θ, (u, q)) =
(
F1(θ, (u, q)) , ∇u : B(θ) , 〈(σ(u, q)n) · n , 1〉∂Ω

)
.

By the characterization of (uθ, qθ) obtained in Lemma 6,

F(θ,m(θ)) = f (θ) ∀θ ∈U.

Second step: differentiability of F and f at 0. In the same way as what is done in the
proof of Lemma 3.2 in [3], we prove that F and f are C∞ in a neighborhood of 0.

Third step: existence of α > 0 such that ‖F(0, (u, q))‖E2 ≥ α‖(u, q)‖E1 . We consider a pair
(u, q) ∈ E1 and we define (ξ, η, r) ∈ E2 by F(0, (u, q)) = (ξ, η, r). Then,

∫
Ω\ω

{ν∇u : ∇ϕ − q divϕ} = 〈ξ , ϕ〉Ω\ω ∀ϕ ∈ H1
0(Ω \ ω),∫

Ω\ω

φ div u =

∫
Ω\ω

φ η ∀φ ∈ L2(Ω \ ω),

〈(σ(u, q)n) · n , 1〉∂Ω = r.

The compatibility condition of the previous problem is automatically satisfied because of∫
Ω\ω

η =
∫
∂(Ω\ω) u · n = 0 since u ∈ H1

0(Ω \ ω). Thus, proceeding in the same manner than in
the proof of Lemma 3.2 in [3], we check using a local regularity argument that there exists a
constant α > 0 such that

‖F(0, (u, q))‖E2 ≥ α‖(u, q)‖E1 .

Fourth step: conclusion. By Simon’s Theorem, the function θ ∈ U 7→ (uθ, qθ) ∈ E1 is
differentiable (and even C∞) in a neighborhood of 0. We conclude using the fact that E1 is
continuously embedded in X1,2(Ω \ ω,Ωδ \ ω) × X0,1(Ω \ ω,Ωδ \ ω). �

Proof of Lemma 8: differentiability of θ 7→ (uθ, pθ). This proof is exactly the same than the
proof of Lemma 3.3 in [3]. We refer to this one for details. The idea is to use the differentia-
bility result by composition by (I + θ)−1 (see [6, Lemma 5.3.9]). �

Higher order differentiability. To prove the existence of the second total variations, we will
proceed in the same way that what is done previously. We mimic the proof of Lemma 7, only
increasing the local regularity in the used spaces to prove that the function

θ ∈U 7→ (uθ, qθ) ∈ X1,3(Ω \ ω,Ωδ \ ω) × X0,2(Ω \ ω,Ωδ \ ω)

is twice differentiable in a neighborhood of 0. Then, proceeding in exactly the same way than
in the proof of Lemma 3.5 in [3], we prove the following lemma:

Lemma 9 (Second order shape differentiability). The solution (u, p) is twice differentiable
with respect to the domain.

§4. Proof of the main results

First order shape derivatives of the state. Proof of Proposition 1. The existence of the sha-
pe derivative (u′, p′) is proved using the Fréchet differentiability Lemma 8. Using the varia-
tional formulation of problem (7), we use classical shape derivatives calculus to characterize
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(u′, p′) (see [6, proof of Theorem 5.3.1] concerning the Laplacian case for example). We just
precise that, since u = 0 on ∂ω, ∇u = ∂nu ⊗ n, where ⊗ is the tensorial product. Hence the
classical boundary condition u′ = −∇u V on ∂ω can be written u′ = −∂nu (V · n). �

First order shape derivatives of the functional. For all t ∈ [0,T ), consider (ut , pt) solution
of (7) and define,

J(ωt) = j(t) =
1
2

∫
∂Ω

|σ(ut , pt) n − fb|
2.

Proof of Proposition 2. First step: derivative of j and adjoint problem. Noting (u′, p′) the
shape derivative of (u, p), we differentiate j with respect to t at 0 to obtain

j′(0) = ∇J(ω) · V =

∫
∂Ω

(
σ(u′, p′) n

)
· (σ(u, p) n − fb) . (11)

Then, we consider the adjoint problem (9). Since we choose the normalization condition (5),
the compatibility condition of the adjoint problem is satisfied. Therefore it admits a unique
solution (w, q) ∈ H1(Ω \ ω) × L2(Ω \ ω) with 〈σ(w, q) n , n〉Ω\ω = 0.

Second step: writing of j′(0) as an integral on ∂ω. We proceed by successive integrations
by parts. We multiply the first equation of the adjoint problem (9) by u′ to get∫

Ω\ω

ν∇w : ∇u′ = −
〈
−σ(w, q) n , u′

〉
∂(Ω\ω) , (12)

since div u′ = 0 in Ω \ ω (see Proposition 1). Then, we multiply the first equation of the
problem (8) by w to obtain∫

Ω\ω

ν∇u′ : ∇w = −
〈
−σ(u′, p′) n , w

〉
∂(Ω\ω) , (13)

since divw = 0 in Ω \ ω. Gathering (11), (12) and (13) and using the boundary conditions of
(u′, p′) and (w, q) (see problems (8) and (9)), we obtain the announced result. �

Characterization of the shape Hessian at a critical point. We consider ω∗ ∈ Oδ a critical
shape of the functional J.

Proof of Proposition 3. First step: second order shape differentiability. By Lemma 9, the
second order shape derivative exists which is noted (u′′, p′′).

Second step: second derivative of j and derivative of the adjoint problem. Let V ∈ U. We
differentiate the function j twice with respect to t. At t = 0, it holds

j′′(0) = D2J(ω) · V · V =

∫
∂Ω

[(
σ(u′′, p′′) n

)
· ((σ(u, p) n) − fb) + |σ(u′, p′) n|2

]
.

Since ω∗ solves the inverse problem, σ(u, p) n = fb on ∂Ω. Therefore

D2J(ω∗) · V · V = 2
∫
∂Ω

|σ(u′, p′) n|2. (14)
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We introduce (w, q) ∈ H1(Ω \ ω) × L2(Ω \ ω) with 〈σ(w, q) n , n〉∂Ω = 0 the solution of the
adjoint system (9). Notice that, for ω = ω∗, σ(u, p) n = fb on ∂Ω. Hence, the uniqueness of
the solution of the Stokes problem enforces that w = 0 in Ω \ ω∗. Therefore, characterizing
w′ and q′, the shape derivatives of w and q, in the same manner that we characterized u′ and
p′ (see Proposition 1), we obtain the system (3).

Third step: writing of j′′(0) as an integral on ∂ω. We multiply the first equation of
problem (3) by u′ to get∫

Ω\ω∗
ν∇w′ : ∇u′ = −

〈
−σ(w′, q′) n , u′

〉
∂ω∗ . (15)

We multiply the first equation of problem (8) by w′ to get∫
Ω\ω∗

ν∇u′ : ∇w′ = −
〈
−σ(u′, p′) n , w′

〉
∂Ω . (16)

Therefore, gathering (14), (15) and (16), we obtain the announced result. �

Justifying the ill-posedness of the problem. Proof of Proposition 4. The proof is an adap-
tation of the proof of Proposition 2.8 in [3]. The idea is to decompose the shape Hessian as
a composition of linear continuous operators and a compact operator. The compactness is
proved using a local regularity argument. �

§5. Conclusion

The formal calculus of the shape derivative for the Stokes equations is easier in the Dirichlet
case than in the Neumann case which is presented by M. Badra et al. in [3], particularly the
characterization of (u′, p′). However, an other difficulty arises here, due to the introduction of
the adjoint problem (9). Indeed, the boundary condition σ(u, p) n − fb on ∂Ω imposed in (9)
has to belong in H1/2(∂Ω). Thus, we have to assume that ∂Ω is C1,1 while we can work with
a Lipschitz domain in the Neumann case. Moreover, if we want to make the measurement
on a part O of ∂Ω like what is done in [3], we are confronted to the same difficulty. Indeed,
the boundary condition on ∂Ω of the adjoint problem (9) would be then (σ(u, p) n − fb)1O

which does not belong to H1/2(∂Ω), even if Ω is smooth. A solution could be to use the very
weak solutions (see e.g. [2, §4.2, Definition 1]), even if this method need again that ∂Ω is
C1,1. Then, it would be necessary to prove the differentiability with respect to the domain of
the very weak solution (w, q) ∈ L2(Ω \ ω) × H−1(Ω \ ω)/R of the adjoint problem, which is
not classical. An other solution is to use a smooth cut-off function as what is done in [4].
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[2] Amrouche, C., and Rodríguez-Bellido, M. Á. Stationary Stokes, Oseen and Navier-
Stokes equations with singular data. Arch. Ration. Mech. Anal. 199, 2 (2011), 597–651.



Detecting an obstacle immersed in a fluid: the Stokes case 101

[3] Badra, M., Caubet, F., and Dambrine, M. Detecting an obstacle immersed in a fluid by
shape optimization methods. M3AS 21 (2011), 2069–2101.

[4] Caubet, F. Shape sensitivity and instability of an inverse problem for the stationary
navier-stokes equations. SICON (submitted).

[5] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations.
Vol. I, vol. 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York,
1994. Linearized steady problems.

[6] Henrot, A., and Pierre, M. Variation et optimisation de formes, vol. 48 of Mathéma-
tiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005.
Une analyse géométrique. [A geometric analysis].

[7] Murat, F., and Simon, J. Sur le contrôle par un domaine géométrique. Rapport du L.A.
189 (1976). Université de Paris VI, France.

[8] Simon, J. Domain variation for drag in Stokes flow. In Control theory of distributed pa-
rameter systems and applications (Shanghai, 1990), vol. 159 of Lecture Notes in Control
and Inform. Sci. Springer, Berlin, 1991, pp. 28–42.

[9] Temam, R. Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001.
Theory and numerical analysis, Reprint of the 1984 edition.

Fabien Caudet
UMR CNRS 5142 - LMA,
Université de Pau et des Pays de l’Adour
Postal address IPRA BP 64013 Pau Cedex (France)
fabien.caubet@univ-pau.fr





Monografías Matemáticas García de Galdeano 37, 103–113 (2012)

SIMULTANEOUS TRIANGULATION OF
COMMUTING FAMILIES OF MATRICES –

WHY AND HOW PRECISELY?
Vanesa Cortés, Juan Manuel Peña and Tomas Sauer

Abstract. We present an algorithm that provides an extension of the QR method in order
to compute the joint eigenvalues of a family of commuting real matrices.

Keywords: QR method, commuting matrices, simultaneous triangulation.
AMS classification: 65F15.

§1. Introduction

In this paper, we present the algorithm that describes an extension of the QR method to si-
multaneously compute the joint eigenvalues of a finite family of commuting matrices defined
in [1]. This problem is motivated by the task of finding solutions of polynomial systems of
equations of the form

F(X) = 0, F = ( f1, . . . , fm) , f j ∈ C [x1, . . . , xn] .

The idea behind this approach is to extend the Frobenius companion matrix to the multivariate
case. Recall that if f (x) = a0 + a1 x + · · ·+ anxn, an , 0, is a polynomial in one variable, then
its zeros are the eigenvalues of the companion matrix

A :=



0 −a0/an

1 0 −a1/an
. . .

. . .
...

1 0 −an−2/an

1 −an−1/an


.

Since this result can be proved, for example, by division with remainder and considering
multiplication modulo the (principal) ideal generated by f , it allows for an extension via
computational ideal theory, especially the concept of Gröbner bases or H–bases. However,
in n variables one does not have to find the eigenvalues of a single matrix A but the joint
eigenvalues of a systemA = (A1, . . . , An) of commuting matrices, i.e. A jAk = AkA j. A naive
and direct approach would be to compute the eigenvalues and eigenvectors for each of the
matrices separately and then connect the eigenvalues (which are the components of one of
the zeros) by means of the associated eigenvectors. This approach, however, faces difficul-
ties as soon as the coordinate projections of the solutions are not well separated as then the
eigenvectors will usually not be unique any more, hence the connection can only be made via
a numerically instable intersection of eigenspaces. And while multiple eigenvalues do not
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constitute a thread for the QR method of eigenvalue dermination, cf. [3], clustered eigenval-
ues are a numerical problem, hence should be avoided. To overcome these difficulties, we
proposed a method that extends the QR method and the included concept of splitting matrices
by treating the matrices as simultaneous as possible, making use of the fact that under certain
circumstances a split, that is, a separation of eigenspaces, obtained for one of the matrices
from the family carries over to the whole family. The eigenvalue approach applies only to
the case when the set X of solutions to F(X) = 0 is finite, or, in algebraic terminology, if the
ideal generated by F is zero dimensional. Then the size of the matrices is the number of zeros
which is determined automatically by the algebraic reduction process.

The following lemma, proved in [1], provides the condition that will allow us to perform
the simultaneous triangularization process of all commuting matrices.

Lemma 1 (Cf. [1], Lemma 2.1). Let A, B be two real n × n matrices such that AB = BA. If
there exists a nonsingular matrix P such that

P−1AP =

[
A1 A2
0 A3

]
,

where the p × p (1 ≤ p ≤ n − 1) matrix A1 and the (n − p) × (n − p) matrix A3 satisfy
Spec(A1) ∩ Spec(A3) = ∅, then

P−1BP =

[
B1 B2
0 B3

]
(1)

and B1 is a p × p matrix.

In Section 2, we comment the steps of the algorithm and present the core MATLAB code of
each one. In Section 3, we add the subroutines used in the main program.

§2. Algorithm

Let A be a set of m real commuting matrices n × n such that A, B ∈ A implies AB = BA.
Besides, let threshold, toleranceEig be variables holding (small) positive numbers used as
thresholds in the algorithm. We apply the following algorithm in order to find the orthogonal
matrix P that has to exist by Lemma 1.

Step 1. Storing and ordering matrices. The matrices ofA which have only one eigenvalue
or a unique pair of complex eigenvalues will be recognized by a routine uniqueEigenvalue
and will not be considered for decomposition. The other ones will concatenated into a single
matrix.

j=0;
for i=1:m

[H]=hessenberg(A(:,(i-1)*n+1:(i)*n));
[only]=uniqueEigenvalue(H,n,threshold,toleranceEig);
if(only==0)

j=j+1;
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A(:,(j-1)*n+1:(j)*n)=A(:,(i-1)*n+1:(i)*n);

end -end if

end -end for

The assumption that the ideal is zero dimensional and that there is more than one solution
of F(X) = 0 ensures thatA is nonempty.

We then compute quantities that will allow us to order the matrices ofA according to their
spread. The spread is an easily computed estimate how widely the eigenvalues of a given
matrix vary. A matrix with large spread is more likely to have well–separated eigenvalues
and hence the QR iterations will be expected to lead to a separation of eigenspaces after a
smaller number of iterations. To estimate the spread of the eigenvalues of a matrix in A, we
use Gerschgorin circles as well as an estimate based on determinant and trace of the matrix,
cf. [1].

for i=1:j

A=A(:,(i-1)*n+1:(i)*n);

L(i)=Gerschgorin(A);

F(i)=means(A);

G(i)=max(L(i),F(i));

end -end for

The matrix A is then reordered according to the values in G. This is in fact crucial as a
large spread makes an early split after only a few iterations more likely.

Step 2. Initializing variables for starting the process. We will initialize a variable matrix
with the first unused matrix in A and other variables (some of them related to possible found
blocks on the process) that will play an important role through the algorithm. Since we also
consider parts of the matrices after a QR–split, the size of the theses blocks is stored in a
variable newBlockMatrix which is initialized with the full matrix.

newBlockMatrix=[1,n,1];

matrix=A(:,(i-1)*n+1:i*n); initialMatrix=A(:,(i-1)*n+1:i*n);

auxStoringQ=eye(n); change=0;

Step 3. Selecting the matrix which starts the process with the process matrix. A variable
processMatrix will be initialized with the first unused matrix in A, and transformed into
Hessenberg form with the routine hessenberg based on Householder reflections and stored
again in the variable processMatrix.
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Step 4. Selecting the process matrix if it has not order n. If we have to consider
blocksNum subblocks of matrix, we extract those into a variable processMatrix to be
treated by a QR factorization thereafter.

for v=1:blocksNum
p=blockMatrix(v,1);q=blockMatrix(v,2);
processMatrix=matrix(p:q,p:q);
processMatrix=hessenberg(processMatrix);
storingQ=eye(q-p+1);
auxQ=eye(length(processMatrix));
Process the matrix . . .

end

Step 5. Initial transformation of the process matrix when it has trace zero. If the matrix
processMatrix has trace zero, then we first perform two consecutive steps of the shifted
QR algorithm with shifts (using the routine qrShift) in order to make our spread estimation
work. The tolerance of 10−10 is just chosen as an example and can be adapted if necessary.

if(abs(trace(processMatrix))<=1e-10)
[processMatrix,storingQ1]=choosingShift(processMatrix);
storingQ=auxQ*storingQ1;
auxQ=storingQ;

end -end if

Step 6. Localizating an special subdiagonal element to find an eigenvalue. If some subdi-
agonal element in processMatrix has an absolute value less than a given tolerance, that
is, the matrix is already “almost split”, we will apply a step of the QR algorithm with a shift
whose value will be given by the routine choiceShift. As is well–known, a properly cho-
sen shift will significantly improve the performance of the QR iteration, cf. [2]. This process
will be continued until either we get the absolute value of this subdiagonal element smaller
than a positive number threshold, less than tolerance, of course, or until we arrive at a
maximal number of iterations.

[subdiagonal]=subdiagonal(processMatrix,w);
[j,lessThanTolerance] = min(subdiagonal <= tolerance);
while(subdiagonal(j)>threshold and approxNum<=n)

[shift]=choosingShift(processMatrix,j);
[processMatrix,obtainedQ]=qrShift(processMatrix,shift,w);
storingQ=auxQ*obtainedQ;
auxQ=storingQ;
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matrix(p:q,p:q)=processMatrix;
subdiagonal(j)=abs(processMatrix(j+1,j));
approxNum = approxNum + 1;

end
if(subdiagonal(j)<=threshold)

first=p; last=p+j-1; first1=p+j; last1=q;
lessThanThreshold=1;
foundBlock=1;
matrix(p:q,p:q)=processMatrix;

else
lessThanThreshold=0;

end -end if

In the first case, we have obtained a candidate for the split and we continue with the
process described in Step 7, while in the second case we continue as described in Step 8.
Keep in mind here that according to Lemma 1 a split is only useful as a common split if
it decomposes the processMatrix in such a way that the spectra of the submatrices are
disjoint.

If there is no such a subdiagonal element, on the other hand, we will apply one step of
the QR algorithm (using the routine qr of MATLAB) and repeat the above process up to reach
a maximal number of iterations (depending on the order of the matrix in processMatrix).

if(lessThanTolerance==0)
[Q,R]=qr(processMatrix);
storingQ=auxQ*Q;
auxQ=storingQ;
processMatrix=R*Q;
matrix(p:q,p:q)=processMatrix;

end -end if
if(lessThanThreshold==0)

[processMatrix,storingQ1]=choosingShift(processMatrix);
storingQ=auxQ*storingQ1;
auxQ=storingQ;
matrix(p:q,p:q)=processMatrix;

end -end if

If after a certain number of iterations which depends on the order of the matrix in
processMatrix we still did not obtain a split, we pick the next unused matrix from A,
store it in processMatrix and restart the iteration.

Step 7. Storing the matrix obtained in the previous process. In a variable called
storingMatrix of order n, we store the processMatrix at the same relative position with
respect to the initialMatrix. Initially the variable storingMatrix is a zero matrix.
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newstoringQ=eye(n);
newstoringQ([p:q],[p:q])=storingQ;
auxStoringQ=auxStoringQ*newstoringQ;
storingMatrix=auxStoringQ;

Then we split this storingMatrix into two blocks with “break” at the relative position
of the subdiagonal element from Step 6 with absolute value less than the variable threshold
in the storingMatrix and compute the spectra of these blocks:

totalBlocksNum = totalBlocksNum + 1;
newBlockMatrix=zeros(totalBlocksNum,3);
[takeFirstBlock]=consideredBlock(matrix, first, last);
[takeSecondBlock]=consideredBlock(matrix, first1,last1);
[newBlockMatrix]=doingNBM(v, first, last, first1, last1, takeFirstBlock,

takeSecondBlock, totalBlocksNum, oldBlockMatrix)
[endProcess]=spectraIntersection(matrix, last, first1, toleranceEig);

If the spectra are disjoint, then the joint triangularization process is essentially finished
and we just have to perform some conclusive computations as described in Step 9. If the spec-
tra are not disjoint and we can split the storingMatrix into blocks of order 1 or 2, these final
blocks contain either a single real value to be checked by the routine uniqueEigenvalue or
a pair of conjugate complex eigenvalues. Then we carry out an appropriate symmetric per-
mutation in order to separate the spectra of the blocks. So, we are either in the situation of
Step 3 again, now with the freshly computed storingMatrix, which will then be stored in
the variable processMatrix, or the procedure pointed out in Step 4 will be applied to the
storingMatrix, as the variable processMatrix, with properly chosen blocks of this ma-
trix to be considered in Step 4. If one of these blocks has only a unique eigenvalue or a block
of order two with a couple of conjugate eigenvalues, we do not consider this block in Step 4.

Step 8. Not all the eigenvalues of the process matrix have been located. If we have not
found all the eigenvalues of the matrix in spite of performing the QR algorithm with shifts the
maximal number of iterations given by the order of the variable processMatrix, then we
apply a step of the QR algorithm with shift. If all the subdiagonal elements are greater than the
tolerance, then we select a new matrix of the family A. If there exists a subdiagonal element
with absolute value less than the tolerance, we switch to Step 6 which we can repeat until
we arrive at a maximal number of iterations given by the order of the processMatrix. If this
maximal number of iterations is exceeded, then we again choose a new matrix of the family A.
This can be performed cyclically and after each cycle the maximal number of iterations can
be raised, if necessary.

Step 9. Computing the ortogonal matrix P. In the end, after the iterations have been per-
formed, we calculate the product of all the matrices corresponding to all the intermediate
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transformations carried out over the initialMatrix in order to obtain the orthogonal ma-
trix P mentioned in Lemma 1.

§3. Subroutines

In this section we give more detailed descriptions of the subroutines used in our algorithm.
As an easy starting point we list the very simple function that just checks whether a matrix is
normal, that is, whether AT A = AAT .

The subroutine that chooses the shift for the QR step is already more complicated as
the choice of the shift depends on whether the matrix is normal and the shift also has to be
adapted to the eigenstructure of the lower left 2 × 2 block of B.

choosingShift

[processMatrix,storingQ]=choosingShift(B)
N=length(B); storingQ=eye(N); a=eig(B([N-1:N],[N-1:N]));
if( checkingNormalMatrix(B,N)==1 )

shift1=sqrt(norm(B,’fro’)/N);
[Q,R]=qr(B-shift1*eye(N));
storingQ = storingQ * Q;
processMatrix=R*Q+shift1*eye(N);

else
if(abs(imag(a(1)))<1e-10) % The real case

if( max( abs( real(a) ) < 1e-10 )
newShift=norm(B,inf)/N;
[Q,R]=qr(B-newShift*eye(N));
storingQ = storingQ * Q;
processMatrix=R*Q+newShift*eye(N);

else
[Q,R]=qr(B-maximum*eye(N));
storingQ = storingQ * Q;
[Q,R]=qr( R*Q );
storingQ = storingQ * Q;
processMatrix=R*Q+maximum*eye(N);

end -end if
else % The complex case

if(N =2)
[Q,R]=qr(B-a(1)*eye(N));
storingQ = storingQ * Q;
[Q,R]=qr( R*Q + ( a(1) -a(2) ) * eye(N));
processMatrix=R*Q+a(2)*eye(N);
storingQ = storingQ * Q;

else
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processMatrix=B;
end -end if

end -end if
end -end if

The next subroutine, consideredBlock, checks whether a given block of a matrix needs
to be considered for the QR method. This is the case if the block is not of size 1 or does not
have a unique single eigenvalue, the latter being checked by the subroutine
uniqueEigenvalue which does a quick check whether that is the case.

consideredBlock

[takeFirstBlock]=consideredBlock(matrix, first, last)
firstBlock=matrix(first:last,first:last); takeFirstBlock=1;
l1=length(firstBlock);
if l1==1

takeFirstBlock=0;
elseif uniqueEigenvalue(firstBlock,last-first+1,threshold,toleranceEig) == 1

takeFirstBlock=0;
else

if l1==2 && eig(firstBlock) = 0
takeFirstBlock=0;

end -end if
end -end elseif

In doingNBM, the block matrices are extracted and the so far unused ones “advance” one
position in the queue.

doingNBM

[newBlockMatrix]=doingNBM(v,first, last, first1, last1, takeFirstBlock,
takeSecondBlock, totalBlocksNum, oldBlockMatrix)

if(v==1)
newBlockMatrix(1,:)=[first,last,takeFirstBlock];
newBlockMatrix(2,:)=[first1,last1,takeSecondBlock];
if(totalBlocksNum>2)

newBlockMatrix(3:totalBlocksNum,:)=oldBlockMatrix(2:totalBlocksNum-1,:);
end -end if

else
newBlockMatrix(1:v-1,:)=oldBlockMatrix(1:v-1,:);
newBlockMatrix(v+2:totalBlocksNum,:)=oldBlockMatrix(v+1:totalBlocksNum-1,:);
newBlockMatrix(v,:)=[first,last,takeFirstBlock];
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newBlockMatrix(v+1,:)=[first1,last1,takeSecondBlock];
end -end if

The subroutine Gerschgorin estimates the spectrum of A by means of Gerschgorin cir-
cles, cf. [2].

Gerschgorin

[dif,maxi,mini]=Gerschgorin(A)
n = length( A );
r = abs( A ) * ones( n,1 ) - abs( diag( A ) );
maxi = max( diag(A) + r );
mini = min( diag(A) - r );
dif = maxi - mini;

In hessenberg the matrix is transformed into Hessenberg form by means of Householder
transforms, see again [2]; the extra part is to apply the same transformations to the variable
storedMatrix that has to be processed in the rest of the method.

hessenberg

[H]=hessenberg(A)
n=length(A);
storedMatrix=A;
for i=1:n-2

v=zeros(n-i,1);
if(sign(storedMatrix(i+1,i))>=0)

v=norm(storedMatrix(i+1:n,i),2)*eye(n-i,1)+storedMatrix(i+1:n,i);
else

v=-norm(storedMatrix(i+1:n,i),2)*eye(n-i,1)+storedMatrix(i+1:n,i);
end -end if
v=v/(norm(v,2));
P=eye(n-i)-2*v*v’;
U=eye(n);
U([i+1:n],[i+1:n])=P;
storedMatrix=U*storedMatrix*U’;

end -end for
H=storedMatrix;

In means the difference between the algebraic and geometric means of a matrix is de-
termined; in a really performant version of the algorithm (which will, of course, not use
matlab), the computation of the determinant can be done more efficiently.
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means

[dif]=means(A)
n=length(A);
mA=abs( trace(A)/n );
mG=abs( det(A) )∧(1/n);
dif=abs( mA - mG );

The shifted QR method as in qrShift is simply standard.

qrShift

[B,E]=qrShift(A,a,n)
[Q,R]=qr(A-a*eye(n));
E=Q;
B=R*Q+a*eye(n);

The subroutine uniqueEigenvalue is slightly more tricky as it tries to figure out whether
a matrix A has only one, unique, real eigenvalue or, a single complex conjugate pair of eigen-
values. Also keep in mind that we assume that any input A will be in Hessenberg form so
that all the computations below are relatively cheap. The first step it to consider the number
a = (1/n) trace A which would be a guess for the single real eigenvalue and the real part of
the complex eigenvalue. To check whether a is indeed a single real eigenvalue, we perform
one QR step on a with shift a. If a were such an eigenvalue, the resulting matrix would be
upper triangular with a on the triangle.

If that is not the case, we have to check whether there is a single complex conjugate
pair a ± ib of eigenvalues which requires that the size n of the matrix is even. Then det A =(
a2+b2)n/2 and we can guess b via b2 = (det A)2/n−a2, where for the determinant computation

we can re–use the matrix R from the real QR decomposition. The we perform either a real QR
double step, cf. [2], with the guessed eigenvalue a + ib and check whether the result is block
diagonal, or, for simplicity, we can do a complex QR step and again check for diagonality of
the resulting complex matrix.

uniqueEigenvalue

[a]=uniqueEigenvalue(A,n,toleranceE)
a=0;
possibleEig=(trace(A))/n;
[Q,R]=qr( A - possibleEig * eye(n) );
auxMatrix = R * Q + possibleEig * eye(n);
if ( norm( tril( auxMatrix - possibleEig * eye( n ) ) ) < toleranceE )
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a = 1;
elseif rem( n,2 ) == 1

a = 0;
else % Check for complex

possibleIm = sqrt( prod( diag(R).∧2 )∧(1/n) - possibleEig∧2 );
possibleEig = possibleEig + I * possibleIm;
[Q,R]=qr( A - possibleEig * eye(n) );
auxMatrix= R*Q + possibleEig * eye(n);
if ( norm( tril( auxMatrix - possibleEig * eye( n ) ) ) < toleranceE )

a = 1;
end

end

§4. Acknowledgement

Work partially supported by the Spanish Research Grant MTM2009-07315 and by Gobierno
de Aragón and Fondo Social Europeo.

References

[1] Cortés, V., Peña, J. M., and Sauer, T. Simultaneous triangularization of commuting
matrices for the solution of polynomial equations. Central European Journal of Mathe-
matics 10, 1 (2011), 277–291.

[2] Golub, G., and van Loan, C. F. Matrix Computations, 3rd ed. The Johns Hopkins
University Press, 1996.

[3] Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

Vanesa Cortés and Juan Manuel Peña
Departamento de Matemática Aplicada
Universidad de Zaragoza
E-50009 Zaragoza, Spain
vcortes@unizar.es, jmpena@unizar.es

Tomas Sauer
Lehrstuhl für Numerische Mathematik
Justus–Liebig–Universität Gießen
Heinrich–Buff–Ring 44
D-35392 Gießen, Germany
tomas.sauer@math.uni-giessen.de





Monografías Matemáticas García de Galdeano 37, 115–121 (2012)

HIGH-PRECISION
PERIODIC ORBIT CORRECTOR

Ángeles Dena, Alberto Abad and Roberto Barrio

Abstract. An algorithm to compute periodic orbits of dynamical systems up to an ar-
bitrary number of precision digits is presented. The algorithm is based on an optimized
Newton-Raphson method combined with a new numerical ODE solver, TIDES that uses
a Taylor series method. Finally, we present some numerical tests for the Lorenz model
and the Hénon-Heiles Hamiltonian which show the quadratic convergence and the good
behaviour of the proposed method.

Keywords: Periodic orbits, shooting method, Taylor series method, TIDES.
AMS classification: 37M20, 65P20.

§1. Introduction

Nowadays, more and more theoretical and applied problems need high-precision results. In
Dynamical Systems we may find a large plethora of such problems, like studying the ex-
ponentially small splitting of separatrices, in the analysis of SNAs, in the study of complex
singularities of systems like Lorenz model, and so on. Studying and locating the periodic or-
bits of dynamical systems give relevant information. So, the periodic orbits are an important
topic in several physical applications and finding them accurately is of great importance in
periodic orbit theory [2, 3, 4]. In this paper we propose a new algorithm to locate periodic
orbits up to any arbitrary precision.

The only algorithm known on the literature capable of computing periodic orbits accu-
rate and highly convergent is the method proposed by D. Viswanath [6] that is based on the
Lindstedt-Poincaré technique. To introduce the problem and the new method here proposed,
we describe briefly the Viswanath’s technique. The problem is to find an isolated orbit of
the dynamical system ẋ(t) = f(x), with x ∈ Rn. Rescaling time using τ = ωt, we have the
following one ωẋ(t) = f(x). The starting guesses, ω0 and x0(τ) must be sufficiently close to
the periodic orbit. The aim is to improve approximations for ωi and xi(τ) and each iteration
is made up of a sequence of steps. Let ω0ẏ(τ) = A(τ)y + r(τ) − δωẋ0(τ) be the correction
equation, then compute the Fourier series for all n2 entries of A(τ), n Fourier series for the
residual r(τ) and another n Fourier series for ẋ0(τ). The general solution of the above equa-
tion is written as, y(τ) = Y(τ)y(0) + f1(τ) − δω f2(τ), where Y(τ) is the Fundamental solution
of ω0ẏ(τ) = A(τ)y. We take into consideration that Y(τ), f1(τ) and f2(τ) are computed by
using an accurate ODE solver in double precision. So, to obtain an arbitrary precision peri-
odic orbit this algorithm uses several numerical techniques in a sophisticated way to use just
double precision in the numerical integration of the ODE system.

As remarked, the method of D. Viswanath avoids the use of the integration of ODEs in
multiple precision, but at the price of using a complicated algorithm. Therefore, we have tried



116 Ángeles Dena, Alberto Abad and Roberto Barrio

to develop a new algorithm for computing periodic orbits using a multiple precision ODE in-
tegrator. This method is described in the next section. Our algorithm is based on an optimized
shooting method combined with TIDES (Taylor Integrator for Differential EquationS). This
tool is an accurate numerical ODE integrator which allows us to integrate in multiple preci-
sion arithmetic. We remark that nowadays this method, the Taylor series method, is the only
capable method to integrate and ODE system up to any desired precision level (any Runge-
Kutta or similar numerical method for ODEs cannot be used for such a high-precision).

§2. The corrector algorithm

Let
x = x(t; y), t ∈ R, x, y ∈ Rn, (1)

be the solution of the autonomous differential system

ẋ = f(x); x(0) = y, x ∈ Rn, (2)

where y represents the initial conditions.
The solution of (2) is periodic if it verifies the periodicity condition

x(T, y) − y = 0. (3)

The Newton method is a common procedure to find the roots of this equation. Our algo-
rithm is an iterative scheme that begins with a set (y0,T0) of approximate initial conditions.
At each iteration we update the initial conditions (yi,Ti) by adding them the corrections (∆yi,
∆Ti) that are obtained by expanding

x(Ti + ∆Ti; yi + ∆yi) − (yi + ∆yi) = 0,

in a Taylor series up to the first order

x(Ti; yi) − yi +

(
∂x
∂y
− I

)
∆yi +

(
∂x
∂t

)
∆Ti = 0. (4)

The n × n matrix ∂x/∂y is the fundamental matrix, i.e. the solution of the variational
equations. This matrix evaluated at (yi,Ti) is an approximation of the monodromy matrix M.
I is the identity matrix of order n. The column vector ∂x/∂t represents the derivative of the
solution with respect to the time, i.e., ẋ = f(x). This vector, evaluated in (yi,Ti) corresponds
to the expression f(yTi ), where yTi = x(Ti, yi). To do that, we use the accurate numerical
ODE integrator TIDES [1] that computes simultaneously both, the solution and the partial
derivatives of the solutions of (2). So, the previous equation is equivalent to the next one

(M − I)∆yi + f(yTi )∆Ti = −(yTi − yi). (5)

To solve this linear system, it must take into account that varying ∆yi along the periodic orbit
gives different representations of the same periodic orbit. Therefore, we impose the additional
requirement that ∆yi must be orthogonal to the vector field at yi; i.e.,

〈f(yi),∆yi〉 = 0. (6)
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2.1. Dissipative case
Equations (5) and (6) are written in a matrix form of dimension (n + 1) × (n + 1), M − I f(yTi )

(f(yi))T 0


∆yi

∆Ti

 =

yi − yTi

0

 . (7)

In order to obtain the corrections ∆yi and ∆Ti, we use an iterative scheme which solves
the linear system by using the Singular Value Decomposition Algorithm (SVD) [5] although
it may use any known solver method for linear systems as the matrix is a non-singular square
matrix.

2.2. Hamiltonian case
When the differential system (2) admits one or more integrals, a new constrain or vector of
constrains, respectively, must be added to the periodicity condition (3). To maintain the new
constrain, G(t; x) = g, we impose the condition

G(Ti + ∆Ti; yi + ∆yi) − g ≈ G(Ti; yi) − g +
∂G
∂x

∣∣∣∣∣
(Ti;yi)

∆yi +
∂G
∂t

∣∣∣∣∣
(Ti;yi)

∆Ti = 0.

In a Hamiltonian problem we have the integral of energyH(x) = H. So, in this case, we
add the following condition to the above linear system,

(∇xH)|(Ti;yi) ∆yi + (Ht)|(Ti;yi) ∆Ti = H − HTi .

Taking into account that the Hamiltonian does not depend on the time, the second term of
the addition is cancelled. So, the constrain condition has the form

(∇xH)|(Ti;yi) ∆yi = H − HTi . (8)

Hamiltonian condition (8) is computed using TIDES and Mathematica’s operator gradient,
∇xH . The matrix of the new linear system has dimension (n + 2) × (n + 1). So, we wish to
find the least-norm solution to an overdetermined set of linear equations and for this, we use
the SVD Algorithm for constructing the singular value decomposition of the matrix. Here,
we have for the Hamiltonian case the matrix form,

M − I f(yTi )

(f(yi))T 0

(∇xH)|(Ti;yi) 0


∆yi

∆Ti

 =


yi − yTi

0

H − HTi

 . (9)

§3. ODE’s, partial derivatives and multiple precision with TIDES

To compute the correction, as well as to solve the linear system (7) and (9), we have to
compute the matrix of the systems. For that, we need to integrate the ODE (2) and to compute
the partial derivatives of its solution (1) with respect to the initial condition y. To do that we
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Figure 1: The periodic orbit LR of the Lorenz model.

use the software TIDES [1], that consists of a C library and a Mathematica precompiler
that writes a C program which permits to compute simultaneously both, the solution and the
partial derivatives of the solution of (2), in double or multiple precision, by using the Taylor
Series Method (TSM).

Usually, the matrix of partial derivatives Φ = ∂x/∂y of the solution with respect to the
initial condition is computed by using the variational equations Φ̇ = (∂f/∂x) · Φ, that are
different for each problem and sometimes very difficult to formulate. In TIDES, instead of
formulate the variational equations, we use the Taylor series expression

x(t) =
∑

i

x[i] hi, h = t − t0, x[i] =
1
i!

dx(i)(t0)
dti ,

to create iterative formulas to compute simultaneously both, the solution and the partial
derivatives. This simplifies the process and permits to extend it to any differential equation
and work with any precision without difficulties. Obviously, to use the Taylor series method
the second member of the differential equations has to be a smooth enough function.

§4. Tests

This method has proved its applicability with two paradigmatic examples, Lorenz model and
Hénon-Heiles Hamiltonian. The classical Lorenz model is given by the ordinary differential
equation

ẋ = σ(y − x), ẏ = −xz + rx − y, ż = xy − bz. (10)

In this work, we will take the classical Saltzman values of the parameters b = 8/3, σ = 10 and
r = 28 and the initial conditions (x, y, z) = (−13.764,−19.579, 27) and a period T = 1.5586
(with just five correct digits). So, we have computed the LR periodic orbit up to one hundred
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Figure 2: Stable orbit of the Hénon-Heiles problem.

digits of precision and we have obtained the next corrected initial conditions:

x = −13.7638096851860589580732306184596716646312388482977
2622500121342876008079691601274879478926826271846,

y = −19.5787320262306139267436186608034300269556256496783
6659773539464894683802943693730174080864746261638,

z = 27.00067580323982681061508034109521370602974077444411
867067129367628352836865457221640801921440996386,

T = 1.5586522107161747275678702092126960705284805489972433
935889521578319019875625888085435585108266014236.

It is well known that the chaotic attractor of the Lorenz model presents the shape of
the wings of a butterfly. There are infinite unstable periodic orbits foilated to this attractor.
Emphasize that the periodic orbit is labelled LR (see Figure 1) to indicate the sequence in
which it moves, so it does one loop on the left and another one on the right.

On the other hand, the Hénon-Heiles problem is given by the Hamiltonian:

H((x, y), (X,Y)) =
1
2

(X2 + Y2) +
1
2

(x2 + y2) + x2y −
1
3
y3. (11)

where (x,y) and (X,Y) represent the position and velocity vectors, respectively. In Figure 2,
we show a stable periodic orbit with initial conditions (x, y, X,Y) = (0, 0.5729, 0.2171, 0) and
period T = 32.378 (with just five correct digits). Therefore, we have computed this stable
periodic orbit of the Hénon-Heiles problem up to one hundred digits of precision and we have
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Lorenz Hénon-Heiles
No. of iterations − log10 |Error| No. of iterations − log10 |Error|

1 2.7520 1 3.6921
2 5.1912 2 6.8717
3 11.8648 3 12.6562
4 23.4265 4 25.3239
5 48.3370 5 49.9962
6 96.2892 6 98.9237

Table 1: Error estimates in each iteration of the algorithm.

obtained the next corrected initial conditions:

x = −0.0001508528959489402449679941228479329174839526991075
445634753055006429612789349157849185831040631093237,

y = 0.57295301370224350348504778098660473159863485033171053
20060780943368099065986782774328688443164631243,

X = 0.21706126541161424223171335987599024998866524355885647
29531449799555593630239513190046828312316602122,

Y = 0.00017004577430097839491728371273170373793851553739810
49371872238609555882492833175825147650058085136020,

T = 32.3777403421411707710174926185423471453720473050881630
4777025017758227599170926401377549088558254881.

The computational complexity of the numerical solution of an ODE system using a TSM
as TIDES with D = − log10(TOL) number of digits is O(D4), using variable-precision arith-
metic up to one hundred digits of precision, variable-order and variable-stepsize. Moreover,
it is well known that the Newton method has quadratic convergence, so the previous algo-
rithm which has been presented in the second section, is quadratically convergent too. We
achieve the preset tolerance in six iterations with about one hundred digits of fixed precision
arithmetic for both, the Lorenz model and the Hénon-Heiles Hamiltonian. As we can see in
the Table 1, the number of digits of precision in the initial conditions of the periodic orbits is
doubled at each iteration.
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CONSTRUCTION OF MAJORIZING
SEQUENCES FOR OPERATORS

WITH UNBOUNDED SECOND DERIVATIVE

J. A. Ezquerro, D. González and M. A. Hernández

Abstract. The aim of this paper is to construct majorizing sequences for Newton’s
method in Banach spaces, when the second Fréchet derivative of the operator involved
is unbounded, and prove then the semilocal convergence of the method. The new results
are illustrated with a nonlinear integral equation of mixed Hammerstein type.

Keywords: Newton’s method, semilocal convergence, majorizing sequence, Hammer-
stein’s integral equation.
AMS classification: 45G10, 47H99, 65J15.

§1. Introduction

We present a study for approximating a solution x∗ of the equation

F(x) = 0, (1)

where F is a nonlinear operator defined on a non-empty open convex subset Ω of a Banach
space X with values in a Banach space Y , by the most famous iterative method, Newton’s
method, whose algorithm is:

xn+1 = xn − [F′(xn)]−1F(xn), n = 0, 1, 2, . . . , (2)

where the starting point x0 is given.
The generalization of Newton’s method to Banach spaces is due to the Russian mathe-

matician L. V. Kantorovich, who publishes several papers at the mid-twentieth century. Ini-
tially, see [3] , Kantorovich proves the semilocal convergence of Newton’s method under the
conditions: ‖Γ0‖ ≤ β, ‖Γ0F(x0)‖ ≤ η and

‖F′′(x)‖ ≤ K, x ∈ Ω, (3)

where it is supposed that the operator Γ0 = [F′(x0)]−1 ∈ L(Y, X) exists at some x0 ∈ Ω,
where L(Y, X) is the set of bounded linear operators from Y into X. The great majority of
the results appearing in the literature are concerning with the need for the operator F′′ to be
bounded in the domain Ω, where the solution x∗ must exist. According to this, the number of
equations that can be solved by Newton’s method is limited. For instance, we cannot analyse
the convergence of Newton’s method to a solution of an equation where the second derivative
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of the operator involved is not bounded in a domain, what usually happens in some nonlinear
integral equations of mixed Hammerstein type [2]; i.e.:

x(s) = u(s) +

m∑
i=1

∫ b

a
Gi(s, t)Hi(x(t)) dt, s ∈ [a, b], (4)

where −∞ < a < b < ∞, Gi, Hi (i = 1, 2, . . . ,m) and u are known functions and x is a
continuous function (solution) to be determined. In particular, for nonlinear integral equations
of the form

x(s) = u(s) +

∫ b

a
G(s, t)[x(t)2+p +

1
2

x(t)2] dt, s ∈ [a, b], (5)

with p ∈ [0, 1], where u is a continuous function and the kernel G is the Green function

G(s, t) =


(b − s)(t − a)

b − a
, t ≤ s,

(s − a)(b − t)
b − a

, s ≤ t.

Integral equations of this type can be found in the dynamic model of a chemical reactor,
which is governed by a control equation and justify the analysis and computation of mixed
Hammerstein equations [1].

Solving nonlinear integral equation (5) is equivalent to solve (1), where

F : Ω ⊆ C[a, b] −→ C[a, b], Ω = {x ∈ C[a, b] : x(s) > 0, s ∈ [a, b]},

[F(x)](s) = x(s) − u(s) −
∫ b

a
G(s, t)[x(t)2+p +

1
2

x(t)2] dt, p ∈ (0, 1].

Taking into account the expression of F, it follows

[F′(x)y](s) = y(s) −
∫ b

a
G(s, t)[(2 + p)x(t)1+p + x(t)]y(t) dt,

[F′′(x)(yz)](s) = −

∫ b

a
G(s, t)[(2 + p)(1 + p)x(t)p + 1]z(t)y(t) dt. (6)

Notice that condition (3) is not satisfied since ‖F′′(x)‖ is not bounded in all Ω. To see this,
we use reductio ad absurdum. We suppose ‖F′′(x)‖ ≤ K in Ω for the max-norm and denote

M = max[a,b]
∫ b

a |G(s, t)| dt. Then, if x(t) =
((

K − M + ε
)/(

M(2 + p)(1 + p)
))1/p

, with ε ∈
(M − K,+∞) if M > K or ε ∈ (0,+∞) if M ≤ K, and y(t) = z(t) = 1, it follows that

‖[F′′(x)(yz)](s)‖ =

∥∥∥∥∥∥
∫ b

a
G(s, t)[(2 + p)(1 + p)x(t)p + 1] dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥K + ε

M

∫ b

a
G(s, t) dt

∥∥∥∥∥∥ = K + ε > K.
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Thus, the last is contradictory to the given statement, since there does not exist a constant K
such that ‖F′′(x)‖ ≤ K in all Ω. To solve the last, we can use an elegant alternative which
consists of relaxing condition (3) by the following one:

‖F′′(x)‖ ≤ ω(‖x‖), x ∈ Ω, (7)

where ω : R+ ∪ {0} −→ R is a continuous non-decreasing real function.
In this paper, we prove the semilocal convergence of Newton’s method under condition

(7) instead of condition (3) and illustrate the new result with a nonlinear integral equation of
mixed Hammerstein type. The results and their proofs are given in Banach spaces and based
on the concept of majorizing sequence:

Let {xn} be a sequence in a Banach space X and {tn} a scalar sequence. The
sequence {tn} majorizes to the sequence {xn} if

‖xn+1 − xn‖ ≤ tn+1 − tn, n = 0, 1, 2, . . .

Emphasize that the interest of majorizing sequences is that the convergence of the sequence
in Banach spaces is deduced from the convergence of the scalar sequence, as we can see in
the following result [3]:

Let {xn} be a sequence in a Banach space X and {tn} a scalar majorizing sequence
of {xn}. If {tn} converges to t∗ < ∞, there exists x∗ ∈ X such that x∗ = limn xn and
‖x∗ − xn‖ ≤ t∗ − tn, for n ≥ 0.

Throughout the paper we denote B(x, ρ) = {y ∈ X : ‖y − x‖ ≤ ρ} and B(x, ρ) = {y ∈ X :
‖y − x‖ < ρ}.

§2. Semilocal convergence

Once the definition of majorizing sequence is introduced, Kantorovich establishes the semilo-
cal convergence of Newton’s method under the conditions ‖Γ0‖ ≤ β, ‖Γ0F(x0)‖ ≤ η and (3),
so that the semilocal convergence of Newton’s method is then guaranteed from the quadratic
polynomial (see [3])

f (t) =
K
2

(t − t0)2 −
t − t0
β

+
η

β

and the scalar sequence {tn},

tn+1 = tn −
f (tn)
f ′(tn)

, n = 0, 1, 2, . . . , (8)

which majorizes sequence (2).
The main aim of this paper is to present a new version of the Kantorovich study, where

condition (3) is relaxed by condition (7). Specifically, we suppose

(C1) There exists x0 ∈ Ω such that the operator Γ0 = [F′(x0)]−1 is well-defined and ‖Γ0‖ ≤ β,

(C2) ‖Γ0F(x0)‖ ≤ η,
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(C3) ‖F′′(x)‖ ≤ ω(‖x‖), x ∈ Ω, where ω : R+ ∪ {0} → R is a continuous real non-decreasing
function.

If we follow a similar way to Kantorovich, we cannot consider a quadratic polynomial
to define the scalar majorizing sequence, since condition (C3) does not permit it. So, from
(C1)–(C3), we can construct the function

f (t) =

∫ t

t0

∫ θ

t0
ω(ξ)dξdθ −

t − t0
β

+
η

β
, t0 ≥ 0, (9)

where ω is the function defined in (7).
Before establishing the new semilocal convergence of Newton’s method, we give some

previous results that are needed. Lemmas 1 and 2 are technical and the proofs follow imme-
diately.

Lemma 1. Let ω and f be the real functions defined in (7) and (9), respectively. Then:

a) If there exists a solution α > 0 of the equation

W(t) −W(t0) −
1
β

= 0, (10)

where W is a primitive for ω in R+, then α is the unique minimum of f in R+.

b) The function f is non-increasing in (t0, α),

c) If f (α) ≤ 0, then equation f (t) = 0 has at least one solution in R+. Moreover, if we
denote the smallest positive root of f (t) = 0 by t∗, we have t∗ ∈ (t0, α].

Lemma 2. Let (8) with f (t) defined in (9). Suppose that there exists a positive root α of (10)
such that f (α) ≤ 0. Then, {tn} is a non-decreasing sequence that converges to t∗.

Next, we prove that sequence {xn} is well-defined. To do this, firstly, we see that x1 ∈

B(x0, t∗ − t0); and secondly, if we assume that B(x0, t∗ − t0) ⊆ Ω, it follows that xn ∈ B(x0, t∗ −
t0), for all n = 2, 3, 4, . . .

To see that x1 is well-defined, we take into account that Γ0 = [F′(x0)]−1 and ‖Γ0‖ ≤

−1/ f ′(t0) = β and ‖x1 − x0‖ ≤ η = t1 − t0, so that x1 ∈ B(x0, t∗ − t0). In the following result
we see that xn ∈ B(x0, t∗ − t0) and {tn} is a majorizing sequence.

Lemma 3. Let F be a nonlinear twice continuously differentiable operator defined on a non-
empty open convex domain Ω of a Banach space X with values in a Banach space Y. We
suppose that conditions (C1)–(C3) hold and f (α) ≤ 0, where f (t) is defined in (9) and α is
a solution of (10), ‖x0‖ ≤ t0 and B(x0, t∗ − t0) ⊆ Ω. Then, xn ∈ B(x0, t∗ − t0), for all n ∈ N.
Moreover, the sequence {tn} defined in (8) majorizes to the sequence {xn} defined in (2); i.e:
‖xn+1 − xn‖ ≤ tn+1 − tn with n = 0, 1, 2, . . .

Proof. Firstly, by the Banach lemma, observe that there exists Γ1 = [F′(x1)]−1 and ‖Γ1‖ ≤
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−1/ f ′(t1), since ‖I − Γ0F′(x1)‖ < 1. Indeed,

‖I − Γ0F′(x1)‖ =

∥∥∥∥∥∥
∫ x1

x0

Γ0F′′(x) dx

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫ 1

0
Γ0F′′(x0 + t(x1 − x0))(x1 − x0) dt

∥∥∥∥∥∥
≤ ‖Γ0‖

∫ 1

0
‖F′′(x0 + t(x1 − x0))‖ ‖x1 − x0‖ dt ≤ β(t1 − t0)

∫ 1

0
ω(‖x0 + t(x1 − x0)‖) dt

≤ β(t1 − t0)
∫ 1

0
ω(t0 + t(t1 − t0)) dt = 1 −

f ′(t1)
f ′(t0)

< 1,

since ω(t) = f ′′(t) and ω is a non-decreasing function. Therefore,

‖
[
Γ0F′(x1)

]−1
‖ ≤

f ′(t0)
f ′(t1)

and ‖Γ1‖ ≤ ‖
[
Γ0F′(x1)

]−1
‖ ‖Γ0‖ ≤ −

1
f ′(t1)

·

Secondly, since ‖x0‖ ≤ t0, then ‖x1‖ ≤ ‖x1 − x0‖ + ‖x0‖ ≤ t1, then ‖x1‖ ≤ t1.
Thirdly, the Taylor series expansion of F(x) about x0 is

F(x1) = F(x0) + F′(x0)(x1 − x0) +

∫ x1

x0

F′′(x)(x1 − x) dx

=

∫ 1

0
F′′(x0 + τ(x1 − x0))(1 − τ)(x1 − x0)2 dτ,

so that

‖F(x1)‖ ≤
∫ 1

0
ω(‖x0 + τ(x1 − x0)‖)(1 − τ)‖x1 − x0‖

2 dτ

≤

∫ 1

0
ω(‖x0‖ + τ‖x1 − x0‖)(1 − τ)‖x1 − x0‖

2 dτ

≤

∫ 1

0
ω(t0 + τ(t1 − t0))(1 − τ)(t1 − t0)2 dτ = f (t1),

since

f (t1) =

∫ 1

0
f ′′(t0 + τ(t1 − t0))(1 − τ)(t1 − t0)2 dτ =

∫ 1

0
ω(t0 + τ(t1 − t0))(1 − τ)(t1 − t0)2 dτ.

Fourthly, from ‖Γ1‖ ≤ −1/ f ′(t1) and ‖F(x1)‖ ≤ f (t1), it follows that

‖x2 − x1‖ ≤ ‖Γ1F(x1)‖ ≤ ‖Γ1‖ ‖F(x1)‖ ≤ −
f (t1)
f ′(t1)

= t2 − t1.

Fifthly, we see that ‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ t2 − t0, so that x2 ∈ B(x0, t∗ − t0).
Finally, if we assume, for n ∈ N, that

[In] there exists Γn = [F′(xn)]−1 and ‖Γn‖ ≤ −
1

f ′(tn) ,

[IIn] ‖xn‖ ≤ tn,
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[IIIn] ‖F(xn)‖ ≤ f (tn),

[IVn] ‖xn+1 − xn‖ ≤ tn+1 − tn,

[Vn] ‖xn+1 − x0‖ ≤ t∗ − t0,
it follows in the same way that [In+1]–[Vn+1] hold, so that [In]–[Vn] are true for all positive
integers n by mathematical induction. Consequently, (8) is a majorizing sequence of (2). �

We are now ready to prove in the next theorem the semilocal convergence of Newton’s
method when the operator F satisfies (C1)–(C3). The proof of the theorem follows from the
previous lemmas.
Theorem 4. Let F be a nonlinear twice continuously differentiable operator defined on a
non-empty open convex domain Ω of a Banach space X with values in a Banach space Y.
Suppose that conditions (C1)–(C3) are satisfied. If f (α) ≤ 0, where f (t) is defined in (9),
‖x0‖ ≤ t0 and B(x0,R) ⊆ Ω with R = t∗− t0, then Newton’s method (2) converges to a solution
x∗ of (1). Moreover, xn, x∗ ∈ B(x0,R), for all n ∈ N and ‖x∗ − xn‖ ≤ t∗ − tn, n ≥ 0. If r is the
biggest positive root of the equation∫ t

R

∫ t0+u

t0
ω(z) dz du =

t − R
β

, (11)

the solution x∗ is unique in B(x0, r) ∩Ω if r > R or in B(x0,R) if r = R.

Proof. On the one hand, from Lemma 3 and the fact that the scalar sequence {tn} is conver-
gent, it follows that there exists x∗ such that x∗ = limn xn, since {tn} is a majorizing sequence
of {xn}, and xn, x∗ ∈ B(x0,R), for all n ∈ N.

On the other hand, as

‖F(xn)‖ = ‖F′(xn)(xn+1 − xn)‖ ≤ ‖F′(xn)‖ ‖xn+1 − xn‖

and ∥∥∥F′(xn) − F′(x0)
∥∥∥ =

∥∥∥∥∥∫ xn

x0

F′′(x)dx
∥∥∥∥∥

=

∥∥∥∥∥∫ 1

0
F′′(x0 + t(xn − x0))(xn − x0) dt

∥∥∥∥∥ ≤ ∫ 1

0
‖F′′(x0 + t(xn − x0))‖ ‖xn − x0‖ dt

≤

∫ 1

0
ω(‖x0 + t(xn − x0)‖) ‖xn − x0‖ dt ≤ ω(t0 + R)R,

we have,

‖F′(xn)‖ ≤ ‖F′(xn) − F′(x0)‖ + ‖F′(x0)‖ ≤ ω(t0 + R)R + ‖F′(x0)‖,

and consequently {‖F′(xn)‖} is bounded and limn ‖F(xn)‖ = 0. Now, by the continuity of F,
it is clear that x∗ is a solution of F(x) = 0.

To see the unicity of x∗, when r > R, we suppose that y∗ is another solution of F(x) = 0
in B(x0, r) ∩Ω. Since

0 = F(y∗) − F(x∗) =

∫ y∗

x∗
F′(x)dx =

∫ 1

0
F′(x∗ + t(y∗ − x∗))(y∗ − x∗)dt,
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it suffices to see that there exists the operator[
Γ0

∫ 1

0
F′(x∗ + t(y∗ − x∗))dt

]−1

. (12)

Indeed, from

I − Γ0

∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt = Γ0

[∫ 1

0
F′(x0)dt −

∫ 1

0
F′(x∗ + t(y∗ − x∗)) dt

]
= −Γ0

∫ 1

0

(∫ x∗+t(y∗−x∗)

x0

F′′(z) dz
)

dt,

if we take norms, we have∥∥∥∥∥∥I − Γ0

∫ 1

0
F′(x∗ + t(y∗ − x∗))dt

∥∥∥∥∥∥ ≤ ‖Γ0‖

∥∥∥∥∥∥
∫ 1

0

∫ x∗+t(y∗−x∗)

x0

F′′(z) dz dt

∥∥∥∥∥∥
≤ β

∫ 1

0

∫ 1

0

∥∥∥F′′
(
x0 + v((x∗ − x0) + t(y∗ − x∗))

)
((x∗ − x0) + t(y∗ − x∗))

∥∥∥ dv dt

≤ β

∫ 1

0

∫ 1

0

∥∥∥F′′
(
x0 + v((x∗ − x0) + t(y∗ − x∗))

)∥∥∥ ∥∥∥(x∗ − x0) + t(y∗ − x∗)
∥∥∥ dv dt

≤ β

∫ 1

0
‖(x∗ − x0) + t(y∗ − x∗)‖

(∫ 1

0

∥∥∥F′′
(
x0 + v((x∗ − x0) + t(y∗ − x∗))

)∥∥∥ dv
)

dt

≤ β

∫ 1

0

(
(1 − t)||x∗ − x0|| + t||y∗ − x0||

) (∫ 1

0
ω(||x0 + v((x∗ − x0) + t(y∗ − x∗))||) dv

)
dt

< β

∫ 1

0
((1 − t)R + tr)

(∫ 1

0
ω
(
‖x0‖ + ‖v((x∗ − x0) + t(y∗ + x0 − x0 − x∗))‖

)
dv

)
dt

≤ β

∫ 1

0
((1 − t)R + tr)

(∫ 1

0
ω
(
t0 + v(R + t(r − R))

)
dv

)
dt

and, since

β

∫ 1

0
((1 − t)R + tr)

(∫ 1

0
ω(t0 + v(R + t(r − R))) dv

)
dt =

β

r − R

∫ r

R

∫ t0+u

t0
ω(z)dzdu = 1,

by the Banach lemma, operator (12) exists.
If r = R, we suppose that y∗ is another solution of F(x) = 0 in B(x0,R). Since ‖y∗ − x0‖ ≤

t∗− t0, by mathematical induction we suppose that ‖y∗− xk‖ ≤ t∗− tk for k = 0, 1, . . . , n. Then,
having into account that F(y∗) = 0 and xn+1 = xn − ΓnF(xn) we can write

y∗ − xn+1 = −Γn

∫ 1

0
F′′(xn + t(y∗ − xn))(1 − t)(y∗ − xn)2 dt,

as ‖xn + t(y∗ − xn)‖ ≤ tn + t(y∗ − tn), we obtain

‖y∗ − xn+1‖ ≤ −
M

f ′(tn)
‖y∗ − xn‖

2, (13)
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being M =
∫ 1

0 ω(tn + t(y∗ − tn))(1 − t) dt.
In the same way for f function, we have

t∗ − tn+1 = −
1

f ′(tn)

∫ 1

0
f ′′(tn + t(t∗ − tn))(1 − t)(t∗ − tn)2 dt,

and therefore we obtain
t∗ − tn+1 = −

M
f ′(tn)

(t∗ − tn)2. (14)

Then, from (13) and (14) we prove that ‖y∗ − xn+1‖ ≤ t∗ − tn+1. So ‖y∗ − xn‖ ≤ t∗ − tn for
all n, therefore as limn tn = t∗ and limn xn = x∗, it follows that y∗ = x∗. �

§3. Application to a particular equation (5)

We have seen in the introduction that second derivative (6) is not bounded in all Ω = {x ∈
C[a, b] : x(s) > 0, s ∈ [a, b]}. On the contrary, we see in the following that the alternative
condition given by (C3) in Theorem 4 holds, and consequently the convergence of Newton’s
method to a solution of (5) is then guaranteed from Theorem 4. From (C3) we deduce

ω(z) = M (1 + (2 + p)(1 + p)zp) . (15)

Moreover, for a fixed x0(s), we have

‖I − F′(x0)‖ ≤ M
(
(2 + p)‖x1+p

0 ‖ + ‖x0‖
)
,

and by the Banach lemma, we obtain

‖Γ0‖ ≤
1

1 − M
(
(2 + p)‖x1+p

0 ‖ + ‖x0‖
) = β,

provided that M
(
(2 + p)‖x1+p

0 ‖ + ‖x0‖
)
< 1. Furthermore, since ‖F(x0)‖ ≤ ‖x0 − u‖ +

M
(
‖x2+p

0 ‖ + 1
2‖x

2
0‖

)
, it follows that

‖Γ0F(x0)‖ ≤ ‖Γ0‖ ‖F(x0)‖ ≤
‖x0 − u‖ + M

(
‖x2+p

0 ‖ + 1
2‖x

2
0‖

)
1 − M

(
(2 + p)‖x1+p

0 ‖ + ‖x0‖
) = η.

Once the parameters β and η are calculated and function (15) is known, we use Theorem 4
to prove the existence of solution of equation (5) and guarantee the convergence of Newton’s
method.

To determine the domain of existence of solution, we consider the following particular
equation (5):

x(s) = 1 +

∫ 1

0
G(s, t)

(
x(t)5/2 +

1
2

x(t)2
)

dt, s ∈ [0, 1], (16)

where the kernel G is the Green function.
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If we repeat what is done for (5) with u(s) = 1, p = 1/2, [a, b] = [0, 1] and choose
x0(s) = 1/2, we can guarantee by the Banach lemma that the operator Γ0 exists and ‖Γ0‖ ≤

32(12 +
√

2)/355, since

‖[(I − F′(x0))y](s)‖ ≤
1
64

(
4 + 5

√
2
)
‖y‖ and ‖I − F′(x0)‖ < 1.

Moreover, ‖F(x0)‖ ≤ (33 +
√

2)/64 and

β = 1.2091 . . . , η = 0.6501 . . . , ω(z) =
1
8

+

√
z

32
.

Since t0 ≥ ‖x0‖ = 1/2 in Theorem 4, we take t0 = 1/2, so that the equation

W(t) −W(t0) −
1
β

=
1

96
(2t
√

t + 12t − 7
√

2 − 96) = 0,

has only one root: α = 5.1992 . . .
If we now construct the function f (t) of theorem 4, we obtain

f (t) = (0.0083 . . .)t2 √t + (0.0625 . . .)t2 − (0.8968 . . .)t + (0.9690 . . .),

so that f (α) = −1.4908 . . . < 0. The smallest positive root of f (t) = 0 is t∗ = 1.1943 . . . and
t∗ − ‖x0‖ = 0.6943 . . . = R, so that the domain of existence of solution is

{ϕ ∈ C[0, 1]; ‖ϕ −
1
2
‖ ≤ 0.6943 . . .}.

Moreover, as the biggest positive root of the corresponding equation (11) is r = 8.5193 . . .,
then the domain of uniqueness of solution is

{ϕ ∈ C[0, 1]; ‖ϕ −
1
2
‖ < 8.5193 . . .} ∩Ω.

Note that in practice we can observe that the domain of existence of solution is optimum
when t0 = ‖x0‖.
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FREENESS OF LINE ARRANGEMENTS
WITH MANY CONCURRENT LINES

Daniele Faenzi and Jean Vallès

Abstract. We propose here a new approach in order to study line arrangements on the
projective plane. We use this approach to prove Terao’s conjecture when many lines of
the arrangement are concurrent.

Keywords: Line arrangements, free arrangements, Terao’s conjecture.
AMS classification: 52C35, 14F05, 32S22.

A line arrangement in P2 = P(C[x0, x1, x2]) is a finite collection of lines, say {l1, . . . , ls}.
The union of these lines is a reduced divisor denoted by D = { f = 0}, where f is the product
of the s linear forms defining the li’s. Saito (see [3]) associates to D the bundle T (log D) of
vector fields with logarithmic poles along D. This is a vector bundle of rank 2, defined by the
following exact sequence of sheaves:

0 −−−−−−→ T (log D) −−−−−−→ O3
P2

( ∂ f
∂x0

,
∂ f
∂x1

,
∂ f
∂x2

)
−−−−−−−−−→ OP2 (s − 1). (1)

We say that the arrangement is free when T (log D) splits as a sum of two line bundles and
more precisely we will say that it is free of type (a, b), with 0 ≤ a ≤ b, when T (log D) '
OP2 (−a) ⊕ OP2 (−b).

The main open question about these bundles (also valid on Pn, for n ≥ 2) is the so-called
Terao’s conjecture (see [2]):

Conjecture 1 (Terao). Freeness of D depends only on its combinatorial type.

By combinatorial type here we mean the intersection lattice associated to the arrangement.
Its incidence graph has one vertex vi for each line li of the arrangement and one vertex ui, j

an intersection point li ∩ l j. The vertex ui, j is linked by an edge to all vertices vk such that
li∩ l j lies in lk. So two line arrangements are said to have the same combinatorial type if these
graphs are isomorphic.

We propose a new approach to Terao’s conjecture, based on projective duality. Any line
of the divisor D corresponds to a point in P2∨. This way we associate to D a finite set Z of
points in P2∨. From now, in order to insist on the correspondence, we will denote by Z ⊂ P2∨

the finite set of points and by DZ ⊂ P
2 the corresponding divisor.

Let us now introduce the variety F ⊂ P2 × P2∨. which is the incidence variety point-line
in P2, and the projections p and q on P2 and P2∨.

F
q

−−−−−−→ P2∨

p
y
P2
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Let JZ be the ideal sheaf of Z in P2∨. We show first that the Saito vector bundle T (log D)
is obtained by looking at JZ(1) on P2. More precisely, we prove:

Theorem 2. p∗q∗JZ(1) ' T (log D).

Proof. Let us consider the canonical exact sequence:

0 −−−−−−→ JZ(1) −−−−−−→ OP2∨ (1) −−−−−−→ OZ(1) −−−−−−→ 0.

Looking at the above exact sequence over P2 means applying the functor p∗q∗. Then, denoting
by TP2 the tangent bundle to P2, we have:

0 −−−−−−→ p∗q∗JZ(1) −−−−−−→ TP2 (−1) −−−−−−→ ⊕l∈ZOl.

Now, the equation f of DZ provides a non zero global section of the ideal sheaf generated
by the partial derivatives of f , namely the Jacobian ideal J f (s). This amounts to an injective
morphism of sheaves of the form OP2 → J f (s). This morphism induces a commutative
diagram:

OP2 (−1) OP2 (−1)y f
y

0 −−−−−−→ T (log D) −−−−−−→ O3
P2 −−−−−−→ J f (s − 1) −−−−−−→ 0∥∥∥∥ y y

0 −−−−−−→ T (log D) −−−−−−→ TP2 (−1) −−−−−−→ C −−−−−−→ 0,

where the middle row is the exact sequence (1) defining T (log D). The sheaf C is the ideal
sheaf of the singular locus of the hypersurface { f = 0} considered on the hypersurface. We
have a natural inclusion C ⊂ ⊕l∈ZOl by desingularization. Then, since the homomorphism
TP2 (−1)→ ⊕l∈ZOl is essentially unique (see [4]) this proves that both kernels p∗q∗JZ(1) and
T (log D) coincide. �

In order to show that this approach is relevant we prove here a special case of Terao’s
conjecture, without using any further material.

Theorem 3. Terao’s conjecture is true for a free divisor DZ of type (n, n + r), with r ≥ 0, as
soon as (n + 2) points of Z are collinear.

Saying that (n + 2) points of Z are collinear amounts to require that (n + 2) lines of DZ

are concurrent, hence we may say that freeness of arrangements with many concurrent lines
is combinatorial.

The first step to prove the theorem is the following lemma relating sections on one side
to decomposition over lines on the dual side.

Lemma 4. Let Z ⊂ P2∨ be a set of points and x be a general point in P2∨. Assume that
T (log DZ) ⊗ Ox∨ = Ox∨ (−n) ⊕ Ox∨ (−n − r) with r ≥ 0. Then H0((JZ ⊗ J

n
x )(n + 1)) , 0.
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Proof. Let us denote by P̂ the blowing up of P2∨ along the point x. We recall that P̂ '
p−1(x∨) ⊂ F and we consider the induced incidence diagram:

P̂
q̂

−−−−−−→ P2∨

p̂
y
x∨

Moreover we have the following resolution of P̂ in F:

0 −−−−−−→ p∗OP2 (−1) −−−−−−→ OF −−−−−−→ OP̂ −−−−−−→ 0.

Tensoring the exact sequence above by q∗JZ(1) we get:

0→ q∗(JZ(1)) ⊗ p∗OP2 (−1)→ q∗(JZ(1))→ q̂∗(JZ(1))→ 0.

Now we apply the functors Ri p∗ to the above sequence (see for instance [1, Chapter III]).
Let us describe the effect of applying p∗ (i.e. Ri p∗ for i = 0) to the above sequence. For the
middle term, the result is computed by Theorem 1 and agrees with T (log D). For the leftmost
term, we get T (log D)(−1) by Theorem 1 and projection formula (see again [1, Chapter III]).
For the rightmost term, we get p̂∗q̂∗JZ(1) for p̂ and q̂ are the restrictions of p and q to P̂.
Denote by R1T (log DZ) the sheaf R1 p∗q∗JZ(1). We can now write the long exact sequence
obtained applying Ri p∗ for i = 0, 1 the exact sequence above.

0→ T (log DZ)(−1)
x∨
−→ T (log DZ) −→ p̂∗q̂∗JZ(1)→

→ R1T (log DZ)(−1)
x∨
−→ R1T (log DZ) −→ R1 p̂∗q̂∗JZ(1)→ 0.

Since x is general, any line through x is at most 1-secant to Z. Then the support of the sheaf
R1 p̂∗q̂∗JZ(1), which is the locus of 3-secant lines to Z through x, is empty. We have proved
p̂∗q̂∗JZ(1) = T (log DZ) ⊗ Ox∨ .

Then the decomposition T (log DZ) ⊗ Ox∨ = Ox∨ (−n) ⊕ Ox∨ (−n − r) gives an injective
homomorphism:

Ox∨ (−n) ↪→ p̂∗q̂∗JZ(1).

This means that we have a non zero map on P̂:

p̂∗Ox∨ (−n) ↪→ q̂∗JZ(1),

that we can write also as:
OP̂ ↪→ q̂∗JZ(1) ⊗ p̂∗Ox∨ (n).

This last map is equivalent to a non zero map on P2∨:

OP2∨ ↪→ JZ(1) ⊗ Jn
x (n) = (JZ ⊗ J

n
x )(n + 1).

�



136 Daniele Faenzi and Jean Vallès

Proof of the main theorem. We first describe the combinatorial type according to the given
data. By hypothesis, there exists a line L such that |L ∩ Z| ≥ n + 2. This line is a fixed
component in the linear system of curves of degree n + 1 passing through Z. Since x is
general, a curve of degree n + 1 passing through Z and having multiplicity n at x is the union
of L and of n lines through x. Then there are at most n points of Z that do not lie in L. Since
the length of Z is 2n + r + 1, there are at least n + r + 1 points on L. In fact, according to the
decomposition, L is exactly (n + r + 1) secant to Z. Indeed, if there were strictly more than
n + r + 1 points on L, then one could find, for a general x, a curve of degree n passing through
Z and having multiplicity n − 1 at x (take the union of L and of the n − 1 lines through x and
the remaining points) and this contradicts the decomposition.

Assume now that Z0 has the same combinatorial type than Z. Then, according to Yoshi-
naga ([5, Thm. 2.2]) the splitting of T (log DZ0 ) on the general line l = x∨ (where x is a
general point) is of type Ox∨ (−n + t) ⊕ Ox∨ (−n − r − t) with t ≥ 0. This means that there is
a curve of degree n − t + 1 passing through Z0 and having multiplicity n − t at x. Then this
curve is the union of L and n − t lines through x. But since there are n points outside L the
number t cannot be positive. So the arrangement DZ0 is free of type (n, n + r). �

Remark 1. We can say more about the combinatorial type of Z, assuming that it is free of
type (n, n + r), and that it admits a (n + r + 1)-secant line. Let us write the reduction exact
sequence. Set Z1 = Z \ Z ∩ L. Then we have:

0 −−−−−−→ JZ1 −−−−−−→ JZ(1) −−−−−−→ OL(−n − r) −−−−−−→ 0.

We apply the functor p∗q∗ to obtain the following long exact sequence:

0→ OP2 (−n) −→ p∗q∗JZ(1) −→ OP2 (−n − r)→

→ R1 p∗q∗JZ1 −→ R1 p∗q∗JZ(1) −→ R1 p∗q∗OL(−n − r)→ 0.

Since p∗q∗JZ(1) � OP2 (−n) ⊕ OP2 (−n − r), we have a short exact sequence relating the locus
of 2-secant lines to Z1 to the locus of 3-secant lines to Z:

0→ R1 p∗q∗JZ1 −→ R1 p∗q∗JZ(1) −→ R1 p∗q∗OL(−n − r)→ 0.

The last sheaf is the structure sheaf of the fat point of length
(

n+r
2

)
supported on L∨. So any

2-secant line to Z1 must correspond to a 3-secant line to Z, i.e. any line passing through r + 2
points (r ≥ 0) of Z1 must further pass through a point of Z lying on L.
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LYAPUNOV STABILITY
FOR A RYDBERG ATOM IN A CIRCULARLY

POLARIZED MICROWAVE FIELD
AND A STATIC MAGNETIC FIELD

Manuel Iñarrea, Víctor Lanchares, Ana Isabel Pascual
and José Pablo Salas

Abstract. The interaction of a Rydberg atom with a circularly polarized microwave field
leads, with finely tuned parameters, to the creation of stable equilibrium positions similar
to the well known Lagrangian equilibrium points in celestial mechanics (cf. [6]). Besides,
the addition of a static magnetic field, perpendicular to the plane of polarization, can be
used to manipulate the stability properties of the equilibria (cf. [9] and [10]).

The aim of this communication is the characterization of nonlinear stability properties
for equilibrium points by making use of appropriate results, based on KAM theory. Spe-
cial attention will be paid when resonance conditions take place between the fundamental
frequencies of the system.

Keywords: Circularly microwave field, static magnetic field, equilibria, stability, reso-
nances.
AMS classification: 70H08, 70H14, 37N05.

§1. Introduction

The dynamics of a hydrogen atom in the presence of a circularly polarized (CP) microwave
field crossed with a magnetic field B, denoted hereafter by CP × B, is known to give rise
to two different behaviors (cf. [9]). On the one hand, the electron can follow a perturbed
Keplerian orbit, which can be studied under the point of view of classical mechanics, by
means of perturbation methods (cf. [8]). On the other hand, the electron can be trapped in
a region beyond the Stark saddle point, by properly tuning the external parameters of the
problem.

The last case is specially interesting, because of the appearance of equilibrium points
similar to the Lagrangian points in the restricted three body problem. These points are di-
rectly linked with the ionization threshold for the electron (cf. [6]). Besides this remarkable
connection, the stability properties of these points are also of interest as they are the key to
have a real trapping region. In this way, the main goal of this work is the characterization
of nonlinear stability properties of these points as a function of the external parameters. We
will not pay attention to the size of the region of stability, a question that deserves a further
analysis and that is relevant to get an effective trapping region.

The problem we deal with has also a Celestial Mechanics counterpart, as it describes the
dynamics of a dust particle subject to radiation pressure, the sun magnetic field and orbiting
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an idealized planet that revolves around the sun in circular orbit. In this context, the existence
of stable trapping regions associated with stable equilibrium points may account for dust
clouds responsible for the phenomenon known as zodiacal light (cf. [12]).

§2. The problem

In atomic units, the Hamiltonian of the problem CP × B, in the dipole aproximation, is given
by

H =
1
2

(P2
x +P2

y+P2
y)−

1√
x2 + y2 + z2

+
ωc

2
(xPy−yPx)+

ω2
c(x2 + y2)

8
± f (x cosω f t+y sinω f t),

where the magnetic field is supposed to be parallel to the direction of the z-axis, ωc is the
cyclotron frequency, ω f is the CP field frequency and f the electric field strength ( f > 0).
The plus or minus sign depends on the polarization direction of the microwave field.

The explicit time dependence in the Hamiltonian can be removed by going to a sinodic
reference frame that rotates at the constant angular velocity ω f , in such a way that the moving
x-axis is aligned with the direction of the electric field. The new Hamiltonian becomes

H =
1
2

(P2
x + P2

y + P2
z ) −

1√
x2 + y2 + z2

−

(
ω f ±

ωc

2

)
(xPy − yPx) +

ω2
c(x2 + y2)

8
± f x. (1)

In this work, we study the planar model, that is the model restricted to the invariant set
z = Pz = 0. In this way, by setting z and Pz to zero in (1), we obtain the Hamiltonian
corresponding to the plane case:

H =
1
2

(P2
x + P2

y) −
1√

x2 + y2
−

(
ω f ±

ωc

2

)
(xPy − yPx) +

ω2
c(x2 + y2)

8
± f x. (2)

As we are interested in the equilibria of the system given by the Hamiltonian (2) we have
to solve the corresponding Hamilton equations equated to zero. These are

ẋ = Px + ωy,

ẏ = Py − ωx,

Ṗx = −
x
r3 + ωPy ∓ f −

ω2
c

4
x,

Ṗy = −
y

r3 − ωPx −
ω2

c

4
y,

where ω = ω f ± ωc/2 and r =
√

x2 + y2.
From the system above it follows that an equilibrium point (x, y, Px, Py) must verify Px =

y = 0 and Py = ωx. Moreover, x must be a positive root of the equation

ω f (ω f ± ωc)x3 ∓ f x2 − 1 = 0,
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or a negative root of the equation

ω f (ω f ± ωc)x3 ∓ f x2 + 1 = 0.

The discussion on the number of equilibria is summarized in the following proposition
Proposition 1. For the positive sign in (2), there are two equilibrium points, one of them with
x < 0 and the other one with x > 0. For the minus sign in (2), the number of equilibrium
points depends on the sign of ω f (ω f − ωc):
• If ω f (ω f − ωc) > 0, then there are 2 equilibria, one with x > 0 and another one with

x < 0.

• If ω f (ω f − ωc) = 0, there is one equilibrium point with x > 0.

• If ω f (ω f − ωc) < 0, there are two equilibria if f > Fc, where Fc = 3
√

27
4 ω

2
f (ω f − ωc)2.

In this case, the two of them verify x > 0. If f ≤ Fc, no equilibria exist.
To study the stability properties of the equilibrium points we introduce a function of the

coordinates x and y, usually called the effective potential, in such a way that linear stable
points correspond to relative maxima and minima of this function. In the positive case, the
effective potential is given by

EPp = f x −
1
2
ω f (ωc + ω f )(x2 + y2) −

1√
x2 + y2

.

As a result, the equilibrium with x > 0 is a maximum and the equilibrium with x < 0 is a
saddle. In the negative case, the effective potential reads as

EPn = − f x −
1
2
ω f (ωc − ω f )(x2 + y2) −

1√
x2 + y2

,

and the character of the equilibria depends on the sign of ω f (ω f − ωc). In this sense, if
ω f (ω f − ωc) > 0, the equilibrium with x > 0 is a saddle and the equilibrium with x < 0 is
a maximum. If ω f (ω f − ωc) < 0 and f > Fc, one of the positive equilibria is a saddle (we
call xs) and the other is a minimum (we call xm).

The previous analysis shows that there are two different configurations for the effective
potential, maximum-saddle or minimum-saddle (cf. [7]). It is known that saddle points cor-
respond to unstable points and a minimum give rise to a nonlinear stable point (cf. [13]),
as it follows from Dirichlet’s theorem (cf. [14]). On the other hand, a maximum is a linear
stable point but its character from the point of view of Lyapunov is not decided. In this way,
there are well known counterexamples where a linear stable point of a Hamiltonian system is
unstable in the Lyapunov sense (cf. [3]). To solve the question of nonlinear stability we will
make use of KAM theory and the next sections are devoted to introduce the results we will
use.

§3. Lyapunov stability

One of the results from KAM theory is Arnold’s theorem (cf. [1]) that guarantees nonlin-
ear stability of a maximum for almost all set of admissible external parameters. Here we
reproduce the version of this theorem given by Meyer and Schmidt in (cf. [11]).
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Theorem 2. Let be a two degrees of freedom Hamiltonian system expressed in variables
(Ψ1,Ψ2, ψ1, ψ2) as

H = H2(Ψ1,Ψ2) +H4(Ψ1,Ψ2) + · · · +H2N(Ψ1,Ψ2) +H(Ψ1,Ψ2, ψ1, ψ2)

where it is verified that:

1. H is a real analytic function in a neighborhood of the origin.

2. Each H2k, 1 ≤ k ≤ N is a homogeneous polynomial of degree k in Ψ1,Ψ2 with real
coefficients independent of the angles. In particular,

H2 = ω1Ψ1 − ω2Ψ2, ω1, ω2 > 0, (3)

H4 =
1
2

(AΨ2
1 − 2BΨ1Ψ2 + CΨ2

2),

where A, B and C depend on the parameters of the Hamiltonian.

3. H = H(Ψ1,Ψ2, ψ1, ψ2) = O((Ψ1 + Ψ2)2N+1).

With these conditions, the origin is a stable equilibrium if exists 2 ≤ k ≤ N such as

D2k = H2k(ω2, ω1) , 0,
D2 j = H2 j(ω2, ω1) = 0, 2 ≤ j < k.

The practical implementation of this theorem yields a great amount of computation work.
First, the Hamiltonian must be expressed in action–angle variables, in such a way the quadra-
tic part reduces to (3).

This is achieved by means of a linear transformation. Next, the most tricky part of the
process, the Hamiltonian must be brought to the so-called Birkhoff normal form (cf. [2] and
[15]) up to a certain order through the application of successive canonical transformations
near to the identity. This process can be made in a recursive manner using the algorithm
of the Lie–Deprit perturbation method (cf. [4]). This process simplifies if it is carried out
in complex variables, returning to Poincare, or action-angle, variables at the end. Once the
normalization has been completed Arnold’s theorem can be applied.

We note that in the statements of theorem 2 there are some implicit assumptions. The first
one is that the Hamiltonian is written in normal form, that is, the computation work is already
supposed done. The second one is that the frequencies of the system ω1 and ω2 are not in
resonance of order less or equal than 2N, because the termsH2k, 1 ≤ k ≤ N, only depend on
the momenta Ψ1 and Ψ2. When the frequencies of the system verify a resonance condition,
the normal form is no longer as those presented in the theorem and terms depending on the
angles ψ1 and ψ2 appear.

To handle resonant cases we need a more general result. In this sense we will make use of
a geometric criterion (cf. [5] and [13]), that extends Arnold’s theorem to the resonant cases.

§4. The geometric criterium

Let us suppose that H2 can be written as in (3). Then, the Hamiltonian H can be brought to
normal form, in such a way thatH2 becomes a formal integral. Also let us assume thatω1 and
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ω2 satisfy a n:m resonant condition of order greater or equal than two, that is, nω1 −mω2 = 0
with n + m ≥ 2. Under these assumptions we introduce a set of action–angle variables named
Lissajous variables, with a twofold goal. On the one hand, the formal integral depends on
one of the actions and the normalization procedure can be viewed as the elimination of a fast
variable by means of an averaging process.

Lissajous variables (Φ1,Φ2, φ1, φ2) are specifically designed for each particular value of
the resonance n:m and they are related with the Poincaré variables through the formulae

Ψ1 =
Φ1 + Φ2

2m
, ψ1 = m(φ1 + φ2),

Ψ2 =
Φ1 − Φ2

2n
, ψ2 = n(φ1 − φ2).

Now,H2 turns to be simply νΦ2, being

ν =
ω1

m
=
ω2

n
.

Besides, the Poisson’s bracket (H2,H j), needed to compute the normal form, is just

(H2,H j) = ν
∂H j

∂φ2
,

and the process of normalization is no more than an averaging over the φ2 angle.
Moreover, the normal form is generated by the invariants (cf. [5]) M1, M2, C and S that,

as functions of Lissajous variables, are given by

M1 =
1
2

Φ1, C = 2−(m+n)/2(Φ1 − Φ2)m/2(Φ1 + Φ2)n/2 cos 2nmφ1,

M2 =
1
2

Φ2, S = 2−(m+n)/2(Φ1 − Φ2)m/2(Φ1 + Φ2)n/2 sin 2nmφ1.

(4)

In this way, the normal form up to order N is written as

H = H2 +

N∑
j=3

H j,

whereH2 = 2ωM2, and

H j =
∑

2(γ1+γ2)+(n+m)(γ3+γ4)= j

aγ1γ2γ3γ4 Mγ1
1 Mγ2

2 Cγ3 S γ4 , 3 ≤ j ≤ N,

with aγ1γ2γ3γ4 ∈ R.
The invariants are not independent and they satisfy the equation

C2 + S 2 = (M1 + M2)n(M1 − M2)m, (5)

together with the restriction
M1 ≥ |M2| . (6)
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Note that the reduced phase space is given by the equation (5) and the restriction (6). It is a
set of surfaces of revolution, one for each constant value of M2. Fixed a value for M2, (5) is
a surface of revolution with a vertex in the point M1 = |M2|, C = S = 0.

Once the reduced phase space is determined, it is possible to know the flow of the nor-
malized system, when it is truncated to a prescribed order. Indeed, the flow results as the
intersection of the normalized Hamiltonian function with the surface defined by (5). Based
on this idea, in (cf. [5] and [13]), Elipe et al. established the following results, the first is the
geometric criterion and the second one is a derived result from it.

Theorem 3. Let us assume that the Hamiltonian is normalized up to a certain order N ≥ s,
beingHN the first term that does not vanish for M2 = 0. Let us consider the two surfaces

G1 = {(C, S ,M1) ∈ R3; HN(C, S ,M1, 0) = 0},

and
G2 = {(C, S ,M1) ∈ R3; C2 + S 2 = Ms

1}.

If the origin is an isolated point of intersection, then it is stable. In other case, if the two
surfaces are not tangent, the origin is unstable.

Theorem 4. Let us assume thatHs (s is the order of resonance) is the first term in the normal
form that does not vanish for M2 = 0. If s is odd (s ≥ 3), then Hs(C, S ,M1, 0) = γC + ηS
with γ2 + η2 , 0 and the origin is an unstable equilibrium. If s is even (s ≥ 4), then
Hs(C, S ,M1, 0) = asMs/2

1 + γC + ηS with a2
s + γ2 + η2 , 0 and the stability of the origin

depends on the relative values of a2
s and γ2 + η2: if a2

s > γ2 + η2, the origin is a stable
equilibrium, whereas if a2

s < γ
2 + η2, the origin is unstable.

§5. Resonant cases

Using the previous results, we study the Lyapunov stability of the maximum when it is ver-
ified a resonant condition. We start with the resonance of order three to be followed by the
fourth order resonance.

5.1. 1:2 resonance
For a 1:2 resonance (ω1 = 2ω2), the term of order 3 in the normal form can be expressed in
complex variables as

H3 = a1002uV2 + a0120Uv2,

where a1002 = ia0120 and a0120 ∈ C. Therefore

H3 = a0120(Uv2 − iuV2).

Expressed in Lissajous invariants,H3 can be written as

H3 = asS ,

with as = −a0120
√

2.



Lyapunov stability for a Rydberg atom 145

Then, the two surfaces, from the geometric criterion, are given by

G1 = {(C, S ,M1) ∈ R3 | asS = 0},

G2 = {(C, S ,M1) ∈ R3 |C2 + S 2 = M3
1 , M1 ≥ 0}.

It is clear that if as , 0, then G1 ∩ G2 = {(C, S ,M1) ∈ R3 | S = 0,C = ±M3/2
1 } and

therefore, the equilibrium is unstable. By the contrary, if as = 0, then H3(M2 = 0) = 0 and
also H3 ≡ 0, and, in consequence, we need more terms of the normal form to decide about
the stability. We have to compute the next term in the normal form, that is, H4. In this way
the next nonzero term in the normal formH4 can be written, in complex variables, as

H4 = a1200uU2 + a1111uUvV + a0012vV2.

Once expressed in terms of the real invariants, we have that

H4(M2 = 0) =
29.877
ω4x8

0

M2
1 ,

where x0 is the x coordinate of the equilibrium point and ω = ωc +
ω f

2 . Therefore the origin
is the only point in the intersection G1 ∩G2 and, as a consequence of the geometric criterion,
the equilibrium is stable.

5.2. 1:3 resonance

In presence of a 1:3 resonance, the term of fourth order in the normal form H4 evaluated at
M2 = 0 is given, in complex variables, by

H4 = a2200u2U2 + a1111uUvV + a0022v
2V2 + a1003uV3 + a0130Uv3.

Expressed in Lissajous invariants,H4 can be written as

H4(M2 = 0) = amM2
1 + acC + asS ,

being am, ac, as dependent on the parameters of the problem and the coordinates of the equi-
librium point.

In our problem it is always verified that a2
m > a2

c + a2
s . Therefore, as a consequence of

Theorem 4, the equilibrium is always stable.
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REDUCTION OF GIBBS PHENOMENON
FOR 1D RBF INTERPOLATION
Diego Izquierdo, María Cruz López de Silanes

and María Cruz Parra

Abstract. The Gibbs phenomenon can be observed in different interpolation methods.
Radial basis functions (RBF) is a modern meshfree interpolation technique in any number
of dimensions. Here we investigate the Gibbs phenomenon for 1D RBF interpolation
numerically, and propose a procedure to reduce Gibbs oscillations using nonsmooth basis
functions locally. The accuracy in the smooth region is enhanced by applying piecewise
linear basis functions in the proximity of discontinuity.

Keywords: Radial basis functions, RBF, Gibbs phenomenon, interpolation.
AMS classification: 65D05, 41A05.

§1. Introduction

Radial basis functions interpolation is a modern meshfree technique in any number of dimen-
sions collected in [7] and introduced by Hardy using multiquadrics [5].

Gibbs phenomenon is the peculiar manner in which the Fourier series of a function f be-
haves at a jump discontinuity. The overshoot does not die out as the frequency increases, but
approaches a finite limit. Gibbs phenomenon can also be observed in different interpolation
methods. Fornberg and Flyer [3] perform cardinal interpolation for discontinuous functions
with centers x j = j ∈ Z and study expansion coefficients for some RBFs. Guessab, Mon-
cayo and Schmeisser [4] define a class of nonlinear four point subdivision schemes. These
schemes include as a particular case the PPH scheme (or power-2 scheme) previously studied
by Amat, Donat, Liandrat and Trillo [1]. The general schemes, by using generalized harmonic
means, reduce the Gibbs phenomenon around jump discontinuities, as occurs with power-2
scheme. Their properties (e.g. stability, convexity preservation, approximation order) are
more balanced than those of the power-p schemes.

Jung [6] makes a complete study of RBF interpolation on R of step function with uni-
formly distributed centers in [−1, 1] and uses multiquadric with shape parameter, γ, Φ(x) =√
|x|2 + γ2. Jung proposes a method to reduce Gibbs phenomenon adapting shape parameter,

i.e. to define γ = 0 at centers next to discontinuity. Actually, multiquadric is changed by
linear RBF at these centers. Here, our aim is to describe a similar interpolation technique that
eliminates oscillations next to discontinuity, using different RBFs.

This paper is divided into the following sections. In Section 2, we establish the necessary
notations and preliminaries for RBF interpolation on Rd, a technique described in [7]. In
Section 3, we consider an interpolation example of the discontinuous function studied in [6].
First, we study local performance of interpolation with two centers and then interpolation
with N centers uniformly distributed in [−1, 1]. We use RBFs of [2, Appendix D] to obtain
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interpolant features for different step functions and two other functions. Finally, in Section 4,
we develop a local piecewise linear interpolation for discontinuous functions using different
RBFs to reduce the Gibbs oscillations in the vicinity of the discontinuity. This technique
adapts and expands the method described in [6] to most RBF of [2, Appendix D]. Then, this
technique is applied to some examples presented in the previous section. We finish the section
obtaining some errors for an example in [4] and compare these results with those given there.
The numerical and graphical examples presented in this paper have been executed using
Mathematica 8.0.

§2. RBF interpolation

Definition 1. A function Φ : Rd → R is said to be radial if there exists a continuous function
φ : [0,+∞)→ R such that Φ(x) = φ(‖x‖2) for all x ∈ Rd.

Let N ∈ N. We interpolate an unknown function f : Ω ⊆ Rd → R, with data values
F = ( f1, . . . , fN)> at given data sites X = {x1, . . . , xN} ⊆ Ω, the set of centers, so that we look
for an interpolant as

s f ,X(x) =

N∑
j=1

α jΦ(x − x j), x ∈ Rd,

with expansion coefficients vector, α = (α1, . . . , αN)>, so that the interpolation conditions are
verified

s f ,X(x j) = f j, 1 ≤ j ≤ N. (1)

Let AΦ,X = (Φ(x j − xk))1≤ j,k≤N be the interpolation matrix. If there exists a unique solution of
the system

AΦ,Xα = F,

then s f ,X will be defined.
Definition 2. A function Φ : Rd → R is positive definite on Rd if, for all N ∈ N, all pairwise
distinct x1, . . . , xN ∈ R

d and all α ∈ RN \ {0}, the quadratic form
N∑

j=1

N∑
k=1

α jαkΦ(x j − xk)

is positive.
By definition AΦ,X is symmetric. If it is positive definite, then the interpolant will be

defined. In this way, we can also say that Φ is positive definite when the interpolation matrix
AΦ,X is positive definite.

Not every RBF used for interpolation is a positive definite function, although the corre-
sponding quadratic form is positive for some expansion coefficients. In general, RBF inter-
polation uses a conditionally positive definite function of some order.
Definition 3. Let m ∈ N. A function Φ : Rd → R is conditionally positive definite of order
m on Rd if, for all N ∈ N, all pairwise distinct x1, . . . , xN ∈ R

d and all α ∈ RN\{0} satisfying
N∑

j=1

α j p(x j) = 0
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Figure 1: Two positive definite functions on R.
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Figure 2: Three conditionally positive definite functions on R.

for all real-valued polynomials of degree less than m, the quadratic form

N∑
j=1

N∑
k=1

α jαkΦ(x j − xk)

is positive.

For any m ∈ N, we denote by πm−1(Rd) the space of polynomial functions defined over
Rd of degree ≤ m − 1 with respect to the set of variables. If we want to interpolate f using a
conditionally positive definite function of order m, we will look for an interpolant of the form

s f ,X(x) =

N∑
j=1

α jΦ(x − x j) +

Q∑
k=1

βk pk, x ∈ Rd, (2)

where {p1, . . . , pQ} is a basis of the polynomial space πm−1(Rd).
The coefficients α = (α1, . . . , αN)> and β = (β1, . . . , βQ)> in (2) are uniquely determined

by (1) and the additional conditions

N∑
j=1

α j pk(x j) = 0, 1 ≤ k ≤ Q.
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If we define the matrix P = (pk(x j)) ∈ RN×Q, α and β will be the solution of the system(
AΦ,X P
P> 0

) (
α
β

)
=

(
F
0

)
.

In this paper, we consider the RBF interpolation on R, i.e. for the case d = 1. For more
details and proofs, revise [7].

§3. Interpolation of a discontinuous function

In this section, we study features of an interpolant s f ,X for a piecewise function

f (x) =

 f1(x), −1 ≤ x < 0,
f2(x), 0 < x ≤ 1,

(3)

with f1 and f2 continuous, and such that it has a finite jump discontinuity at xc = 0, i.e.
| f + − f −| , 0, where f − = limx→0− f (x) and f + = limx→0+ f (x).

First we present a study of RBF interpolation with two centers near discontinuity and then
we make a general study with N centers in [−1, 1].

3.1. Local performance of interpolation
We now select two centers in a small neighbourhood of the discontinuity. Let X = {−δ/2, δ/2}
for δ > 0. Most RBFs produce a strictly monotone interpolant sδ(x) defined in [−δ/2, δ/2].
By definition, sδ(x) is continuous, so we can then evaluate it at xc = 0:

• If Φ is positive definite, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2),

where

α1 =
f (δ/2)Φ(δ) − f (−δ/2)Φ(0)

Φ2(δ) − Φ2(0)
and α2 =

f (−δ/2)Φ(δ) − f (δ/2)Φ(0)
Φ2(δ) − Φ2(0)

.

Then
sδ(0) = ( f (δ/2) + f (−δ/2))

Φ(δ/2)
Φ(δ) + Φ(0)

.

• If Φ is conditionally positive definite of order one, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2) + β1,

where
α1 =

f (δ/2) − f (−δ/2)
2(Φ(δ) − Φ(0))

= −α2 and β1 =
f (−δ/2) + f (δ/2)

2
.

Then
sδ(0) =

f (δ/2) + f (−δ/2)
2

.



Reduction of Gibbs phenomenon for 1D RBF interpolation 153

-0.2 -0.1 0.1 0.2

-1.0

-0.5

0.5

1.0

Figure 3: sδ(x), with δ = 1/2, for f1(x) = −1 and f2(x) = 1.

• If Φ is any conditionally positive definite of order two, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2) + β2x + β1,

where

α1 = 0 = α2, β1 =
f (δ/2) + f (−δ/2)

2
and β2 =

f (δ/2) − f (−δ/2)
δ

.

Then
sδ(0) =

f (δ/2) + f (−δ/2)
2

.

Let us observe that, if Φ is any conditionally positive definite function of a higher order,
we will not get a unique interpolant. In Figure 3, we show interpolants sδ(x), with δ = 1/2,
for the fuctions φ1, φ2, φ3 and φ4 defined in Figures 1 and 2, with f1(x) = −1 and f2(x) = 1.
The graphic shows that interpolants are strictly increasing and sδ(0) = 0.

3.2. Interpolation with N centers
We reduce interpolation study to an even number N of centers X = {x1, . . . , xN}, but the same
results are obtained for an odd N.

We consider that centers are uniformly distributed in [−1, 1], that is, for j = 1, . . . ,N,
x j = −1 + 2( j − 1)/(N − 1) . Discontinuity exists at xc =

(
xN/2 + xN/2+1

)
/2 = 0. Any RBF

used to interpolate produces a continuous interpolant s f ,X , defined in Section 2. For most
RBFs of [2, Appendix D], s f ,X has the same features. We have obtained lots of examples,
using the mentioned RBFs, for different step functions and functions in Example 2. The next
two examples show the interpolant features.
Example 1. Let f be given by (3) with f1(x) = −1 and f2(x) = 1. We interpolate it with N =

4, 16, 32, 64 and 128, using the RBFs φ2, φ3, φ̃(r) = φ4(
√

50r) and φ5 (see Figure 4). We have
modified φ4 to get good interpolation matrices in the sense that Mathematica is able to solve
the associated systems. We observe that s f ,X is strictly increasing in (xN/2, xN/2+1). In addtion,
φ3-interpolants do not present oscillations near the discontinuity. In fact, by definition of f in
this example, Jung [6] shows that any φ3-interpolant is

s f ,X(x) =


−1, x < xN/2,

(N − 1)x, xN/2 ≤ x ≤ xN/2+1,

1, x > xN/2+1.
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Figure 4: Interpolants of the function f given in Example 1. The used RBFs are φ2 in (a), φ3
in (b), φ̃ in (c) and φ5 in (d).

Example 2. We consider the two non-step functions

g1(x) =

sin x, x < 0,
cos x, x > 0,

and g2(x) =

log(1 − x), x < 0,
0.5(x − 0.5)3, x > 0,

and we interpolate them with N = 4, 16, 32, 64, and 128 centers. The function g1 has also
been considered in [6].

Figure 5 shows several interpolants of g1 and g2, using φ3 as RBF. These interpolants
do not present oscillations. They are polygonal functions with vertices at (xi, f (xi)) for i =

1, . . . ,N, and so they are not differential functions at vertices. Therefore, φ3-interpolants are
not good approximations of functions. In Figure 6, we show interpolants of g1 on top and of
g2 on the bottom. We use φ̃ at (a) and (d), φ2 at (b) and (e), and φ5 at (c) and (f).

Numerical experiments for not oscillatory differentiable RBFs of [2, Appendix D] yield
interpolants with the same features:

• The interpolant of f has oscillations near xc. Oscillations do not disappear even for high
values of N, Gibbs phenomenon, but increase up to a limit. Maximum oscillations are
located in (xN/2−1, xN/2) and (xN/2+1, xN/2+2).

• s f ,X is a strictly increasing monotone function in (xN/2, xN/2+1) if f (xN/2) < f (xN/2+1)
and strictly decreasing if f (xN/2) > f (xN/2+1).

• The expansion coefficient αi is related to the center xi, for i = 1, . . . ,N. Taking centers
each time close to xc the absolute values of associated expansion coefficients become
much bigger than at the boundary.
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Figure 5: φ3-interpolants of the functions g1 (left) and g2 (right) given in Example 2.

Now we define a rate R to measure maximum oscillation on the right of discontinuity. Let
s? be the value of the interpolant at maximum oscillation located in (xN/2+1, xN/2+2). For step
functions f with f1(x) = f − and f2(x) = f +, we define the ratio R between the maximum
absolute value of over/under-shoots and the jump discontinuity by

R =
|s? − f +|

| f + − f −|
. (4)

We consider different step functions and compute R, i.e. oscillations performance, with
different RBFs, number of centers and jump discontinuities. Table 1 collects this information
and shows that maximum oscillation limit depends on the discontinuity jump and the RBF
used, for a given N. Values of Table 1 point out that R is a relative measure of the maximum
oscillation since R is invariant for fixed N and RBF. This means that R does not depend on
the jump discontinuity for fixed N and RBF. Looking through Table 1, we can affirm that the
interpolation using Φ5 produces a maximum oscillation limit about 8% of jump.
Remark 1. All results in this section could also be obtained for any interval and with a dis-
continuity at another point.

§4. Local piecewise linear interpolation

In the previous section, we have described the behaviour of the interpolant s f ,X of a function
with a discontinuity for N centers uniformly distributed. The interpolant does not reproduce
the discontinuity of function and the Gibbs phenomenon appears.

Anyway, we observe a special performance of interpolant using φ3 as RBF: s f ,X has no
oscillation because it is a piecewise linear function.

Looking through Fornberg’s paper [3], we confirm that RBF expansion coefficients are
bigger near discontinuity. Moreover, Jung [6] gives a method to eliminate oscillations of
interpolant using multiquadrics. Jung’s paper adapts the interpolation by changing the shape
parameter of multiquadrics, γ = 0, at centers with expansion coefficients in absolute value
bigger than that at the boundary. This is changing multiquadric by linear RBF, φ3. We realize
that it is enough to change RBF at centers next to the discontinuity: xN/2 and xN/2+1. We can
eliminate oscillations using φ3 only at those centers and most RBFs of [2, Appendix D] at the
other centers.
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Figure 6: Interpolants sg1,X (top row) and sg2,X (bottom row). The used RBFs are φ̃ in (a) and
(d), φ2 in (b) and (e), and φ5 in (c) and (f).

RBF ( f −, f +) N = 4 N = 16 N = 32 N = 64 N = 128
Φ2 (−1, 1) 0.07269 0.10546 0.10538 0.10540 0.10545

(0, 1) 0.07269 0.10546 0.10538 0.10540 0.10545
(−1.5, 1.5) 0.07269 0.10546 0.10538 0.10540 0.10545
(−0.4, 0.4) 0.07269 0.10546 0.10538 0.10540 0.10545

Φ̃ (−1, 1) 0.05727 0.11899 0.13324 0.13877 0.14041
(0, 1) 0.05727 0.11899 0.13324 0.13877 0.14036

(−1.5, 1.5) 0.05727 0.11899 0.13324 0.13877 0.14055
(−0.4, 0.4) 0.05727 0.11899 0.13324 0.13877 0.14029

Φ5 (−1, 1) 0.07740 0.08046 0.08046 0.08046 0.08046
(0, 1) 0.07741 0.08046 0.08046 0.08046 0.08046

(−1.5, 1.5) 0.07740 0.08046 0.08046 0.08046 0.08046
(−0.4, 0.4) 0.07740 0.08046 0.08046 0.08046 0.08046

Table 1: Values of R for different RBF, ( f −, f +) and N
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Figure 7: Interpolants s̃g1,X (top row) and s̃g2,X (bottom row). The used RBFs are φ̃ in (a) and
(d), φ2 in (b) and (e), and φ5 in (c) and (f).

In the conditions described in Section 3, we seek an interpolant s̃ f ,X , using φ3 at centers
next to discontinuity, of the form

s̃ f ,X(x) =

N∑
j=1

j,N/2,N/2+1

α̃ j φ(|x − x j|) +

2∑
j=1

α̃N/2−1+ j |x − xN/2−1+ j| +

m̃∑
k=1

λk pk, x ∈ R,

where {p1, . . . , pm̃} is a basis of the polynomial space πm̃−1(R). The coefficients α̃1, . . . , α̃N

and λ1, . . . , λm̃ are determined by (1) and the additional conditions

N∑
j=1

α̃ j pk(x j) = 0, 1 ≤ k ≤ m̃.

We use m̃ = 1 for Φ positive definite and m̃ = m for Φ conditionally positive definite of order
m. Finally we add the constant needed by the linear RBF φ3.

Next, we present two examples. Example 3 shows graphical behaviour of this method
for two functions studied in the previous section. Example 4 provides some errors at some
distance from discontinuity to show the fitting of the new interpolant.

Example 3. We apply this technique to Example 2 to eliminate oscillations of the interpolants
in Figure 6. In Figure 7, we observe that the oscillations are eliminated and interpolants
fit better to the function at [−1, xN/2] ∪ [xN/2+1, 1]. This technique eliminates oscillations
because we get an interpolant that is a straight line by (xN/2, f (xN/2)) and (xN/2+1, f (xN/2+1))
in [xN/2, xN/2+1].
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RBF x = −41
46 x = −24

46 x = −8
46 x = −7

46 x = −5
46 x = −4

46 x = −3
46 x = 0

φ̃1(r) = φ1(4.1r) 1.95e−4 2.00e−5 7.21e−6 3.16e−6 5.07e−6 1.97e−5 3.02e−5 8.16e−5

φ̃2(r) = φ2(1.3r) 1.12e−3 3.41e−6 2.30e−4 1.79e−4 1.16e−4 1.49e−4 1.12e−4 2.20e−4

φ̃4(r) = φ4(2r) 7.31e−8 1.46e−6 1.41e−5 1.31e−5 2.47e−5 5.12e−5 5.60e−5 3.60e−5

Table 2: Values of E for different points and RBFs.

Example 4. Let

g3(x) =


exp(x), x ∈ [−1, 0),
3, x = 0,
5 + sin x, x ∈ (0, 1],

be a function given in [4]. We apply the described technique with N = 24 centers for different
RBFs. Let E(x) =

∣∣∣ f (x) − s̃g3,X(x)
∣∣∣ be the error function. It is obvious that E(xi) = 0 for

i = 1, . . . ,N. Errors close to 1 occur at next to discontinuity due to the approximation of the
technique near to discontinuity. Table 2 shows the values of E for different points and RBFs.
We observe that these errors are similar to the ones obtained in [4] for the same example.

Finally, as conclusions, we have investigated the Gibbs phenomenon for 1D RBF inter-
polation numerically, and proposed a procedure to reduce oscillations using nonsmooth basis
functions locally. This technique is the first step of an approximation method of discontinuous
functions which we plan to develop in the future.
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1D NUMERICAL SIMULATION
FOR NONLINEAR

PSEUDOPARABOLIC PROBLEMS
Robert Luce, Ngonn Seam and Guy Vallet

Abstract. In this paper, we are interested in the numerical simulation of a pseudo-
parabolic fully-nonlinear equation with a nonlinear term of Barenblatt’s type. We are
exactly interested in the illustrations of the solution of the boundary-value problem: find
u such that

f (ut) − div {a(u)∇u + b(u)∇ut} = g.

The mathematical analysis of a close problem and its simulation have recently been stud-
ied by S. N. Antontsev et al. [3] when f = IdR and the existence result has been gen-
eralized by N. Seam and G. Vallet in [8]. We propose in particular simulations of the
nonlinear problem of the Barenblatt’s type: f (ut) − ∆u − ε∆ut = g (see [1]).

Keywords: Pseudoparabolic problems, numerical simulations, Barenblatt’s problem.
AMS classification: 35K65, 35K70.

§1. Introduction

In this paper, we deal with the 1D numerical simulation to the fully-nonlinear pseudopara-
bolic problem:

f
(
∂u
∂t

)
−
∂

∂x

{
a(u)

∂u
∂x

+ b(u)
∂

∂x

(
∂u
∂t

)}
= g in Q, u|Γ = 0 and u(0, ·) = u0, (1)

where f is a Lipschitz-continuous and increasing function, a is Lipschitz-continuous and
bounded and b is a positive Lipschitz-continuous and bounded function.

Problems close to that one have been previously studied by S. N. Antontsev et al. [3]
for stratigraphic models by the way of an implicit time-discretization, and has recently been
generalized by N. Seam and G. Vallet in [8] by the same way (see [6, 7] too). The existence
of the solution at each step of the discretized scheme is based on Schauder-Tikhonov’s fixed
point theorem and the convergence of the scheme on an adapted compactness argument.

Our aim is then to illustrate the solution of the above problem by a standard P1-finite
element method in space and an implicit time discretization. In particular, we are interested in
the pseudoparabolic singular perturbation when the molecular diffusion changes sign. To do
this, we have modified the codes developed by Alberty [2] for the diffusion-reaction problem.

Let us denote by Ω = ]xl, xr[ a bounded interval of R, T a positive number and assume
the following assumptions:
(H1) a and b are Lipschitz continuous functions over R such that

∃β,M > 0, ∀u ∈ R, |a(u)| ≤ M, β ≤ b(u) ≤ M.
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(H2) f is a Lipschitz continuous and nondecreasing function over R.

(H3) g ∈ L2 (Q) and u0 ∈ H1
0(Ω).

Then, one would say that

Definition 1. A solution of the problem (1) is u ∈ H1
(
0,T ; H1

0(Ω)
)

such that for all v ∈ H1
0(Ω)

and t ∈ ]0,T [ a.e.,∫ xr

xl

{
f
(
∂u
∂t

)
v + a(u)

∂u
∂x

∂v

∂x
+ b(u)

∂

∂x

(
∂u
∂t

)
∂u
∂x

}
dx =

∫ xr

xl

gv dx

with the initial condition u(0, · ) = u0.

Let us recall a theorem concerning the existence and uniqueness:

Theorem 1 (N. Seam and G. Vallet [8]). Under hypotheses (H1), (H2) and (H3), there exists
u in H1

(
0,T,H1

0(Ω)
)

such that for all v in H1
0 (Ω) and t almost everywhere in ]0,T [,∫ xr

xl

{
f
(
∂u
∂t

)
v + a(u)

∂u
∂x

∂v

∂x
+ b(u)

∂

∂x

(
∂u
∂t

)
∂u
∂x

}
dx =

∫ xr

xl

gv dx with u(0, ·) = u0 (2)

§2. 1D finite elements formulation

Let us remark that the problem can be strongly non linear and generally the explicit formula-
tion fails because of very restrictive conditions of C.F.L type. So, an implicit formulation has
been chosen to obtain solutions with reasonable time steps.

For any Nt ∈ N
∗ and all k ∈ [0,Nt], let us denote by ∆t = T/Nt and tk = k∆t. Thus, the

implicit time discretization of the problem (2) is: find uk+1 in H1
0 (Ω) for a given uk in H1

0 (Ω)
such that, for any v ∈ H1

0(Ω),∫ xr

xl

f
(

uk+1 − uk

∆t

)
v dx +

∫ xr

xl

a
(
uk+1

) ∂uk+1

∂x
∂v

∂x
dx

+

∫ xr

xl

b
(
uk+1

) ∂

∂x

(
uk+1 − uk

∆t

)
∂v

∂x
dx =

∫ xr

xl

gk+1vdx, k ∈ [0,Nt − 1],

where gk+1 is an approximation of g at time tk+1.
The formulation can be written∫ xr

xl

f
(

uk+1 − uk

∆t

)
v dx +

∫ xr

xl

[
a
(
uk+1

)
+

1
∆t

b
(
uk+1

)] ∂uk+1

∂x
∂v

∂x
dx

−
1
∆t

∫ xr

xl

b
(
uk+1

) ∂uk

∂x
∂v

∂x
dx −

∫ xr

xl

gk+1v dx = 0, k ∈ [0,Nt − 1] . (3)

Now, for any Nx ∈ N, denote by h = ∆x = (xr − xl)/(Nx + 1) for a uniform mesh with
x0 = xl, and xNx+1 = xr. Thus xi = x0 + ih for i ∈ [0,Nx + 1]. We construct the finite
dimensional space Vh formed of linear piecewise polynomials:

Vh =
{
vh ∈ H1

0 (Ω) ; vh|[xi,xi+1] ∈ P1, 0 ≤ i ≤ Nx; vh (xl) = vh (xr) = 0
}
.
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Clearly, Vh = span
{
φ1, φ2, . . . , φNx

}
, where the φi’s are the hat functions, and dim Vh = Nx.

By using Vh in place of H1
0(Ω), the approximation by the finite element of the problem (3)

can be written: find uk+1
h ∈ Vh for a giving uk

h ∈ Vh such that for all vh ∈ Vh

∫ xr

xl

f
uk+1

h − uk
h

∆t

 vh dx +

∫ xr

xl

a (
uk+1

h

)
+

b
(
uk+1

h

)
∆t

 ∂uk+1
h

∂x
∂vh

∂x
dx

−

∫ xr

xl

b
(
uk+1

h

)
∆t

∂uk
h

∂x
∂vh

∂x
dx −

∫ xr

xl

gk+1vh dx = 0, k = 0, 1, . . . ,Nt − 1,

For k ∈ [0,Nt], inserting uk+1
h =

∑Nx
j=1 uk+1

j φ j with a given approximation u0
h =

∑Nx
j=1 u0

jφ j of u0
and using, for i ∈ [1,Nx], that φi as an admissible test function, we get the nonlinear system

∫ xr

xl

f
uk+1

h − uk
h

∆t

 φi dx −
1
∆t

∫ xr

xl

b
(
uk+1

h

) (
uk

h

)′
φ′i dx

+

∫ xr

xl

a (
uk+1

h

)
+

b
(
uk+1

h

)
∆t

 (uk+1
h

)′
φ′i dx −

∫ xr

xl

gk+1φi dx = 0, k ∈ [0,Nt] , i ∈ [1,Nx] .

The nonlinear system can be usually solved by the Newton Raphson method (cf. [4, 9] ).
In this case, for k ∈ [0,Nt], we denote by Uk+1

h =
(
uk+1

1 , uk+1
2 , . . . , uk+1

Nx

)T
and we introduce the

function F : RNx → RNx , Uk+1
h 7→ Fi

(
Uk+1

h

)
for [1,Nx], defined by the formula

Fi

(
Uk+1

h

)
=

∫ xr

xl

f
uk+1

h − uk
h

∆t

 φi dx −
1
∆t

∫ xr

xl

b
(
uk+1

h

) (
uk

h

)′
φ′i dx

+

∫ xr

xl

a (
uk+1

h

)
+

b
(
uk+1

h

)
∆t

 (uk+1
h

)′
φ′i dx −

∫ xr

xl

gk+1φi dx.

Thus, we have to solve the nonlinear system F
(
Uk+1

h

)
= 0, where 0 ∈ RNx , by the Newton

Raphson algorithm (see [4], [5] and [9] for the details):

1. For k ∈ [0,Nt], we initialize the vector Uk
h,

2. then, we compute Uk+1
h , solution to the linear system in the Newton method,

3. we give a initial estimation Uk+1,0
h of Uk+1

h ,

4. for ` = 0, 1, 2, . . . , `max, we compute ∆Uk+1,`
h , solution to the linear system

F′
(
Uk+1,`

h

)
∆Uk+1,`

h = −F
(
Uk+1,`

h

)
,

where F′
(
Uk+1,`

h

)
is the Jacobian of F at point Uk+1,`

h ,

5. we finally let Uk+1,`+1
h = Uk+1,`

h + ∆Uk+1,`
h .
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By definition of the Jacobian,

F′i j

(
Uk+1,`

h

)
=

∂Fi

∂uk+1,`
j

(
Uk+1,`

h

)
and we get that

F′i j

(
Uk+1,`

h

)
=

1
∆t

∫ xr

xl

f ′
uk+1,`

h − uk,`
h

∆t

 φiφ j dx −
1
∆t

∫ xr

xl

b′
(
uk+1,`

) (
uk,`

h

)′
φ′iφ j dx

+

∫ xr

xl

[
φ ja′

(
uk+1,`

h

) (
uk+1,`

h

)′
+ a

(
uk+1

h

)
φ′j

]
φ′i dx

+
1
∆t

∫ xr

xl

[
φ jb′

(
uk+1,`

h

) (
uk+1,`

h

)′
+ b

(
uk+1,`

h

)
φ′j

]
φ′i dx.

Thus, we can compute the coefficient matrix and the right-hand side matrix.

§3. Numerical simulations

In this section, we illustrate the solution to the problem (1) with different given data. In the
following examples, ]xl, xr[ = ]−π, π[ and

• either u0 = 0 and g(t, x) = 1 if x ∈ [π/4, π/2], g(t, x) = −1 if x ∈ [−π/2,−π/4],
g(t, x) = 0 otherwise (configuration 1),

• or u0(x) = 4x/π if x ∈ [−π/4, π/4], u0(x) = 2−4x/π if x ∈ ]π/4, π/2], u0(x) = −2−4x/π
if x ∈ [−π/2,−π/4[, u0(x) = 0 otherwise, and g(t, x) = 0 (configuration 2).

3.1. Linear pseudoparabolic equation or Sobolev’ equation

Here, f (r) = r, a(r) = 1 and b(r) = τ with τ = 0, 1/2, 1 and 5. We present the simulation of
configuration 1 (i.e. u0 = 0) in Figure 1 and that of Configuration 2 (i.e. u0 , 0) in Figure 2.

Remark first that the pseudoparabolic perturbation slows down the evolution of the sys-
tem. The second remark concerns the space regularity of the solution for t > 0: in the
pseudoparabolic case, the initial condition fixes the regularity of the solution. Indeed, the
first step in the time-iteration solves the elliptic problem: u − (∆t + τ) ∆u = ∆tg + u0 − τ∆u0.
Consequently, if τ > 0 and if u0 is in H1

0(Ω), it will be the same for the solution u.
In Figures 3 and 4, we illustrate the same problem unless b where b(r) = 0.1 if r < 0,

b(r) = k else. We can see the dissymmetry of the solution.

3.2. Nonlinear pseudoparalolic equation

In Figures 5 and 6, f (r) = r, a(r) = arctan(r) and b(r) = τwhere τ = 0.1, 0.2, 0.5, 1. Since the
sign of a changes, we observe diffusive and anti-diffusive effects illustrated by a convergence
to a Dirac mass, especially for small ε.
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Figure 1: ∂tu − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, τ = 0, 1/2, 1, 5.

Figure 2: ∂tu − ∂2
xxu − τ∂3

xxtu = 0 with u0(x) � 0, τ = 0, 1/2, 1, 5.
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Figure 3: ∂tu − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, b(r) = τr+ − 0.1r−, τ = 0, 1/2, 1, 5.

Figure 4: ∂tu − ∂2
xxu − τ∂3

xxtu = 0 with u0(x) � 0, b(r) = τr+ − 0.1r−, τ = 0, 1/2, 1, 5.
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Figure 5: ∂tu − ∂x[arctan(u)∂xu] − τ∂3
xxtu = g with u0 = 0, τ = 0.1, 0.2, 0.5, 1.

Figure 6: ∂tu − ∂x[arctan(u)∂xu] − τ∂3
xxtu = 0 with u0 � 0, τ = 0.1 and small times.
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Figure 7: f (∂tu) − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, τ = 0, 1/2, 1, 5.

3.3. Barenblatt’s Equation

In Figures 7 to 10, f (r) = r/10 if r > 0 and f (r) = 10r otherwise, a(r) = 1 and b(r) = τ with
different values of τ = 0.1, 0.2, 0.5, 1. The two configurations are illustrated, as well as the
asymptotic behaviour.

Note that, in spite of odd data, x �→ u(t, x) is not a odd function any more if t > 0.
Indeed, for negative x, t �→ u(t, x) is an increasing function. Thus, the equation is formally
∂tu − 10∆u − 10ε∆∂tu = 10g. Else, for positive x, t �→ u(t, x) is a decreasing function. Thus,
the equation is formally ∂tu − 1

10∆u − ε
10∆∂tu =

g
10 .
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UNIQUENESS OF STRONG SOLUTIONS
TO DOUBLY NONLINEAR
EVOLUTION EQUATIONS

Jochen Merker
Abstract. In this article uniqueness of strong solutions to the abstract doubly nonlinear
evolution equation

∂Bu
∂t

+ Au = f

is discussed under the main assumptions that B−1 is strongly monotone and there is a
C < ∞ such that ΦA + CΦB is convex for the potentials ΦA resp. ΦB of A resp. B.
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§1. Introduction

The aim of this article is to discuss strong solutions of abstract doubly nonlinear evolution
equations

∂Bu
∂t

+ Au = f , (1)

and especially the uniqueness of strong solutions to an initial value. Hereby, A : X → X∗

resp. B : Y → Y∗ are operators on Banach spaces X resp. Y with a dense and separable
intersection, and f is an inhomogeneity or nonlinearity.

Uniqueness of weak solutions to initial data with finite energy has been established for
the concrete case of a degenerate elliptic-parabolic equation

∂b(u)
∂t

+ div(a(b(u),∇u)) = f (2)

by [11] via an L1-contraction principle for b(u). Uniqueness of entropy solutions to L1-initial
data has been shown by [3] (even in presence of transport terms and therefore for degen-
erate elliptic-parabolic-hyperbolic equations), and uniqueness of renormalized solutions has
been proved by [4]. In literature uniqueness is also discussed for several variants of (2) like
the anisotropic case ([9]), the so-called triply nonlinear case ([1]) or the case of variable ex-
ponents ([2]). All these articles have in common that uniqueness is proved via Kruzhkov’s
method of doubling the variables.

In this article, an elementary proof of the uniqueness of strong solutions to the abstract
problem (1) along the lines of [7, 5, 6] is given, see also [12, Section 8.5 and 11.2.3]. While a
discussion of the abstract problem is more general than a discussion of the concrete equation
(2) (e.g. parts of B could be fractional derivatives or general convolution operators), it is a
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major restriction to prove uniqueness only for strong solutions and not for weak, entropy or
renormalized solutions, because in general strong solutions may not exist. However, this is
the price to pay for applying an elementary method instead of a more sophisticated method
like Kruzhkov’s doubling of variables.

1.1. Outline

In Section 2 existence of strong solutions to (1) is established for initial values u0 ∈ X ∩ Y
under the main additional assumption that

〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2H∗ (3)

holds for all u∗, v∗ ∈ Y∗ with a constant c > 0, where X ∩ Y ⊂ H ⊂ Y is an interpolation triple
with a Hilbert space H. This assumption is equivalent to strong monotonicity of B−1 as an
operator B−1 : Y∗ ⊂ H∗ → H. Note that there are also other situations which allow to prove
the existence of certain types of strong solutions (see [10]), but here we concentrate on this
situation.

For the concrete equation (2) existence of strong solutions can be guaranteed for regular
initial data and potential a = dφa, if b is not only assumed to be nondecreasing, but addition-
ally b−1 is assumed to be differentiable with a nonvanishing derivative at 0. Thus, b must not
be degenerate or singular at 0, but is still allowed to grow nonlinearly.

Uniqueness of strong solutions is shown in section 3 under the convexity assumption that
there is a C < ∞ such that ΦA + CΦB is convex for the potentials ΦA resp. ΦB of A resp. B.
Further, continuous dependence of strong solutions on the initial value and on the right hand
side is established within this abstract framework. However, before we start our discussion let
us mention two examples which illustrate that in general neither u nor Bu need to be unique.

1.2. Examples for non-uniqueness

The following examples illustrate in which way weak solutions of a doubly nonlinear reaction
diffusion equation (2) to an initial value may not be unique.

Example 1. Let A : W1,2(Ω)→ (W1,2(Ω))∗ be the negative of the one-dimensional Laplacian
on the interval Ω B (0, 1) under Neumann-boundary conditions ∂u/∂x = 0 on ∂Ω, and let
B : L2(Ω)→ L2(Ω) be the superposition operator (Bu)(x) B b(u(x)) induced by

b(u) B


u + 1, if u ≤ −1,
0, if − 1 ≤ u ≤ 1,
u − 1, if u ≥ 1.

Obviously, B is a monotone potential operator, which is coercive, bounded and continuous.
However, the equation ∂Bu/∂t+Au = 0 does not have a unique solution u to the zero function
as initial value of Bu. In fact, if u(t, x) is an arbirary continuous function independent of x
which attains values between −1 and 1, then Au(t) = 0 and Bu(t) = 0 for every t. Thus, there
are many weak solution u to the the initial value 0 of Bu.
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Non-uniqueness of u may not be considered as a problem if at least Bu is unique. How-
ever, in general it may even happen that Bu is not unique, as the following example shows,
where B is multivalued (so that B−1 is not strictly monotone), see also [8, Remark 4].

Example 2. Let Ω B (0, 1), let B : L2(Ω)→ L2(Ω) be the superposition operator induced by
the multivalued mapping

b(u) B


u − 1, if u < 0,
[−1, 1], if u = 0,
u + 1, if u > 0,

and let A : W1,2
0 (Ω) → (W1,2

0 (Ω))∗ be the operator 〈Au, w〉 =
∫

Ω
uxwx + b(u)wx dx, i.e. Au =

−uxx − vx on smooth functions with v(t, x) ∈ b(u(t, x)) under Dirichlet conditions u = 0 on
∂Ω. Then one solution to the initial value 1 of Bu is given by u B 0 and v B 1 ∈ Bu, but for
every C ≥ 1 and every C1-function h on [0,∞) with values between 0 and 2 also u B 0 and

v(t, x) B

1, if 0 ≤ t + x ≤ C,
1 − h(t + x −C), if t + x ≥ C,

define a solution with v(0) = 1 due to vt − vx = 0 (and uxx = 0).

§2. Existence of strong solutions

In this section the existence of strong solutions to the abstract equation (1) is discussed by
energy methods for the case that B−1 exists and is strongly monotone as an operator on some
intermediate Hilbert space. However, first let us formulate standard structural assumptions
which allow to prove existence of weak solutions to (1) :

(A1) X and Y are reflexive Banach spaces with a dense and separable intersection X ∩ Y 1,
which is compactly embedded into Y .

(A2) B : Y → Y∗ is a continuous strictly monotone potential operator, which is coercive and
satisfies the growth condition ‖Bu‖Y∗ ≤ C(1 + ‖u‖m−1

Y ) with a constant C < ∞ and a
parameter 1 < m < ∞.

(A3) A : X → X∗ is a pseudomonotone operator, which satisfies the semicoercivity condition
〈Au, u〉 ≥ c1‖u‖

p
X − c2‖u‖X − c3‖Bu‖m

′

Y∗ and has growth ‖Au‖X∗ ≤ C(‖u‖Y )(1 + ‖u‖p−1
X )

for a parameter 1 < p < ∞ with constants c1 > 0, c2, c3 and an increasing function
C : R+

0 → R+
0 .

If f ∈ Lp′ (0,T ; X∗)+ L1(0,T ; Y∗) is an inhomogeneity, then under the assumptions (A1)-(A3)
a weak solution u exists to an initial value u0 ∈ Y in the sense that u ∈ Lp(0,T ; X)∩L∞(0,T ; Y)
is such that Bu ∈ L∞(0,T ; Y∗) has the initial value Bu0 ∈ Y∗ and a weak derivative ∂Bu/∂t ∈
Lp′ (0,T ; X∗) + L1(0,T ; Y∗) satisfying (1) as an equation in (X ∩ Y)∗ for a.e. t ∈ (0,T ), or
equivalently as an equation in Lp′ (0,T ; X∗) + L1(0,T ; Y∗).

1i.e. there are continuous linear embeddings of X and Y into a complete locally convex space Z such that the
intersection X ∩ Y within Z is dense in X resp. Y w.r.t. the norms ‖ · ‖X resp. ‖ · ‖Y , and that X ∩ Y is separable w.r.t.
the norm ‖ · ‖X + ‖ · ‖Y .
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Here we are interested in a slightly different case, where the inhomogeneity f satisfies
f ∈ Lp′ (0,T ; X∗)+L2(0,T ; H∗) for an intermediate Hilbert space H of the inclusion X∩Y ⊂ Y
given by (A1). More precisley, we require that X ∩ Y ⊂ H ⊂ Y is an interpolation triple,
i.e. there is a θ ∈ [0, 1] and a constant C < ∞ such that ‖u‖H ≤ C‖u‖θX‖u‖

1−θ
Y for every

u ∈ X ∩ Y . In this case, under the additional assumptions that B satisfies the coercivity
condition ‖u‖Y ≤ C(1 + ‖Bu‖m

′

Y∗ ) with a constant C < ∞ and p ≥ 2 or 1/2 ≤ θ ≤ p/2 hold,
there exists a weak solution of (1) in the following sense:

Definition 1. A function u ∈ Lp(0,T ; X) ∩ L∞(0,T ; Y) is called a weak solution of equation
(1) to the initial value u0 ∈ Y , if Bu ∈ L∞(0,T ; Y∗) has the initial value Bu0 ∈ Y∗ and a
weak derivative ∂Bu/∂t ∈ Lp′ (0,T ; X∗) + L2(0,T ; H∗) satisfying equation (1) as an equation
in (X ∩ H)∗ for a.e. t ∈ (0,T ), or equivalently as an equation in Lp′ (0,T ; X∗) + L2(0,T ; H∗).

The existence of weak solutions in the sense of Definition 1 can even be generalised to the
case where f = f (t, u) is a nonlinearity. In fact, if B satisfies the stronger coercivity condition
‖u‖Y ≤ C(1 + ‖Bu‖m

′−1
Y∗ ) with a constant C < ∞ and f = f (t, u) is a nonlinearity which

satisfies the growth condition ‖ f (t, u)‖H∗ ≤ C(γ(t) + ‖u‖(m−1)(1−θ)
Y ) with a constant C < ∞ and

a function γ ∈ L2(0,T ), then there still exist weak solutions in the sense of Definition 1.
Now we are interested in assumptions, which guarantee that weak solutions even have

better properties than those mentioned in Definition 1. The following theorem formulates
such assumptions in the special case that B−1 : Y∗ ⊂ H∗ → H is strongly monotone, see [10].

Theorem 1. Additionally to the structural assumptions (A1)-(A3) assume that H is a Hilbert
space such that X ∩ Y ⊂ H ⊂ Y is an interpolation triple and p ≥ 2 or 1/2 ≤ θ ≤ p/2 hold.
Further, assume that

• B−1 : Y∗ → Y is C1, satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m
′−1

Y∗ ) with a constant C < ∞, and is
strongly monotone in the sense that 〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2H∗ for all u∗, v∗ ∈ Y∗ with a
constant c > 0 2,

• A : X → X∗ is a potential operator such that the intersection of Y and the domain
D(A) B {u ∈ X | Au ∈ H∗} of A w.r.t. H∗ is dense in X ∩ Y,

• f is an inhomogeneity in L2(0,T ; H∗) or a nonlinearity f = f (t, u) such that g(t, u) B
dB−1(Bu)∗ f (t, u) satisfies the growth condition ‖g(t, u)‖H ≤ C

(
γ(t) + ‖u‖(m−1)(1−θ)

Y

)
with

a constant C < ∞ and a function γ ∈ L2(0,T ).

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of equation (1) in
the sense that u is a weak solution which additionally satisfies u ∈ L∞(0,T ; X), and Bu ∈
L∞(0,T ; Y∗) and a weak derivative ∂Bu/∂t ∈ L2(0,T ; H∗).

Let us shortly sketch the proof of this theorem given in [10].

Proof. Use a Faedo-Galerkin method and consider the restrictions

∂Bkuk

∂t
+ Akuk = fk (4)

of equation (1) to an increasing sequence of finite-dimensional subspaces Wk ⊂ D(A) ∩ Y ⊂
X ∩ Y , where Ak, Bk are the restrictions of A, B to Wk and fk is a continuous approximation

2This condition is equivalent to strong monotonicity of B−1 as an operator B−1 : Y∗ ⊂ H∗ → H ⊂ Y , i.e. to
〈u∗ − v∗, B−1u∗ − B−1v∗〉 ≥ c‖u∗ − v∗‖2H∗ for arbitrary u∗, v∗ ∈ Y∗ with a constant c > 0.
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of f with values in Wk. Due to (A1)-(A3) short-time existence of solutions uk of this ODE
to initial values u0k ∈ Wk can be guaranteed. Test (4) by uk to obtain from the semicoercivity
condition on A the a priori estimate

Φ̂B(uk(t)) +

(
c1 −

ε p

p

) ∫ T

0
‖uk(s)‖pX ds

≤ Φ̂B(u0k) +
1

p′ε p′ |c2|
p′T +

∫ t

0
c3‖Bkuk(s)‖m

′

Y∗ ds +

∫ t

0
‖ fk(s)‖H∗‖u‖H ds ,

where Φ̂B(u) = Φ∗B(Bu) denotes the Legendre transform of the convex potential ΦB of B in
dependence of Bu, ε > 0 is sufficiently small and the energy identity d

dt Φ̂B(u) = 〈 ∂Bu
∂t , u〉

was used. As a consequence of the growth condition ‖Bu‖Y∗ ≤ C(1 + ‖u‖m−1
Y ) we have

‖Bu‖m
′

Y∗ ≤ C(1 + Φ̂B(u)), as a consequence of the coercivity condition ‖u‖Y ≤ C(1 + ‖Bu‖m
′

Y∗ )
we have ‖u‖Y ≤ C(1 + Φ̂B(u)), and the assumptions p ≥ 2 or 1/2 ≤ θ ≤ p/2 allow to estimate
the last term by C

∫ t
0 (1 + Φ̂B(u)) ds in the case that f ∈ L2(0,T ; H∗) is an inhomogeneity. In

the case that f = f (t, u) is a nonlinearity apply inequality (3) to u∗ B Bu, v∗ B f (t, u), to
obtain

c‖ f (t, u)‖2H∗ ≤ 〈 f (t, u), dB−1(Bu) f (t, u)〉 = 〈 f (t, u), g(t, u)〉 ≤ ‖ f (t, u)‖H∗‖g(t, u)‖H

so that by the assumptions on g the growth condition

‖ f (t, u)‖H∗ ≤
1
c
‖g(t, u)‖H ≤

C
c

(
γ(t) + ‖u‖(m−1)(1−θ)

Y

)
is valid and the last term can again be estimated by C

∫ t
0 (1 + Φ̂B(u)) ds. Thus, Gronwall’s

lemma allows to deduce uniform bounds w.r.t. k of uk in L∞(0,T ; Y) ∩ Lp(0,T ; X), Buk in
L∞(0,T ; Y∗) and Auk in Lp′ (0,T ; X∗). Due to these bounds a weakly convergent subsequence
uk ⇀ u can be extracted. Finally, time-compactness and pseudomonotonicity allow to con-
clude that u is a weak solution of (1).

To obtain a strong solution we would like to test the approximate equation (4) by ∂uk/∂t,
but (4) only guarantees the existence of ∂Bkuk/∂t ∈ C(0,T ; W∗) and not the existence of
∂uk/∂t. However, as B−1 is assumed to be continuously differentiable, the chain rule implies
the existence of

∂u
∂t

= dB−1(Bu)
∂Bu
∂t

. (5)

Due to Wk ⊂ D(A) and fk ∈ L2(0,T ; H∗) a solution uk ∈ C1(0,T ; Wk) of the approximate
equation (4) satisfies ∂Bkuk/∂t ∈ H∗ for a.e. t. Especially, inequality (3) can be applied to
u∗ B Buk(t), v∗ = ∂Buk(t)/∂t, to obtain〈

∂Bkuk

∂t
,
∂uk

∂t

〉
≥ c

∥∥∥∥∥∂Buk

∂t

∥∥∥∥∥2

H∗
.

Further, as g(t, u) B dB−1(Bu)∗ f (t, u) satisfies ‖g(t, u)‖H ≤ C(γ(t) + ‖u‖(m−1)(1−θ)
Y ) with a

constant C < ∞ and a function γ ∈ L2(0,T ), and as a uniform bound of uk in L∞(0,T ; Y)
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w.r.t. k has already been established, we can conclude that g(·, uk(·)) is uniformly bounded in
L2(0,T ; H). Thus, a test of (4) by ∂uk/∂t yields(

c −
ε2

2

) ∥∥∥∥∥∂Buk

∂t

∥∥∥∥∥2

H∗
+

d
dt

ΦA(uk) ≤
1

2ε2 ‖g(·, uk(·))‖2H ≤ C

with a constant C < ∞ for sufficiently small ε > 0 . Using this differential inequality uniform
a priori estimates w.r.t. k of ∂Buk/∂t in L2(0,T ; H∗) and uk in L∞(0,T ; X) can be established.
Therefore, additionally we are able to guarantee weak∗ convergence of a subsequence of the
approximate solutions uk in L∞(0,T ; X) and weak convergence of ∂Buk/∂t in L2(0,T ; H∗), It
is simple to verify that the weak limits of these sequences are identical with their expected
values u and ∂Bu/∂t, hence the proof of Theorem 1 is finished. �

As a consequence of Theorem 1 we have Bu ∈ W1,2(0,T ; H∗) ⊂ C(0,T ; H∗) for strong
solutions due to Bu ∈ L∞(0,T ; Y∗) ⊂ L2(0,T ; H∗) and ∂Bu/∂t ∈ L2(0,T ; H∗). Further, as
∂Bu/∂t and f lie in L2(0,T ; H∗), also Au = f − ∂Bu/∂t lies in L2(0,T ; H∗). Therefore,
equation (1) holds as an equation in H∗ for a.e. t ∈ [0,T ], and thus u(t) ∈ D(A) for a.e.
t ∈ [0,T ]. Let us explicitly mention this observation as a corollary.

Corollary 2. Under the assumptions of Theorem 1 the relation Au ∈ L2(0,T ; H∗) holds for a
strong solution u, and equation (1) is valid as an equation in H∗ for a.e. t ∈ (0,T ).

The following example shows how Theorem 1 can be applied to the concrete problem (2).

Example 3. Let Ω ⊂ Rn be a bounded domain and let 1 < m < 2. Consider the space
Y B Lm(Ω) so that H B L2(Ω) is continuously embedded into Y . Assume that φb : R→ R is a
convex function which behaves like (C1/2)|u|2+o(|u|2) as |u| → 0 and like (C2/m)|u|m+ω(|u|m)
as |u| → ∞. Denote by b B dφb the derivative of φb and by B : Y → Y∗ the corresponding
superposition operator. Then b−1(u) behaves like C1

−1u as |u| → 0 and like C1−m′
2 |u|m

′−2u as
|u| → ∞, so that (b−1)′(u) behaves like C1

−1 as |u| → 0 and like (m′ − 1)C1−m′
2 |u|((2−m)/(m−1))

as |u| → ∞. Especially, pointwisely (b−1)′(u) ≥ c for a constant c > 0 so that

c‖v∗‖22 =

∫
Ω

c|v∗|2 dx ≤
∫

Ω

(b−1)′(u∗)|v∗|2 dx

and as a consequence

〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖22

for all u∗, v∗ ∈ Y∗, i.e. inequality (3) is valid. Note that although b is not degenerate or singular
at u = 0, the operator B can not be realized as an operator on H as b grows like C|u|m−1 as
|u| → ∞. Thus (2) is not degenerate or singular at u = 0, but still should be considered as an
equation for u ∈ Y and not for u ∈ H.

Finally, assume that a has a p-coercive potential, 1 < p < ∞, e.g. a(∇u) = |∇u|p−2∇u, and
consider the corresponding operator A : W1,p

0 (Ω) → (W1,p
0 (Ω))∗, 〈Au, v〉 B

∫
Ω

a(∇u) · ∇u dx,
so that (2) is solved under Dirichlet boundary conditions. For this choice X B W1,p

0 (Ω), and
m < p∗ has to be required to have a compact embedding X∩Y ⊂ Y . Now Gagliardo-Nirenberg
inequalities

‖u‖L2 ≤ ‖∇u‖θLp∗ ‖u‖
1−θ
Lm
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are valid for 1/2 = θ/p∗ + (1 − θ)/m, 1/p∗ ≤ 1/2, where the parameter θ of the interpolation
triple X ∩ Y ⊂ H ⊂ Y is given by θ = ((2 − m)p∗)/(2(p∗ − m)). Especially, in the case p < 2
the inequality 1/2 ≤ θ ≤ p/2 is valid iff

(
(2 − p)p∗

)
/ (p∗ − p) ≤ m ≤ p∗/(p∗ − 1). For

example, if n = 3 and p is slightly smaller than 2, then already m < 6/5 has to be required.
Further, the right hand side f of (2) and g B dB−1(Bu)∗ f (u) are related by

f (t, x, u) =
g(t, x, u)
(b−1)′(u)

, (6)

where (b−1)′ is bounded away from zero. Thus, if g(t, x, u) is a pregiven nonlinearity such
that |g(t, x, u)| ≤ C

(
γ(t, x) + |u|(m−1)(1−θ)

)
, then by (6) a corresponding right hand side f can

be defined such that the assumptions of Theorem 1 are satisfied. Thus, under the former
conditions there exists a strong solution of (2) to initial values u0 ∈ W1,p

0 (Ω) ∩ Lm(Ω).
Finally, it can be shown that inhomogeneities

f ∈ L
2
(
(m(m−1)2(p∗−2))

/(
2(2−m)(p∗−m)

))′ (
0,T ; L

(
2m(m−1)

)/(
(m+1/2)2−17/4

)
(Ω)

)
can be represented via (6) by a function g(t, x, u) = f (t, x)(b−1)′(u) satisfying the growth
condition provided that

√
17 − 1

2
< m ≤ 2 and p∗ >

2m(m2 − m − 1)
m3 − 2m2 + 3m − 4

in the case p < n.

§3. Uniqueness of strong solutions

Under the assumptions of Theorem 1 equation (1) admits a strong solution to an initial value
u0 ∈ X∩Y in the sense that u ∈ L∞(0,T ; X∩Y) is a weak solution such that Bu ∈ L∞(0,T ; Y∗)
has a weak derivative ∂Bu/∂t ∈ L2(0,T ; H∗), and especially Au ∈ L2(0,T ; H∗). The following
theorem guarantees uniqueness of strong solutions and continuous dependence on the initial
value and the right hand side.

Theorem 3. Additionally to the assumptions of Theorem 1 suppose that there is a constant
C < ∞ such that

〈Au − Av, u − v〉 + C〈Bu − Bv, u − v〉 ≥ 0 for all u, v ∈ X ∩ Y and (7)

〈Bu − Bv, dB−1(Bu)Au − dB−1(Bv)Av〉 + C〈Bu − Bv, u − v〉 ≥ 0 for all u, v ∈ D(A) ∩ Y , (8)

where D(A) = {u ∈ X | Au ∈ H∗} denotes the domain of A w.r.t. H∗. Then the following
statements are valid:

• If f = 0, then strong solutions of equation (1) are unique.

• If f ∈ L1(0,T ; Y∗) and dB−1 : Y∗ ⊂ H → L(Y∗,H) is Lipschitz continuous, then strong
solutions of equation (1) are unique and Y 3 u0 7→ Bu ∈ C(0,T ; H∗) is continuous.

• If dB−1 and B−1 are Lipschitz continuous, then Y × L1(0,T ; Y∗) 3 (u0, f ) 7→ Bu ∈
C(0,T ; H∗) is continuous.
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Remark 1. Note that inequality (7) is equivalent to the convexity of ΦA + CΦB on X ∩ Y ,
while inequality (8) is equivalent to the convexity of ΦA ◦ B−1 + CΦ∗B on B(D(A)∩ Y), where
Φ∗B is the Legendre transform of ΦB and hence a potential of B−1.

Proof. Assume that u, v are strong solutions of

∂Bu
∂t

+ Au = f1 resp.
∂Bv
∂t

+ Av = f2 .

To prove uniqueness, test the difference of these equations by u− v and integrate the resulting
equation over [0, t] to obtain∫ t

0

〈
∂

∂s
(Bu − Bv), u − v

〉
ds +

∫ t

0
〈Au − Av, u − v〉 ds =

∫ t

0
〈 f1 − f2, u − v〉 ds .

Now 〈
∂

∂s
(Bu − Bv), u − v

〉
=

d
dt
〈Bu − Bv, u − v〉 −

〈
Bu − Bv,

∂

∂s
(u − v)

〉
and thus∫ t

0

〈
∂

∂s
(Bu − Bv), u − v

〉
ds =

(
〈Bu − Bv, u − v〉

)
(t) −

(
〈Bu − Bv, u − v〉

)
(0)

−

∫ t

0

〈
Bu − Bv, dB−1(Bu)( f1 − Au) − dB−1(Bv)( f2 − Av)

〉
ds

due to ∂u/∂t = dB−1(Bu)∂Bu/∂t = dB−1(Bu)( f1−Au) and similar for v. Hence, if f1 = 0 = f2,
then

(〈Bu − Bv, u − v〉)(t)

=
(
〈Bu − Bv, u − v〉

)
(0) −

∫ t

0
〈Au − Av, u − v〉 ds −

∫ t

0
〈Bu − Bv, dB−1(u)Au − dB−1(v)Av〉 ds

≤
(
〈Bu − Bv, u − v〉

)
(0) + 2C

∫ t

0
〈Bu − Bv, u − v〉 ds

due to the assumptions (7) and (8). By Gronwall’s lemma(
〈Bu − Bv, u − v〉

)
(t) ≤

(
〈Bu − Bv, u − v〉

)
(0) exp(2Ct) ,

so that u(0) = v(0) implies
(
〈Bu−Bv, u− v〉

)
(t) = 0 for a.e. t ∈ [0,T ] and hence u = v by strict

monotonicity of B.
If f1 = f2 =: f ∈ L1(0,T ; Y∗), then

(〈Bu − Bv, u − v〉)(t)

=
(
〈Bu − Bv, u − v〉

)
(0) −

∫ t

0
〈Au − Av, u − v〉 ds

−

∫ t

0
〈Bu − Bv, dB−1(u)Au − dB−1(v)Av〉 ds +

∫ t

0
〈Bu − Bv, (dB−1(Bu) − dB−1(Bv)) f 〉 ds

≤
(
〈Bu − Bv, u − v〉

)
(0) + 2C

∫ t

0
〈Bu − Bv, u − v〉 ds + M

∫ t

0
‖Bu − Bv‖2H∗‖ f ‖Y∗ ds
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with the Lipschitz constant M of dB−1 : Y∗ ⊂ H∗ → L(Y∗,H). By strong monotonicity of
B−1 : Y∗ ⊂ H∗ → H the inequality ‖Bu − Bv‖2H∗ ≤ c−1〈Bu − Bv, u − v〉 is valid, hence by
Gronwall’s lemma(

〈Bu − Bv, u − v〉
)
(t) ≤

(
〈Bu − Bv, u − v〉

)
(0) exp(2CT +

M
c

∫ T

0
‖ f ‖Y∗ ds) .

Especially, again by strong monotonicity of B−1

c‖Bu(t) − Bv(t)‖2H∗ ≤ ‖Bu(0) − Bv(0)‖Y∗‖u(0) − v(0)‖Y exp
(
2CT +

M
c

∫ T

0
‖ f ‖Y∗ ds

)
,

so that Y 3 u(0) 7→ Bu ∈ C(0,T ; H∗) is continuous.
Finally, if f1, f2 ∈ L1(0,T ; Y∗), then the additional terms may be estimated by∫ t

0
〈 f1 − f2, u − v〉 ds ≤

L
2

∫ t

0
‖ f1 − f2‖Y∗ (1 + ‖Bu − Bv‖2H∗ ) ds ,

with the Lipschitz constant L of B−1 : Y∗ ⊂ H∗ → Y and by∫ t

0
〈Bu − Bv, dB−1(Bu) f1 − dB−1(Bv) f2〉 ds

≤ M
∫ t

0
‖Bu − Bv‖2H∗‖ f1‖Y∗ ds +

MK
2

∫ t

0
(1 + ‖Bu − Bv‖2H∗ )‖ f1 − f2‖Y∗ ds ,

with a bound K of dB−1(Bv) in C(0,T ; L(Y∗,H)). Thus,(
〈Bu − Bv, u − v〉

)
(t) ≤

((
〈Bu − Bv, u − v〉

)
(0) +

MK + L
2

∫ T

0
‖ f1 − f2‖Y∗ ds

)
exp

(
2CT +

M
c

∫ T

0
‖ f1‖Y∗ ds +

MK + L
2c

∫ T

0
‖ f1 − f2‖Y∗ ds

)
,

and especially

c2‖Bu(t) − Bv(t)‖2H∗ ≤
(
‖Bu(0) − Bv(0)‖Y∗‖u(0) − v(0)‖Y +

MK + L
2

∫ T

0
‖ f1 − f2‖Y∗ ds

)
exp

(
2CT +

M
c

∫ T

0
‖ f1‖Y∗ ds +

MK + L
2c

∫ T

0
‖ f1 − f2‖Y∗ ds

)
,

so that Y × L1(0,T ; Y∗) 3 (u(0), f ) 7→ Bu ∈ C(0,T ; H∗) is continuous. �

§4. Conclusion

In this article strong solutions to abstract doubly nonlinear evolution equations were discussed
under the assumption that B−1 is strongly monotone on some intermediate Hilbert space. In
this case, strong solutions behave similar as strong solutions to nonlinear evolution equations
∂u/∂t + Au = f . Particularly, under the two convexity conditions (7) and (8) it is possible
to give an elementary proof of uniqueness and to obtain continuous dependence on the data.
However, for degenerate resp. singular problems where merely weak solutions exist it does
not seem possible to avoid more sophisticated methods like Kruzhkov’s doubling of variables.
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LEGENDRE TRANSFORM OF SAMPLED
SIGNALS BY FRACTAL METHODS

María Antonia Navascués and María Victoria Sebastián
Abstract. The fractal interpolation functions provide an alternative to the classical meth-
ods of study of experimental variables. They have been proved useful in many applica-
tions, from image compression to signal processing.

The spectral methods (in terms of trigonometric polynomials) are suitable to model
periodic or near periodic phenomena. However some experimental variables are far from
periodicity. In this paper we present a method to compute Legendre Transform and series
expansions for sampled signals by means of fractal methods.

The periodic Fourier case is generalized considering polynomial orthogonal series.
Pointwise, uniform and mean-square convergences of the sums are studied and weak
sufficient conditions for these types of approximation are found. The procedures ensure a
good approach whenever the sampling frequency and the order of the sums are properly
chosen.

Keywords: Fractal interpolation functions, orthogonal expansions, Legendre series.
AMS classification: 28A80, 65D05, 41A10, 58C05.

§1. Introduction

We present a method of computing a Legendre expansion for a sampled signal, with the
single hypothesis of continuity. The calculus is made via an affine fractal interpolation of the
experimental variable. For a suitable election of the scale vector, the pointwise, uniform and
mean-square convergences of the expansion obtained are proved. The Legendre Transform
provides a formula for the power of the signal, where the hypothesis of periodicity is not
needed.

§2. Affine fractal interpolation functions

Let t0 < t1 < · · · < tN be real numbers, and I = [t0, tN] the closed interval that contains them.
Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, . . . ,N} be given. Set In = [tn−1, tn] and
let Ln : I → In, n ∈ {1, 2, . . . ,N} be contractive homeomorphisms such that:

Ln(t0) = tn−1, Ln(tN) = tn (1)

|Ln(c1) − Ln(c2)| ≤ l |c1 − c2| ∀ c1, c2 ∈ I (2)

for some 0 ≤ l < 1.
Let −1 < αn < 1, for n = 1, 2, ...,N, F = I × R and N continuous mappings Fn : F → R

be given satisfying:
Fn(t0, x0) = xn−1, Fn(tN , xN) = xn, (3)
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where n = 1, 2, ...,N and
|Fn(t, x) − Fn(t, y)| ≤ |αn| |x − y| (4)

with t ∈ I, x, y ∈ R.
Now define functions

wn(t, x) = (Ln(t), Fn(t, x))

for n = 1, 2, . . . ,N.

Theorem 1 (Cf. [1]). The iterated function system (IFS) {F, wn : n = 1, 2, ...,N} defined
above admits a unique attractor G. G is the graph of a continuous function f : I → R which
obeys f (tn) = xn for n = 0, 1, 2, . . . ,N.

The previous function is called a fractal interpolation function (FIF) corresponding to{
(Ln(t), Fn(t, x))

}N
n=1 and it is unique satisfying the functional equation [1]:

f (t) = Fn(L−1
n (t), f ◦ L−1

n (t)) (5)

for n = 1, 2, ...,N, t ∈ In = [tn−1, tn].

The most widely studied fractal interpolation functions so far are defined by the IFSLn(t) = ant + bn,

Fn(t, x) = αnx + qn(t),
(6)

where
an =

tn − tn−1

tN − t0
and bn =

tN tn−1 − t0tn
tN − t0

; (7)

αn is called a vertical scaling factor of the transformation wn and ᾱ is the scale vector of the
IFS, ᾱ = (α1, α2, . . . , αN). In this case, the equation (5) becomes

f (t) = αn f ◦ L−1
n (t) + qn ◦ L−1

n (t) (8)

for n = 1, 2, . . . ,N, t ∈ In = [tn−1, tn].
If qn(t) is a line, the FIF is termed affine (AFIF). In this case, by Eq. (3), qn(t) = qn1t+qn0,

where
qn1 =

xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
, (9)

qn0 =
tN xn−1 − t0xn

tN − t0
− αn

tN x0 − t0xN

tN − t0
. (10)

These approximants are discussed in the references [4], [5], [6] and [7]. In [4] and [7], several
ways of obtaining the scaling factors from the data are presented.

2.1. Rate of approximation
We consider the following notation, for a continuous function g defined on a compact inter-
val I,

‖g‖∞ = max{|g(t)| : t ∈ I}
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Figure 1: Graph of an affine fractal interpolation function for the set of data points
{(−1, 8), (−3/5, 7), (−1/5, 7), (1/5, 4), (3/5, 3), (1, 7)} and scale factors αn = 0.3 for n =

1, 2, . . . , 5

The modulus of continuity of g is defined as

ωg(δ) = sup{|g(t) − g(t′)| ; |t − t′| ≤ δ, t, t′ ∈ I}

By g ∈ Lip β (g is Hölder-continuous with exponent β) we mean that there exists M ≥ 0 such
that, for all t, t′ ∈ I,

|g(t) − g(t′)| ≤ M|t − t′|β.

Lemma 2. g ∈ Lip β if and only if ωg(δ) ≤ Kδ β.

Proof. See [3]. �

Proposition 3. If x is a continuous function providing the data {(tn, xn)}Nn=0 with a constant
step h = tn − tn−1, and f is the corresponding AFIF with scale vector ᾱ,

‖x − f ‖∞ ≤ wx(h) +
2|ᾱ|∞

1 − |ᾱ|∞
‖x‖∞, (11)

where wx(h) is the modulus of continuity of x(t).

Proof. Let g0 be the polygonal with vertices {(tn, xn)}Nn=0. One has

‖x − f ‖∞ ≤ ‖x − g0‖∞ + ‖g0 − f ‖∞.

The first term is bounded in Lemma 3.9 of [7] and the second in Proposition 5.1 of [6]. Thus

‖x − g0‖∞ ≤ wx(h), (12)
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‖g0 − f ‖∞ ≤
2|ᾱ|∞

1 − |ᾱ|∞
Xmax,

where Xmax = max0≤n≤N{|xn|} and the result is deduced. �

§3. Legendre Transform

In the article [1], a recurrence formula for the computation of the moments Mm,

Mm =

∫
I
tm f (t) dt (13)

was given, for a function f defined by the general iterated function system (6). The formula
is expressed as

Mm =
1

(1 −
∑N

n=1 am+1
n αn)

m−1∑
k=0

(
m
k

)
Mk

N∑
n=1

ak+1
n αnbm−k

n + Qm

 (14)

where

Qm =

∫
I
tmQ(t) dt (15)

and
Q(t) = qn ◦ L−1

n (t) if t ∈ In (16)

Without loss of generality, we consider here the interval I = [−1, 1]. Let {pn}
∞
n=0 be

the system of normalized polynomials of Legendre. These functions are orthonormal with
respect to the inner product

( f , g) =

∫
I

f (t)g(t) dt. (17)

To compute the Fourier-Legendre coefficients of a FIF f with respect to this complete system,
we can proceed in the following way; if the n-th Legendre polynomial pn is

pn(t) =

n∑
m=0

dmtm,

the coefficients of f are

cn = ( f , pn) =

∫
I

f (t)pn(t) dt =

n∑
m=0

dm

∫
I
tm f (t) dt =

n∑
m=0

dmMm, (18)

where Mm are the moments defined in (13). The expansion of f in terms of Legendre poly-
nomials is

+∞∑
n=0

cn pn

and the sequence (cn) is the Legendre transform of f .
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§4. Power of the signal

The scalars cn enable the construction of the expansion

f ∼
∞∑

n=0

cn pn,

which is convergent in quadratic mean to f , that is to say, it is convergent with respect to the
L2-norm:

‖ f ‖2 =

(∫
I
| f (t)|2 dt

)1/2

To compute the convolution (in a wide sense) of two FIFs, we may use the Parseval’s identity:

( f , g) =

∫
I

f (t)g(t) dt =

∞∑
n=0

c f
n cgn, (19)

where c f
n and cgn are the Fourier coefficients of f and g respect to Legendre polynomials. The

power (or energy) of a signal is given by the Parseval’s equality as

P = ( f , f ) =

∫
I
| f (t)|2dt =

+∞∑
n=0

|cn|
2,

where cn are the coefficients of f .

Proposition 4. The error in the computation of the square root of the power is bounded by
the expression ∣∣∣P1/2

x − P1/2
f

∣∣∣ ≤ (
wx(h) +

2|ᾱ|∞
1 − |ᾱ|∞

‖x‖∞

) (
length(I)

)1/2
,

where Px is the power of the original continuous function x(t), P f is the power computed by
means of an AFIF f with scale vector α, and length(I) = (b − a) if I = [a, b].

Proof. The error in the square root of the power is given by∣∣∣P1/2
x − P1/2

f

∣∣∣ =
∣∣∣‖x‖2 − ‖ f ‖2∣∣∣ ≤ ‖x − f ‖2,

where ‖g‖2 =
(∫

I |g(t)|2 dt
)1/2. Moreover,

‖x − f ‖2 =

(∫
I
|x(t) − f (t)|2 dt

)1/2

≤ ‖x − f ‖∞
(
length(I)

)1/2
. (20)

Proposition 3 provides then the estimation of the statement. �
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§5. Convergence of the Legendre expansion

The next result proves the validity of using AFIFs to construct Legendre series expansions of
a real sampled signal, according to the procedure described in the Section 3.

Theorem 5. Let x ∈ C(I) be the original function providing the data. If we choose a fractal f
with scale vector ᾱh tending to zero as h→ 0, then the Legendre expansion defined by means
of f converges in quadratic mean to x as m→ ∞ and h→ 0.

Proof. Let S m f be the m-th partial sum of the Legendre series of f . Let us consider

‖x − S m f ‖2 ≤ ‖x − f ‖2 + ‖ f − S m f ‖2. (21)

By (20),
‖x − S m f ‖2 ≤ ‖x − f ‖∞(length(I))1/2 + ‖ f − S m f ‖2

and, by (11),

‖x − S m f ‖2 ≤ (length(I))1/2
(
wx(h) +

2|ᾱh|∞

1 − |ᾱh|∞
‖x‖∞

)
+ ‖ f − S m f ‖2.

The uniform continuity of x on I implies that limωx(h) = 0 as h tends to zero ([3]).
The second adding of (21) goes to zero as m tends to infinity due to the convergence in

quadratic mean of the Legendre series of f . �

Remark 1. The former theorem ensures the goodness of the procedure to obtain the power
whenever the step and the expansion order are suitably chosen.

In the following we study the pointwise and uniform convergence of the Legendre series.
We need two previous lemmas.

Lemma 6. Let f be a FIF defined by (6) with equally spaced tn and qn arbitrary satisfying
qn(t) ∈ Lip δn, 0 < δn ≤ 1. Let δ = min{δn : n = 1, 2, . . . ,N}. Then, if |ᾱ|∞ < hδ, f (t) ∈ Lip δ.

Proof. ([2]) �

Lemma 7. If f ∈ Cp[−1, 1] is such that f (p) ∈ Lip δ, then the m-th Legendre sum of f satisfies
the inequality

‖ f −
m∑

n=0

cn pn‖∞ ≤
K ln m

mp+δ−1/2 (22)

for p + δ ≥ 1/2.

Proof. ([9]) �

Theorem 8. The Legendre expansion of any affine fractal interpolation function f converges
pointwisely to f almost everywhere. If the scale vector of f is such that |ᾱ|∞ < h then the
Legendre expansion of f converges pointwise and uniformly to f on the interval I = [−1, 1].
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Proof. In the reference [8], the author proves that the Legendre series of any function f ∈
Lp(I) such that p > 4/3 converges pointwisely to f almost everywhere. This fact assures the
pointwise convergence for any AFIF a.e. (due to its continuity on I).

The mappings qn defined in the Section 2 are linear and, consequently, qn ∈ Lip 1. If
|ᾱ|∞ < h according to the Lemma 6, f (t) ∈ Lip 1. Now, we apply the Lemma 7 for p = 0 and
δ = 1 obtaining ∥∥∥∥∥ f −

m∑
n=0

cn pn

∥∥∥∥∥
∞

≤
K ln m
m1/2 . (23)

As m tends to infinity the Legendre sum tends to f and the uniform convergence is satisfied
on the interval I = [−1, 1]. �

Remark 2. This result is true for any step h.

Theorem 9. Let x(t) ∈ C(I) be the original function providing the data. If we choose |ᾱ|∞ < h,
then the Legendre expansion defined by means of an AFIF converges uniformly to x as m→ ∞
and h→ 0.

Proof. The uniform continuity of x(t) on I implies that limωx(h) = 0 as h tends to zero ([3]).
Let S m f be the m-th partial sum of the Legendre series of f . Let us consider

‖x − S m f ‖∞ ≤ ‖x − f ‖∞ + ‖ f − S m f ‖∞.

The first term goes to zero if h → 0 due to Proposition 3. The second term goes to zero as
well when m→ ∞ according to the previous theorem,

lim
m→∞

‖ f − S m f ‖∞ = 0

and the result is obtained. �

Remark 3. The former theorem ensures the goodness of the procedure to represent and eval-
uate the signal whenever the step and the expansion order are suitably chosen.
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SYMMETRY BREAKING BIFURCATIONS IN
A D4 SYMMETRIC HAMILTONIAN SYSTEM

Sławomir Piasecki, Roberto Barrio and Fernando Blesa
Abstract. In this work we investigate a numerical method to locate periodic orbits in
Hamiltonian systems of two degrees of freedom in a D4 and time reversal symmetric
Hamiltonian. The procedure to obtain the “skeleton” of periodic orbits is a combination
of several methods such as continuation theory, systematic search algorithm, Poincaré
surface of section and a fast chaos indicator, OFLI2. Those techniques are used to provide
a complete study of symmetry breaking bifurcations in a particular Hamiltonian system.
Moreover, we show in detail the evolution of some families of periodic orbits and an
analysis of new bifurcations.

Keywords: skeleton of periodic orbits, bifurcations, Poincaré surfaces of section, OFLI2.
AMS classification: 37G15, 37G25.

§1. Introduction

Periodic orbits (PO) and their stabilities are powerful tool in understanding of dynamical
systems. The studies of changes in the behavior of PO a can provide essential insights into
nature of simple integrable dynamics and complicated, chaotic dynamics. These knowledge
have considerably broad applications in physics (quantum eigen state studies [11]) and in
astrophysics (numerous problems of stellar and celestial dynamics, e.g., satellite orbits sta-
bilities, etc. Cf. [13]).

Bifurcation is nothing more than qualitative changes in the system’s asymptotic behavior
and the points where those changes appear are called Bifurcation Points (BP). Whereas, a
bifurcation of PO is when those changes affects on the stability of a equilibria or a PO. For
better understanding of the bifurcation we have to concentrate on the study of Periodic Orbits.
For instance at the period-doubling bifurcation a PO of period T jumps from stable to unstable
branch and simultaneously a new stable PO of period 2T is created.

A symmetry breaking bifurcation, appears when some perturbation with less symmetry
is added to symmetric system. In this note we consider the quartic homogeneous potential
system having a general form

H =
1
2

(X2 + Y2) +
1
4

(x4 + y4) + αx2y2 + β(x2 + y2), (1)

in terms of the Cartesian coordinates x, y and their conjugate momenta X,Y , α, β ∈ R. This
system is characterized by discrete symmetries and it is invariant under a rotation by π/4
(Fig. 1). This system was studied e.g. in [10] to find soliton solution in three space dimensions
and also in [7], where a direct method to identify integrable N-degree of freedom Hamiltonian
systems was described. The existence of large regions of chaotic orbits in parameter space in
the neighborhood of the degenerate bifurcation point was reported in [1].
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Figure 1: Contour plot of the potential

We choose this Hamiltonian system to create skeleton of periodic orbits and investigate
connection between them. Therefore, we set α = 1/4, β = −1, hence

H =
1
2

(X2 + Y2) +
1
4

(x2 + y2)2 − x2 − y2 −
1
4

x2y2. (2)

The dynamics of the Takens-Bogdanov bifurcation with D4 symmetry was studied by Ruck-
lidge [15], and he founded that a symmetry-breaking, period-doubling bifurcation and chaotic
sets with five symmetry types allows a quantitative description of the bifurcation sequence
were stability is assigned from one subspace to the another.

This Hamiltonian system (2) can be explored for the largest number of orbits. For in-
stance, at Poincaré surface of section our computations include up to 70 × 70 = 4900 orbits,
however with chaos indicator we compute even with 700 × 700 = 562500 orbits for different
energy E.

§2. Numerical techniques

Our goal was to find families of periodic orbits and to create the skeleton of periodic orbits
in the Hamiltonian system with D4, and time-reversal symmetries. For that we use set of
numerical techniques that are introduced in this section.

First tool is based on continuation theory implemented in the software AUTO created by
[9], that handles continuation and bifurcation problems in ordinary, differential equation [14].
Not only it prevents the continuation of the solution curve irrespective of the direction of this
curve, but also it allows to detect and follow vertical solution branches. A disadvantage of
this technique is that initial computation requires a well defined periodic orbit, without it we
are not able to obtain the complete family of periodic orbits nor bifurcations points on it. For
further studies two families were chosen (Fig. 5).

To define initial condition systematic search algorithms were used [5]. This technique
was developed based on the Brent’s method and the Taylor series method that permits to
compute the orbits using extended precision. This technique contains several steps, starting
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with computing of the Poincaré map. The manifold was chosen to be transverse to all orbits,
therefore we choose y = 0, ẋ = 0 and ẏwas obtained from Hamiltonian constant. Considering
an orbit which starts at position perpendicular to the x-axis(

x(0), y(0), ẋ(0), ẏ(0)
)

= (x0, 0, 0, ẏ(0)), (3)

and crosses the x-axis again perpendicularly, then the orbit is closed and symmetric. We de-
fine a new cross at the half period T of the orbit which is perpendicular to the x-axis. Next
step in the method is giving a mesh in the parameter and variable space (x −H plane). Com-
plete set of initial conditions is specified by a value of x and H . By integrating numerically
each set of initial conditions we obtain Poincaré map for a given multiplicity (for more details
see, [5]).

Next technique that was used in this work is chaos indicator OFLI2, that is an interest-
ing alternative to the standard Poincaré sections, to distinguish among periodic, regular and
chaotic orbits [4]. With the second order variational equations, numerical ODE integrator
and a specially developed Taylor method [3] gives a fast and accurate numerical integration.
The OFLI2 is looking for a set of initial conditions where we may expect strong dependence
on initial conditions. The OFLI2 indicator at the final time t f is given by

OFLI2 B sup
0<t<t f

log
∥∥∥∥∥{δy(t) +

1
2
δ2y(t)

}⊥∥∥∥∥∥, (4)

where δy(t) and δ2y(t) are the first and second order sensitivities with respect to carefully
chosen initial vectors and y⊥ stands for the component of y orthogonal to the flow [4]. The
above description gives us the value of the OFLI2 for a particular orbit for a given set of initial
conditions. The OFLI2 picture is describing the global dynamical properties of the system
when Poincaré section does only for local multiplicity.

In Fig. 3 we compare the evolution of the OFLI2 for the system with energy E = 2.0
and E = 2.5 on the surface y = 0, with Poincaré section. Note that OFLI2 gives much more
information than the Poincaré section and locates the periodic orbits and the chain of regular
islands inside the chaotic area (see magnification), where the Poincaré maps instead gives a
cloud of points.

§3. Bifurcation

In this section we present a study of the bifurcation points of the dynamical system using
the Monodromy Method ([2, 8]). 4 × 4 matrix (M) provides full information about periodic
trajectories and can be represented as a first order variational equation

Ṁ = K · Hess(H(q, p)) · M. (5)

For T = 0 we can simplify (5) to M(0) = I4, which is four dimensional identity matrix, K
is canonical sympletic matrix and Hess(H(u)) is the Hessian matrix of H with respect to u.
Characteristic multipliers of the fixed point (eigenvalues of M), can be use to study linear
stability of the system. From now on, the multipliers will be denoted by λi (i = 1 . . . 4) and
are in reciprocal pairs

λ1 λ2 = 1, λ3 λ4 = 1. (6)



192 Sławomir Piasecki, Roberto Barrio and Fernando Blesa

Figure 2: Typical bifurcations for local multiplicity m = 1.

That is possible, because system is Hamiltonian and the monodromy matrix M is a real sym-
plectic matrix. Also, complex eigenvalues are in conjugated pairs. In the work we are using
definition of stability index introduced by [12] in a form

κ B κ(M(T )) = Tr (M(T )) − 2, (7)

were three cases can be distinguished:

• |κ| < 0, periodic orbit is stable,

• |κ| > 0, periodic orbit is unstable (λ3, λ4 are real),

• |κ| = 2, appear special point where stability may change.

The bifurcation point among the family of periodic orbits appears when κ = λ3 + λ4 =

2 Re(λ3,4) = 2.
The most typical bifurcation called saddle-node bifurcation (Fig. 2) is an example of cre-

ating new families of periodic orbits, (apart from the boundaries of the domain of definition
of the Poincaré map). This special point is a place where two branches (stable and unstable)
met and annihilate (or create).

Since our system have symmetries two more types of the bifurcation points can be de-
tected pitchfork and antipitchfork (Fig. 2). The former appears when stable family changes
to unstable branch and in the same point two new stable branches are created. For antip-
itchfork is opposite, basic family is unstable and jumps into stable branch and two unstable
families are created. In all the cases of the bifurcated families a symmetry lost compare to
main family.

A 4-islands chain of isochronous bifurcation was also detected in the system. In this
case, the main family after bifurcation point remains in the stable branch and four new stable
families are created (see [6]).
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3.1. Bifurcation on the system

The focus of this study is pitchfork and 4-islands chain of isochronous bifurcation points.
We compare two maps with different energy value E1 = 2.5 (before BP, left) and E2 = 2.0
(after BP, right); Fig. 3. From the maps we know that we start with a stable family and after
bifurcation point the main family jumps into unstable branch and two new stable families are
created, this can be seen on top of figure, where OFLI2 results are plotted. Those families are
also in the skeleton of periodic orbits obtained from AUTO (fig. 4a). If we compare projected
orbits from the main family (Fig. 4b) with orbits from the new families we can see that orbits
projected into the xy plane, lose one symmetry with respect to y-axis.

The 4-islands chain of isochronous bifurcation is special bifurcation that appears in the
symmetric systems Fig. 4c. We project five different periodic orbits from each family. One
orbit represents orbit at BP and we see that it is symmetric with respect to x-axis and y-axis,
and other orbits loose one of the symmetry. Plot on Fig. 4c contains two bifurcated families,
each one consists of two branches. Notice that a orbits from opposite branches have the same
shape and are shifted by 180◦ relative to each other.

§4. Connection symmetric and asymmetric families of periodic orbits

To study the evolution of a periodic orbits along a family we choose two different families
(symmetric and asymmetric). In the symmetric family (Fig. 5), we start the evolution from
a point close to extreme (x = 0, E = 0) and moving clockwise. The family that starts
with highly eccentricity decreases until reaching the highest energy where eccentricity is the
lowest. This family was found to have only one perpendicular intersection with y-axis, so the
evolution runs symmetrically. Moreover, along the family we can see that stability changes
several times, at those points we have bifurcation points (Fig. 5c). The plot presenting how
the orbits change along the families are in the figures (5a, 5d).

From the main symmetric family we choose two bifurcation points and we found two
new asymmetric families of periodic orbits (Fig. 5e). Those branches finished at the extreme
(x = 0, E = 0) and are symmetric with respect to x-axis and y-axis. The study of the
evolution of this family we start from BP and we decrease value of parameter y. The orbit
begins with symmetry with respect to both axis, but the farther we are from bifurcation point,
the more significant asymmetry is (Fig. 5f).

In conclusion, we have shown a procedure to obtain skeleton of PO. We have started
with creation of a initial conditions using the systematic search with fixed multiplicity. Then
those results were used to create the skeleton, which consists of symmetric and asymmetric
families of PO. We found also some special bifurcations (the 4-islands chain of isochronous
bifurcation) and shown in details the evolution of some families of PO.
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FROM THE HEAT EQUATION
TO THE SOBOLEV EQUATION

Guy Vallet

Abstract. In this paper, we consider the theorem of Lions-Tartar in W(0,T,V,V ′) with
different “pivot-spaces” H. In a first part, depending on H, we have a look at the corre-
sponding solved problem. Then, the second energy equality set forth in a second part.

Keywords: Lions-Tartar, pivot space, second energy.
AMS classification: 35K05, 58D25, 35B65.

§1. Introduction

Considering two separable Hilbert spaces V and H, V being continuously embedded in H and
dense in H, the interpretation of the equation du/dt + Au = f in V ′, with initial condition u0
in H, is under discussion in the situation where one changes the pivot space H in the usual
Gelfand-Lions framework.

In [5], J. Simon warns us against the use of the common identification of H with its dual
space in the functional frame V ↪→ H ≡ H′ ↪→ V ′. In particular, it is mentioned that if
D(Ω)† is not dense in V , the study is incompatible with the distributional frame for some
standard PDE’s. Remaining with D(Ω) dense V , we present in this paper the different type
of solved problems by the theorem of Lions-Tartar when one changes the pivot’s space. We
systematically illustrate our remarks with the rigged Hilbert space (Hs(Rd),H1(Rd)) when
s ∈ [0, 1]. For example, the equation du/dt − ∆u = f would correspond to the heat equation
∂u/∂t − ∆u = f if s = 0. Here, ∂u/∂t denotes the time derivative of u in the sense of the
distribution of D′(Q). It would correspond to the Sobolev equation (I − ∆)∂u/∂t − ∆u = f if
s = 1.

In a last part of the paper, we will be interested in the “second energy equality” for the
solution to the lemma of Lions-Tartar. More precisely, Theorem 4 asserts that if u0 ∈ V ,
g ∈ L2(0,T,H) and assuming that the bilinear form a is independent of time, symmetric
and coercive, then the corresponding solution u to the lemma of Lions-Tartar belongs to
C([0,T ],V) and for any t ∈ [0,T ],∫

]0,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a(u(t), u(t)) =
1
2

a(u(0), u(0)) +

∫
]0,t[

(
g(σ),

du
dt

(σ)
)

dσ.

Outlines of the paper

One presents in Section 2 some notations, then, in Section 3, one reminds the reader of the
embedding of V in V ′ when the Riesz-identification H ≡ H′ is assumed. In particular, what is

†The space of infinitely differentiable functions with a compact support.
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the characterization of the image of H1(Rd) when H = Hs(Rd). Then, thanks to this, we will
be interested in the sense given to the space W(0,T ) =

{
u ∈ L2(0,T,V), du/dt ∈ L2(0,T,V ′)

}
.

We will look more closely to the case V = H1(Rd) and H = Hs(Rd) when s ∈ [0, 1] and to
the link with fractional operators.

Section 4 will be devoted to the lemma of Lions-Tartar and Section 5 to the second energy
equality. Then, we end this paper with an annex that precise the regularization of Landes, used
in the proof of the result of Section 5.

§2. Notations

Let V and H be two separable Hilbert spaces, with norm ‖ · ‖ for V , associated with the
scalar product (( · , · )), and norm | · | for H, associated with the scalar product ( · , · ). Assume
moreover that V is continuously embedded in H with a dense injection. Then, the dual space
H′ is continuously embedded in V ′ and dense. The norm in V ′ is denoted by ‖ · ‖∗.

Ω ⊂ Rd denotes a regular open set and for any positive T , Q = ]0,T [ ×Ω.
As usual, D(A) denotes the class of C∞-derivable functions in a given open set A, with

compact support in A and its dual space D′(A) denotes the space of distributions in A.
S denotes the Schwartz space in Rd and S′ the tempered distributions.
For any s ∈ [0, 1], Hs(Rd) denotes the fractional Sobolev space defined, for any s, by

Hs(Rd) =
{
u ∈ L2(Rd), |ξ|sFx(u) ∈ L2(Rd)

}
, where Fx is the Fourier transform of variable

x ∈ Rd.
Given s ∈ ]−d/2, 1] and f ∈ S, we recall the fractional operators (−∆)s f as (−∆)s f =

F −1
x

[
|ξ|2sFx( f )

]
and (I − ∆)s f as (I − ∆)s f = F −1

x
[
(1 + |ξ|2)sFx( f )

]
.

Then, one denotes by W(H,V)(0,T ) =
{
u ∈ L2(0,T,V), du/dt ∈ L2(0,T ; V ′)

}
.

§3. The space W(H,V)(0, T)

3.1. How to embed V in V ′?
In this section, we lay stress on the question: how to embed V in V ′? Since V is not a priori
a space with a finite dimension, there exist many possibilities to identify V with its image in
V ′ when one says that V ↪→ V ′?

Classically, the rigged Hilbert space (H,V) is considered (or Gelfand-Lions triple):

1. Either H = V . Then, thanks to the theorem of Riesz, V is identified with its dual V ′.
Indeed,

J : V → V ′, u 7→ Ju such that Ju : v ∈ V 7→ ((u, v))

is an isometric mapping.

2. Or, H  V . Then, H is identified with its dual H′ (Riesz’s theorem) and V is embedded
in V ′ by “passing through H ≡ H′”. H is called the pivot-space, or intermediate space.
Then,

JH : V → V ′, u 7→ JHu such that JHu : v ∈ V 7→ (u, v)

is an injective mapping.
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Remark 1.

1. Note that if H = V , then JH = J.

2. If H and H̃ are two pivot-spaces with H ( H̃ and V is densely embedded in H and H̃,
then we get that JH̃(V) ( JH(V).

3. If V = H1(Rd) and H = L2(Rd) then, for any u ∈ V , we get that J−1 ◦ JHu = w where
w is the unique solution in H1(Rd) of the problem: w − ∆w = (u, · )L2(Rd).

3.1.1. Fractional Sobolev spaces

Let us recall some basics about Hs(Rd) from J.-L. Lions et al. [2] and L. Tartar [7]. Remind
that S denotes the Schwartz space and S′ the tempered distributions.

Definition 1. Let us denote by Fx the Fourier transform of variable x ∈ Rd. Then, for a
real number s ≥ 0, Hs(Rd) =

{
u ∈ L2(Rd), |ξ|sFx(u) ∈ L2(Rd)

}
, and, for a real number s,

Hs(Rd) =
{
u ∈ S′(Rd), (1 + |ξ|2)s/2Fx(u) ∈ L2(Rd)

}
.

Then,

Lemma 1.

1. When s ∈ N, Hs(Rd) denotes the classical Sobolev space (with H0(Rd) = L2(Rd)).

2. D(Rd) is dense in the Hilbert space Hs(Rd) for the norm u 7→
∥∥∥[1 + |ξ|2]s/2Fx(u)

∥∥∥
L2(Rd).

3. If s ∈ ]0, 1[, then u ∈ Hs(Rd) if and only if u ∈ L2(Rd) and∫
Rd×Rd

|u(x) − u(y)|2

|x − y|d+2s dx dy < ∞.

For an open set Ω, one could define Hs(Ω) for 0 < s < 1 in (at least) three different ways:

1. u ∈ L2(Ω) and
∫

Ω×Ω

|u(x) − u(y)|2

|x − y|d+2s dx dy < ∞.

2. u is the restriction to Ω of an element U in Hs(Rd).

3. One may define Hs(Ω) by interpolation Hs(Ω) = [H1(Ω), L2(Ω)]1−s,2.

For a bounded open set with a Lipschitz boundary, the three definitions give the same space
with equivalent norms.

3.1.2. Fractional Laplace operator

Let us now remind some basics on the fractional operators (cf. L. E. Silvestre [3]):

Definition 2. Given s ∈ ]−d/2, 1], and f ∈ S, we define:

1. (−∆)s f as (−∆)s f = F −1
x

[
|ξ|2sFx( f )

]
.

2. (I − ∆)s f as (I − ∆)s f = F −1
x

[
(1 + |ξ|2)sFx( f )

]
.
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Clearly, if s = 1, then (−∆)s = −∆; if s = 0, then (−∆)s = Id; and (−∆)s1 ◦ (−∆)s2 =

(−∆)s1+s2 , respectively with I − ∆ instead of −∆.
When f ∈ S, we can also compute the same operator by using the singular integral

(−∆)s f (x) = cn,sPV
∫
Rd

f (x) − f (y)
|x − y|d+2s dy.

Let us remark also that for any f , g ∈ S,∫
Rd

[(Id − ∆)s] f g dx =

∫
Rd

(1 + |ξ|2)sFx( f )Fx(g) dξ

=

∫
Rd

(1 + |ξ|2)s/2Fx( f )(1 + |ξ|2)s/2Fx(g) dξ

=

∫
Rd

(I − ∆)s/2 f (I − ∆)s/2g dx,

which is the scalar product of Hs(Rd).

3.1.3. Intermediate spaces

If one assumes that V ↪→ H ≡ H′ ↪→ V ′, then (J.-L. Lions et al. [2]) there exists an
unbounded operator A on V ′ such that [D(A),H]1/2 = V , [V,V ′]1/2 = H and D(A1/2) = V .

Classically, when V = H1(Rd), we consider that H = L2(Rd). Therefore, the image of the
dual of H1(Rd) by the identification L2(Rd)′ ≡ L2(Rd) is H−1(Rd), the space of “derivatives
of order less than one of elements of L2”, and [H1(Rd),H−1(Rd)]1/2 = H0(Rd) = L2(Rd).
Moreover, since we have

D(Rd) ↪→ H1(Rd) ↪→ L2(Rd) ≡ L2(Rd)′ ↪→ H−1(Rd) ↪→ D′(Rd),

any element u of H1(Rd) is a distribution via the identification L2(Rd) ≡ L2(Rd)′, i.e., u is
identifiable with the distribution: ϕ ∈ D(Rd) 7→

∫
Rd uϕ dx.

Consider now that the pivot-space is Hs(Rd), for a given s ∈ [0, 1]. Then,

D(Rd) ↪→ H1(Rd) ↪→ Hs(Rd) ≡ Hs(Rd)′ ↪→ H1(Rd)′ ↪→ D′(Rd),

and an element u of H1(Rd) is a distribution via the identification Hs(Rd) ≡ Hs(Rd)′, i.e., u is
identifiable with the distribution: ϕ ∈ D(Rd) 7→ (u, ϕ)Hs .

Now, the question is: since in this case [H1(Rd),H1(Rd)′]1/2 = Hs(Rd), what is the image
in the dual of H1(Rd) by the identification Hs(Rd)′ ≡ Hs(Rd)? More precisely, since we
have to obtain [H1(Rd),H1(Rd)′]1/2 = Hs(Rd), why can we identify H1(Rd)′ with H2s−1(Rd)?
Indeed, let us denote by

Φ : H2s−1(Rd)→ H1(Rd)′; w 7→ Φw

where

Φw : H1(Rd)→ R; u 7→
∫
Rd

(1 + |ξ|2)sFxwFxu dξ.
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Clearly, Φ exists and is an injection.
Consider T ∈ H1(Rd)′. Since Hs(Rd)′ is dense in H1(Rd)′, T is the limit of a sequence

(Tn) ⊂ Hs(Rd)′ in H1(Rd)′. Since Hs(Rd) is the pivot space, there exists wn ∈ Hs(Rd) such
that

∀v ∈ H1(Rd), 〈Tn, v〉 = (wn, v)Hs =

∫
Rd

(1 + |ξ|2)sFxwn Fxv dξ.

Since H1(Rd) =
{
u ∈ S′,

∫
Rd (1 + |ξ|2)|Fxv|

2 dξ < +∞
}

and ‖v‖2H1(Rd) =
∫
Rd (1 + |ξ|2)|Fx|

2v dξ,

‖Tn‖H1(Rd)′ = sup
v∈H1(Rd)\{0}

∫
Rd (1 + |ξ|2)s−1/2 Fxwn(1 + |ξ|2)1/2 Fxv dξ

‖v‖H1(Rd)
= ‖wn‖H2s−1(Rd).

Then, the result holds by passing to the limit and Φ is an isometry.

3.2. Time derivation
Consider a positive real number T and assume that u ∈ L2(0,T,V). Then, u is said to belong
to W(H,V)(0,T ) if u ∈ L2(0,T,V), du/dt ∈ L2(0,T ; V ′) and V ↪→ H ≡ H′ ↪→ V ′. Then, in this
section, we wish to discuss about the sense given to du/dt ∈ L2(0,T ; V ′) (cf. J. Simon [4]).

1. On the one hand, one can consider u as an element of D′(0,T ; V), the V-valued distri-
butions. Thus, du/dt, the time derivative of u in the sense of D′(0,T ; V), exists and

∀ϕ ∈ D(0,T ),
du
dt

(ϕ) = −

∫ T

0
u(t)ϕ′(t) dt in V.

Then, by using JH : V ↪→ H ≡ H′ ↪→ V ′, we have that

∀ϕ ∈ D(0,T ), ∀v ∈ V,
〈
JH

[du
dt

(ϕ)
]
, v

〉
= −

(∫ T

0
u(t)ϕ′(t) dt, v

)
.

Since uϕ′ ∈ L1(0,T,V) and T : V → R, u 7→ (u, v) is a linear and continuous mapping,
we get that

(∫ T
0 u(t)ϕ′(t) dt, v

)
=

∫ T
0 ϕ′(t)(u(t), v) dt. Note that this result is an obvious

fact for simple functions u, then for any u by passing to the limit. Therefore, for all
ϕ ∈ D(0,T ) and v ∈ V ,〈

JH

[du
dt

(ϕ)
]
, v

〉
= −

∫ T

0
ϕ′(t)(u(t), v) dt =

〈 d
dt

(u(t), v), ϕ
〉

D′(0,T ),D(0,T )
.

2. On the other hand, one can consider that JH(u) is then an element of L2(0,T,V ′), thus
an element of D′(0,T ; V ′), the V ′-valued distributions. Therefore, dJHu/dt, the time
derivative of JHu in the sense of D′(0,T ; V ′), exists and

∀ϕ ∈ D(0,T ),
dJHu

dt
(ϕ) = −

∫ T

0
JHu(t)ϕ′(t) dt in V ′,

i.e.

∀ϕ ∈ D(0,T ), ∀v ∈ V,
〈dJHu

dt
(ϕ), v

〉
= −

〈∫ T

0
JHu(t)ϕ′(t) dt, v

〉
.
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Since JHuϕ′ ∈ L1(0,T,V ′) and T : V ′ → R, f 7→ 〈 f , v〉 is a linear and continuous
mapping, we get also that

〈∫ T
0 JHu(t)ϕ′(t) dt, v

〉
=

∫ T
0 ϕ′(t) 〈u(t), v〉 dt. Therefore, for

all ϕ ∈ D(0,T ) and v ∈ V ,〈dJHu
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t) 〈JHu(t), v〉 dt

=

〈 d
dt
〈JHu(t), v〉 , ϕ

〉
D′(0,T ),D(0,T )

=

〈 d
dt

(u(t), v), ϕ
〉

D′(0,T ),D(0,T )
.

Thus, JH ◦
du
dt

=
dJHu

dt
.

Assume, for example, that V = H1(Rd) and H = Hs(Rd) with s ∈ [0, 1]. Then, for any
v ∈ D(Rd) and any ϕ ∈ D(0,T ),〈dJHu

dt
(ϕ), v

〉
= −

∫ T

0
ϕ′(t)(u(t), v)Hs(Rd) dt =

〈 d
dt

(u(t), v)Hs(Rd), ϕ
〉

D′(0,T ),D(0,T )
.

1. Assume that s = 0. Then,〈dJL2(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t)

∫
Rd

uv dx dt =
〈∂u
∂t
, ϕ ⊗ v

〉
D′(Q),D(Q)

,

where ∂u/∂t denotes the time derivative of u in the sense of the distribution of D′(Q)
where Q = ]0,T [ × Rd with the classical identification L2 ≡ (L2)′.

2. Assume that s = 1. Then, up eventually to a constant due to the Fourier transform,〈dJH1(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t)

∫
Rd

(uv + ∇u∇v) dx dt =

〈
∂u
∂t
− ∆

∂u
∂t
, ϕ ⊗ v

〉
D′(Q),D(Q)

,

where the derivations are in the sense of the distribution of D′(Q) with the classical
identification L2 ≡ (L2)′.

3. Assume that s ∈ ]0, 1[. Then,〈dJHs(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t) 〈(I − ∆)su, v〉(Hs)′,Hs dt

and
dJHs(Rd)u

dt
= (I − ∆)s du

dt
,

where du/dt is understood in the sense of D′(0,T ; Hs(Rd)).

§4. Lemma of Lions-Tartar

Lemma 2 (J.-L. Lions [1], J. Simon [4, 5] and L. Tartar [6]). Let a ∈ L∞(0,T,L(V,V ′)) such
that

∃α > 0, β ∈ R, for which , ∀u ∈ V, a(u, u) ≥ α‖u‖2 − β|u|2.
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Given u0 ∈ H, f1 ∈ L1(0,T ; H′) and f2 ∈ L2(0,T ; V ′), there exists a unique u ∈ C([0,T ]; H)∩
L2(0,T ; V), solution, for any v ∈ V and t a.e. in ]0,T [, of

d
dt

(u, v) + 〈a(·, u), v〉V ′,V = 〈 f1, v〉H′,H + 〈 f2, v〉V ′,V ,

u(0) = u0,
(1)

and the bilinear application ( f1+ f2, u0) 7→ u is continuous from
(
L2(0,T ; V ′)+L1(0,T ; H′)

)
×

H to L2(0,T ; V) ∩C([0,T ]; H). Moreover,

dJHu
dt
∈ L1(0,T ; H′) + L2(0,T ; V ′)

and the first energy equality holds

1
2

d
dt
|u|2 + 〈a(·, u), u〉V ′,V = 〈 f1, u〉H′,H + 〈 f2, u〉V ′,V .

Lemma 3 (J. Simon [4, 5]). With the same hypothesis than the previous lemma, unless
a ∈ L2(0,T,L(V,V ′)) (instead of L∞), there exists a unique u in L2(0,T ; V) ∩ L∞(0,T ; H) ∩
Cw([0,T ]; H) solution of (1). Moreover,

dJHu
dt
∈ L1(0,T ; V ′).

Remark 2.

1. J.-L. Lions considered f ∈ L2(0,T ; V ′) which gives dJHu/dt ∈ L2(0,T ; V ′), i.e., u ∈
W(H,V)(0,T ).

2. Assume for example that V = H1(Rd), H = Hs(Rd) with s ∈ [0, 1], that 〈a(·, u), v〉V ′,V =∫
Rd ∇u.∇v dx and denote by us the solution of Lions-Tartar’s lemma. Then, if s = 0, us

is the solution of the heat equation; if s = 1, us is the solution of the pseudoparabolic
Sobolev equation; else, us is the solution of intermediate evolution problems, hard to
characterize in term of PDE’s since (I − ∆)s is a non local fractional operator.

§5. Second energy equality

Theorem 4. Consider T > 0, Q = ]0,T [ × Ω, u0 ∈ V, g ∈ L2(0,T,H) and u the solution of
the lemma of Lions-Tartar. If a is independent of time, symmetric and coercive (i.e. β = 0)
bilinear form, then u ∈ H1(0,T ; H) ∩ Cw([0,T ],V). Moreover, u ∈ C([0,T ],V) and for any
t ∈ [0,T ],∫

]0,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a (u(t), u(t)) =
1
2

a (u(0), u(0)) +

∫
]0,t[

(
g(σ),

du
dt

(σ)
)

dσ. (2)

Proof. Since u is a mild solution, i.e. obtained by an implicit time-discretization scheme, it
is a classic exercise to prove that u ∈ H1(0,T ; H) ∩ L∞(0,T ; V). Then,

u ∈ C([0,T ]; H) ∩ L∞(0,T ; V) = Cw([0,T ]; V)
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(cf. [2]). Moreover, since u ∈ H1(0,T ; H), the time differentiation is understood in the space
H, without any embeddings. Then, we will denote it by du/dt.

Let us fix s ∈ [0,T [ and for any positive ε, denote by vε the solution of the differential
equation (see section 6 for further informations)

ε
dvε
dt

+ vε = u, for t > s, with vε(s, .) = u(s).

Then, testing the evolution equation with u − vε leads us to

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

∫
]s,t[

a(u, u − vε) dσ = ε

∫
]s,t[

(
g,

dvε
dt

)
dσ.

Thus, by monotonicity of a,

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

∫
]s,t[

a(vε , u − vε) dσ ≤ ε
∫

]s,t[

(
g,

dvε
dt

)
dσ,

i.e., by using the differential equation, we get

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ + ε

∫
]s,t[

a
(
vε ,

dvε
dt

)
dσ ≤ ε

∫
]s,t[

(
g,

dvε
dt

)
dσ,

and, by integration,∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

1
2

a (vε(t), vε(t)) ≤
∫

]s,t[

(
g,

dvε
dt

)
dσ +

1
2

a(u(s), u(s)). (3)

Since by construction (see annex) vε converges to u in H1(s,T ; H) ∩ L2(s,T ; V) and, for
any t, vε(t) converges weakly to u(t) in V ,∫

]s,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a(u(t), u(t)) ≤
∫

]s,t[

(
g,

du
dt

)
dσ +

1
2

a(u(s), u(s)).

Moreover, u ∈ Cw([0,T ],V) and lim sup
t→s+

a(u(t), u(t)) ≤ a(u(s), u(s)). Then, u is continuous

from the right from [0,T [ to V .

Consider now 0 < t < t + ∆t ≤ T . Then,∫ t

0

(du
dt
,

u(σ + ∆t) − u(σ)
∆t

)
dσ +

∫ t

0
a
(
u(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ

=

∫ t

0

(
g(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ.

Thus,∫ t

0

(du
dt

(σ),
u(σ + ∆t) − u(σ)

∆t

)
dσ +

1
2∆t

∫ t+∆t

t
a(u(σ), u(σ)) dσ

≥
1

2∆t

∫ ∆t

0
a(u(σ), u(σ)) dσ +

∫ t

0

(
g(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ.
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Therefore, the above remark yields∫ t

0

∣∣∣∣∣du
dt

(σ)
∣∣∣∣∣2 dσ +

1
2

a(u(t), u(t)) ≥
1
2

a(u0, u0) +

∫ t

0

(
g(σ),

du
dt

)
dσ.

Adding this to (3) with s = 0, we get (2) for any t ∈ [0,T [. Then, u ∈ Cw([0,T ],V) and
limt→s a(u(t), u(t)) = a(u(s), u(s)) yield u ∈ C([0,T [,V). We conclude the proof by remarking
that the same result holds for time T + 1 instead of T . �

Corollary 5. The same result holds if β , 0.

Proof. If u is a solution, then it is also the solution, for any v ∈ V and t a.e. in ]0,T [, of

d
dt

(u, v) + a(u, v) + β(u, v) = (g + βu, v), with u(0) = u0. (4)

Then, the result is just a consequence of the theorem. �

§6. Annex

Let us fix s ∈ [0,T [ and, for any positive ε, denote by vε the solution of the differential
equation

ε
dvε
dt

+ vε = u, for t > s, with vε(s, · ) = u(s), (5)

where u ∈ H1(s,T,H) ∩Cw([s,T ],V).

Lemma 6. As ε goes to 0+, vε converges to u in H1(s,T ; H)∩ L2(s,T ; V) and vε(t) converges
weakly to u(t) in V, for any t.

Proof. If vε is the solution of (5), then,

vε(t) = u(s)e(s−t)/ε +

∫ t

s

u(σ)
ε

e(σ−t)/ε dσ

and vε(t) is bounded in V , independently of t. Thus, by “multiplying in V” equation (5) by vε ,
we get that

ε
d
dt
‖vε‖

2 + ‖vε‖
2 ≤ ‖u‖2,

i.e.

ε‖vε(t)‖2 +

∫ t

s
‖vε‖

2 dσ ≤
∫ t

s
‖u‖2 dσ + ε‖u(s)‖2. (6)

Moreover, dvε/dt satisfies

ε
d2vε

dt2 +
dvε
dt

=
du
dt
, for t > s, with

dvε
dt

(s) = 0, (7)

where du/dt ∈ L2(s,T,H). Thus, by “multiplying in H” the above equation by dvε/dt, we
get that

ε
d
dt

∣∣∣∣∣dvεdt

∣∣∣∣∣2 +

∣∣∣∣∣dvεdt

∣∣∣∣∣2 ≤ ∣∣∣∣∣du
dt

∣∣∣∣∣2,
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i.e.

ε

∣∣∣∣∣dvεdt
(t)

∣∣∣∣∣2 +

∫ t

s

∣∣∣∣∣dvεdt

∣∣∣∣∣2 dσ ≤
∫ t

s

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ. (8)

As a first conclusion, there exists a positive constant C such that∣∣∣∣∣dvεdt

∣∣∣∣∣
L2(s,T,H)

≤ C; ∀t,
√
ε

∣∣∣∣∣dvεdt
(t)

∣∣∣∣∣ ≤ C, |vε(t) − u(t)| ≤ C
√
ε,

and vε converges weakly to u in H1(s,T,H) and strongly in C([s,T ],H).
Adding that vε(t) is bounded in V for any t, vε(t) converges weakly to u(t) in V for any t

and vε converges weakly to u in L2(s,T,V) (note that u is the only possible limit-point).
Then, on the one hand, (6) yields

lim sup
ε→0+

∫ t

s
‖vε‖

2 dσ ≤
∫ t

s
‖u‖2 dσ

and vε converges to u in L2(s,T,V). On the other hand, (8) yields

lim sup
ε→0+

∫ t

s

∣∣∣∣∣dvεdt

∣∣∣∣∣2 dσ ≤
∫ t

s

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ

and vε converges to u in H1(s,T,H). �
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