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Jesús Bastero. Universidad de Zaragoza.
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Christian Paroissin (Université de Pau et des Pays de l’Adour, France).

Justo Puerto (Universidad de Sevilla, Spain).

Gerardo Sanz (Universidad de Zaragoza, Spain).
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PREFACE

The Pyrenees International Workshop and Summer School on Statistics,
Probability and Operations Research, SPO 2011, was held in Jaca (Span-
ish Pyrenees) from September 13 to September 16, 2011.

The meeting combined the structure of a workshop and a summer
school with invited conferences and contributed presentations.

The school featured two advanced courses taught by Narayanaswamy
Balakrishnan from the Department of Mathematics and Statistics, Mc-
Master University, Canada (Precedence-type testing and applications)
and Jesús López Fidalgo from the University of Castilla-La Mancha,
Spain (Design of experiments for nonlinear models), and two plenary con-

ferences by professor Maŕıa Ángeles Gil from the University of Oviedo,
Spain (Random fuzzy sets: a probabilistic tool to develop statistics with
imprecise data) and professor Ali S. Hadi from The American University
in Cairo, Egypt (Multi-class data exploration using space transformed
visualization plots).

We thank them very sincerely.

In the contributed sessions, the participants introduced recent devel-
opments in Statistics, Probability and Operations Research. We also
appreciate sincerely the contribution of all of them.

This volume includes some of the presentations; all papers have been
refereed. It is very satisfactory for us to present it to the scientific com-
munity.

We thank specially the financial support provided by Ministerio de
Ciencia e Innovación (Spain), Gobierno de Aragón and CTP (Work Com-
munity of the Pyrenees). We also thank the University of Zaragoza for
their financial and material support.

We wish to express our gratitude to the many colleagues who care-
fully reviewed the papers in the present volume and made many helpful
suggestions for their improvement.

Special thanks are due to all members of the Scientific and Organizing
committees; their generous work had a decisive influence in the success
of the conference. We are also indebted to all others who helped in the
organization of the conference and provided assistance to participants,
in particular, Juan Marta and Daniel Sanz.
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We hope that the next edition of the Pyrenees conference will be as
successful as this one.

Zaragoza, May, 2013.

The editors.
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Garćıa-Laguna, J., 107

Leonenko, N.N., 33

Mart́ın, F., 97
Mata, R., 97
Moler, J. A., 85

Osagiede, A.A., 65

Pardo, L., 97
Plo, F.., 85

Ramı́rez, H., 23
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Pérez-Palomares, Ana
Dpto. Métodos Estad́ısticos,
Facultad de Ciencias,
Universidad de Zaragoza,
Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
anapp@unizar.es

Plo, Fernando
Dpto. Métodos Estad́ısticos,
Facultad de Ciencias,
Universidad de Zaragoza,
Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
fplo@unizar.es

19



Reyes, Patricio
Department of Statistics,
Carlos III University of Madrid,
Calle Madrid 126,
28903 Getafe (Madrid), Spain.
patricio.reyes.valenzuela@gmail.com

Rivera, Maŕıa Elena
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Universidad de Castilla-La Mancha,
Spain.
L.RodriguezAragon@uclm.es
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APPLICATION OF LOCAL SEARCH TO
CREW SCHEDULING

Jorge Amaya, Héctor Ramírez and Paula Uribe

Abstract. This work introduce a model for the crew scheduling problem for train opera-
tions, based on a rotative schema, where weekly trips are fixed along the time. This gen-
erates a 0-1 medium/large size optimization problem. The special feature of this model is
an infinite horizon schedule, due to the rotative schema, where every crew takes the place
of the consecutive crew when a new week starts. The problem resolution is performed
through three steps: first, finding a feasible solution of infinite length, where schedules
repeat in a rotative way between crews; then, an adapted local search is used to improve
the initial solution, in order to equilibrate the weekly working hours among crews; finally,
drivers are assigned to the scheduled weeks, by solving a flow problem.

Keywords: crew scheduling, integer programming, heuristics.

AMS classification: 90C09, 90C10, 90C27.

§1. Introduction

Crew scheduling is one of the major phases in crew management in large transportation net-
works such as railway, bus and airline systems, where technical, legal and time constraints
must be taken into account when scheduling drivers and crews. A crew in our specific appli-
cation, typically consists of two drivers, to which a set of tasks (trips) are daily assigned.

Crew assignment (see, for example, [5] and [6]) is a classical optimal decision problem.
In general, this assignment problem can have a very high number of decision variables which
entails a high degree of complexity for resolution. Frequently, the standard branch and bound
strategies are not able to solve large instances, then many variants of well known algorithms
have been applied to tackle these hard problems. For a urban bus system, in [3], the authors
propose a column generation approach to solve the transit crew scheduling problem. For
the air crew rostering problem, in [7], they use a generalized set partitioning model and a
method using column generation, adapted to take advantage of the structure of the problem.
They claim that this method is capable of solving very large scale problems with thousands
of constraints and hundreds of subproblems. An hybrid column generation approach for the
urban transit crew problem is studied in [13]. The authors divide the problem in two stages:
crew scheduling and crew rostering, solving each separately, and combining mathematical
programming and constraint logic programming with column generation. The article cited
in [12] describes the development and implementation of an integer optimization model to
resolve disruptions to an operating schedule in the rail industry. Favorable results for both
the combined train/driver scheduling model and the real-time disruption recovery model are
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presented in that paper. Article [1] uses an iterative partitioning for large scale crew schedul-
ing instances; Lagrangean relaxation combined with subgradient optimization is applied in
[2]. Decomposition and relaxation strategies are used in [11], for the resolution of a mul-
ticommodity network flow problem, representing the railroad crew assignment. Heuristics
approaches, such as simulated annealing and genetic algorithms, are proposed in [4], [8] and
[9], both for airline and train crews. In [10], the authors apply high performance Integer Opti-
mization for the practical resolution of the crew scheduling problem. They use a Lagrangean
relaxation based heuristics and a sequential active set strategy.

The work presented here correspond to a specific application for a Chilean railway company.
For this case, the biggest interest is to distribute as balanced as possible the load between
crews and to maintain the week load within the legal bounds. The problem resolution must
also provide an output composed of a rotative weekly schedule, in which after m weeks, ev-
ery crew will have met the program of every week. The main advantage of this strategy is to
keep a balanced hours load for all crews, besides being an infinite horizon schedule, reusable
as many times as desired. The general resolution approach is given in three sequential steps.
Firstly, a feasible solution is obtained, which is equivalent to a schedule where every trip is
covered, but the working hours load is not necessarily balanced among weeks. this is made by
using the Branch and Bound algorithm. Secondly, a local search heuristic is used to improve
the initial feasible solution, by balancing the weekly crews load. Finally, crews are assigned
to the scheduled weeks, taking into account the initial conditions of crews, in terms of current
location, immediately past loads and rest hours.

§2. The conceptual model

The optimization mathematical model can be described through a set of constraints and an
objective function, based on the description presented below.

2.1. Constraints
• One trip, one crew. Each trip must be assigned to one and only one crew.

• Legal rest. For each 7-days window there must be at least 1 legal rest. A legal rest
corresponds to a fictitious trip of 33 hours, beginning at 9 PM and ending at 6 AM of
the subsequent day.

• Inter-trips rest. Between a pair of trips a time window called inter-trips rest must be
imposed. The duration of that window is given by the labor regulations laws.

• Sunday rest. A Sunday rest corresponds to a fictitious trip of 24 hours, beginning at
0:00 hours of Sunday. There are rest regimes of 0, 1 or 2 Sundays rests a month, and it
must be assigned according to the specified regime.

• Origin/Destination. The origin of a trip must be the destination of the previous one.

• Consecutive trips. There are pairs of trips that conform a round trip. In these cases, it
is imposed that a trip must be followed by its pair.
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• Rotation. In a normal schedule, m weeks are programmed, in order to assign the work
load in a balanced way. Week after week, each crew takes the place of the next one,
thus after m weeks, every crew will have served the same trips sequence.

• Fixed rests. Sometimes, pre-established rests programs are used. The final system must
be able of operating either with these programs or allowing the rest days be fixed by
the mathematical model.

2.2. Objective Function
Assuming that all trips can be served by a crew, the most critical issue for this application is
to schedule as balanced as possible the work load among weeks (or crews).

§3. The mathematical model

Let us denote V1, . . . , Vn the set of train trips in a week. We assume that these trips are reg-
ular, in the sense that the same scheduling is repeated every week. We include in the set of
trips, two sets of virtual trips: the overnight legal and the Sunday rest, that will be explained
at the end of this section. Let us denote by V the set of all trips (including the virtual trips).

Each trip in V is characterized by a vector of attributes or parameters considered here as
given input data for the model. These are: starting time (day, hour, minutes), travel duration,
initial station or origin and final station or destination. We also include the next trip, which
means that a given trip must be followed by another well specified trip, in the special case of
round trips. So, we assume that the following information is known:

• Nv is the next trip associated to v;

• Iv and Fv denote the initial station and the final destination, respectively;

• (hv,mv) denotes the hour and the minutes of the trip v (then, 0 ≤ hv ≤ 24 and
0 ≤ mv ≤ 60);

• (∆hv,∆mv) denotes the hour and minutes of duration for trip v; and

• (h̄v, m̄v) is the arrival time of v.

We consider legal and Sunday rests as virtual trips, denoted by vLR and vSR, respectively.
An original and simplifying idea in our approach consists in imposing a rotation scheme
where a crew i takes the schedule of the crew i+ 1 in the next working week. In this manner,
after m weeks (being m the number of crews), all crews take all schedules, which in particu-
lar implies that the number of hours done by all the crews are the same in the long term.

We define xivk, an integer 0-1 variable indicating if crew i ∈ T = {1, . . . ,m} is allocated to
trip v ∈ V at day k ∈ D = {1, . . . , 7}, that is:

xivk =

{
1 if i is allocated to trip v at day k
0 otherwise (1)
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3.1. Constraints
• One trip, one crew. Each real (not virtual) trip can have one and only one crew, so we

impose: ∑
i∈T

xivk = 1 ∀v ∈ V, k ∈ D (2)

• Incompatibility between two trips. Let us define the compatibility index for a pair of
trips: if v, v′ are two trips in days k and k′, respectively, then we define a parameter
ηvkv′k′ by: ηvkv′k′ = 1 if (v, k) is compatible with (v′, k′), and ηvkv′k′ = 0 if not.

Incompatibility index ηvkv′k′ is calculated considering the time of arrival/departure
and the origin/destination of the trips. The incompatibility constraint is then expressed
by:

– For different days k′ > k:

i ∈ T , v, v′ ∈ V, ηvkv′k′ = 0 : xivk + xiv′k′ ≤ 1 (3)

– For the same day k′ = k:

i ∈ T , v, v′ ∈ V, v 6= v′, ηvkv′k′ = 0 : xivk + xiv′k ≤ 1 (4)

The only exception to this time incompatibility are the virtual trips associated to the
rest days of the crews. This means that a rest trip is compatible with all the other real
trips.

• Overnight legal rest. The legal rest must be assigned before the 7th working day, so
we impose:

∀v = vLR, i ∈ T , k ∈ D : 1 ≤
min(7,k+5)∑

j=k

xivj +

k−1∑
j=1

x(i+1)vj ≤ 2 (5)

• Sunday rest. The Sunday rest regime indicated by the R attribute imposes the number
of free Sunday in a group of 4 consecutive weeks. The corresponding constraint is
written as:

i+3∑
j=i

xjv7 ≥ R v = vSR, ∀i ∈ T (6)

• Crew rotation. In order to impose that crew i takes the schedule of crew i+ 1 the next
week and so on, we write, for
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i = 1, . . . ,m− 1, ∀i ∈ T , v, v′ ∈ V, ηv7v′1 = 0 :

xiv7 + x(i+1)v′1 ≤ 1 (7)

and, to impose that crew m takes the schedule of crew 1, we write, for v, v′ ∈
V, ηv7v′1 = 0 :

xmv7 + x1v′1 ≤ 1 (8)

• Consecutive trips. If the pair of trips (v, k) and (v′, k′) are defined as consecutive
(served by the same crew), then we impose:

xivk = xiv′k′ ∀i ∈ T , k ∈ D (9)

3.2. Objective function
Since the idea is to achieve a balanced weekly amount of working hours for every crew, we
define the integer variables z+ y z− through the inequality:

z− ≤
∑

v∈V, k∈D

∆vxivk ≤ z+ ∀i ∈ T (10)

where ∆v is the duration of trip v. So, we use the following objective (balanced hours):

min z+ − z− (11)

subject to constraints (2)-(10).

§4. The drivers assignment problem

The previous model permits to find a feasible or optimal equilibrated trips diagram, but it
doesn’t include the identification of crews. For the crew assignment, we propose to consider
the previous model as an input, which provides a feasible solution but without identifying the
specific crew to be assigned to each weekly diagram.

Let i ∈ T given crew and j ∈ T be a weekly diagram given by the previous model. We
also denote wij the weight of the crew i to be assigned to week j. This term can be propor-
tional to the difference between the number of hours cumulated by the crew i in the previous
week and the number of hours to be done at week j. We use the variable

yij =

{
1 if i is assigned to week j
0 otherwise (12)

This means that each crew is assigned to one and only only one week of the diagram, and
each week is assigned to one and only one crew. We also define a bipartite graph whose
vertices can be divided into two disjoint sets: the set of crews and the sets of weeks. The set
A of oriented arcs connecting crews to weeks is defined as:
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(i, j) ∈ A ⇐⇒ i is compatible with j

Compatibility here means that given a crew i, it can be effectively assigned to a given week
j. This can be expressed by the following three conditions:

• Rest hours. Last service (trip) by crew i must satisfy the minimum rest period with
respect to the first trip in the week.

• Feasible location of the crew. The actual location of the crew must be equal to the
initial location (origin) of the first trip in the scheduled week.

• Legal rest day. The last legal rest day of the crew must satisfy the legal rest condition
with respect to the scheduled week (on day-off in every 7-days interval).

The objective function of this problem is:∑
(i,j)∈A

wiyij (13)

which have to be maximized.

Given that the number of weeks of the diagram and the number of available crews are equal,
then this problem can be interpreted as to find an optimal one-to-one assignment between
crews and weeks. The constraints are:∑

i / (i,j)∈A

yij = 1 ∀j ∈ T (14)

and ∑
j / (i,j)∈A

yij = 1 ∀i ∈ T (15)

Expressions (13), (14) and (15) define the optimal assignment of crews to weeks of the dia-
gram.

This is a medium size optimization flow problem whose solution is easy to obtain, in com-
parison with the computer time for the main scheduling problem given in Section 3.

§5. The adapted local search algorithm

In practice, the problem formulated above is hard to solve, specially due to the constraint (2),
which forces to assign every trip to a crew. This complexity can be decreased (in terms of
execution time) if the constraint (2) is relaxed as:∑

i∈T
xivk ≤ 1 ∀v ∈ V, k ∈ D (16)
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which permits to leave some trips without crew assignment. Then, the optimization problem
is now defined by constraints (3.1)-(10) and (16), but with the values z− and z+ fixed by the
user (the case z− = 0 and z+ =∞ are also allowed), with the objective function:

max
∑

i∈T , v∈V, k∈D

xivk (17)

which corresponds to maximize the number of served trips. This formulation may leave
some uncovered trips (when the original set of constraints is unfeasible), but that can be fixed
through the objective function (17).

Given the simplified formulation above, one can solve the problem of finding a balanced trips
allocation combining the mathematical model with a heuristic routine which implements local
search. The local search routine consists of 3 stages of resolution. First, using an optimiza-
tion solver we find a feasible solution, where every trip is served, using the relaxed model.
The feasible schedule resulting of stage 1 is given as an input for stage 2, where the whole
diagram is fragmented into blocks of few weeks (ideally, blocks must have a maximum size
10 weeks). The local search based heuristic is an iterative routine that takes a block, fixes the
variables outside it and lets the variables within free for re-optimization, applying the model
for finding a balanced solution. This process is repeatedm times, travelling through all weeks
and solving a sub-problem on each iteration. Finally, one last re-optimization is made, releas-
ing all variables and applying the balanced solution model to the whole diagram, with a time
limit constraint in order to ensure the process will end within a reasonable execution time.

This approach takes advantage of the fact that solving a problem using warm start strategies
decreases the execution time, since the number of feasible branches is immediately reduced
in the Branch and Bound algorithm. This, combined with the strong reduction of complexity
when multiple sub-problems are solved instead of an unique big problem, highly decreases
the execution time and provides very balanced solutions, as we will see in Section 6.

The model (13)-(15), that deals with the assignment of crews to the schedules weeks is a
simple bipartite graph, where source nodes are represented by crews and destination nodes
by the scheduled weeks. A one-to-one assignment is then performed. The feasibility depends
on the initial conditions of crews, mainly the current location, the accumulated worked hours
and the last legal rest day. The cost of the arcs is the square of the difference between the
normalized coefficients of the crew accumulated load and the load of the scheduled week.
Thus, the objective function is to maximize the sum of the arcs pondered by their cost, forc-
ing highly loaded crews be assigned to lightly loaded weeks and vice versa, attempting to
maintain a balanced hour schedule after the assignment.

Optimization models and heuristics routines were written in AMPL programming language,
that provides enough flexibility for a big range of operations. The routines were packaged
within a Java based user interface. The main features of this software is to allow the user to
solve different problems for various scenarios, changing parameters such as number of crews,
trips attributes and time limit. It also allows the easy interaction for uploading the data files
and downloading the output solution, in different format files. The user can remotely submit
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big instances of the model using HPC resources.

The interface follows a sequence of stages for each executed instance:

1. Read/Transform data to AMPL language.

2. Connect to the HPC through SSH.

3. Send data to High-Performance computer.

4. Trigger the execution routine.

§6. Case studies

In this section, we present numeric results obtained using the algorithm presented in Section
5 for finding a balanced solution, in terms of execution time and performance.

Along the path of this train network, there are different courses that cover various geographic
zones with variable extension and operative characteristics. This implies that there are differ-
ent types of schedules, depending on the operation zone, with variable dimensions in terms
of number of variables, according to the number of crews and trips to serve. Through test ex-
periments and models validation, we detected that execution time increases with the number
of variables and also, this effect is specially critical when the model for finding a balanced
solution is applied.

Tests using the heuristic algorithm shown it is possible to achieve balanced schedules in a
third of the time taken by the balanced solution model and this result can be improved even
10 times when the heuristic algorithm is applied to medium size problems. Below, we show
some results for large scale and medium size cases, when the executions were run using HPC
resources and the licensed optimization solver mentioned before.

The first result corresponds to a complex scenario with 52 crews (weeks) and 33 regular trips
(from Monday to Sunday). The problem execution stops at 60.000 seconds ( 16,7 hours) due
to the time limit, set at 60.000 for this case. This solution has a standard deviation of 4,12
for the weekly hours. For the same problem but using the heuristic algorithm, the execution
time falls to 22.000 seconds with an optimum solution with 3,06 hours as standard deviation
for weekly load.

For a medium size problem, with 35 crews and 20 regular trips, the execution time decreases
from 60.000 seconds (detention for time limit), obtained with the balanced hours model, to
1260 seconds when using the heuristic algorithm, while standard deviation for weekly hours
goes from 5,03 to 4,98, respectively.

For small size problems with 10 to 15 crews, the balanced hours model works very quickly
because the number of variables and constraints of the problem is perfectly handled by the
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software, even when the local open source optimization software is used in a common com-
puter. Thus, it doesn’t seem very useful for this case the heuristic option, being sometimes
more time consuming than the balanced hours model.

§7. Conclusions

We presented a crew scheduling modeling, with the special characteristic of including a ro-
tation constraint that delivers balanced load in terms of work load among crews and also,
generates a reusable and infinite time horizon schedule.

The balanced hours model can be slightly modified in order to generate a balanced schedule
in a reduced execution time, by relaxing the one-trip one crew constraint and adding upper
and lower bounds to the total weekly hours. The risk when we use this model is to obtain
infeasible solutions because the constraint of serving all trips is not strict and thus could be
violated.

The complexity of the problem when the size of the problem increases leads to high exe-
cution times, which was faced by implementing a heuristic algorithm that combines warm
start strategies with a local search iterative routine. Results are very encouraging, showing a
strong reduction of the execution time for medium and large scale cases.
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ON SPECTRAL ANALYSIS OF
HEAVY-TAILED KOLMOGOROV-PEARSON

DIFFUSIONS

Florin Avram, Nikolai N. Leonenko and Nenad Šuvak

Abstract. The self-adjointness of the semigroup generator of one dimensional diffusions
implies a spectral representation which has found many useful applications, for example
in mathematical finance. However, on non-compact state spaces, the spectrum of the gen-
erator will typically include both a discrete and a continuous part, with the latter starting
at a spectral cutoff point related to the nonexistence of stationary moments. The signifi-
cance of this fact for statistical estimation is still not fully understood. We consider here
the problem of spectral representation of the transition density for an interesting class
of diffusions: the hypergeometric1 diffusions with heavy-tailed Pearson type invariant
distribution, to be called Kolmogorov-Pearson diffusions (Reciprocal (inverse) gamma,
Fisher-Snedecor and skew-Student diffusions). As opposed to the "classic" hypergeo-
metric diffusions (Ornstein-Uhlebeck, Gamma/CIR, Beta/Jacobi), these diffusions have a
continuous part of the spectrum, whose spectral cutoff and transition density we provide
in an explicit form.

Keywords: Diffusion process, Infinitesimal generator, Kolmogorov-Pearson diffusion,
Sturm-Liouville equation, Transition density.

AMS classification: 33C47, 60G10, 60J25, 60J60, 62M15.

§1. Introduction

We study here some analytical and probabilistic properties of diffusion processes

dXt = σ(Xt)dBt + b(Xt)dt (1)

with quadratic diffusion coefficient a(x) = σ2(x)
2 = ε(a2x

2 + a1x+ a0), ε > 0, a2 > 0 and
linear drift b(x) = −θ(x− µ). We may write (1) as

dXt = θ(µ−Xt) dt+

√
2εa2

[
(Xt − µ′)2

+ δ2
]
dBt, t ≥ 0. (2)

This parametrization, to be called Student parametrization, makes sense for the whole Kolmogorov-
Pearson family (by allowing δ2 ≤ 0), but it is especially convenient when δ ∈ R, a2 > 0, in
which case it produces diffusions living on (−∞,∞).
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NAME a(x) SPEED DENSITY

Ornstein-Uhlenbeck 1/2 e−θ(x−µ)
2

CIR/Squared O-U/Gamma x xp−1e−θx

Jacobi/Beta x(a1 − a2x), a2 > 0, ∆(a) > 0 x
p
a1
−1

(a1 − a2x)
− p
a1

+ θ
a2
−1

Reciprocal gamma /IGBM a2x2, a2 > 0, ∆(a) = 0 x
− θ
a2
−2
e
− p
a2x

Student/hypergeometric a2x2 + a0, a2 > 0, ∆(a) < 0 σ(x)
− θ
a2
−2

e
p√
a0a2

tan−1
(

x√
a0/a2

)

Fisher-Snedecor x(a1 + a2x), a2 > 0, ∆(a) > 0 x
p
a1
−1

(a1 + a2x)
− p
a1
− θ
a2
−1

Table 1: The speed density for Kolmogorov-Pearson diffusions

A classification of Kolmogorov-Pearson diffusions may be achieved by using the degree
of the polynomial a(x) from the diffusion coefficient, the sign of its leading coefficient a2

and the discriminant ∆(a) in the quadratic case (see Table 1).
The Ornstein-Uhlenbeck, CIR/Gamma and Jacobi/Beta diffusions, that have all moments

and complete orthogonal polynomial bases, have been extensively studied and widely applied
(especially in the ergodic case). However, the first results on the statistical analysis of the
heavy-tailed diffusions (1) are more recent. We study these processes under the assumption
of non-regular boundaries, which ensures the uniqueness of the diffusion. Furthermore, under
this assumption the specification of boundary conditions is not required. For more detailed
study of heavy-tailed Kolmogorov-Pearson diffusions we refer to the complete version of the
paper, see [3].

§2. Heavy-tailed Kolmogorov-Pearson diffusions

We observe the class of diffusion processes defined by the SDE (1) with the linear drift
b(x) = b1x+ b0 and the quadratic squared diffusion coefficient

σ2(x) = 2a(x) = 2(a2x
2 + a1x+ a0) = σ2

2x
2 − σ2

1x+ σ2
0 .

Heavy-tailed Kolmogorov-Pearson diffusions with the state space 〈l, r〉 are a subclass of this
class of diffusions and are characterized by properties given in Table 1. Existence of the
unique Markovian weak solution X = {Xt, t ≥ 0} of the SDE (1) with the pre-specified
marginal density from the Pearson family follows from Bibby et. al. [4, Theorem 2.1.(i)].
Furthermore, the SDE (1) admits a unique strong solution with the time-homogenous transi-
tion densities if it satisfies the following sufficient conditions given by Aït-Sahalia [1, page
415, assumption A1 (i) and (ii)]:

- the drift coefficient b(x) and the diffusion coefficient σ(x) are continuously differen-
tiable in x and σ2(x) is strictly positive on the whole diffusion state space,

- the integral of the speed density m(x) of diffusion X converges at both boundaries of
the diffusion state space.

1It seems appropriate to call this class of processes hypergeometric diffusions, due to the appearance of the Gauss
2F1 function and its limiting confluent forms in various explicit formulas.
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According to Aït-Sahalia [1], these conditions are considerably less restrictive than the global
Lipschitz and the linear growth conditions. Existence of strong solutions for particular
Kolmogorov-Pearson diffusions is verified in [2, Section 3], [8, Section 3] and [9, Section
3], respectively.

2.1. Oscillatory/non-oscillatory classification of natural boundaries
The infinitesimal generator Gf(x) = a(x)f ′′(x) + b(x)f ′(x) plays the crucial role in clas-
sification of boundaries of the diffusion state space. For O/NO classification of the natural
boundaries l = −∞ and r = ∞ of Kolmogorov-Pearson diffusion, the standard procedure
requires transformation of the Sturm-Liouville equation

a(x)f ′′(x) + b(x)f ′(x) + λf(x) = 0, λ ≥ 0 (3)

to the Liouville normal form (Fulton et al. [6, pg. 4])

−g′′(u) +Q(u)g(u) = λg(u). (4)

The function Q(u) is called the potential function and in the case of the diffusion (1) is given
by

Q(u) =
e4
√
a2u(a2 − b1)2

4a2

(
e2
√
a2 u −∆(a)

)2 − e3
√
a2 u(b1 − 2a2)(a1b1 − 2a2b0)

a2

(
e2
√
a2 u −∆(a)

)2 −

−4e
√
a2 u(b1 − 2a2)(a1b1 − 2a2b0)∆(a)− (a2 − b1)2∆2(a)

4a2

(
4e2
√
a2 u −∆(a)

)2 +

+
e2
√
a2u
(
−8a1a2b0b1 + a2

1

(
5a2

2 − 6a2b1 + 3b21
)
− 4a2

(
−2a2b

2
0 + a0

(
5a2

2 − 6a2b1 + b21
)))

2a2

(
e2
√
a2 u −∆(a)

)2 .

Natural boundaries l = −∞ and r = ∞ of the Sturm-Liouville equation (3) remain
unchanged under the Liouville transform, i.e. the corresponding boundaries of the equation
(4) are l∗ = u(l) = −∞ and r∗ = u(r) = ∞. O/NO classification of the boundaries
l∗ = −∞ and r∗ = ∞ depends on the behavior of the potential function Q(u) near these
boundaries. Since the last three terms in the expression for Q(u) vanish as u → −∞ and
u→∞, it follows that

lim
u→−∞

Q(u) = lim
u→∞

Q(u) =
(a2 − b1)2

4a2
.

By using [6, Theorem 6], we have shown that both l∗ = −∞ and r∗ = ∞ are O/NO
boundaries of the equation (4) with unique positive cutoff

Λ = Λ(a2, b1) =
(a2 − b1)2

4a2
. (5)

Furthermore, we verified that these boundaries are NO for λ < Λ and O for λ > Λ. Accord-
ing to Dunford and Schwartz [5, Corollary 57, pg. 1481] (see also Linetsky [10, Theorem
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3, pg. 349]), both boundaries are NO for λ = Λ. This classification of boundaries remains
invariant under the Liouville transform (see [6, pg. 6]), i.e. both l = −∞ and r = ∞ are
O/NO boundaries of the Sturm-Liouville equation (3) with unique positive cutoff

Λ = Λ(a2, b1) =
(a2 − b1)2

4a2
.

Furthermore, both boundaries are NO for λ ≤ Λ and O for λ > Λ.
For Reciprocal gamma and Fisher-Snedecor diffusions the left boundary of the diffusion

state space is l = 0 and it is regular, entrance or exit, depending on parameter values (see
[2, 8, 9]). For both diffusions the right boundary r =∞ is natural. Since the cutoff between
the discrete and the absolutely continuous spectrum is determined by asymptotic behavior of
the potential function near natural boundaries it means that the cutoff formula (5) holds also
for these two diffusions living on 〈0,∞〉.

2.2. Spectrum of the Sturm-Liouville operator
Explicit form of the spectral representation of the transition density of the diffusion process
is implied by the structure of the spectrum of the corresponding Sturm-Liouvuille operator
(−G). Furthermore, according to [10, pg. 350], if the corresponding potential function Q(x)
has bounded variation on some subinterval 〈c,∞〉 of the positive halfline, in the continuous
part of the spectrum of the operator (−G) with natural boundary r = ∞ there are no gaps
containing simple eigenvalues.

Spectral category and the structure of the spectrum of the heavy-tailed Kolmogorov-
Pearson diffusions is given below, according to the general results on O/NO classification
of boundaries of the diffusion state space 〈l, r〉 (see [6, pg. 23-27] and [10, pg. 348, Theorem
2]):

• lNO boundary, rO/NO natural boundary (Reciprocal gamma and Fisher-Snedecor
diffusions)
These diffusions belong to Linetsky’s spectral category II. In particular, l = 0 is NO
boundary, while r =∞ is O/NO boundary with unique cutoff

Λ = Λ(a2, b1) =
(a2 − b1)2

4a2
. (6)

Since r = ∞ is NO for λ = Λ, the Sturm-Liouville operator (−G) has a finite set of
simple eigenvalues in [0,Λ] and an essential spectrum σe(−G) = [Λ,∞〉. Hence, the
operator (−G) has a discrete spectrum σd(−G) in [0,∞〉, i.e. σd(−G) ⊂ [0,Λ〉, and
a purely absolutely continuous spectrum σac(−G) of multiplicity one in 〈Λ,∞〉. For
more details on boundary classification for these two diffusions see [8] and [2].

• l and r are natural O/NO boundaries (Student diffusion)
These diffusions belong to Linetsky’s spectral category III. In particular, the Sturm-
Liouville operator (−G) has a finite set of simple eigenvalues in [0,Λ] and an essen-
tial spectrum σe(−G) = [Λ,∞〉. Hence, the operator (−G) has a discrete spectrum
σd(−G) in [0,∞〉, i.e. σd(−G) ⊂ [0,Λ〉, and a purely absolutely continuous spectrum
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σac(−G) of multiplicity two in 〈Λ,∞〉. For more details on boundary classification for
symmetric case of Student diffusion see [9].

2.2.1. Discrete part of the spectrum

The discrete part of the spectrum of the operator (−G) is of the form σd(−G) = {λn, n =
0, 1, . . . , b(a2 − b1)/2a2c}. Eigenvalues λn are given by the explicit expression

λn = n ((1− n)a2 − b1) , n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} . (7)

Corresponding eigenfunctions are polynomial solutions of the Sturm-Liouville equation
(3) given by the Rodrigues formula

P̃n(x) =
1

m(x)

dn

dxn
{2nan(x)b(x)} , n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} . (8)

Polynomials P̃n(x) form the finite system of polynomials orthogonal with respect to the
speed density m(x), i.e.

∞∫
−∞

P̃m(x) P̃n(x)m(x) dx = 0, m, n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} , m 6= n.

For normalization of polynomials with respect to the speed density we must multiply each
of them by the normalizing constant given by the general expression

Kn =
(−1)n√

(−1)
n
n! dn In

, n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} ,

where

dn = 2na
(n−1)
2 (b1 + (n− 1)a2)

Γ
(
b1
a2

+ 2n− 1
)

Γ
(
b1
a2

+ n
) , In = 2n

∫ r

l

an(x)m(x) dx.

Therefore, the normalized orthogonal polynomials are given by the Rodrigues formula

Pn(x) = Kn P̃n(x), n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} . (9)

Remark 1. Orthogonality relation for the normalized polynomials Pn(x), i.e. the relation
r∫
l

Pm(x)Pn(x)m(x) dx = δmn, m, n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} , (10)

implies interesting properties of the random variables Pn(Xt), whereXt is from the diffusion
with the state space 〈l, r〉 and the speed density m(x). In particular, random variables Pn(Xt)
are orthonormal, i.e.

E[Pm(Xt)Pn(Xt)] =

r∫
l

Pm(x)Pn(x)m(x) dx = δmn, m, n ∈ {0, 1, . . . , b(a2 − b1)/2a2c} .
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Since P0(x) = 1, for m = 0 and n 6= 0 the previous expression takes the form

E[Pn(Xt)] = 0, n ∈ {1, . . . , b(a2 − b1)/2a2c} ,

i.e. Pn(Xt), n = 1, . . . , b(a2 − b1)/2a2c, are orthonormal centered random variables.

2.2.2. Essential part of the spectrum

In the subsection 2.2 we verified that the essential spectrum of the Sturm-Liouville operator
(−G) is σe(−G) = [Λ,∞〉. Moreover, the operator (−G) has purely absolutely continuous
spectrum of multiplicity one in 〈Λ,∞〉, where

Λ =
(a2 − b1)2

4a2
,

is the unique positive cutoff between the discrete and the absolutely continuous part of the
spectrum.

Remark 2. Polynomial eigenfunctions Pn(x), n ∈ {0, 1, . . . , b(a2 − b1)/2a2c}, and (eigen)
functions related to absolutely continuous spectrum (i.e. for λ > Λ) belong to orthogonal
subspaces of the Hilbert space H = L2(〈l, r〉,m(·)). Polynomials Pn(x) belong to the
subspaceHpp of the Hilbert space L2(〈−∞,∞〉,m(·)) containing functions having only the
pure point spectral measure. Functions related to absolutely continuous spectrum belong to
the subspace Hac of the same Hilbert space, that contains functions having only the spectral
measure which is absolutely continuous with respect to the Lebesgue measure (see Linetsky
[10, Appendix]). From these facts it follows that polynomial eigenfunctions and functions
related to absolutely continuous spectrum are orthogonal with respect to the density m(·).

2.3. Student diffusion
In this section we apply some results by Shaw [12] and techniques by Paulsen [11, Theorem
A.1,pg. 984]. Namely, the Student parametrization of Kolmogorov-Pearson diffusions could
be derived by following the formulation of [12]. Consider the SDE

dXt = θ (µ−Xt) dt+ σ1 dW
(1)
t + σ2XtdW

(2)
t , t ≥ 0, ⇒ (11)

dXt = θ (µ−Xt) dt+

√√√√σ2
2

((
Xt + ρ

σ1

σ2

)2

+ (1− ρ2)

(
σ1

σ2

)2
)
dWt,

where W
(1)
t and W

(2)
t , t ≥ 0, are standard Brownian motions with correlation ρ, and

{Wt, t ≥ 0} is a standard Brownian motion resulting from combining the two. This dif-
fusion process (11) is Markovian, with infinitesimal generator

Gh(x) = a(x)h′′(x) + b(x)h′(x) (12)

where 2a(x) = σ2(x) = σ2
2

((
Xt + ρσ1

σ2

)2

+ (1− ρ2)
(
σ1

σ2

)2
)

.
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Simplifying the notation, we will consider the stochastic differential equation (SDE)

dXt = −θ(Xt − µ) dt+

√
2a2

(
(Xt − µ′)2

+ δ2
)
dWt, t ≥ 0, (13)

where δ > 0, 2a2 = σ2
2 = 2θ

ν−1 > 0, µ, µ′ ∈ R > 0, and W = {Wt, t ≥ 0} is a standard
Brownian motion. Note that by a change of origin, one may always assume that either µ or
µ′ are 0. Putting X̃t := (Xt − µ′)/δ, we arrive at

dX̃t = −θ(X̃t − µ̃) dt+

√
2a2

(
1 + X̃2

t

)
dWt, t ≥ 0, (14)

where we put µ̃ := (µ− µ′)/δ. The infinitesimal operator is

G = a2

(
1 + x̃2

)
D2
x̃ − θ(x̃− µ̃)Dx̃, (15)

and the scale and speed densities are:

s(x̃) = (x̃2 + 1)
1
2ã e−

µ̃
ã arctg (x̃), m(x̃) =

e
µ̃
ã arctg (x̃)

(x̃2 + 1)
1
2ã+1

, x ∈ R,

where ã = a2/θ.
A direct approach for solving the corresponding Sturm-Liouville equation in this case was

provided by Paulsen [11, Theorem A.1, pg. 984], who finds that the monotone solutions are
given by the Weyl type fractional integrals. We revisit now Paulsen’ approach (see [11, Thm
A1] and also[7]) to the Student Sturm-Liouville operator, which is based on representing the
solution as a Weyl fractional integral with kernel K(x, t) = (t − x)n−1+ρ. This approach
uses Euler’s transformation [7, 8.31] which decomposes the original operator in a sum G =
Γ0 − Γ1 + ...(−1)pΓp of special type operators, involving an additional parameter ρ chosen
to minimize p. For the normalized Student SL equation [11, (A2)]

G = (x2 + 1)D2 + (r̃x+ p̃δ)D − λ̃,

where tilde signifies the corresponding coefficient is divided by a2, Euler’s decomposition [7,
VIII.31] is G = Γ0 − Γ1 + Γ2 where

Γ0 = G0(x)D2 − ρG′0(x)D +
ρ(2)

2
G′′0(x) = (x2 + 1)D2 − 2xρD + ρ(ρ+ 1)

Γ1 = G1(x)D − (ρ+ 1)G′1(x) = −(r̃x+ δp̃+ 2xρ)D + (ρ+ 1)(r̃ + 2ρ),

Γ2 = (ρ+ 1)(r̃ + 2ρ)− (ρ+ 1)(ρ)− λ̃ = (ρ+ 1)(r̃ + ρ)− λ̃.

The last operator vanishes when ρ2 + ρ(1 + r̃) + r̃ − λ = 0, for

ρ =
1

2

(
−1− r̃ ±

√
(1 + r̃)2 − 4(r̃ − λ̃)

)
. (16)

In order to stress out the dependence of ρ on the spectral parameter λ we will denote ρ
by ρ(λ). With these choices, the order p of Mz =

∑p
i=0 Γi(z)D

p−i
z becomes p = 1, i.e.
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Mz = Γ0(z)Dz + Γ1(z), and we can apply directly the results of Pochhammer and Jordan
[7, XVIII.4], yielding

φρ(λ)(x) =

∫
Γ

(z − x)ρ(λ)+1K(z)dz,

where

K(z) =
1

G0(z)
e
∫ z G1(y)

G0(y)
dy

= (z2 + 1)−1e
−
∫ z δp̃+βy

y2+1
dy

= (z2 + 1)−β/2−1e−δp̃ arctg(z), (17)

β = r̃ + 2ρ(λ). (18)

Finally, the contour must be chosen so that
∫
d[(z − x)ρ(λ)(z2 + 1)−β/2e−δp̃ arctg(z)] is 0. If

ρ(λ) is chosen as the positive root, x is a zero of the total differential, and it may be checked
by limiting arguments that the Weyl type fractional integrals

φ
(1)
ρ(λ)(x) =

∫ ∞
x

(z − x)ρ(λ)+1K(z) dz, (19)

φ
(2)
ρ(λ)(x) =

∫ x

−∞
(x− z)ρ(λ)+1K(z) dz, (20)

are convergent and that the bilinear concomitant (z−x)ρ(λ)(z2+1)−β/2e−δp̃ arctg(z) is zero at
∞, certifying thus φ(1)

ρ(λ)(x), φ
(2)
ρ(λ)(x) as two basic solutions of our Sturm-Liouville equation.

It is easy to check that:
(φ+
λ )′(y) = −ρφ+

λ−1(y),

(φ−λ )′(y) = ρφ−λ−1(y),

where
−1 < Re(ρ+ 1) < 1 +Re(β).

These may be furthermore checked to be precisely the increasing and decreasing Sturm-
Liouville solutions φ+

ρ(λ)(x) and φ−ρ(λ)(x), respectively, with the Wronskian

Wρ(λ) =
(
φ+
ρ(λ)(x)

)′
φ−ρ(λ)(x)− φ+

ρ(λ)(x)
(
φ−ρ(λ)(x)

)′
=

= −ρ(λ)
(
φ+
ρ(λ)−1(x)φ−ρ(λ)(x) + φ+

ρ(λ)(x)φ−ρ(λ)−1(x)
)

=

= ρ(λ)

(∫ ∞
x

(z − x)ρ(λ)K(z)dz

∫ x

−∞
(x− z)ρ(λ)+1K(z)dz+

+

∫ ∞
x

(z − x)ρ(λ)+1K(z)dz

∫ x

−∞
(x− z)ρ(λ)K(z)dz

)
.

It is well known that, once the Green function is known, its residues and values along
an eventual branch cut determine the spectral expansion of the transition density. However,
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completing all the details of this complex analysis exercise is quite tedious. For spectral
representation of the transition density of positive recurrent Reciprocal gamma and Fisher-
Snedecor diffusions with non-regular boundaries we refer to [8], [9] and [2]. For regular
boundaries several cases need to be analyzed.

The essential feature of the heavy-tailed case is the presence of a branch cut in the Green’s
function which, beside the discrete spectrum, produces a continuous part of the spectrum
of the corresponding infinitesimal generator. This is in contrast with with the Ornstein-
Uhlenbeck, CIR and Jacobi diffusions having only purely discrete simple spectrum and a
complete set of (classical) orthogonal polynomials eigenfunctions (Hermite, Laguerre and
Jacobi, respectively).

2.4. Spectral representation of transition density
In this section we give the explicit formulae for the discrete and the continuous part of the
spectral representation of the transition density of heavy-tailed Kolmogorov-Pearson diffu-
sions.

Eigenvalues λn given by (7) are precisely simple poles of the Green’s function (they
appear in the inverse Laplace transformation of the Green’s function). Similarly to spectral
representation of the transition density for the regular Sturm-Liouville problems, it follows
that the discrete part of the spectral representation of the transition density for heavy-tailed
Kolmogorov-Pearson diffusions is of the form

pd(x; y, t) =

b(a2−b1)/2a2c∑
n=0

e−λntPn(x)Pn(y)m(x),

where m(·) is the speed density. The non-normalized continuous part of the spectral repre-
sentation of the transition density for heavy-tailed Kolmogorov-Pearson diffusions is of one
of the following forms, depending on spectral category of diffusion:

• Diffusions belonging to the spectral category II (Reciprocal gamma and Fisher-Snedecor
diffusion):

pc(x; y, t) = m(x)

∫ ∞
Λ

e−λtφ+
ρ(λ)(x)φ+

ρ(λ)(y) dλ,

where the increasing functions φ+
ρ(λ)(·) for Reciprocal gamma and Fisher-Snedecor

diffusions are given in Leonenko and Šuvak [8, 9].

• According to Linetsky [10], for diffusions belonging to spectral category III (Student
diffusion) spectral representation of transition density is of the following form:

pc(x; y, t) = m(x)

∫ ∞
Λ

e−λt
(
φ+
ρ(λ)(x)φ+

ρ(λ)(y) + φ+
ρ(λ)(x)φ−ρ(λ)(y)+

+φ+
ρ(λ)(y)φ−ρ(λ)(x) + φ−ρ(λ)(x)φ−ρ(λ)(y)

)
dλ,

where monotone solutions φ+
ρ(λ)(·) and φ−ρ(λ)(·) are given by (19) and (20), respec-

tively.
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For explicit expressions for spectral representations of transition densities of Reciprocal
gamma diffusion, special case of Student diffusion (symmetric Student diffusion) and Fisher-
Snedecor diffusion we refer to [8, Theorem 3.1.], [9, Section 4.5.] and [2, Theorem 4.1.],
respectively.
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ON PAIRWISE COMPARISON WITH
COMPETING RISKS

Tahani Coolen-Maturi

Abstract. In reliability, failure data often correspond to competing risks, where several
failure modes can cause a unit to fail. This paper presents nonparametric predictive infer-
ence (NPI) for pairwise comparison with competing risks data, assuming that the failure
modes are independent. These failure modes could be the same or different among the
two groups, and these can be both observed and unobserved failure modes. NPI is a sta-
tistical approach based on few assumptions, with inferences strongly based on data and
with uncertainty quantified via lower and upper probabilities. The focus is on the lower
and upper probabilities for the event that the lifetime of a future unit from one group, say
Y , is greater than the lifetime of a future unit from the second group, say X . Finally, an
example is given for illustration purposes.

Keywords: Competing risks, reliability, pairwise comparison, nonparametric predictive
inference, lower and upper probabilities, lower and upper survival functions, right-censored
data.

AMS classification: 62G86, 62N05, 62N99

§1. Introduction

In reliability, failure data often correspond to competing risks [2, 18, 19], where several
failure modes can cause a unit to fail, and where failure occurs due to the first failure event
caused by one of the failure modes. Throughout this paper, it is assumed that each unit cannot
fail more than once and it is not used any further once it has failed, and that a failure is caused
by a single failure mode which, upon observing a failure, is known with certainty. Also we
assume throughout that the failure modes are independent, inclusion of assumed dependence
would be an interesting topic for future research, but cannot be learned about from the data
as considered here as shown by Tsiatis [20].

Comparison of two groups or treatments with competing risks is a common problem in
practice. For example in medical applications, one may want to compare two treatments with
multiple competing risks [15], or in reliability one may want to study the effect of the brand
of air-conditioning systems which can fail either due to leaks of refrigerant or wear of drive
belts [17].

In this paper we introduce nonparametric predictive inference (NPI) for comparison of
two groups with competing risks. NPI is a statistical method based on Hill’s assumptionA(n)

[13], which gives a direct conditional probability for a future observable random quantity,
conditional on observed values of related random quantities [1, 3]. A(n) does not assume
anything else, and can be interpreted as a post-data assumption related to exchangeability
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[12], a detailed discussion of A(n) is provided by Hill [14]. Inferences based on A(n) are
predictive and nonparametric, and can be considered suitable if there is hardly any knowl-
edge about the random quantity of interest, other than the n observations, or if one does not
want to use such information, e.g. to study effects of additional assumptions underlying other
statistical methods. A(n) is not sufficient to derive precise probabilities for many events of
interest, but it provides bounds for probabilities via the ‘fundamental theorem of probability’
[12], which are lower and upper probabilities in interval probability theory [1, 22, 23, 24].

In reliability and survival analysis, data on event times are often affected by right-censoring,
where for a specific unit or individual it is only known that the event has not yet taken place at
a specific time. Coolen and Yan [8] presented a generalization ofA(n), called ’right-censoring
A(n)’ or rc-A(n), which is suitable for right-censored data. In comparison to A(n), rc-A(n)

uses the additional assumption that, at the moment of censoring, the residual lifetime of a
right-censored unit is exchangeable with the residual lifetimes of all other units that have
not yet failed or been censored, see Coolen and Yan [8] for further details of rc-A(n). To
formulate the required form of rc-A(n), notation is required for probability mass assigned to
intervals without further restrictions on the spread within the intervals. Such a partial speci-
fication of a probability distribution is called an M -function [8]. The use of lower and upper
probabilities to quantify uncertainty has gained increasing attention during the last decade,
short and detailed overviews of theories and applications in reliability, together called ’impre-
cise reliability’, are presented by Coolen and Utkin [6, 21]. Also, Coolen et al. [5] introduced
NPI to some reliability applications, including upper and lower survival functions for the next
future observation, illustrated with an application with competing risks data. They illustrated
the upper and lower marginal survival functions, so each restricted to a single failure mode.

Coolen and Yan [7] presented NPI for comparison of two groups of lifetime data including
right-censored observations. Coolen-Maturi et al. [11] extend this for comparing more than
two groups in order to select the best group, in terms of largest lifetime. Coolen-Maturi et al.
[10] consider selection of subsets of the groups according to several criteria. They allow early
termination of the experiment in order to save time and cost, which effectively means that all
units in all groups that have not yet failed are right-censored at the time the experiment is
ended.

Section 2 of this paper presents a brief overview of NPI for the competing risks problem.
NPI for pairwise comparison is introduced in Section 3, presenting the NPI lower and upper
probabilities for the event that the lifetime of the next future unit from one group is greater
than the lifetime of the next future unit from the second group, with different independent
competing risks per group. Our NPI method is illustrated via an example in Section 4. Some
concluding remarks are given in Section 5.

§2. NPI for one group with competing risks

In this section, a brief overview of NPI for one group with competing risks is given following
the definitions and notations introduced by Maturi et al. [16]. For group X , let us consider
the problem of competing risks with J distinct failure modes that can cause a unit to fail. It
is assumed that the unit fails due to the first occurrence of a failure mode, and that the unit is
withdrawn from further use and observation at that moment. It is further assumed that such
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failure observations are obtained for n units, and that the failure mode causing a failure is
known with certainty. In the case where the unit did not fail it is right-censored.

Let the failure time of a future unit be denoted by Xn+1, and let the corresponding no-
tation for the failure time including indication of the actual failure mode, say failure mode
j (j = 1, . . . , J), be Xj,n+1. As the different failure modes are assumed to occur inde-
pendently, the competing risk data per failure mode consist of a number of observed failure
times for failures caused by the specific failure mode considered, and right-censoring times
for failures caused by other failure modes. It should be emphasized that it is not assumed
that each unit considered must actually fail, if a unit does not fail then there will be a right-
censored observation recorded for this unit for each failure mode, as it is assumed that the
unit will then be withdrawn from the study, or the study ends, at some known time. Hence
rc-A(n) can be applied per failure mode j, for inference on Xj,n+1. Let the number of fail-
ures caused by failure mode j be uj , xj,1 < xj,2 < . . . , < xj,uj , and let n − uj be the
number of the right-censored observations, cj,1 < cj,2 < . . . < cj,n−uj , corresponding to
failure mode j. For notational convenience, let xj,0 = 0 and xj,uj+1 = ∞. Suppose fur-
ther that there are sj,ij right-censored observations in the interval (xj,ij , xj,ij+1), denoted by
c
ij
j,1 < c

ij
j,2 < . . . < c

ij
j,sj,ij

, so
∑uj
ij=0 sj,ij = n− uj . The random quantity representing the

failure time of the next unit, with all J failure modes considered, is Xn+1 = min
1≤j≤J

Xj,n+1.

The NPI M -functions for Xj,n+1 (j = 1, . . . , J) are [16]

M j(t
ij
j,i∗j

, xj,ij+1) = MXj,nj+1
(t
ij
j,i∗j

, xj,ij+1) =
1

(n+ 1)
(ñ
t
ij

j,i∗
j

)
δ
ij

i∗
j
−1 ∏
{r:cj,r<t

ij

j,i∗
j
}

ñcj,r + 1

ñcj,r
(1)

where ij = 0, 1, . . . , uj , i∗j = 0, 1, . . . , sj,ij and

δ
ij
i∗j

=

{
1 if i∗j = 0 i.e. tijj,0 = xj,ij (failure time or time 0)
0 if i∗j = 1, . . . , sj,ij i.e. tijj,i∗j = c

ij
j,i∗j

(censoring time)

where ñcj,r and ñ
t
ij

j,i∗
j

are the numbers of units in the risk set just prior to times cj,r and tijj,i∗j ,

respectively. The corresponding NPI probabilities are

P j(xj,ij , xj,ij+1) = P (Xj,nj+1 ∈ (xj,ij , xj,ij+1)) =
1

n+ 1

∏
{r:cj,r<xj,ij+1}

ñcj,r + 1

ñcj,r
(2)

where xj,ij and xj,ij+1 are two consecutive observed failure times caused by failure mode j
(and xj,0 = 0, xj,uj+1 =∞). Maturi et al. [16] considered the lower and upper probabilities
for the event that the next unit fails due to a specific failure mode, say mode j∗, that is for the
event Xj∗,n+1 < min

1≤j≤J
j 6=j∗

Xj,n+1, for each j∗ = 1, . . . , J .

In addition to notation introduced above, let tijj,sj,ij+1 = t
ij+1
j,0 = xj,ij+1 for ij =

0, 1, . . . , uj − 1. For a given failure mode j (j = 1, . . . , J), the NPI lower survival func-
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tion [16] is, for t ∈ [t
ij
j,aj

, t
ij
j,aj+1) with ij = 0, 1, . . . , uj and aj = 0, 1, . . . , sj,ij ,

SXj,n+1
(t) =

1

n+ 1
ñ
t
ij
j,aj

∏
{r:cj,r<t

ij
j,aj
}

ñcj,r + 1

ñcj,r
(3)

and the corresponding NPI upper survival function [16] is, for t ∈ [xij , xij+1) with ij =
0, 1, . . . , uj ,

SXj,n+1
(t) =

1

n+ 1
ñxj,ij

∏
{r:cj,r<xj,ij }

ñcj,r + 1

ñcj,r
(4)

Then the lower and upper survival functions for Xn+1 are given by

SJCRXn+1
(t) =

J∏
j=1

SXj,n+1
(t) and S

JCR

Xn+1
(t) =

J∏
j=1

SXj,n+1(t) (5)

In fact there is a relationship between the above upper survival function in (5) and the up-
per survival function when all the different failure modes are ignored, that is S

JCR

Xn+1
(t) =

SXn+1
(t), for more details we refer to Maturi et al. [16].

§3. Pairwise comparison with competing risks

Let X and Y be two independent groups (e.g. treatments) with competing risks j = 1, . . . , J
and l = 1, . . . , L, respectively. These competing risks could be the same (e.g. the lung cancer
may affect both men and women independently) or different across the two groups. These
competing risks could be observed or unobserved but known, in the sense of not yet having
caused any failures (see [9]). For group Y the same notations and definitions as in Section 2
are used, replacing x, uj , n, c, s, t, ij , i∗j by y, υl, m, d, e, g, il, i∗l , respectively.

In this paper, the main event of interest is that the lifetime of a future unit from group
Y is greater than the lifetime of a future unit from group X , i.e. Ym+1 > Xn+1, with J
and L independent competing risks affecting group X and group Y , respectively. The fol-
lowing notation is used for the NPI lower and upper probabilities for the event of interest,
respectively,

P = P (Ym+1 > Xn+1) = P

(
min

1≤l≤L
Yl,m+1 > min

1≤j≤J
Xj,n+1

)
P = P (Ym+1 > Xn+1) = P

(
min

1≤l≤L
Yl,m+1 > min

1≤j≤J
Xj,n+1

)
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These NPI lower and upper probabilities for the event Ym+1 > Xn+1 are

P =
∑∑∑

C(j, ij)

 L∏
l=1

υl∑
il=0

el,il∑
i∗l =0

1(gill,i∗l
> min

1≤j≤J
{xj,ij+1})M l(gill,i∗l

, yl,il+1)

 J∏
j=1

P j(xj,ij , xj,ij+1)

(6)

P =
∑∑∑

C(j, ij , i∗j )

[
L∏
l=1

υl∑
il=0

1(yl,il+1 > min
1≤j≤J

{tijj,i∗j })P
l(yl,il , yl,il+1)

]
J∏
j=1

M j(t
ij
j,i∗j

, xj,ij+1)

(7)

where
∑∑∑

C(j, ij)

denotes the sums over all ij from 0 to uj for j = 1, . . . , J , and
∑∑∑

C(j, ij , i∗j )

denotes the sums over all i∗j from 0 to sj,ij and over all ij from 0 to uj for j = 1, . . . , J . And
1(A) is the indicator function that equals 1 if A is true and 0 else. The derivation of these
NPI lower and upper probabilities will be presented elsewhere.

As mentioned not all these J and L competing risks need to have caused observed fail-
ures. Coolen-Maturi and Coolen [9] presented NPI for the case of unobserved failure modes
for inference on a single group. Basically, all units, for which data are available, are cen-
sored with respect to this unobserved failure mode, and then the corresponding M -functions,
introduced in Section 2, are applied per group in order to calculate the NPI lower and upper
probabilities from (6) and (7). This will be illustrated via an example in Section 4.

In order to make a decision using our NPI method, we can say that there is strong evidence
that the lifetime of a future unit from group Y is likely to be greater than the lifetime of
a future unit from group X if P (Ym+1 > Xn+1) > P (Ym+1 < Xn+1), where from the
conjugacy property [1] P (Ym+1 < Xn+1) = 1−P (Ym+1 > Xn+1), and that there is weak
evidence for this if P (Ym+1 > Xn+1) > P (Ym+1 < Xn+1) and P (Ym+1 > Xn+1) >
P (Ym+1 < Xn+1).

We can also compare the two groups with competing risks using the lower and upper
survival functions, (5), namely SJCRXn+1

, S
JCR

Xn+1
, SLCRYm+1

and S
LCR

Ym+1
. The lower and upper

survival functions for the case of unobserved failure modes are presented in Coolen-Maturi
and Coolen [9]. This will also be illustrated in Section 4.

§4. Example

The original data, used by Park and Kulasekera [17], consist of failure or censoring times for
139 appliances (36 in Group I, 51 in Group II and 52 in Group III) subject to a lifetime test,
where a unit is subject to fail due to one of 18 different modes. To clearly illustrate our NPI
method, we will use part of this dataset, namely for appliances with lifetimes less than 250.
The reduced dataset, in Table 1, consists of 26 appliances (8 in Group I, 11 in Group II and
7 in Group III) where failure mode 11 (FM11) appears at least once across the three groups.
FM0 indicates a right censoring time. Table 2 gives the NPI lower and upper probabilities
for two cases of interest: In case A, we compare the groups by taking into account all the
observed failure modes, while in case B we compare the groups such that, for each group, we
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Group I Group II Group III
Time FM Time FM Time FM

12 13 45 1 90 1
16 10 47 11 90 11
16 12 73 11 90 11
46 3 136 6 190 1
46 6 136 0 218 0
52 6 136 0 218 0
98 6 136 0 241 1
98 11 136 0

145 11
190 0
190 0

Table 1: Appliances with lifetimes less than 250

Case P , P (II>I) P , P (III>I) P , P (III>II)
A (0.5944, 0.9724) (0.5993, 0.9890) (0.2914, 0.7840)
B (0.7222, 0.9074) (0.6944, 0.9167) (0.3437, 0.7083)

Table 2: The NPI lower and upper probabilities

re-grouped all observed failure modes in one failure mode. So in case B we have one failure
mode per group, which is coincided with the results obtained by Coolen and Yan [7] and it is
a special case of the results presented by Coolen-Maturi et al. [11].

We can notice for all events (i.e. II>I, III>I and III>II) that the lower (upper) proba-
bilities for case A are less (greater) than the lower (upper) probabilities for case B. So the
imprecision in case B is smaller than that for case A. That is study the data in more details
(larger number of competing risks) leads to more imprecision. Increased imprecision if data
are included in more details in the NPI approach is a topic of foundational interest that has
been observed and discussed before, see Coolen and Augustin [4] and Maturi et al. [16].

From Table 2, we can say that we have strong evidence that the lifetime of a future unit
from group I is less than the lifetime of a future unit from group II and III for both cases. On
the other hand, for both cases we have weak evidence that the lifetime of a future unit from
group II is less than the lifetime of a future unit from group III.

We can also compare these groups using the lower and upper survival functions, see
Figure 1. In Figure 1, we provide the NPI lower and upper survival functions for case A
where the first graph represents the lower and upper survival functions for the next units from
groups I and II, the second graph represents the lower and upper survival functions for the
next units from groups I and III and the third graph represents the lower and upper survival
functions for the next units from groups II and III. Figure 1 shows indeed that the lifetime of
a future unit from group I is likely to be less than the lifetime of a future unit from group II
and III. However, we have weak evidence that the lifetime of a future unit from group II is
less than the lifetime of a future unit from group III, and we see that the lower (and upper)
survival functions for these groups cross each other.
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Figure 1: The lower and upper survival functions for case A
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§5. Concluding remarks

In this paper we presented NPI for pairwise comparison where each group is subject to several
competing risks. We introduced NPI lower and upper probabilities for the event that the
lifetime of the next unit from one group is greater than the lifetime of the next unit from the
second group, taking into account these competing risks. We found that studying the data in
details, so more competing risks, will lead to more imprecision.
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A COMPARATIVE STUDY OF BULLWHIP
EFFECT IN A MULTI-ECHELON

FORWARD-REVERSE SUPPLY CHAIN

Debabrata Das and Pankaj Dutta

Abstract. Along with the forward supply chain organization needs to consider the im-
pact of reverse logistics due to social awareness, environmental benefits and economic
advantages. An important observation in a supply chain management, known as bull-
whip effect, refers to the phenomenon where orders to the supplier tend to have larger
variance than sales to the buyer (e.g., demand distortion), and the distortion propagates
upstream in an amplified form (e.g., variance amplification) [1]. The quality and quan-
tity of used products return to the collection points are uncertain in the reverse channel.
Because of this, the systematic distortion is inevitable and bullwhip effect may occur at
retailer, distributor and manufacturer level. In this paper; first, we propose a system dy-
namics framework for a multi-echelon integrated forward-reverse supply chain. Then, in
the simulation study, we analyze the order variation at both retailer and distributor level
and compare the bullwhip effects of an integrated forward-reverse supply chain with that
of a traditional forward supply chain. Also, in the proposed model, a sensitivity analy-
sis is performed to examine the impact of inventory adjustment time and inventory cover
time on the order variance and bullwhip effect.

Keywords: Reverse Supply Chain, Bullwhip Effect, Simulation, System Dynamics, Re-
turn Rate, Inventory Cover Time, Inventory Adjustment Time

AMS classification: 37M05, 90C31, 90B50

§1. Introduction

A large number of successful companies focuses on forward supply chain but experience a
lack of control over their reverse logistics process which leads to higher cost, poor customer
service, reduced asset recovery and most importantly, environmental disaster. Along with the
forward supply chain organization needs to consider the impact of reverse logistics due to the
potentials of value recovery from the used products, social awareness and strict legislations
especially for electronics and automobiles industries [2]. Pagell et al. [3] pointed out that
product remanufacturing is the most desirable option for end-of-life product management
than a scrap or spares recovery since it minimizes the environmental impacts, results in lower
loss of value, and can create new market opportunities. Fleischmann et al. [4] provided a
review of the quantitative models for reverse logistics in which they reported that most of the
papers in the area of integrated reverse logistics are confined to single issues such as network
design, shop-floor control and inventory control, while comprehensive approaches are rare
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as variety of factors are involved in a general framework and the complexity of their inter-
dependencies. Furthermore, long-term strategic management problems of integrated reverse
logistics systems have not been studied extensively. System dynamics (SD) is a powerful
methodology for obtaining the insights of these kinds of problems having dynamic complex-
ity; but there are very few literatures which modeled the integrated aspects of forward and
reverse supply chain using SD. Spengler and Schroter [5] modeled an integrated production
and recovery system for supplying spare parts using SD to evaluate various strategies. Geor-
giadis and Vlachos [6] developed a SD model to evaluate the effect of environmental issues
on long-term decision making in collection and remanufacturing activities.

As the quality and quantity of used products return to the collection points are uncer-
tain in the reverse channel, the systematic distortion is inevitable and bullwhip effect may
occur at retailer, distributor and manufacturer level [7]. Almost all quantitative literature is
based upon traditional supply chain. There are only few papers studied the order variations
and bullwhip effects in an integrated RL framework. Zhou and Disney [8] studied the bull-
whip effects and order variations in a closed-loop supply chain based on the control theory.
Pati et al. [9] developed an analytical expression for measuring the bullwhip effect in a six
echelon closed-loop supply chain for recycling products like paper, plastic, etc. In this re-
search work, we simulate the order variation of different logistics participants over time and
compare the bullwhip effects of the traditional forward supply chain with that of integrated
forward-reverse supply chain. Also, sensitivity analysis is performed to examine the impact
of inventory adjustment time and inventory cover time on the order variance and bullwhip
effect.

§2. Integrated Forward-Reverse Supply Chain

The process of reverse supply chain is more complicated than forward supply chain since
return flows may include several activities such as collection, checking, sorting, disassembly,
remanufacturing, disposal and redistribution [4]. Moreover, the quality and quantity of used
products return to the collection points are uncertain in the reverse channel. In this research
work, we focus on a single product integrated forward-reverse supply chain (see Fig. 1).

2.1. System Dynamics Model

Forrester [10] introduced SD as a modelling and simulation methodology for framing, un-
derstanding, and discussing complex issues and problems. The SD methodology is described
by causal-loop diagrams. The structure of a SD model contains stock (state), flow (rate) and
auxiliary/constant variables. Stock variables are the accumulations (e.g. inventories) within
the system. The flow variables represent the flows in the system (e.g. remanufacturing rate)
from one stock to another. With a causal loop diagram, the stock and flow diagram shows
relationships among variables which have the potential to change over time. The mathemat-
ical formulation consists of a system of differential equations, which is numerically solved
via simulation. Nowadays, high-level graphical simulation programs support the analysis and
study of these systems. These programs include Vensim, i-think and Powersim etc. Here, we
choose Vensim (version: windows 5.10 e) as a tool to simulate the model.
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Figure 1: Stock-flow diagram of the integrated forward-reverse supply chain
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2.1.1. Stock-Flow Diagram

The first step of the analysis is to capture the relationships among the system operations in a
SD manner. Fig. 1 depicts the stock-flow diagram of the integrated forward-reverse supply
chain in which all the stock variables are represented by “box“ symbol and flow variables by
”hour glass” symbol. Throughout the paper, variables are described in Italic font. Important
equations related to production, inventory, transportation, order, collection and remanufactur-
ing process are presented in the Appendix II. Because of the high complexity of the integrated
forward-reverse supply chain, it can be divided into the following subsystems:

Forward Supply Chain: The forward supply chain begins from the upper left corner of
Fig. 1 and it comprises three echelons: producer, distributor and retailer. Specifically, the
new products are first transferred from the producer to the distributor then to the retailer
and finally sold to the customer to satisfy the demands. The producer’s demand for raw
materials (Raw Materials) is satisfied with a mix of fresh raw materials, and recovered raw
materials (Raw Material Recovery Rate) deriving from the firm’s recycling operations. Com-
ponents Production Rate depletes raw materials and increase Components Inventory (CI).
Product production rate depletes Components Inventory and increase Serviceable Inventory
(SI). Shipments to Distributor deplete Serviceable Inventory and increase Distributors Inven-
tory (DI). In the same way, products delivered from the upper stream increase the inventory
of retailer (Retail Inventory), which can satisfy the Demand of end-users. One important
term of Components (or Product) Production Rate is CI (or SI) Adj time that represents how
quickly the firm tries to correct the discrepancy in component (or product) inventory.

The remanufacturing process supplements the production process of the forward channel.
Producer’s requirement for components is satisfied with a mix of new components produced
by firm, and Remanufactured Components derived from remanufacturing process. Similarly,
producer’s requirement for products is satisfied with a mix of new products produced by firm,
and Remanufactured Products derived from Collected Products. In this paper, we assume that
demand of end-user is lost if it is not satisfied in the current period. Although, Distributor
Orders Backlog and Retailer Orders Backlog are satisfied in a future period.

Reverse Supply Chain: In the reverse channel, we address the recovery process in three
distinct ways, namely; product remanufacturing, component reuse and remanufacturing, and
raw material recovery. We assume that remanufacturing activity can bring the products and
components back into an “as good as new“ condition by carrying out the necessary disassem-
bly, overhaul and replacement operations. In the simulation study, it is assumed that there is
no constraint on the capacity of collection, inspection, sorting and restoring.

Sold products after their uses turn into used products. Then, Used Products are either
uncontrollably disposed (Uncontrollable Disposal) or collected for reuse (Collected Prod-
ucts). After the initial inspection, if the Collected Products are accepted for remanufacturing
(Product Accepted for Remanufacturing), then with some reprocessing, the remanufactured
products (Product Remanufacturing Rate) can be added to the serviceable inventory of for-
ward channel. If the products are not in a condition to remanufacture, then it is disassembled
into various components. During the process of product remanufacturing, if new replacement
(Component Replacement Rate) is required for some components, then the old components
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Variance (unit2) Integrated Supply Chain Traditional Supply Chain
Actual demand 9326 9326
Order at retailer 17111 31940

Order at distributor 38264 80558

Table 1: Comparison of order variance: integrated vs traditional supply chain

Retailer Level Distributor Level
Integrated SC Traditional SC Integrated SC Traditional SC

Bullwhip Effect 1.83 4.10 3.42 8.64

Table 2: Comparison of bullwhip effects in an integrated and traditional supply chain

are processed further for component remanufacturing and/or raw material recovery.
In the model, it is assumed that the disassembled components can have three categories:

one is direct reusable components (Components Accepted for Direct Reuse) that can be di-
rectly used to increase the Components Inventory in the forward channel; the second is the
part of Components Rejected for Direct Reuse which requires further reprocessing. After
reprocessing, the Remanufactured Components can be used to increase the Components In-
ventory in the forward channel. The third is rejected components that does not survive the
first two screening levels but can be used either for raw material recovery (Recovered Raw
Material) to increase the Raw Materials inventory in the forward channel or sent directly for
Controllable Disposal.

§3. Results and Discussions

In this section, we demonstrate the behavior analysis of the integrated forward-reverse supply
chain and discuss some of the important results. Although, we develop a generalized frame-
work but to analyze the performance of the proposed integrated system, values of the most of
the parameters are chosen as in [11]. Some of the important parameters associated with the
SD model are presented in the Appendix I. The length of the time horizon is 300 weeks for
the simulation.

3.1. Bullwhip Effects and Order Variations
We use the corresponding stock-flow diagram (see Fig. 1) of the integrated forward-reverse
supply chain to simulate its system performance and compare the bullwhip effect of the inte-
grated forward-reverse supply chain with that of traditional (i.e. only forward) supply chain.
Table 1 shows the variance of actual demand and variance of order placed by retailer and
distributor in an integrated forward-reverse and traditional supply chain. It is very clear that
variance of orders at both retailer and distributor is much higher in a traditional supply chain
compared to that of in an integrated forward-reverse supply chain.

We compute the bullwhip effect of the systems using the following formulation given
by [12]: Bullwhip Effect = Var (Order Rate) / Var (Demand) and make a comparison of
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Cover/Adjustment time (week) 1 2 3 4

Bullwhip Effect due to RICT
Retailer

Distributor
1.16
1.94

3.03
7.67

5.62
15.09

10.75
30.30

Bullwhip Effect due to RIAT
Retailer

Distributor
3.56
9.40

1.83
4.10

1.46
2.89

1.31
2.40

Bullwhip Effect due to DICT
Retailer

Distributor
1.84
2.11

1.65
6.24

1.22
9.12

1.19
18.30

Bullwhip Effect due to DIAT
Retailer

Distributor
1.83
7.54

1.83
4.10

1.83
3.25

1.83
2.85

Table 3: Sensitivity analysis of bullwhip effect at retailer and distributor

bullwhip effect at both retailer and distributor level for an integrated forward-reverse supply
chain (SC) and traditional supply chain (SC) in Table 2. It is clear that the bullwhip effect
at both retailer and distributor level in the traditional supply chain is much higher than that
of integrated forward-reverse supply chain. Important reason behind this phenomenon is that
the remanufactured products, reusable components and remanufactured components derived
from firm’s recycling process supplement the product inventory and component inventory of
producer in the forward channel which helps in reducing the inventory discrepancy at various
stages of the forward supply chain. So, the results indicate that the remanufacturing process
reduces the bullwhip effects of different logistics participants in a supply chain.

3.2. Sensitivity Analysis

In this section, we investigate the impact of various system parameters on the performance
of the proposed integrated forward-reverse supply chain model. Conducting a detailed sen-
sitivity analysis by taking into account all the system parameters is hardly possible. Hence,
in this study, we concentrate on examining the impact of inventory cover time and inventory
adjustment time on bullwhip effect at both retailer and distributor level. Inventory cover time
describes a level of extra stock that is maintained to mitigate risk of stock outs due to un-
certainties in supply and demand. Inventory adjustment time represents how quickly a firm
tries to correct the discrepancy between desired serviceable inventory and actual serviceable
inventory. The result in Table 3 shows that the bullwhip effect increases at both retailer and
distributor level as the retail inventory cover time (RICT) increases. On the other hand, bull-
whip effect decreases at both retailer and distributor levels as the retail inventory adjustment
time (RIAT) increases which is due to the fact that if a firm adjusts the discrepancy between
desired serviceable inventory and actual serviceable inventory very quickly, then the varia-
tions in order increases. From the last two rows of Table 3, it can be seen that the bullwhip
effect increases at distributor level with the increment of distributor inventory cover time
(DICT) and the bullwhip effect decreases with the increment of distributor inventory adjust-
ment time (DIAT); but the changes of cover time and adjustment time in distributor level has
almost no impact in determining the bullwhip effect at retailer level.
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§4. Conclusion

In this paper, we have proposed a SD framework for a multi-echelon forward-reverse supply
chain. We analyzed the order variation at both retailer and distributor level and compare the
bullwhip effects of different logistics participants over time between the traditional forward
supply chain and the integrated forward-reverse supply chain. Our results showed that the
inclusion of remanufacturing can reduce the order variation and bullwhip effect in an inte-
grated forward-reverse system. Also, sensitivity analysis is performed to examine the impact
of inventory adjustment time and inventory cover time on the order variance and bullwhip
effect. The developed model can be used to conduct various “what-if” analysis thus identi-
fying efficient policies and further to answer questions about the long-term operation of the
integrated forward-reverse supply chains. The proposed SD framework can be extended by
including the associated costs which helps to measure the economic performance of the in-
tegrated supply chain. Additionally, the uncertainty issues associated with the collection of
used products can be addressed as a future work.

§A. Appendix I - Model Parameters

CI Cover Time = 1.5 week
CI Adj Time = 2 week
SI Cover Time = 1.5 week
SI Adj Time = 2 week
DI Cover Time = 1.5 week
DI Adjust Time = 2 week
RI Cover Time = 1.5 week
RI Adjust Time = 2 week
Component Production Time = 1.2 week
Product Production Time = 2 weeks
Shipment Time = 1.5 week
Delivery Time = 1.5 week
Initial Inspection Time = 1 week
Reprocessing Time (Product) = 1.2 week
Secondary Reprocessing Time = 2 week
Disassembly and Component Inspection Time = 1 week
Components Per Product = 3
Product Production Capacity = 700
Component Production Capacity = 2100
Cycle Life of Product = 50 weeks
Demand = Random Normal (650, 100)
Collection Percentage = 50%
Product Remanufacturable Percentage = 80%
Component Remanufacturing Percentage = 70%
Component Replacement Percentage = 15 %
Direct Reusable Component Percentage = 65%
Disposal Percentage = 10%
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§B. Appendix II - Model Equations

B.1.

The important equations related to component and product production rate are following:
Components Production Rate = MAX (MIN (MIN (Raw Materials / Component Pro-

duction Time, (Expected Distributors Orders*Components Per Product - Expected Reusable
Component + CI discrepancy / CI Adj Time)), Component Production Capacity), 0)

Expected reusable components = SMOOTH (Component Remanufacturing Rate + Com-
ponents Acceptance Rate for Direct Reuse, 1)

CI discrepancy= MAX (Desired CI - Components Inventory, 0)
Components Inventory = INTEGRATION (Components Production Rate + Component

Remanufacturing Rate + Components Acceptance Rate for Direct Reuse) - Components used
for Product Production)

Product Production Rate = Components used for Product Production / Components Per
Product

Components used for Product Production = MAX (MIN (MIN (Components Inventory
/ Product Production Time, Product Production Capacity*Components Per Product), (Ex-
pected Distributors Orders - Expected Remanufactured Products + SI discrepancy / SI Adj
Time)*Components Per Product) , 0 )

Expected Remanufactured Products = SMOOTH (Product Remanufacturing Rate, 1)
SI discrepancy= MAX (Desired SI - Serviceable Inventory, 0)
Serviceable Inventory = INTEGRATION (Product Production Rate + Product Remanu-

facturing Rate - Shipments to Distributor)

B.2.

The important equations related to inventory, transportation and order are following:
Distributors Inventory = INTEGRATION (Shipments to Distributor - Shipments to Re-

tailer)
Shipments to Distributor = IF THEN ELSE (Serviceable Inventory - Distributors Order -

Distributor Orders Backlog >=0, Distributors Order + Distributor Orders Backlog, Service-
able Inventory) / Shipment Time

Distributor Orders Backlog = INTEGRATION (Distributors Order - Distributor Orders
Backlog Reduction Rate)

Distributors Order = Expected Retail Order + DI discrepancy / DI Adjust Time
Distributor Orders Backlog Reduction Rate = Shipments to Distributor

B.3.

The important equations related to collection and remanufacturing are following:
Total Collection Rate = Used Products*Collection Percentage
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Product Accepted for Remanufacturing = INTEGRATION (Product Acceptance Rate for
Remanufacturing - Product Remanufacturing Rate)

Product Remanufacturing Rate = Product Accepted for Remanufacturing / Reprocessing
Time

Components Acceptance Rate for Direct Reuse = Inventory of Components from Rejected
Products* Direct Reusable Components Percentage / Disassembly and Component Inspection
Time

Component Remanufacturing Rate = (Components Rejected for Direct Reuse)*(1-Disposal
Percentage) *Component Remanufacturing Percentage / Secondary Reprocessing Time

Recovered Raw Material = INTEGRATION (Raw Material Recovery Rate)
Raw Material Recovery Rate = Components Rejected for Direct Reuse*(1-Disposal Per-

centage) *(1-Component Remanufacturing Percentage) / Secondary Reprocessing Time
Controllable Disposal = INTEGRATION (Disposal Rate)
Disposal Rate = Components Rejected for Direct Reuse*Disposal Percentage
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A PROPOSED MARKOV MODEL FOR
PREDICTING THE STRUCTURE OF A

MULTI-ECHELON EDUCATIONAL SYSTEM
IN NIGERIA

Virtue U. Ekhosuehi and Augustine A. Osagiede

Abstract. This paper is concerned with deriving, using logistic and Markov chain theo-
retic methodologies, a transition model for a stable educational system in Nigeria. The
resulting transition model is the neo-stable imbedded Markov model. It is shown using an
entropy-based uncertainty metric that the neo-stable imbedded Markov model is prefer-
able to the stable imbedded Markov model in literature for long-term projection using
dataset from a university.

Keywords: binomial logistic model, Markov model, multi-echelon educational system,
Nigeria.

AMS classification: 60J20, 97B10.

§1. Introduction

This study is aimed at predicting the structure of educational system in Nigeria. The ed-
ucational process in Nigeria is characterized by wastage arising, inter alia, from financial
insolvency and distortions such as incessant strike, students’ rampage, etc. Such distortions
lead to an extension of the academic calendar. As a consequence, equidistant sessions may
not be feasible and the discrete-time homogeneous Markov chain may not give substantive
meaning (e.g., raising the transition matrix to a fractional index as 3

2 ). Since it is not expe-
dient to assume equal length of sessions, we figure out ways to develop appropriate models
which are suited for any time instant. We estimate transition probabilities and derive a sta-
tionary continuous-time imbedded Markov chain framework for the educational system. The
stationary continuous-time imbedded Markov chain is as defined in [1-2]. We consider an ex-
panding multi-echelon educational system with a set of states < = 0 ∪ S, where the notation
0 denotes the state outside the educational system and S = {1, 2, . . . , k} is the set of levels
in the system. It is assumed that the states of the system are non-overlapping and the grades
are finite and exhaustive. We also assume that flows within the transient states of the educa-
tional system are governed by transition probabilities and that they are random variables with
a multinomial distribution [3]. The log-likelihood function of the distribution depends on the
model parameters and not on the observed values [4]. We estimate the transition probabilities
of the non-homogeneous evolution of the educational system by solving the problem:
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P1: Maximize

Ψ(pi1(t), pi2(t), . . . , pik(t)) =

k∑
j=1

nij(t) log pij(t) (1)

subject to:

log[pi0(t)(

k∑
j=1

pij(t))
−1] = x

′

i(t)βi, (2)

k∑
j=1

pij(t) + pi0(t) = 1, (3)

pij(t) ≥ 0, pi0(t) ≥ 0, i, j ∈ S, t = 0, 1, 2, . . . , T. (4)

Ψ(pi1(t), pi2(t), . . . , pik(t)) is the log-likelihood function of the distribution of the transient
states. pij(t) is the probability of students flow from level i to level j in period t. pi0(t) is the
probability of students leaving level i in period t.
x
′

i(t) = [1, x1i(t), x2i(t), . . . , x(h−1)i(t), . . . , x(p−1)i(t)] with x(h−1)i(t), h = 1, . . . , p, be-
ing an observation corresponding to the (h − 1)th systems differential variables in level i
in session t. x

′
(t) = [x

′

1(t), x
′

2(t), . . . , x
′

k(t)]
′

is a k × p matrix of the systems differential
variables. nij(t) is the number of students moving from level i to level j in session t. T
is the maximum period for which data are available. In P1 school fees and other differen-
tial variables (such as promotion criteria and environmental factors e.g. land use mix, traffic
zone, etc.) are incorporated into the transition model through the binomial logistic wastage
rate (2). The discrete-time imbedded transition matrix resulting from the transition probabil-
ity estimates in P1 is called the non-homogeneous empirical transition matrix (NHETM) and
denoted as Q(t)

∣∣∣x′ (t) . The NHETM is analogous to the block structure of the discrete-time
imbedded Markov chain in [5-6]. Osagiede and Ekhosuehi [7] had earlier developed a model
for homogeneous Markov systems based on the imbedded Markov chain [5]. We refer to
the model of Osagiede and Ekhosuehi [7] as the stable imbedded Markov (SIM) model. The
term ’stable’ means that the enrolment stock expands deterministically at a constant growth
rate [3]. We develop a stationary continuous-time imbedded Markov chain framework to
extrapolate the shifts in structure. Since data in an educational system may be obtained at
equidistant intervals, it is rational for the transition matrix of our proposed model to be as
close as the discrete-time imbedded Markov chain formulation. In this light we solve the
quasi-imbedding problem:
P2: Find an intensity matrix G = (gij) such that:

∏t
ς=0 S(ς)

∣∣∣x′ (t) ∼ exp([t + 1]G), t ≥ 5,

gij ≥ 0 for i 6= j,
∑k
j=1 gij = 0, i ∈ S.

The twindle sign ∼ means that
∏t
ς=0 S(ς)

∣∣∣x′ (t) approaches exp([t+ 1]G), where S(ς)
∣∣∣x′ (t)

is the quasi-non-homogeneous imbedded Markov chain (qNHIMC). Problem P2 is analo-
gous to the one in [2] and t ≥ 5 is in line with [8]. The definition of problem P2 circumvents
the challenge that would have been posed by the sparse block structure of empirical transi-
tion matrices. By solving P2, we attempt to bridge the gap between the discrete [5-6] and
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the continuous-time imbedded Markov chain formulations [1-2]. Using the solution to P2,
we develop a transition model which we call the neo-stable imbedded Markov (neo-SIM)
model. Throughout the paper, the notations t and ς are used as discrete indices, while τv ,
v = 1, 2, · · · , is used as a continuous index.

§2. Methodology

In this section, we make propositions about the transition probabilities and the expected struc-
ture of the system viz-a-viz the solutions to P1 and P2.

Proposition 1: In a k−echelon educational system where the flows satisfy the multinomial
distribution and the wastage rates vary in a binomial logistic manner with the differential
variables of the school, the transition probabilities are estimated as:

p̂ij(t)
∣∣∣x′i(t) =

{
[1 + exp(x

′

i(t)β
∗
i )]−1 exp(x

′

i(t)β
∗
i ), i ∈ S, j = 0

nij(t)∑k
j=0 nij(t)

[1 + exp(x
′

i(t)β
∗
i )]−1, i, j ∈ S ,

provided det
[

∂2L
∂βi∂β

′
i

]
6= 0, for each βi = β

(γ)
i , γ = 0, 1, · · ·, where p̂ij(t)

∣∣∣x′i(t) is the esti-

mated probability of students flow from level i to level j given x
′

i(t) for each t and L is the
log-likelihood function of the binomial logistic constraint.

Proof: From the constraints (2) and (3) of P1, we obtain

log(

k∑
j=1

pij(t)) = − log(1 + exp(x
′

i(t)βi)). (5)

Let zmi (t) be a binary random variable defined as:

zmi (t) =

{
1 if a student m leaves level i in session t
0 if student m does not leave level i in session t ,

with probabilities Prob(zmi (t) = 1) = pi0(t) and Prob(zmi (t) = 0) =
∑k
j=1 pij(t), for all

i ∈ S. Let wi(t) be a random variable which represents the total number of wastage in level
i in session t. If ni(t) is the total number of students enrolled in level i in session t, then
wi(t) =

∑ni(t)
m=1 z

m
i (t). The distribution of the random variable wi(t) is a binomial distribu-

tion [4]. The log-likelihood function of the binomial distribution is

L =

T∑
t=1

ni0(t) log[pi0(t)(

k∑
j=1

pij(t))
−1] + ni(t) log(

k∑
j=1

pij(t)) + log

(
ni(t)
ni0(t)

) ,

(6)

where ni0(t) is the wastage flow from level i in session t. From constraint (2) and Eq. (5),
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Eq. (6) becomes

L =

T∑
t=1

(
ni0(t)x

′

i(t)βi − ni(t) log[1 + exp(x
′

i(t)βi)] + log

(
ni(t)
ni0(t)

))
. (7)

Let U(βi) =
(
∂L
∂β1i

, · · · , ∂L
∂βpi

)′
. We obtain a solution to the problem U(βi) = 0, which is

nonlinear in βi, employing the iteratively reweighted least squares algorithm [9]. The method
involves solving repeatedly

β
(γ+1)
i = β

(γ)
i − [=(β

(γ)
i )]−1U(β

(γ)
i ), γ = 0, 1, · · · , (8)

provided det[=(β
(γ)
i )] 6= 0, where=(β

(γ)
i ) =

[
∂2L

∂β
(γ)
i ∂β

(γ)′
i

]
is a p×pmatrix of second-order

partial derivatives of the log-likelihood function, L, evaluated at the γth iteration around βi.
The iteration is started from β

(0)
i = 0 and it stops when the parameter estimates do not change

significantly any more. Let β∗i be the numerical solution to the system in Eq. (8). After some
simplifications using β∗i and constraint (2), the objective function (1) is rewritten as

Ψ(pi1(t), · · · , pik(t)) =

k−1∑
j=1

nij(t) log pij(t) + nik(t) log([1 + exp(x
′

i(t)β
∗
i )]−1 −

k−1∑
j=1

pij(t)). (9)

Thus, we obtain, after taking the partial derivatives of Ψ(pi1(t), · · · , pik(t)) with respect to
each pij(t) and then setting the derivatives to zero,

p̂i0(t)
∣∣∣x′i(t) = [1 + exp(x

′

i(t)β
∗
i )]−1 exp(x

′

i(t)β
∗
i ), (10)

k∑
j=1

p̂ij(t)
∣∣∣x′i(t) = [1 + exp(x

′

i(t)β
∗
i )]−1, (11)

and

p̂ij(t)
∣∣∣x′i(t) =

nij(t)∑k
j=1 nij(t)

[1 + exp(x
′

i(t)β
∗
i )]−1. (12)

Since exp(x
′

i(t)β
∗
i ), nij(t) ≥ 0, the non-negativity constraints (4) are met automatically.

Combining Eqs. (10) and (12), we obtain Proposition 1.

By Proposition 1, we can estimate the wastage rates when the differential variables of the sys-
tem are varied. The NHETM is obtained as Q(t)

∣∣∣x′ (t) =
(
q̂ij(t)

∣∣∣x′i(t))i,j∈S with q̂ij(t)
∣∣∣x′i(t) =

p̂ij(t)
∣∣∣x′i(t) + p̂i0(t)

∣∣∣x′i(t) p̂0j(t), i, j ∈ S,where p̂0j(t) is the estimated entry probability into

level j in period t. The entries, q̂ij(t)
∣∣∣x′i(t) , are such that

∑k
j=1 q̂ij(t)

∣∣∣x′i(t) = 1. Following
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Osagiede and Ekhosuehi [7] that total enrolment stock expands deterministically at a growth
rate, g, the growth rate is estimated in matrix form as

ĝ = exp

(
[ 0 1 ]

([
e
′

Φ

] [
e
′

Φ
])−1 [

e
′

Φ

]
N

)
− 1, (13)

where Φ is a T × 1 vector of the time epochs, N is a T × 1 vector with its entry being the
natural logarithm of the total enrolment stock at each time epoch, and e

′
is a T × 1 vector

of ones. Afterwards, we construct a transition model analogous to the one in [10] for the
observed scenario as

q̄(t+ 1) = q(0)

t∏
ς=0

S(ς)
∣∣∣x′ (ς) , (14)

where q̄(t+1) denotes the expected relative structure of the system for period t+1, q(0) is the
actual relative structure of the system at the base period,
S(ς)

∣∣∣x′ (ς) = (1 + ĝ)−1
(

Q(ς)
∣∣∣x′ (ς) + ĝI1

′
P0(ς)

)
is a k × k discrete-time qNHIMC, I is a

k × k identity matrix, P0(ς) is a 1 × k entry probability vector in period ς and 1
′

is a k × 1
vector of ones. The model in Eq. (14) is not used to extrapolate the long-term shift in the
structure of the system because S(ς)

∣∣∣x′ (ς) depends on the NHETM. Thus we propose the
following:

Proposition 2: Suppose the operational mechanism of a k− echelon educational system
is such that: (i) the growth rate is deterministic; (ii) the admission is done to replace leavers
and to achieve the desired growth; (iii) the existing trend in total enrolment stock is main-
tained at a point which does not exceed the carrying capacity of each level of the system in
the long-run. Then the expected long-term shift in enrolment stocks, n̄(τv), for the period τv
is

n̄(τv) ∼ min
(
c(τv), ceil

(
(1 + ĝ)tq(t) exp((τv − t)G)×

exp

(
[ 1 0 ]

([
e
′

Φ

] [
e
′

Φ
])−1 [

e
′

Φ

]
N

)))
,

v = 1, 2, · · · , where c(τv) is the carrying capacity of the system at epoch τv .

Proof: Conditions (i) and (ii) in Proposition 2 have been employed in deriving the matrix
S(ς)

∣∣∣x′ (ς) . To prove Proposition 2, we find a stationary continuous-time imbedded Markov

chain which is as close as the qNHIMC, S(ς)
∣∣∣x′ (ς) , within some error distance. Equivalently,

we solve P2. We rewrite the intensity matrix G in P2 as G = 1
t+1 log

∏t
ς=0 S(ς)

∣∣∣x′ (t), and
then apply the diagonal adjustment method [2]. The solution to P2 is not unique [2]. Suppose
there are α possible numbers of G denoted as Gα, α = 1, 2, · · · . Then, the Markov structure
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we seek is the one which satisfies:

ζ = minα

∥∥∥∥∥∥exp(Gα)−

(
t∏

ς=0

S(ς)
∣∣∣x′ (ς)

) 1
t+1

∥∥∥∥∥∥ . (15)

Let G be the intensity matrix satisfying Eq. (15). Then the stationary continuous-time imbed-
ded Markov chain is σ∗ = exp(G). The expression σ∗ = exp(G) is in line with [1]. By re-
placing

∏t
ς=0 S(ς)

∣∣∣x′ (ς) in Eq. (14) by exp((t+1)G) and in general, by exp((τv−t)G), v =

1, 2, · · · , we obtain the relation

q̄(τv) ∼ q(t) exp((τv − t)G), τv > t. (16)

By condition (iii) and relation (16) subject to the carrying capacity of the system, the ex-
pected enrolment structure over time is obtained as in Proposition 2. The transition model in
Proposition 2 is referred to as the neo-SIM model.

§3. Numerical illustration

We demonstrate the utility of the neo-SIM model for equidistant periods using enrolment
data for a part-time undergraduate programme as in Table 1 at discrete points and compare
the results with the SIM model. All computations are done in Matlab environment. The en-
tries ni(t) in Table 1 are students enrolment stocks for year t while the other cell entries are
students flows. In the six-year graded part-time undergraduate programme, there is neither
repetition (except in Year 6) nor demotion. This explains why the diagonal elements are zero
for the first five grades in Table 1. We code the sessions t = 2003/2004, · · · , 2008/2009 as
t = 0, · · · , 5. Looking at the data in Table 1, we find that the flows during the time period
(t−1, t) satisfy:

∑k
j=1 nij(t) = ni,i+1(t), ni−1,i(t−1) ≥ ni,i+1(t), for i ∈ S−{2, 6} , and∑k

j=1 nji(t) = 0, for j > i. The relation j > i means a demotion, so that
∑k
j=1 nji(t) = 0,

for j > i, captures the absence of demotion in the system.

By the method described in [7], we obtain the homogeneous transition matrix from Table
1. Entries in the matrix provide information on the direct transition between levels in the
academic programme and the part of wastage replaced by new entrants into the programme.
Next, we consider the differential variables of the programme. The tuition fees and charges
(i.e., school fees) varied during the period under consideration. For this reason, we use school
fees as the explanatory variable in the logistic constraint. We collate records on school fees
from the Bursary Department of the University of Benin (Table 2). Using the information
in Table 1 and Table 2, we estimate the parameters for the binomial logistic model. The
estimates, β∗2i for i = 1, · · · , 6, are not significantly different from zero. However, estima-
tion of the wastage probabilities from Eq. (10) is feasible as the information matrices are
non-degenerate. By Propositon 1, we estimate the wastage probabilities for Year 1 − 6 as
shown in Table 3. After that, we calculate the transition probabilities. Using the growth
rate estimator in Eq. (13), we obtain the value ĝ = 0.4056 as the estimated growth rate in
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i→ j 1 2 3 4 5 6 ni0(t) ni(t)
n0j(0) 112 4 0 0 0 0 - 116

1 0 112 0 0 0 0 0 112
2 0 0 53 0 0 0 0 53
3 0 0 0 56 0 0 0 56
4 0 0 0 0 30 0 0 30
5 0 0 0 0 0 35 0 35
6 0 0 0 0 0 8 10 18

n0j(1) 110 0 0 0 0 0 - 110
1 0 106 0 0 0 0 4 110
2 0 0 90 0 0 0 22 112
3 0 0 0 45 0 0 8 53
4 0 0 0 0 48 0 8 56
5 0 0 0 0 0 26 4 30
6 0 0 0 0 0 8 35 43

n0j(2) 236 0 0 0 0 0 - 236
1 0 234 0 0 0 0 2 236
2 0 0 78 0 0 0 28 106
3 0 0 0 87 0 0 3 90
4 0 0 0 0 45 0 0 45
5 0 0 0 0 0 43 5 48
6 0 0 0 0 0 13 21 34

n0j(3) 353 0 0 0 0 0 - 353
1 0 346 0 0 0 0 7 353
2 0 0 226 0 0 0 8 234
3 0 0 0 78 0 0 0 78
4 0 0 0 0 87 0 0 87
5 0 0 0 0 0 43 2 45
6 0 0 0 0 0 20 36 56

n0j(4) 471 180 0 0 0 0 - 651
1 0 470 0 0 0 0 1 471
2 0 0 404 0 0 0 2 406
3 0 0 0 211 0 0 15 226
4 0 0 0 0 78 0 0 78
5 0 0 0 0 0 80 7 87
6 0 0 0 0 0 35 28 63

n0j(5) 181 22 0 0 0 0 - 203
1 0 179 0 0 0 0 2 181
2 0 0 489 0 0 0 3 492
3 0 0 0 397 0 0 7 404
4 0 0 0 0 205 0 6 211
5 0 0 0 0 0 67 11 78
6 0 0 0 0 0 44 71 115

Table 1: Enrolment data from 2003/2004 - 2008/2009 at the end of each academic session
for B.Sc. Statistics with Computer Science
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enrolment stock over the period. The value of ĝ is an indication that the expansion in enrol-
ment stock is about 40.56 %. Next, we estimate the qNHIMC, S(ς)

∣∣∣x′ (t) , for each session

ς = 0, · · · , 5. The entries in S(ς)
∣∣∣x′ (t) provide information on the probability that losses in

the system would result to a consequential admission and that admission would contribute to
the desired expansion of the system given the deterministic growth factor. We express G as
G = 1

6 log
∏5
ς=0 S(ς)

∣∣∣x′ (t), and then apply the diagonal adjustment regularization method.
We obtain the stationary continuous-time imbedded Markov chain σ∗ as:

σ∗ = exp


−0.3755 0.1230 0.0788 0.0443 0.0276 0.1018
0.2029 −0.4434 0.1459 0.0425 0.0291 0.0230
0.1502 0.1445 −0.3863 0.0632 0.0284 0
0.1368 0.0951 0.1515 −0.4291 0.0457 0
0.1347 0.0910 0.1111 0.1186 −0.4554 0
0.1571 0.0880 0.0930 0.0782 0.1061 −0.5224

 ,

with ζ = 0.0172. The exact entries in the transition matrix σ∗ are computed using the Matlab
code expm(). By so doing, the transition matrix σ∗ is stochastic.

Session Total fees for returning students Total fees for new students
2003/2004 28,700 38,900
2004/2005 28,700 38,900
2005/2006 28,700 44,700
2006/2007 28,700 44,700
2007/2008 28,700 60,500
2008/2009 29,700 71,500

Table 2: School fees for B.Sc. Statistics with Computer Science (in Naira)

t 0 1 2 3 4 5
Year 1 0.0185 0.0185 0.0158 0.0158 0.0102 0.0075
Year 2 0.0746 0.0920 0.0920 0.0920 0.0025 0.0415
Year 3 0.0518 0.0518 0.0518 0.0518 0.0518 0.0186
Year 4 0.0276 0.0276 0.0276 0.0276 0.0276 0.0289
Year 5 0.0735 0.0735 0.0735 0.0735 0.0735 0.1410
Year 6 0.6075 0.6075 0.6075 0.6075 0.6075 0.6174

Table 3: Estimates of wastage probabilities for the NHETM

We compare the efficiency of the information transmitted in the use of the neo-SIM model
with that of the SIM model for long-term projection using the Shannon entropy rate [11]. We
do this because information is closely associated with uncertainty [12]. Earlier, Lee, et al.
[13] reported that: when characterizing some unknown events with a statistical model, we
should always choose the one that has maximum entropy. In this light, we base our decision
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τv τ1 τ2 τ3 τ5 τ6 τ8 τ10

SIM model 0.1871 0.3412 0.4829 0.7331 0.8094 0.8692 0.9161
Neo-SIM model 0.6027 0.7940 0.8704 0.9145 0.9197 0.9226 0.9231

Table 4: Entropy values of the modelled system

on the preferrable model. The results from the entropy rate are presented in Table 4. Table
4 shows that the neo-SIM model is preferrable as it has higher entropy values than the SIM
model. Nevertheless, the information is not complete as the entropy values are less than one.

§4. Conclusion

In this study, we have proposed a neo-SIM model for the multi-echelon educational system.
The neo-SIM model removes the ill-posed problem arising from raising a homogeneous tran-
sition matrix to a fractional index due to distortions and extensions to academic calendar. The
major accomplishments of this paper are formalized in Propositions 1 and 2. We illustrate the
use of the neo-SIM model with data from a university setting and quantify the information
content using the Shannon entropy rate.
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LINEAR COMBINATION OF BIOMARKERS
TO IMPROVE DIAGNOSTIC ACCURACY IN

PROSTATE CANCER

Luis Mariano Esteban, Gerardo Sanz and Ángel Borque

Abstract. The combination of multiple biomarkers in order to improve diagnostic accu-
racy is an important issue in Medicine. Providing an optimal solution to this problem is
a widely analyzed issue that does not have a global answer. In different papers, linear
combinations of markers that maximize the Area under the Receiver Operating charac-
teristic Curve (ROC) have been proposed. However, none of them can be applied in all
possible scenarios. Under the multivariate normal assumption, the best linear combina-
tion of markers has been determined, but this hypothesis is not easy to verify in medical
data. In this work, we analyze the performance of two non-parametric methods, a step by
step algorithm and the min-max combination that have been recently proposed, in order
to improve diagnostic accuracy in prostate cancer.

Keywords: biomarkers, ROC curve, linear combinations.

AMS classification: 62P10,62J99.

§1. Introduction

Different variables, such as Prostate Specific Antigen (PSA) in the diagnosis of prostate can-
cer, have been used to predict a binary clinical outcome. Although some of these markers
have a reasonably good ability to discriminate between the categories of an outcome, one
single biomarker lacks both the sensitivity and specificity to accurately diagnose prostate
cancer or biochemical recurrence after surgery. It is the combination of these biomarkers
which may lead to improved overall diagnostic accuracy.

The Receiver operating characteristic (ROC) curve plays a key role in the prediction or
prognosis of a binary response. The Area Under the ROC curve (AUC) is the most commonly
used parameter to assess a classification model [15], specially, if any of the biomarkers used
to build the prediction model is measured on a continuous scale.

Assuming the diagnostic model provides higher probability values for diseased subjects,
and choosing a threshold c, we can classify the patients with probability values over c as
diseased, and the rest as non-diseased. With this threshold, the sensitivity of a diagnostic test
is the proportion of subjects predicted as diseased in the group of actual diseased subjects and
the specificity is the proportion of predicted non-diseased subjects in the actual non-diseased
group.

The ROC curve is a plot of sensitivity versus 1-Specificity for different threshold prob-
abilities c. In most cases, the area under the ROC curve range from 0.5 to 1, the 0.5 value
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corresponds to chance and 1 to perfect accuracy. The simplicity in the interpretation of the
AUC is a factor that has helped in its generalization as a measure of the performance of a
predictive model.

In recent years, new approaches that improve the ability to predict a disease have been
developed. After potential models are built, ROC analysis and the AUC have been a useful
tool to select and evaluate the best model [1]. Among others, logistic regression, classifi-
cation trees or neural networks have been used in classification problems. In those models,
cross-validation and bootstrap strategies can be used to estimate AUC, analyzing not only the
performance, but also the generalizability of the predictive models [3].

Moreover, the problem of finding combinations of diagnostic tests that maximize the
AUC have been extensively addressed in the literature.

Under normality assumption, the best linear combination was provided by Su and Liu
[16]. When the multivariate normal distribution of diseased and non-diseased population is
assumed,

X ∼ N(µX,ΣX), Y ∼ N(µY,ΣY)

the area under the ROC curve of the optimal linear combination is

AUCmax = Φ

(√
µT(ΣX + ΣY)−1µ

)
where Φ denotes the distribution function of the Normal distribution, and the coefficients for
the best linear combination are

βmax ∝ (ΣX + ΣY)−1µ

where µ = µY − µX.
The main drawback of these results is the difficulty to verify the Multivariate Normal

assumption in many situations. In this context, Pepe and Thompson [11] have proposed
non-parametric methods to estimate the linear combination of markers that maximizes the
empirical AUC. As the empirical form of the AUC is a step function, an extensive search is
required for the optimization purpose and it is computationally intractable when the number
of markers is large.

Ma and Huang [9] and Wang et al. [17] have approximated the empirical AUC by a
sigmoid function and use this continuous form of the AUC to estimate the best linear com-
bination of variables. As Komori et al. [5] have pointed out, that method followed a rule
of thumb to determine a scale parameter and as a result of it the accuracy of the approxi-
mation of the empirical AUC is already fixed before running the algorithm. Komori et al.
have proposed a method based on a boosting algorithm for maximization of the AUC. They
used cross-validation techniques to select the best model. None of those methods is fully
non-parametric, and their performance relies on a good selection of some parameters.

However, when the assumed models do not fit the data well, these methods may render
invalid and misleading results. Moreover, there are methods that propose the selection of
variables based on the optimization of the AUC [7], but the parameters of the models are not
estimated via AUC optimization.

Without making assumption on the distribution of the variables (distribution free ap-
proach), a step by step algorithm can be a solution computationally less demanding than
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an extensive search for the estimation of the parameters of a linear model. Esteban and Sanz
[2] analyzed this method through simulation data and a prostate cancer database with satis-
factory results. In a similar line, Nicolosi et al. [10] use this non parametric approach to
combining markers in the diagnosis of breast cancer.

The estimation of parameters via AUC optimization renders linear models with better dis-
crimination ability than generalized linear models when the true link function is not verified
[2, 12], but in most cases the AUC derived from both models is equivalent.

Also, Liu et al. [6] have proposed a min-max combination of biomarkers to improve
diagnostic accuracy. This is a linear combination that is not really based on the combination
of markers, but rather on the combination of the maximum and minimum of the markers.
Since this combination is not a linear model, it can work well in cases where the linearity is
not verified by the model.

The purpose of this work is to analyze the performance of two non parametric methods,
the step by step algorithm [2] and the min-max combination [6] of biomarkers in order to
improve diagnostic accuracy in predictive models of prostate cancer.

§2. The step by step algorithm and the min-max combination

In this section we provide a brief description of the algorithms.

2.1. Step by step algorithm
We consider k biomarkers whose levels are denoted by a vector

M = (M1, . . . ,Mk)

in order to predict a binary outcome D.
The purpose of the step by step algorithm is to estimate the parameters (β2, . . . , βk) in

the linear combination

L(M) = M1 + β2 ·M2 + . . .+ βk ·Mk

that correspond to maximum AUC. To this end, the method follows n− 1 steps.
The first step of the approach requires to select the two markers (Mi,Mj), and its combi-

nation Mi + βjMj that corresponds to the maximum AUC. In this extensive search, for each
possible combination, the AUC is estimated using the Wilcoxon-Mann-Whitney U statistics.

If we assume that we have nD observations truly classified as diseased patients, D = 1,
and nD̄ observations corresponding to non-diseased patients, D = 0, we can write the results
of the test as MD1

, . . . ,MDnD
and MD̄1, . . . ,MD̄nD̄

. The Wilcoxon-Mann-Whitney U
statistic is given by

ÂUC =

∑nD
i=1

∑nD̄
j=1 I(L(MDi) > L(MD̄j)) + 1

2I(L(MDi) = L(MD̄j))

nD · nD̄

Although β must cover a range in (−∞,+∞) , selecting β in [−1, 1] provides all possible
combinations of (Mi,Mj), because the AUC in (Mi + β ·Mj) for β < −1 and β > +1 is
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the same as for α ·Mi +Mj where α = 1
β ∈ [−1,+1]. Choosing 201 equally spaced values

of β in [−1, 1] can be a good selection.
Once the combination of two variables that maximizes area in the first step of the algo-

rithm has been calculated , in the second step the linear combination L1(M) = Mi + βjMj

is considered as a single variable, and a new variable Mp is selected in such a way that their
linear combination L2(M) = Mi + βjMj + βpMp corresponds to the maximum AUC.

This process is repeated until all variables are included in the model, thus achieving the
best linear combination of markers at each step, in the sense that each model provides the
maximum area under the ROC curve.

Note that some aspects of the algorithm are important for its performance, such as the
normalization of the input variables or the occurrence of different models with the same area
in intermediate steps of the algorithm; for additional details see [2].

2.2. The min-max combination
If we consider again k biomarkers denoted by a vector

M = (M1, . . . ,Mk)

we can define

Mmax = max
1≤i≤k

{Mi} and Mmin = min
1≤i≤k

{Mi}

The idea of the procedure is to consider the Mmax and the Mmin as predictor variables
instead of the original M = (M1, . . . ,Mk). Thus the goal of the algorithm is to estimate the
parameter β such that the combination

Mβ = Mmax + β ·Mmin

maximizes the AUC.
Conditioning on the binary status D, 1 being diseased and 0 otherwise, the biomarkers’s

levels are denoted by X = (X1, . . . , Xk) for a non-diseased subject (D = 0) and by Y =
(Y1, . . . , Yk) for a diseased subject (D = 1). The optimal min-max combination is given by
βopt that maximizes the AUC, that is

AUC(βopt) = max
β

Pr{(Ymax −Xmax) + β(Ymin −Xmin) > 0}

The value of β can be found numerically. Here we calculate it by extensive search using
the first step of the step by step algorithm described in the previous section. For more details
see [6].

§3. Prostate cancer Data

Prostate cancer (PCa) continues to be the most prevalent solid tumor in men in developed
countries. Unfortunately, the discrimination of current predictive tools to predict prostate
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cancer or different aspects of PCa is imperfect. In this scenario most investigators agree
that prediction models of prostate cancer should be improved by the incorporation of novel
biomarkers. [4]

The Prostate Specific Antigen (PSA) is the most commonly used variable in predictive
models of prostate cancer [8] and it presents a clear positive skewness. Although the log
transformation is commonly used, in most cases the assumption of multivariate normality is
not possible for the set of predictive biomarkers. Therefore, non parametric approaches can
be a good alternative to build predictive models in prostate cancer.

Our purpose in this work is to explore the performance of the min-max combination and
the step by step method in predictive models of prostate cancer. We include as the basis
for all models the results of the variable Preoperative PSA measured in the 621 patients of
a database of staging prostate cancer. This predictor variable has an AUC of 0.743. Also,
another continuous predictor, the Rate of cylinders affected in the biopsy is included in the
database, which has an AUC of 0.763. Table 1 shows a short description of the staging
prostate cancer database.

PSA
Mean Median SD Q1–Q3

All cases (n=621) 15.70 8.64 32.718 5.90–15.10
Organ-confined (OC) (n=369) 8.782 7.200 5.635 5.32–10.63
Non Organ-confined (NOC) (n=252) 25.840 13.800 49.236 7.49–25.62

Rate of cylinder affected
Mean Median SD Q1–Q3

All cases (n=621) 38.230 33.330 26.169 16.67–50.00
Organ-confined (OC) (n=369) 28.210 25.000 18.368 12.50–37.50
Non organ-confined (NOC) (n=252) 52.900 50.000 28.869 30.00–75.00
SD: Standard deviation, Q1: First Quartile, Q3: Third Quartile

Table 1: Staging prostate cancer database (n=621)

To compare the min-max combination and the step by step linear models, we simulated
the presence of different continuous variables as new predictors. The purpose is to compare
how these methods can build better predictive models. We have simulated different markers
that have been added to Prostate Cancer Antigen and Rate of cylinders affected in order to
build predictive models of organ confined disease. To estimate the risk of organ-confined
disease in newly diagnosed prostate cancer patients is essential to select the best treatment
for them: the use of Active Surveillance, focal therapies, surgical procedures or radiotherapy
with or without adjuvant hormone therapy.

In a first battery of simulations, we have explored three different scenarios with the stag-
ing prostate cancer database. In the first two cases, the simulated new markers follow a
multivariate normal distribution with equal and unequal variance-covariance matrix, and in
the third one, we simulate data from multivariate log-normal distributions. Denoting X: Non
Organ Confined, Y : Organ Confined, the different cases analyzed are the following:
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Scenario 1: µX = (0.5, 0.7, 1), µY = (0, 0, 0),ΣX = ΣY =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1


Scenario 2:

µX = (0.5, 0.7, 1) , µY = (0, 0, 0)

ΣX =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,ΣY =

 2 0 0
0 1 0
0 0 3


Scenario 3:

µlogX = (0.5, 0.7, 1) , µlog Y = (0, 0, 0)

ΣlogX =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,Σlog Y =

 2 0 0
0 1 0
0 0 3


Table 2 shows the results from 1000 simulations for every choice of the parameters. The

mean, median and standard deviation of the AUC are calculated in step by step linear model
(SLM) and min-max combination (min-max). The 95% Confidence intervals (C.I.) are also
provided.

Scenario 1 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.8730 0.8734 0.0113 0.8508-0.8945
min-max 0.8184 0.8194 0.0163 0.7860-0.8493
Scenario 2 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.8657 0.8652 0.0082 0.8505-0.8830
min-max 0.8412 0.8424 0.0143 0.8110-0.8662
Scenario 3 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.8373 0.8372 0.0085 0.8213-0.8548
min-max 0.8410 0.8412 0.0141 0.8126-0.8687

Table 2: Simulation results in the staging prostate cancer database (nX = 252, nY = 369,
1000 simulations)

In the simulations performed using the staging prostate cancer database, the step by step
model provides models with higher discrimination ability than the min-max combination
in scenarios 1 and 2, and very similar in scenario 3. These results show that if we add
markers that follows a multivariate normal distribution, the step by step method has higher
discrimination ability, while the min-max combination method matches this discrimination
ability in the case where we move away from this hypothesis.

We want to emphasize that in scenario 1, using only the PSA and the Rate of cylinder
affected as predictor variables, the best linear model obtained with the step by step method
has an AUC of 0.8146, which is the same as we obtained with the min-max method using the
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five predictor variables. Therefore, the step by step method is clearly superior and it seems
that min-max method capture the discrimination ability of some variables, but not all.

As a consequence of these results, we have explored another issue which has been recently
addressed in the literature. Pepe et al. [13] have analyzed that for models containing standard
risk factors and possessing good discrimination, very large independent associations of a new
marker with the outcome are required to result in a meaningful larger AUC. In this context,
Pinsky and Zhu [14] have analyzed the role of correlation among markers, they conclude that
the addition of variables negatively correlated with the previous ones improves greatly the
diagnostic accuracy of predictive models.

We think that when negatively correlated variables are added, the min-max method will
estimate models with less predictive ability than the step by step method if all variables have
a similar discriminatory ability. Therefore, the addition of novel markers to standard ones
is not going to be reflected as a clear increase in AUC despite that are negatively correlated,
which is the most favorable case.

We select again PSA and Rate of cylinder affected as predictor variables of organ confined
disease, and we simulate two new markers that are negatively correlated with the first two
ones. We use the min-max method to estimate the best linear combination of Mmax and
Mmin and the the step by step method to combine the 4 variables.

Results show a mean AUC of 0.9064 for min-max method, and a mean AUC of 0.8970,
0.9162 and 0.9380 for the best combination of 2, 3 and 4 variables using the step by step
method. The mean AUC obtained with the first method is between the AUC corresponding
to models obtained by the step by step method with 2 and 3 variables, and is far from that
obtained with four variables. Although the difference between 0.9380 and 0.9064 may seem
small, for such high values of the AUC, it is difficult to get a significant increase in its value.
Thus, we verify that min-max method fails to capture all discriminatory ability of the set of
predictor variables.

§4. Other simulation results

Although in most predictive models of prostate cancer, the PSA variable appears as one of
the most important predictors, we want to extend the study to other cases where all markers
are simulated.

Now, in scenarios 4 and 5, we simulate data from multivariate normal and multivariate
log-normal distributions. Denoting X: Non organ confined disease, Y : Organ confined dis-
ease, the mean vector and variance-covariance matrix are:

Scenario 4:

µX = (0.5, 0.5, 0.5, 0.5, 0.5) , µY = (0, 0, 0, 0, 0)

ΣX =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,ΣY =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


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Scenario 5:

µlogX = (0.5, 0.6, 0.7, 0.8, 1) , µlog Y = (0, 0, 0, 0, 0)

ΣlogX =


1 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5
0.5 0.5 0.5 1 0.5
0.5 0.5 0.5 0.5 1

 ,Σlog Y =


1.5 0 0 0 0
0 1 0 0 0
0 0 2.5 0 0
0 0 0 2 0
0 0 0 0 3


Also, in scenario 6 we use transformations of N(µ, σ) to analyze skewed distributions.

More specifically we consider:

Scenario 6:
Xi = N(1, 1)−3, Yi = N(0, 1), i = 1, . . . , 5.

The results from 1000 simulations are displayed in Table 3 for every choice of the param-
eters. Again, the mean, median, standard deviation and the the 95% C.I. of mean AUC are
provided in the step by step linear model (SLM) and the min-max combination.

Scenario 4 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.7883 0.7890 0.0199 0.7487-0.8266
min-max 0.7569 0.7567 0.0210 0.7165-0.7963
Scenario 5 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.7096 0.7087 0.0187 0.6745-0.7490
min-max 0.9106 0.9112 0.0121 0.8855-0.9331
Scenario 6 AUC Mean AUC Median AUC SD AUC 95% C.I.
SLM 0.7115 0.7115 0.0020 0.6754-0.7530
min-max 0.9337 0.9345 0.0126 0.9085-0.9566

Table 3: Simulation results (nX = 250, nY = 250, 1000 simulations)

Results show that in scenarios with a clear departure from multivariate normal assumption
(Scenarios 5 and 6), the min-max combination shows a superior ability to discriminate than
the SLM model, whereas in models using markers that are near to verify the multivariante
normal assumption, the step by step method performs better.

In scenario 4, the data are simulated from a normal multivariate and therefore the best
linear combination and its corresponding AUC can be calculated theoretically with the ex-
pression provided by Su and Liu [16]. Maximum AUC has a value of 0.7854, which is very
similar to the value obtained with step by step method (0.7883), with a minimum bias due
to the simulation. By contrast, the min-max method has an AUC (0.7569) away from the
maximum value, showing an underestimation.

§5. Conclusions

Without clear information about distributional assumptions of biomarkers, non parametric
approaches must be taken into account to build predictive models. These nonparametric



Linear combination of biomarkers to improve diagnostic accuracy in Prostate cancer 83

methods can achieve a great capacity for discrimination between the different states of a
disease depending on the true relation between markers and disease.

The step by step linear model and the min-max combination appear as good alternatives
to build predictive models in medicine. The min-max combination performs better when the
data depart from normality, but it can be too dependent on the normalization of the variables,
which could be a problem for its application to real databases like the staging prostate cancer
database.

Another non parametric approach like the step by step method could give a better alterna-
tive. It captures the discriminatory ability of all predictor variables and, as a consequence, in
the case of a set of predictor variables that have a similar discriminatory ability, it estimates
models with greater predictive ability.
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RESPONSE-ADAPTIVE DESIGNS BASED
ON THE EHRENFEST URN

Arkaitz Galbete, José Antonio Moler and Fernando Plo

Abstract.
In this paper we describe a family of response-adaptive designs based on the Ehrenfest

urn model, where the previous responses of patients are used in the allocation of the next
patient to a treatment. We study some operating characteristics of these designs, such as
the power of the usual inferential tests, the variability of the proportion of allocations, the
expected failure rate or the target allocation and we compare them with other well-known
response-adaptive designs.

Keywords: Response-adaptive designs, Ehrenfest urn.

AMS classification: 60C05, 60F05.

§1. Introduction

A randomized controlled clinical trial is a statistical experiment to compare the efficacy of a
new treatment with respect to a control treatment. The control treatment is the best clinical
practice known or a placebo. For a discussion on the importance of randomization in clinical
trials and a description of different randomized designs see [13].

Urn models have been used to obtain randomized designs. The general procedure can
be described as follows. We assume that patients arrive sequentially to the trial. Let δn be
the indicator variable that takes value 1 if treatment 1, say, the new treatment, is applied, an
0 if treatment 2, say, the control treatment, is applied. Let Nn,1 be the number of patients
allocated to treatment 1 up to the nth patient. Then, we have

Nn,1 =

n∑
k=1

δk.

The number of patients allocated to treatment 2 will be Nn,2 = n−Nn,1.
An urn with balls of two different types (or colors) is provided. Let (Wn,1,Wn,2) be the

number of balls of each type at stage n of the procedure. When a new patient arrives, a ball
is extracted and the patient is allocated to the treatment associated with the ball’s type. The
probability distribution of δn depends on the past history of the procedure only through the
composition of the urn at stage n− 1, and we have

P (δn = 1|Wn−1,1) =
Wn−1,1

2w
. (1)
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Complete randomization can be regarded as an allocation rule that uses an urn with equal
number of balls at each stage, (Wn,1,Wn,2) = (w,w), w ≥ 1. Then, the distribution of δn
does not depend on the past history of the procedure and it is clear that

P (δn = 1) =
1

2
. (2)

If the urn is modified using the information obtained so far we have an adaptive design.
The Ehrenfest urn design, see [5], is an adaptive design that uses the previous information

in the following way. Initially the urn has w balls of each type, that is, (W0,1,W0,2) =
(w,w). When a new patient arrives, a ball is drawn from the urn, the patient is allocated to
the treatment associated with its type and a ball of the other type is added to the urn. Observe
that the total number of balls remains fixed along the process, and Wn,1 + Wn,2 = 2w, so
that Wn,1 describes completely the state of the urn. The composition of the urn depends only
on the number of times that each treatment has been applied.

When the composition of the urn is modified according to the patients’ responses we have
a response-driven adaptive design. There is a wide catalogue of this kind of designs, see for
instance [9].

In this paper we present a family of response-adaptive designs, based on the Ehrenfest urn
model, which use the information given by the patients’ responses to modify the composition
of the urn, and therefore these responses affect the allocation of future patients to treatments.
These designs are studied from a theoretical point of view, paying attention to the process
{Wn,1}, which describes the evolution of the urn, and to the process {Nn,1}, which describes
the evolution of the allocations. Following the program proposed in [8] for any new design,
we also study some of the operating characteristics of these designs, such as the power of
inferential tests, the variability of the proportion of allocations, the expected failure rate or
the target allocation, and we compare them to other well known response-driven adaptive
designs.

§2. Ehrenfest response-adaptive designs

The Ehrenfest urn design was introduced in [5] and was slightly generalized, adding partially
reflecting barriers in ν and 2w− ν, where 0 < ν < w, in [6]. A family of designs that can be
seen as a generalization of the Ehrenfest urn model were presented and studied in [1] and [2].
Up to our knowledge, these are all the references that use urn models with a fixed number of
balls in the design of clinical trials.

Mean and variance can be calculated, at any stage n of the procedure, for the processes
{Wn,1} and {Nn,1} associated with the Ehrenfest urn design, see [1]. We have

E[Wn,1] = w, V ar[Wn,1] =
w

2

(
1− (1− 2

w
)n
)
.

and also,

E[
Nn,1
n

] =
1

2
, V ar[

Nn,1
n

] =
w

8n2

(
1− (1− 2

w
)n
)
.
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Observe that the process {Wn,1} is a time homogeneous Markov Chain with state space
E = {0, 1, . . . , 2w} and transition probabilities

pi,j =

{
1− i

2w , j = i+ 1;
i

2w , j = i− 1;
i = 0, 1, . . . , 2w. (3)

This property can be exploited, see [2], to obtain strong laws and central limit theorems. In
particular, the following central limit theorem holds.

√
n

(
Nn,1
n
− 1

2

)
→ N(0,

σ2

(2w)2
), [D]

where σ2 can be expressed in terms of the eigenvalues and eigenvectors of the transition
matrix of the Markov Chain {Wn,1}.

In this paper we propose three different scenarios inspired in well-known response-driven
adaptive designs. We assume that patients arrive sequentially and are allocated according to
the type of ball extracted. We put this ball back into the urn. The responses to the treatments
applied are used to modify the composition of the urn. We consider binary responses and we
denote by Zn,i, the indicator function which takes value 1 if the response of the nth patient to
treatment i is a success, and 0 if it is a failure. Let pi be the probability of success of treatment
i, and qi = 1 − pi. To avoid trivial cases, we assume that pi ∈ (0, 1) for i = 1, 2. We also
assume that these responses are independent of the past. In particular, they are independent
of the sequence of past and present allocations.

Scenario 1 (S1 design) In scenario S1 we reinforce a treatment when it is a success. This
reinforcement rule mimics the Randomly Reinforced Urn model, RRU, studied in [4]. In the
RRU model, which uses an unbounded urn, the proportion of patients allocated to the best
treatment converges to 1 almost surely, and it converges to a beta distribution β(w, w) when
both treatments perform equally, so that this design is not in the scope of the results in [8].

This reinforcement policy has to be adapted to obtain an urn with a fixed number of balls,
2w. When the urn is in an interior state, that is, when Wn,1 ∈ E \ {0, 2w}, if the treatment
applied is a success, we add a ball of its type and we remove a ball of the other type. If the
treatment is a failure, the composition of the urn remains unchanged. S1 design modifies (3)
as follows:

pi,j =


p1

i
2w , j = i+ 1;

q1
i

2w + q2(1− i
2w ), j = i;

p2(1− i
2w ), j = i− 1;

0, otherwise,

i = 1, . . . , 2w − 1, (4)

When Wn,1 = 0 or Wn,1 = 2w , additional rules are needed. If the treatment applied is a
success, the urn remains unchanged. If it is a failure, we remove a ball of its type and we add
a ball of the other type. This amounts to consider states 0 and 2w as semi-reflecting barriers.
That is

[SB] :
p0,0 = p2, p0,1 = q2

p2w,2w = p1, p2w,2w−1 = q1,
(5)

Scenario 2 (S2 design) In scenario S2 a treatment is reinforced if it is a success or if the
other treatment is a failure. This is the randomized Play-The-Winner rule, PTW, which has
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been profusely studied, see [9]. In the PTW design with an unbounded urn, the proportion of
patients allocated in treatment 1 converges to q2/(q1 + q2); that is, the ratio of allocations to
a treatment converges to its relative risk of failure.

This reinforcement policy has to be adapted to obtain an urn with a fixed number of balls,
2w. When the urn is in an interior state, Wn,1 ∈ E \ {0, 2w}, we add a ball of type 1 and
remove a ball of type 2 if treatment 1 is applied and it is a success or if treatment 2 is applied
and it is a failure; treatment 2 is reinforced in a similar way: if treatment 2 is applied and it is
a success or if treatment 1 is applied and it is a failure. S2 design modifies (3) as follows:

pi,j =

 p1
i

2w + q2(1− i
2w ), j = i+ 1;

p2(1− i
2w ) + q1

i
2w , j = i− 1;

0, otherwise,
i = 1, . . . , 2w − 1, (6)

When Wn,1 = 0 or Wn,1 = 2w , we act as in S1:

[SB] :
p0,0 = p2, p0,1 = q2

p2w,2w = p1, p2w,2w−1 = q1,
(7)

Scenario 3 (S3 design) In scenario S3 a treatment is reinforced if the other treatment is
applied and it is a failure. This rule is similar to the Drop-The-Loser rule, DTL, introduced
in [10]. The DTL rule has the same allocation limit as the PTW rule; that is, the proportion
of patients allocated to a treatment converges to its relative risk of failure.

S3 design modifies (3) as follows. The urn remains unchanged if the treatment applied is
a success. If it is a failure, we remove a ball of this type and we add a ball of the other type.

pi,j =


q2(1− i

2w ), j = i+ 1;
p1

i
2w + p2(1− i

2w ), j = i;
q1

i
2w , j = i− 1;

0, otherwise,

i = 0, . . . , 2w. (8)

Note that, in this scenario, the barrier conditions [SB] implicitly hold. Transition matrix (8)
was already studied in [11]. We will refer to S3 design as the Klein urn design.
Remark 1. Condition [SB] seems quite logical in the spirit of a clinical trial. IfWn,1 = 0 the
urn has 2w balls of type 2, and treatment 2 is applied until a failure happens. If Wn,1 = 2w
the urn has 2w balls of type 1, and treatment 1 is applied until a failure happens. Absorbent
barriers would force to apply the same treatment once the barrier is reached. Reflecting
barriers make the allocation of patients arriving after reaching the barrier to be deterministic.
Remark 2. Observe that {Wn,1}n∈N, in the three scenarios, is a finite, irreducible, aperiodic
Markov chain. So that, it is positive recurrent and there exists a stationary distribution if
pi ∈ (0, 1) for i = 1, 2.

A theoretical study of properties of adaptive designs would be of great interest. But, in
general, exact values for the mean and the variance of the number of allocations for each
n are difficult to obtain when adaptive designs are applied, due to the complicated correla-
tion structure generated between allocations and observed responses. Comparative studies
rely heavily on asymptotical properties or on simulation studies. In [8] it is outlined the im-
portance of checking the accuracy of the asymptotic approximations when these theoretical
results are used to compare designs.
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The family of Ehrenfest response-adaptive urn designs, with a fixed number of balls,
which has been presented here, evolve following a recurrence rule which facilitates the com-
putation of exact values for mean and variance of {Wn,1} for each value of n. In the section
3 we obtain this kind of results for the three designs. Previously, we recall some theoretical
results for birth and death chains and we apply them to the allocations process. In the section
4 we make a study of the degree of fulfillment of ethic, randomness and inferential accuracy
goals, with respect to other response driven adaptive designs presented in the literature.

§3. Exact values and asymptotic results for Ehrenfest response-adaptive
designs

Observe that the evolution of the designs introduced in section 2 is closely related to the
Markov Chain {Wn,1}. Therefore, the theory of Markov Chains will be applied in what
follows. To facilitate the exposition, we collect in the following proposition some well known
results for Markov chains particularized to the process {Wn,1}.

Proposition 1. For a finite, irreducible and aperiodic Markov Chain {Wn,1} with state space
E:

a) there exists a stationary distribution π = {πi}i∈E , whatever the initial distribution of
the chain is.

b) the following strong law holds

1

n

n∑
k=1

Wk,1 → π∗, a.s.

where π∗ :=
∑
i∈E

iπi is the mean value of the stationary distribution. Besides, for m > 1,

1

n

n∑
k=1

Wm
k,1 → π∗m, a.s.

where π∗m :=
∑
i∈E

imπi.

c) the following central limit holds

1√
n

(

n∑
k=1

Wk,1 − nπ∗)→ N(0, σ2)

where σ2 = limn→∞
1
nV ar[

∑n
k=1Wk,1] .

Asymptotic results for the allocation process {Nn,1} can also be obtained for the designs
introduced in section 2.

Proposition 2. Consider S1, S2 and S3 designs. Then, we have for the process {Nn,1} the
following results

a) A strong law holds



90 Arkaitz Galbete, José Antonio Moler and Fernando Plo

Nn,1
n
→ π∗

2w
, a.s.

b) A central limit holds

√
n(
Nn,1
n
− π

∗

2w
)→ N(0, σ2/(4w2))

where σ2 = limn→∞
1
nV ar[

∑n
k=1Wk,1].

Proof. Let {Fn} denote the information associated with the design until stage n. For each

n, E[δn|Fn−1] =
Wn−1,1

2w
. Since

n∑
k=1

Wk,1 is unbounded, from Corollary 2.3 in [7] Nn,1 is

also unbounded. Then, from the Levi’s extension of the Borel-Cantelli theorem,

lim
n→∞

Nn,1
n∑
k=1

Wk,1

= 2w, a.s.

the proof follows as in Theorem 1 in [2].

The stationary distribution of {Wn,1} can be obtained explicitly for the S1, S2 and S3
designs.

Proposition 3. The stationary distribution π of the Markov Chain {Wn,1} satisfies
a) for the S1 design,

πi
π0

=
q2

p2

(
p1

p2

)i−1
2w(

2w−1
i

)
i
, i = 1, . . . , 2w − 1 (9)

π2w

π0
=

q2

q1

(
p1

p2

)2w−1

(10)

b) for the S2 design,

πi
π0

=

i−1∏
j=0

(q2 + (p1 − q2)
j

2w
)

2w−1∏
j=2w−i

(q1 + (p1 − q2)
j

2w
)

, i = 1, . . . , 2w (11)

c) for the S3 design, π is the probability mass function of a Binomial distribution with
parameters 2w and q2/(q1 + q2)).

Proof. As the probability transition matrix of {Wn,1} under (4), (6), (8) is a tridiagonal
transition matrix, the stationary distribution π = {πi}i=0,...,2w is easy to obtain by solving
the balance equations.



Response-adaptive designs based on the Ehrenfest urn 91

πi
π0

=

i−1∏
j=0

pj,j+1

pj+1,j
, i = 1, · · · , 2w, π0 =

1

1 +

2w∑
i=1

πi
π0

(12)

The result is obtained by putting (4), (6), or (8) along with [SB] in (12).

Remark 3. The asymptotic distribution of the Klein urn design (S3 design) was already ob-
tained in [11], making p = q1 and p′ = q2.
Remark 4. From Proposition 3, we observe that when p1 = p2 = p, the stationary distribution
is symmetric for the three scenarios. So that, π∗ = w. For scenario S2, when p = 0.5 we
have the uniform distribution on the set {0, 1, . . . , 2w}.

The following technical result is useful to establish the behavior of mean and variance of
the process {Wn,1} for each value n.

Lemma 4. Consider the Markov Chain {Wn,1} for the S1, S2 or S3 designs. Then, both
E[Wn,1] and E[W 2

n,1] satisfy recurrence equations which we will make explicit below.

Proof. Once the response of the kth patient is obtained, we denote as I+
k the indicator variable

of adding one ball of type 1 to the urn and I−k the indicator variable of removing one ball of
type 1 from the urn. We can write the following recurrence equation

Wn+1,1 = Wn,1 + I+
n+1 − I

−
n+1. (13)

Note that

E[I+
n+1|Wn,1] =

2w−1∑
i=1

pi,i+1I{Wn,1=i} + q2I{Wn,1=0},

E[I−n+1|Wn,1] =

2w−1∑
i=1

pi,i−1I{Wn,1=i} + q1I{Wn,1=2w}. (14)

As W0,1 = w, taking expectations in (13) and using (14), we have

Ew[Wn+1,1] = Ew[Wn,1] +

2w−1∑
i=1

(pi,i+1 − pi,i−1)pnw,i + q2p
n
w,0 − q1p

n
w,2w. (15)

On the other hand, for i = 1, . . . , 2w − 1, and depending on the scenario

pi,i+1 − pi,i−1 =


−p2 +

p1 + p2

2w
i, for the S1 design,

−(p2 − q2) +
p1 − q2

w
i, for the S2 design,

q2 −
q1 + q2

2w
i, for the S3 design.

(16)

So that, pi,i+1 − pi,i−1 = a1 + b1i, where a1 and b1 are constants determined in (16)
depending on the scenario. Then, (15) becomes:

Ew[Wn+1,1] = (1 + b1)Ew[Wn,1] + a1 + (q2 − a1)pnw,0 − (q1 + a1 + 2wb1)pnw,2w, (17)
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which is the recurrence relation for Ew[Wn,1] we were looking for.
Now, from (13) we have

W 2
n+1,1 = W 2

n,1 + I+
n+1 + I−n+1 + 2Wn,1(I+

n+1 − I
−
n+1), (18)

Taking expectations in (19) and using (14) we obtain

Ew[W 2
n+1,1] = Ew[W 2

n,1] +

2w−1∑
i=1

(pi,i+1 + pi,i−1)pnw,i + q2p
n
w,0 + q1(1− 4w)pnw,2w

+2

2w−1∑
i=1

i(pi,i+1 − pi,i−1)pnw,i (19)

Note that, for i = 1, . . . , 2w − 1, and depending on the scenario

pi,i+1 + pi,i−1 =


p2 +

p1 − p2

2w
i, for the S1 design,

1, for the S2 design,

q2 +
q1 − q2

2w
i, for the S3 design.

(20)

So that, pi,i+1 +pi,i−1 = a2 + b2i, where a2 and b2 are constants determined in (20) for each
scenario. Now we can rewrite (19) as follows

E[W 2
n+1,1] = (1 + 2b1)E[W 2

n,1] + a2 + (b2 + 2a1)E[Wn,1]

+(q2 − a2)pnw,0

+(q1 − a2 − 2b2w − 4a1w − 8b1w
2 − 4wq1)pnw,2w (21)

which is the recurrence relation for E[W 2
n,1].

Remark 5. A closed expression for the solution of (17) is easy to obtain for the S3 design:

E[W1,n] = π∗ + rn(w − π∗),

where r = (1− q1 + q2

w
). As E[δi] = E[W1,i−1]/2w, we have then

E[N1,n] = n
π∗

2w
+

1− rn

1− r
(
1

2
− π

∗

2w
). (22)

The recurrence equations in Lemma 4 provide an alternative way to obtain explicit ex-
pressions of π∗ for the S1 and S2 designs. For the Klein urn design (S3), we obtain the mean
and variance of the Binomial distribution with parameters 2w and q2/(q1 +q2)), as expected.

Proposition 5. Consider the Markov Chain {Wn,1}. Then

a) for the S1 design we have

π∗ =
2w

p1 + p2
(p2 + π2w − π0)
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b) for the S2 design we have

π∗ =
w

q1 − p2
(q2 − p2 + p2π0 − p1π2w)

c) for the S3 design we have

π∗ = 2w
q2

q1 + q2
, σ∗2 =

2wq1q2

(q1 + q2)2

Proof. From Proposition 1 we have that Ew[Wn,1]→ π∗ and Ew[W 2
n,1]→ π∗2 as n→∞.

Taking limits in (17) we have

π∗ =
a1 + (q2 − a1)π0 − (q1 + a1 + 2wb1)π2w

−b1

and a), b) and c) follow taking the coefficients given in (16).
Taking limits in (21) we have

π∗2 =
a2 + (b2 + 2a1)π∗ + (q2 − a2)π0 + (q1 − a2 − 2b2w − 4a1w − 8b1w

2 − 4wq1)π2w

−2b1

and the result follows for the S3 design taking the coefficients given in (16) and (20).

Remark 6. From Proposition 5 we realize that as stated before, when p1 = p2 the limit
allocation is 1/2 for the three designs but when p1 6= p2, the target allocation of S1 and S2
only depends on the values of the stationary distribution in the barrier states 0 and 2w and
success probabilities. The limit allocation of S3 is the relative risk of failure, as in the PTW
and DTL designs.

§4. A comparative study

In this section we present a comparative simulation study among the S1, S2 and S3 designs,
described and studied in sections 2 and 3, and their foster rules, the Randomly Reinforced
Urn design (RRU), the Play-The-Winner design (PTW) and the Drop-The-Loser rule (DTL).
As a benchmark, we use the comparative study among response-driven adaptive designs for
two treatments, binary responses and limit allocation in the interval (0, 1) which can be find
in Chapter 8 of [9]. There, they state that the drop-the-loser design outperforms the play-
the-winner design, and also that it is clearly competitive with the double biased coin design.
Besides, it attains the minimum variance for the number of allocations among designs with
the same limit allocation.

The three designs introduced in section 2 are response adaptive and we will study its
inference properties with the classical test for difference of means. From Proposition 2, the
proportion of patients allocated in each treatment converges to a value in the interval (0,
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1), moreover, if we consider the sigma-algebra Fn = {δk+1, Zk,1, Zk,2 : k = 1, . . . , n},
conditions in [3] hold and, then, Theorem 3.2 in [12] can be applied. So that, the test statistic:

p̂1 − p̂2√
p1q1

N1n
+
p2q2

N2n

where p̂i is the success proportion among the patients allocated in treatment i converges to a
normal distribution. It will be used to test H0 : p1 = p2 against H1 : p1 6= p2.

Table 1 is built in the spirit of Table 8.3 in [9]. n represents the number of patients
that generate a simulated power of 90% for the test introduced before when the complete
randomization design is applied. Then, the simulated power and the mean number of failures
(with the standard deviation between brackets) are obtained for the S1, S2 and S3 designs
and their foster rules. Observe that the expected number of failures for the S3 design is
exactly obtained from (22).

RRU S1

p1 p2 n Power Failures Power Failures
0.9 0.8 532 83 75 (12.4) 17 75 (26.1)
0.9 0.5 48 80 12 (3.9) 52 9 (4.9)
0.7 0.4 108 82 43 (6.6) 41 39 (9.4)

PTW S2

p1 p2 n Power Failures Power Failures
0.9 0.8 532 87 75 (8.9) 20 68 (22.9)
0.9 0.5 48 84 11 (3.1) 39 7.4 (2.9)
0.7 0.4 108 88 45 (5.6) 43 36 (5.7)

DTL S3

p1 p2 n Power Failures Power Failures
0.9 0.8 532 89 73 (7.9) 89 72.04
0.9 0.5 48 86 11 (2.6) 87 11.41
0.7 0.4 108 87 44 (5.4) 87 44.30

Table 1: Simulated power and expected number of failures (standard deviation). 5.000 repli-
cations.

Note that S1 and S2 designs are competitive with, or slightly better than their foster rules,
RRU and PTW, from the point of view of the number of failures, but clearly inferior from the
point ow view of the power of the test statistic. This loss of power could be foreseen from
the results in [8], where it is proven that, given a strong law and a central limit theorem for
Nn,1/n, as were obtained in Proposition 2, the higher the variability of Nn,1, the smaller is
the power of the test statistic. In figure 3 the variability of Nn,1/n, for n = 200, p1 = 0.8
and p2 = 0.4 and 1000 replications, is represented and we can see the high variability of S1
and S2 designs with respect to their foster designs.
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Figure 1: Variability of Nn,1 for the designs studied.

In this preliminary study, the Klein urn design (S3 design) has shown a behavior similar
to the DTL rule in number of failures and power (see Table 2) and also in variability of
allocations (see Figure 1). Besides, both have the same target allocation. As the Drop-The-
Loser rule is perceived as a competitive response adaptive design, see [9], further research on
the Klein urn design and its theoretical properties should be encouraged.
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PHI-DIVERGENCE STATISTICS FOR
ORDERED BINOMIAL PROBABILITIES

Nirian Martín, Raquel Mata and Leandro Pardo

Abstract. We consider I independent binomial random variables with parameters ni
and πi, respectively. In this paper a new family of test statistics based on phi-divergence
measures is introduced and studied for the problem of testing hypothesis that involves
order constraint on {π1, ..., πI}. The new family of test statistics contains as a particular
case the classical likelihood ratio test.

Keywords: Phi-divergence test statistics, Inequality constrains, Likelihood ratio order,
Loglinear models.

AMS classification: 62H17, 62F30.

§1. Introduction

Ordered categorical data with ordered categories appear frequently in the biomedical research
literature. For example, in the analysis of a binary response to an increasing exposure data
(dose-response experiment). It is well-known that for such data we cannot use the classical
chi-square test or likelihood ratio test but we can consider an appropriate analysis that takes
into account the ordered categories of a variable as rows of a I × 2 contingency table. Our
purpose in this paper is to propose a new family of order-restricted test statistics based on
divergence measures that generalize the order-restricted likelihood ratio test as well as the
chi-square test.

We consider a modification of an example given in Silvapulle and Sen (2005), in order
to motivate the problem considered in this paper. Table 1 contains a subset of data from a
prospective study of maternal drinking and congenital malformations. Women completed a
questionnaire early in their pregnancy concerning alcohol use in the first trimester; complete
data and details are available elsewhere (Graubard and Korn, 1987). Specifically, women
were asked what was the amount of alcohol taken during the first three months of their preg-
nancy and four categories are considered, no alcohol consumption (i = 1), average number of
alcoholic drinks per day less than one but greater than zero (i = 2), one or more and less than
three alcoholic drinks per day (i = 3) and three or more alcoholic drinks per day (i = 4). In
terms of a binary outcome, having congenital malformations is considered to be a successful
event (j = 1).

Let πi be the probability of a success associated with the i-th alcohol dose. Let us consider
some statistical inference questions that may arise in this example and in similar ones with
binomial probabilities.
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i (drink doses) ni ni1 (malformations) ni2 (no malformations)
1 (no drink) 17114 48 17066
2 ((0, 1) average drinks) 14502 38 14464
3 ([1, 3) average drinks) 793 5 788
I = 4 (≥ 3 average drinks) 165 2 163

Table 1: Congenital sex-organ malformation relating to maternal alcohol consumption.

1. Is there any evidence of maternal alcohol consumption being related to malformation
of sex organ? To answer this question, the null and alternative hypotheses may be
formulated as

H0 : π1 = π2 = π3 = π4 versus H1 : π1, π2, π3, π4 are not all equal,

respectively. However, this formulation is unlikely to be appropriate because the main
issue of interest is the possible increase in the probability of malformation with the
increase in alcohol consumption.

2. Is there any evidence that an increase in maternal alcohol consumption is associated
with an increase in the probability of malformation?. This question, as it stands, is
quite broad to give a precise formulation of the null and the alternative hypotheses.
One possibility is to formulate the problem in the following way,

H0 : π1 = π2 = π3 = π4 versus H1 : π1 ≤ π2 ≤ π3 ≤ π4. (1)

Our main purpose in this paper is to present two families of test statistics for testing
problems like the problem given in (1). The two families of test statistics are based on phi-
divergence measures. The classical likelihood ratio test will be appeared as a particular case.
In Section two we present the families of phi-divergence test statistics. Section 3 is devoted
to solve the problem presented in this Section. theoretical results.

§2. Phi-divergence test statistics

Consider an experiment with I increasing dose groups. Suppose n individuals are initially
placed on experiment, and ni individuals are assigned to the i-th dose group. The individuals
are followed over time for the development of an event of interest. Let Ni1 be the number
of individuals successes, associated with the i-th dose in ni independent identical trials and
Ni2 the number of no successes, i = 1, ..., I. If we denote by πi the probability of a success
associated with the i-th dose, we have thatNi1 is a Binomial random variable with parameters
ni and πi, i = 1, ..., I , i.e., Ni1 ≡ B (ni, πi), i = 1, ..., I. The observations obtained can be
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displayed in the following way

n1 n11 n12 = n1 − n11

...
...

...
ni ni1 ni2 = ni − ni1
...

...
...

nI nI1 nI2 = nI − nI1

where here n1 + n2 + ... + nI = n and ni1 is the number of successes associated with the
Binomial random variable Ni1, i = 1, ..., I .

Our interest is in testing

H0 : π1 = · · · = πI versus H1 : π1 ≤ · · · ≤ πI . (2)

The classical order-restricted likelihood ratio test for testing (2), see for instance Mancuso
et al (2001), is given by

G2 = 2

I∑
i=1

(
Ni1 log

π̂∗i
π̂0

+ (ni −Ni1) log
1− π̂∗i
1− π̂0

)
being

π̂0 =
1

n

I∑
i=1

Ni1 =
N∗1
n

and π̂∗ = (π̂∗1 , ..., π̂
∗
I )
T the MLE of π = (π1, ..., πI)

T under the alternative hypothesis. This
estimator can be obtained using the PAVA algorithm.

Let p̂j =
(
N1j

n1
, ...,

NIj
nI

)T
, j = 1, 2. The MLE of π = (π1, ..., πI)

T is p̂1. If Ni1ni ≤
Ni+1,1

ni+1

∀i = 1, ..., I − 1 we have π̂∗ = (π̂∗1 , ..., π̂
∗
I )
T

= p̂1. Otherwise, if there is an index h ∈
{1, ..., I − 1} such that Nh1

nh
>

Nh+1,1

nh+1
the elements p̂h and p̂h+1 are called “violators”. In

this case we replace p̂h and p̂h+1 by their weighted average

AVh,h+1 =
Nh1 +Nh+1,1

nh + nh+1
.

Then π̂∗h = π̂∗h+1 = AVh,h+1. If the new set of I − 1 verifies

π̂∗h ≤ π̂∗h+1, h = 1, ..., I − 1,

the PAVA optimization problem is finished. Otherwise we iterate the previous process.
We define the 2I-dimensional probability vectors,

p̂ =

(((
I⊕
i=1

ni
n

)
p̂1

)T
,

((
I⊕
i=1

ni
n

)
p̂2

)T)T
=
(
N11

n , ...., NI1n , N12

n , ...., NI2n
)T
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p(θ̂) =
(
n1

n π̂0, ....,
nI
n π̂0,

n1

n (1− π̂0), ...., nIn (1− π̂0)
)T

=(
n1

n
N∗1
n , ...., nIn

N∗1
n , n1

n (1− N∗1
n ), ...., nIn (1− N∗1

n )
)T

and
p(θ̃) =

(
n1

n π̂
∗
1 , ....,

nI
n π̂
∗
I ,

n1

n (1− π̂∗1) , ...., nIn (1− π̂∗I )
)T
.

It is an easy exercise to verify that

G2 = 2n(dKull(p̂,p(θ̂))− dKull(p̂,p(θ̃))), (3)

where dKull(p̂,p(θ̂)) and dKull(p̂,p(θ̃))) are the Kullback-Leibler divergence between the
2I-dimensional probability vectors p̂ and p(θ̂) in the first case and between p̂ and p(θ̃)
in the second case. The Kullback-Leibler divergence measure between two 2I-dimensional
probability vectors p = (p11, ..., pI1, p12, ..., pI2)

T and q = (q11, ..., qI1, q11, ..., qI2)
T , is

given by

dKull(p, q) =

I∑
i=1

(
pi1 log(pi1qi1 ) + pi2 log(pi2qi2 )

)
.

The classical order-restricted chi-square test statistic for testing (2), known as
Bartholomew’s test-statistic, is given by

X2 =
1

N∗1
n

(
1− N∗1

n

) I∑
i=1

ni

(
π̂∗i −

N∗1
n

)2

, (4)

and the test statistics X2 can be written as

X2 = 2ndPearson(p(θ̃),p(θ̂)), (5)

where dPearson(p, q) is the Pearson divergence measure defined by

dPearson(p, q) =
1

2

I∑
i=1

(
(pi1−qi1)2

qi1
+ (pi2−qi2)2

qi2

)
.

Details about this test-statistic can be found in Fleiss et al. (2003, Section 9.3).
More general than the Kullback-Leibler divergence and Pearson divergence measures are

φ-divergence measures, defined as

dφ(p, q) =

I∑
i=1

(
qi1φ

(
pi1
qi1

)
+ qi2φ

(
pi2
qi2

))
,

where φ : R+ −→ R is a convex function such that φ(1) = φ′(1) = 0, φ′′(1) > 0,
0φ( 0

0 ) = 0, 0φ(p0 ) = p limu→∞
φ(u)
u , for p 6= 0. For more details about φ-divergence

measures see Pardo (2006).
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Based on φ-divergence measures we shall consider in this paper two families of order-
restricted φ-divergence test statistics valid for testing (2). The first one generalizes the order-
restricted likelihood ratio test given in (3) and its expression is

Tφ(p̂,p(θ̃),p(θ̂)) =
2n

φ′′(1)
(dφ(p̂,p(θ̂))− dφ(p̂,p(θ̃))) =

2
φ′′(1)

{∑I
i=1 ni

(
N∗1
n φ

(
Ni1
n

ni
n
N∗1
n

)
+N∗2

n φ

(
Ni2
n

ni
n
N∗2
n

)
− π̂∗i φ

(
Ni1
n

ni
n π̂
∗
i

)
− (1− π̂∗i )φ

(
Ni2
n

ni
n (1−π̂∗i )

))}
.

For φ(x) = x log x − x + 1, we get the likelihood ratio test. The second one generalize
the order-restricted Pearson test statistic

Sφ(p(θ̃),p(θ̂)) =
2n

φ′′(1)
dφ(p(θ̃),p(θ̂)) =

2

φ′′(1)

{
I∑
i=1

ni

(
N∗1
n
φ

(
π̂∗i
N∗1
n

)
+
N∗2
n
φ

(
(1− π̂∗i )

N∗2
n

))}
.

For φ(x) = 1
2 (x− 1)

2, we get the chi-square distribution.
Under H0, the asymptotic distribution of Sφ(p(θ̃),p(θ̂)) and Tφ(p̂,p(θ̃),p(θ̂)) is

lim
n→∞

Pr
(
Sφ(p(θ̃),p(θ̂)) ≤ x

)
= lim
n→∞

Pr
(
Tφ(p̂,p(θ̃),p(θ̂)) ≤ x

)
=

I−1∑
i=0

wi(θ0) Pr
(
χ2
I−1−i ≤ x

)
where θ0 is the true value and unknown parameter, χ2

0 ≡ 0. We can observe that the asymp-
totic distribution does not depend on the function φ under consideration. The result has been
obtained by following similar steps as in Theorem 1 in Martin, Mata and Pardo (2012) taking
J = 2.

Since θ0 is unknown, we cannot use directly the previous result. However, the unknown
parameter θ0 can be replaced by its estimator under the null hypothesis, θ̂. The tests per-
formed replacing θ0 by θ̂ are called “local tests” (see Dardanoni and Forcina (1998)) and
they are usually considered to be good approximations of the theoretical tests.

It has been established (see, for instance Silvapulle and Sen (2005)) that for I = 2, 3, 4
we have an explicit expression for wi(θ0) on the basis of a variance-covariance matrix

V (θ0) = G(I−1)×(I−1)B(θ0)GT
(I−1)×(I−1) = (vih(θ0))i,h=1,...,I−1

withG(I−1)×(I−1) being a (I − 1)× (I − 1) matrix with 1’s in the main diagonal and −1’s
in their upper diagonal and

B(θ0) = I−1
11 (θ0)+I−1

11 (θ0)I12(θ0)
(
I22(θ0)− I12(θ0)TI−1

11 (θ0)I12(θ0)
)−1

I12(θ0)TI−1
11 (θ0)
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The expressions of I11(θ0), I12(θ0), I22(θ0) and I12(θ0) are obtained through

IF (θ) = W T (Dp(θ) − p(θ)pT (θ)) W =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
, (6)

where Da is the diagonal matrix of vector a and W = (W 12,W 1,w2) is the full rank
design matrix of size 2I × (2I − 1), such that wT

2 = (1TI ,0
T
I ),

W T
12 = (I(I−1)×(I−1),0(I+1)×(I−1)), W

T
1 = (I(I−1)×(I−1),0(I−1), I(I−1)×(I−1),0(I−1)),

Ia×a is the the identity matrix of order a, 0a is the a-vector of zeros and
u = − log(1T2I exp{Wθ}).

The explicit expressions of wi(θ0) are as follows:

a) I = 2,

w0(θ0) = w1(θ0) = 0.5;

b) I = 3

w0(θ0) = 0.5− w2(θ0), w1(θ0) = 0.5, w2(θ0) =
1

2π
arccos (ρ12(θ0)) ;

c) I = 4

w0(θ0) =
1

4π
(2π − arccos (ρ12(θ0))− arccos (ρ13(θ0))− arccos (ρ23(θ0))) ,

w1(θ0) =
1

4π
(3π − arccos ρ12•3(θ0)− arccos ρ13•2(θ0)− arccos ρ23•1(θ0)) ,

w2(θ0) = 0.5− w0(θ0),

w3(θ0) = 0.5− w1(θ0),

where

ρih(θ0) =
vih(θ0)√

vii(θ0)vhh(θ0)

is the correlation coefficient between i and h and

ρih•ν(θ0) =
ρih(θ0)− ρiν(θ0)ρνh(θ0)√
(1− ρ2

iν(θ0)) (1− ρ2
νh(θ0))

, ν ∈ {1, 2, 3} − {i, h}

the partial correlation coefficient between i and h given a set of variables with indices
in {1, 2, 3}.

For a general value of I we can use the Monte-Carlo method. It is worthwhile to mention
that these values can be also computed using mvtnorm R package (see http://CRAN.R-
project.org/package=mvtnorm, for details), however this method based on numerical integra-
tion tends to provide less accurate values.
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§3. Example

In this section we are going to analyze the first data set of the introduction (Table 1), where
I = 4. The sample, a realization ofN , is summarized in vector

n = (n11, n21, n31, n41, n12, n22, n32, n42)T

= (48, 38, 5, 2, 17066, 14464, 788, 163)T .

The estimated probability (sub)vectors of interest are

p̂1 =
(

48
17114 ,

38
14502 ,

5
793 ,

2
165

)T
= (0.0028, 0.0026, 0.0063, 0.0121)T ,

π̂∗ =
(

43
15 808 ,

43
15 808 ,

5
793 ,

2
165

)T
= (0.0027, 0.0027, 0.0063, 0.0121)T ,

π̂0 = 93
32 574 ,

and

p̂ =( 48
32 574 ,

38
32 574 ,

5
32 574 ,

2
32 574 ,

17066
32 574 ,

14464
32 574 ,

788
32 574 ,

163
32 574 )T

=(1.4736× 10−3, 1.166 6× 10−3, 0.1535× 10−3, 0.0614× 10−3,

0.5239, 0.4440, 24.191× 10−3, 5.004× 10−3)T ,

p(θ̃) =
(

17114
32 574

43
15 808 ,

14502
32 574

43
15 808 ,

793
32 574

5
793 ,

165
32 574

2
165 ,

17114
32 574 (1− 43

15 808 ), 14502
32 574 (1− 43

15 808 ), 793
32 574 (1− 5

793 ), 165
32 574 (1− 2

165 )
)T

=(1.4291× 10−3, 1.2110× 10−3, 0.1535× 10−3, 0.0614× 10−3,

0.5240, 0.4440, 24.191× 10−3, 5. 004× 10−3)T ,

p(θ̂) =
(

17114
32 574

93
32 574 ,

14502
32 574

93
32 574 ,

793
32 574

93
32 574 ,

165
32 574

93
32 574 ,

17114
32 574 (1− 93

32 574 ), 14502
32 574 (1− 93

32 574 ), 793
32 574 (1− 93

32 574 ), 165
32 574 (1− 93

32 574 )
)T
,

=(1.5× 10−3, 1.2711× 10−3, 0.0695× 10−3, 0.01446× 10−3,

0.5239, 0.443 9, 24.275× 10−3, 5.050 9× 10−3)T .

and the estimators of the weights are obtained through

V (θ̂) =

 83774.0156250 −14428.7177734 0
−14428.7177734 15217.7109375 −788.9927979

0 −788.9927979 1457.5666504

 ,

that is

ρ12(θ̂) =
−14428.7177734√

83774.0156250× 15217.7109375
= −0.40411,

ρ13(θ̂) = 0,

ρ23(θ̂) =
−788.9927979√

15217.7109375× 1457.5666504
= −0.16753.
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ρ12•3(θ0) = −0.4099,

ρ13•2(θ0) = −7. 507 2× 10−2,

ρ23•1(θ0) = −0.183 15.

w0(θ̂) =
1

4π
(2π − arccos (−0.40411)− arccos (0)− arccos (−0.16753)) = 0.07850,

w1(θ̂) =
1

4π

(
3π − arccos(−0.4099)− arccos(−7. 507 2× 10−2)− arccos(−0.183 15)

)
= 0.32075,

w2(θ̂) = 0.5− w0(θ̂) = 0.5− 0.07850 = 0.4215,

w3(θ̂) = 0.5− w1(θ̂) = 0.5− 0.32075 = 0.17925,

{wi(θ̂)}I−1
i=0 = {0.0785, 0.32075, 0.4215, 0.17925}. (7)

From these weights the quantile of order 0.05, 5.02, is easy to calculate by following a bisec-
tion method.

If we take φλ(x) = 1
λ(1+λ) (xλ+1 − x − λ(x − 1)), where for each λ ∈ R − {−1, 0},

“power divergence family of measures” is obtained

dλ(p, q) =
1

λ(λ+ 1)

 I∑
i=1

J∑
j=1

pλ+1
ij

qλij
− 1

 , for each λ ∈ R− {−1, 0}. (8)

It is also possible to cover the real line for λ, by defining dλ(p, q) = limt→λ dt(p, q), for
λ ∈ {−1, 0}. It is well known that d0(p, q) = dKull(p, q) and d1(p, q) = dPearson(p, q),
which is very interesting because the power divergence based family of test-statistics, which
contains as special cases G2 and X2, can be created. In Table 2, the power divergence based
test-statistics and their corresponding asymptotic p-values are shown.

test-statistic λ = −1.5 λ = −1 λ = −0.5 λ = 0 λ = 2
3 λ = 1 λ = 1.5 λ = 2

Tλ(p̂,p(θ̃),p(θ̂)) 3.3068 3.8173 4.4920 5.4057 7.2076 8.4895 11.1549 15.1820
p−value(Tλ) 0.1177 0.0911 0.0650 0.0413 0.0169 0.0090 0.0024 0.0003

Sλ(p(θ̃),p(θ̂)) 3.2993 3.8124 4.4896 5.4057 7.2107 8.4942 11.1617 15.1911
p−value(Sλ) 0.1181 0.0913 0.0651 0.0413 0.0169 0.0090 0.0024 0.0003

Table 2: Power divergence based test-statistics and asymptotic p-values.

It can be seen that with a significance level equal to 0.05 we accept the null hypothesis that
there is no trend in probabilities when λ ∈ {−1.5,−1,−0.5}, while we cannot accept when
λ ∈ {0, 2

3 , 1, 1.5, 2}. In particular, we cannot accept lack of trend in binomial probabilities
when the test-statistic is the likelihood ratio test-statistic (G2) or Bartholomew’s test-statistic
(X2). A simulation study could be helpful in order to analyze the exact behaviour of the
phi-divergence based test-statistics and decide which test-statistic has the best performance.
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A DECISION MODEL FOR A
NEWSVENDOR INVENTORY PROBLEM

WITH AN EXTRAORDINARY ORDER

Valentín Pando, Luis A. San-José, Juan García-Laguna and
Joaquín Sicilia

Abstract. This work presents a newsvendor inventory model with two replenishment
decisions: the regular order and an extraordinary order. We suppose that the size of the
extraordinary order depends on the behavior of the customers and it is determined as a
variable fraction of the extent of shortage in the inventory. The backlogged demand rate
is described by a non-increasing cosinusoidal-type function with respect to the amount
of shortage. The objective is to maximize the expected total profit for the period, when
the demand follows an exponential distribution. The uniqueness and existence of optimal
policies are proved and, by using closed-form expressions, we determine the optimal lot
size and the maximum expected profit. This work extends several newsvendor inventory
models proposed in the literature.

Keywords: newsvendor model, backlogged demand rate, maximum expected profit.

AMS classification: AMS 90B05.

§1. Introduction

The newsvendor problem is a well-known stochastic inventory problem, which was initially
formulated as follows. A product can be acquired only at the beginning of a selling period.
The unit purchasing cost and the unit selling price are independent of the quantity of units
acquired. The probability distribution of demand is known and the units remaining at the end
of the period cannot be sold. The objective is to determine the optimal number of units to
have stored at the start of the period to maximize the expected profit during the period. Later
on, many researchers have extended this model in several ways. Thus, Gallego and Moon
(1993) considered the possibility of an emergency order to provide any unsatisfied demand
during the selling season with an additional charge. Khouja (1996) generalized that model
allowing that, when the system is out of stock, only a fixed fraction of demand is served with
delay through the extraordinary order and, therefore, the remaining fraction of demand is lost.

However, in some real inventory systems, it can be observed that the extent of the shortage
determines whether the backorder will be accepted or not. In consequence, the fraction of
backordered shortages is variable and depends on the unsatisfied demand. To reflect this
phenomenon, Lodree (2007) proposed a non-increasing linear function of the magnitude of
shortage. Recently, Lee and Lodree (2010) present two different functions to model the
behavior of the customers faced with shortages.
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This idea that only a fraction of the demand is served late during the period without ex-
istences was previously used in the context of inventory models with continuous review. For
example, Abad (1996) considered that the fraction of backordered shortages is variable and
depends on the duration of the waiting time up to the arrival of the next replenishment. He
proposed two functions to model this situation. In the last few years, many OR researchers
have developed different types of inventory models with partial backordering where the back-
logging rate is a function dependent on the length of the waiting time. Among them, we can
refer to the works of San-José et al. (2006, 2009), Dye (2007), Abad (2008), Bhunia et al.
(2009), etc. Other authors have supposed that the behavior of the customers faced with a
shortage depends on the lapse of time from the break in the stock (i.e., the fraction of accu-
mulated demand depends on the net inventory level) as occurs in the model of Padmanabhan
and Vrat (1990).

In this work, we consider a newsvendor problem with demand exponentially distributed
and two ordering opportunities: the regular order and an extraordinary order. We suppose
that the size of the extraordinary order is determined by using a non-increasing sinusoidal-
type function which depends on the extent of shortage. We analyze the model, calculate the
revenues and the costs related to the inventory system and present closed-form expressions to
obtain the optimal lot size and the maximum expected profit. Also, a sensitivity analysis of
the optimal lot size and the optimum expected profit with respect to some major parameters
is carried out. Finally, we check that several newsvendor inventory models studied by other
authors are particular cases of the model analyzed here.

§2. Notation and assumptions

We consider a newsvendor problem in which the demand of the product during the selling
season is described by a continuous random variable X exponentially distributed with mean
value µ, that is,

f(x) =
1

µ
e−

x
µ , for x ≥ 0

Moreover, we suppose that if the demand during the selling season x is greater than the stock
size Q, then the vendor has the possibility to order a certain fraction β(y) of the shortage y
(i.e., y = x−Q). This extraordinary order can be ordered to the same or another manufacturer
at a unit purchasing cost cB greater than the initial unit purchasing cost c. Hence, ω =
cB − c > 0 denotes the unit extra cost of the extraordinary order.

We will denote by v (greater than c) the unit selling price, and by cH the unit effective
holding cost for surplus items (which can be negative when there exists the possibility of
selling them at a bargain price smaller than the unit purchasing cost, that is, −cH < c).
Consequently, we suppose that the total unit overstocking cost is h = c+ cH > 0. Moreover,
we consider that each item finally not served causes a unit goodwill cost cG in addition to the
unit cost for loss of profit v−c and, thus, the total unit cost of lost sales is p = cG+v−c > 0.
Furthermore, as in Khouja (1996), Lodree (2007) and Lee and Lodree (2010), we assume that
this cost p is greater than the unit extra cost of the extraordinary order ω because, otherwise,
the vendor would prefer to lose the sale rather than recover it by the extraordinary order.

Finally, we assume that the fraction β(y) of shortage served with the extraordinary order
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when the shortage is y is a non-increasing truncated cosinusoidal function, which is described
by the function

β(y) =

{
βo cos

(
πy
2M

)
if 0 ≤ y ≤M

0 if y > M
, with M > 0 (1)

Note that, if the shortage tends to zero, it may not satisfy all the demand and, therefore, βo
(called the extraordinary intensity) is another parameter of the system that represents the ini-
tial ratio of shortage satisfied with the extraordinary order. AlsoM is the maximum allowable
quantity of unsatisfied demand (that is, if the shortage is greater than M , then all items are
lost sales). This function generalizes the one considered in Lee and Lodree (2010), which is
obtained when βo = 1.

§3. The mathematical model

According to the previous assumptions, the objective is to maximize the expected profit. It
is obvious that we firstly need to determine the total profit for the inventory system, which
includes the following components: ordinary sales income, revenues due to sales of back-
logged demand, initial purchasing cost, cost of the extraordinary order, effective holding
cost and goodwill cost for lost sales. Of course, the ordinary sales income is vmin(Q, x) =
vx−v(x−Q)+ and the revenues from sales of backlogged demand is v(x−Q)+β((x−Q)+).
The initial purchasing cost is cQ = cx+ c(Q−x)+− c(x−Q)+ and the cost of the extraor-
dinary order is cB(x−Q)+β((x−Q)+). Since the effective holding cost is cH(Q−x)+ and
the goodwill cost for lost sales is cG(x − Q)+ [1− β((x−Q)+)], we obtain that the total
profit for the inventory system is

P (Q, x) = (v−c)x−h(Q−x)+−ω(x−Q)+β((x−Q)+)−p(x−Q)+[1−β((x−Q)+)]. (2)

In consequence, the expected profit is

B(Q) = (v − c)µ− T (Q), (3)

where

T (Q) = h(Q− µ) +

∫ ∞
Q

[h+ p+ (ω − p)β(x−Q)] (x−Q)
1

µ
e−

x
µ dx. (4)

Therefore, maximizing the expected profit B(Q) is equivalent to minimizing the function
T (Q).

3.1. Solution
Substituting the backorder rate function into (4), and using the change of variable y = x−Q,
it follows that

T (Q) = h(Q− µ) + [h+ p+ (ω − p) θ]µe−
Q
µ , (5)
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where θ is a non-negative constant independent of Q, which represents the ratio between the
expected size of the extraordinary order and the expected demand. That is,

θ =

∫∞
0
yβ(y) 1

µe
− yµ dy

µ
=
βo
µ2

∫ M

0

y cos
( πy

2M

)
e−

y
µ dy.

Using the change of variable y = µz, we have

θ = βo

∫ M/µ

0

ze−z cos
(πµz

2M

)
dz. (6)

Solving the above defined integral (see Appendix), we have

θ =
βo

1 +
(
πµ
2M

)2
1 +

(π
2

)
e−M/µ −

2−
(

4M
πµ

)
e−M/µ

1 +
(

2M
πµ

)2

 . (7)

Note that θ ≤ βo, because 0 ≤ β(y) ≤ βo for all y ≥ 0. Moreover, it is easy to see that
θ = 0 if and only if βo = 0 and that θ = 1 if and only if βo = 1 and M = +∞.

Next, we present our main results, which determine the optimal inventory policy.

Theorem 1. Suppose that demand is described by a random variable X with exponential
distribution and expected value µ. The backorder rate function is given by (1). Then:

1. The function T (Q) given by (5) is strictly convex on [0,∞).

2. The optimal lot size is

Q∗ = µ ln

1 +
p

h
+

(ω − p)βo
h
[
1 +

(
πµ
2M

)2]
1 +

(π
2

)
e−M/µ −

2−
(

4M
πµ

)
e−M/µ

1 +
(

2M
πµ

)2



(8)

3. The maximum expected profit is

B(Q∗) = (v − c)µ− hQ∗. (9)

Proof. 1. Since h+ p+ (ω − p) θ = h+ωθ+ p(1− θ) > 0, the equation (5) shows that
the function T (Q) is the sum of an affine function and a strictly convex function. This
is our first assertion.

2. Taking into account that the first derivative of the function T (Q) is

T ′(Q) = h− [h+ p+ (ω − p) θ] e−
Q
µ , (10)

we have T ′(0) = − [p+ (ω − p) θ] = −[ωθ + p(1 − θ)] < 0 and limQ→∞ T ′(Q) =
h > 0. From this, we conclude that the function T (Q) attains its global minimum at
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the unique solution of the equation T ′(Q) = 0. Using the formula (10), we obtain that
this solution is given by

Q∗ = µ ln

{
1 +

p+ (ω − p)θ
h

}
. (11)

Now substituting the value of θ defined by (7) into (11), we obtain (8).

3. Substituting (8) into (5), we can assert that T (Q∗) = hQ∗ and, by (3), the proof is
complete.

3.2. Particular cases
Next, we show that several newsboy models studied by other authors can be considered as
particular cases of the model developed in this paper.

1. Basic newsboy model with demand exponentially distributed. It is obtained from our
model when βo = 0 is considered. Now, from (6), θ = 0 and, from (11), we have
Q∗ = Q∗o = µ ln(1 + p/h) = F−1 [p/(p+ h)], where F denotes the distribution
function of X . Thus, the optimal solution here shown coincides with the one given in
the literature (see, for instance, Hillier and Lieberman 2001).

2. Newsboy model with fixed partial backlogging and demand exponentially distributed
(Khouja, 1996). It is obtained from our model when we take M → ∞. There-
fore, we have β(y) = βo. In consequence, Q∗ = Q∗K = µ ln

(
1 + p+(ω−p)βo

h

)
=

F−1
[

p+(ω−p)βo
h+p+(ω−p)βo

]
, which coincides with the given solution by Khouja.

3. Newsboy model considered by Lee and Lodree (2010) with exponential demand. This
model is obtained taking βo = 1 in the model analyzed here. In this case, Q∗ =

µ ln
{

1 + p
h + 2(ω−p)M2

h(4M2+π2µ2)2

[
2(4M2 − π2µ2) + πe−M/µ(4M2 + 8Mµ+ π2µ2

]}
.

§4. Sensitivity analysis

In this section, we analyze the variation of the optimal order quantity Q∗ and the maximum
expected profit B(Q∗) with respect to some parameters of the inventory system. Since the
auxiliary parameters h, ω and p depend on the initial parameters cH , cB , cG, c and v, we will
do the study considering these last parameters. Thus, we can rewrite (11) and (9) as

Q∗ = µ ln

{
1 +

θcB + (1− θ)(cG + v)− c
cH + c

}
(12)

and
B(Q∗) = (v − c)µ− (cH + c)Q∗. (13)

Next, we analyze the variation of the optimal order quantity with respect to the initial
parameters of the inventory model.
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Theorem 2. If the demand follows an exponential distribution with expected value µ and the
backorder rate β(y) is given by (1), then the optimal lot size Q∗ verifies:

1. increases with cB if θ > 0 and it does not depend on cB if θ = 0;

2. increases with cG if θ < 1 and it does not depend on cG if θ = 1;

3. increases with v if θ < 1 and it does not depend on v if θ = 1;

4. decreases as c increases;

5. decreases as cH increases;

6. increases as µ increases;

7. decreases as βo increases;

8. decreases as M increases.

Proof. 1. If θ = 0, the optimal order quantity Q∗ does not depend on cB . However, if
θ > 0 then the fraction θcB+(1−θ)(cG+v)−c

cH+c (consequently, also Q∗) increases as cB
increases.

2. If θ = 1, the optimal order quantity Q∗ does not depend on cG. On the other hand, if
θ < 1 then the fraction θcB+(1−θ)(cG+v)−c

cH+c increases as cG increases and, hence, Q∗

increases as the unit goodwill cost for lost sale increases.

3. This follows as in previous paragraph.

4. The ratio θcB+(1−θ)(cG+v)−c
cH+c decreases as c increases because the numerator reduces

and the denominator enlarges. Thus, we conclude that the optimal order quantity Q∗

decreases as c increases.

5. It is clear that the ratio θcB+(1−θ)(cG+v)−c
cH+c decreases as cH increases. Therefore, from

(12), Q∗ decreases with the unit effective holding cost.

6. From (6), we obtain dθ
dµ = −πβo2M

∫M/µ

0
z2e−z sin

(
πµz
2M

)
dz < 0. Thus, θ decreases as

µ increases. Moreover, since cB < cG + v, we see that the ratio θcB+(1−θ)(cG+v)−c
cH+c

increases as µ increases. Consequently, Q∗ increases as the mean demand increases.

7. From (7), we see that θ increases as βo increases. Thus, we conclude from (12) that
Q∗ decreases as the extraordinary intensity increases.

8. This follows as in previous paragraph.

The following result analyzes the sensitivity of the optimal expected profit with respect
to some parameters of the inventory system.

Corollary 3. Under the assumptions of Theorem 2, the maximum expected profit B(Q∗)
verifies the following sentences:
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1. decreases as cB increases if θ > 0, and it does not depend on cB if θ = 0;

2. decreases as cG increases if θ < 1, and it does not depend on cG if θ = 1;

3. decreases as cH increases;

4. decreases as c increases;

5. increases as v increases;

6. increases as βo increases;

7. increases as M increases.

Proof. It follows easily from the model formulation (see equations (2–4)), Theorem 2 and
equation (13).

4.1. Numerical example
Next, we include a numerical example to illustrate the proposed model and its solution pro-
cedure.
Example (Taken from Lodree (2007) and adapted here to our model). Let us consider an
inventory system with the assumptions assumed in this paper for which the parameters are:
c = 75, cH = 20, cB = 95, v = 115, cG = 10, µ = 150, M = 50 and βo = 0.9. Following
the notation given in Section 2, we obtain h = 95, ω = 20 and p = 50. From (7), we
get θ = 0.019 (that is, the expected size of the extraordinary order represents 1.9% of the
expected demand). Now, applying Theorem 1, we obtain Q∗ = 62.82 and B(Q∗) = 31.89.

Figure 1: Q∗ as function of M and βo Figure 2: B (Q∗) as function of M and βo

In Fig.1 we plot the variation of the optimal lot size Q∗ as function of the parameters βo
and M . According to Theorem 2, the figure shows that the optimal order quantity decreases
if M or βo are increasing.

Fig. 2 shows that, for a fixed βo, the maximum expected profit increases with M . In the
same way, for a fixed M , if βo is increasing, we have a higher optimal expected profit, as is
asserted in Corollary 3.
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§5. Conclusions

Inventory systems in which the fraction of backlogged demand depends on the unsatisfied
demand are based on the realistic observation of the customers’ behavior faced with a short-
age. We analyze a newsvendor inventory model with demand exponentially distributed and
two orders: the regular lot size and an extraordinary order. We consider that the size of the
extraordinary order depends on the behavior of the customers and it is described by a non-
increasing sinusoidal-type function which depends on the extent of shortage. After proving
the uniqueness and existence of optimal decisions, we determine the optimal order quantity
and the maximum expected profit using closed-form expressions. Also we develop a sen-
sitivity analysis of the optimal policy and the maximum expected profit with respect to the
parameters of the inventory system. Thus, for instance, we show that the optimal lot size in-
creases as the unit selling price, or the unit goodwill cost for lost sale, or the unit cost for the
extraordinary order increases. Nevertheless, the optimal order decreases if the unit effective
holding cost, or the unit purchasing cost, or the extraordinary intensity increases.

The model can be extended in several ways. For instance, we could consider other prob-
ability distributions for the customers’ demand. Also, we could assume other backorder rate
functions or to consider multiple selling periods.
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Appendix

Let us consider the defined integral
∫M/µ

0
ze−z cos

(
πµz
2M

)
dz. Taking into account the fol-

lowing two integrals

∫
e−z cos

(πµz
2M

)
dz =

2M
πµ e

−z

1 +
(

2M
πµ

)2

[
sin
(πµz

2M

)
− 2M

πµ
cos
(πµz

2M

)]

∫
e−z sin

(πµz
2M

)
dz =

− 2M
πµ e

−z

1 +
(

2M
πµ

)2

[
cos
(πµz

2M

)
+

2M

πµ
sin
(πµz

2M

)]

and by using the integration by parts method, we have
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∫ M/µ

0

ze−z cos
(πµz

2M

)
dz =

1

1 +
(

2M
πµ

)2

[
2M2

πµ2 e
−M/µ − 2M

πµ

∫ M/µ

0

e−z sin
(
πµz
2M

)
dz

+
(

2M
πµ

)2
∫ M/µ

0

e−z cos
(
πµz
2M

)
dz

]

=

2M2

πµ2 e
−M/µ −

(
2M
πµ

)2
[

1−( 2M
πµ )

2−( 4M
πµ )e−M/µ

1+( 2M
πµ )

2

]
1 +

(
2M
πµ

)2

=
1

1 +
(
πµ
2M

)2
1 +

(π
2

)
e−M/µ −

2−
(

4M
πµ

)
e−M/µ

1 +
(

2M
πµ

)2


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SOME BASIC STATISTICS OF GENERAL
RENEWAL PROCESSES

Javier Villarroel

Abstract. We consider a random processes whose evolution in time results from the
combined effect of a constant drift and the occurrence of random jumps. The jump part is
modelled by a classical compound renewal process, namely a compound Poisson process
generalized to have arbitrary i.i.d. waiting times. Such models are of overriding interest in
insurance and ruin theory. The problem of determining the exit time from a given interval
is reduced to a renewal integral equation. We consider in particular the case of Erlang
waiting times.

Keywords: mean exit times, renewal stochastic processes.

AMS classification: 91B30, 60K15, 60J75.

§1. introduction

Stochastic jump models have a venerable story of paramount importance in probability and
risk theory [1, 2, 3], and as such have been used to model statistics of a multitude of random
phenomena (see also[4, 5]). To list a few early examples we note applications to earthquake
modelling (e.g., [6, 7]), rainfall description [8, 9] and the statistics of flare activity in stars
[10]. Applications to describe changes of stock markets due to unexpected catastrophes were
first noted in the seminal work of Merton [11] where it is assumed that inter-catastrophe times
are exponentially distributed and independent of the magnitude of the catastrophe, i.e., that
catastrophes are driven by a compound Poisson process (CPP). Jump processes have been
also used widely in actuarial and financial studies, [12, 13, 14].

The paradigmatic and simplest model which underlies all these situations is the classical
Poisson process. Compound renewal processes constitute a natural generalization of the lat-
ter. They are obtained considering two sequences of positive random variables {τn}n=1...∞
and {Jn}n=1...,∞ defined on a certain probability space which satisfy the assumptions:

(i) τn are independent and identically distributed random variables (i.i.d.r.v.) with proba-
bility density (PDF) and cumulative distribution function ψ(t) and Ψ(t) =

∫ t
0
ψ(t′)dt′;

(ii) Jn is a sequence of i.i.d.r.v. with common PDF h(·);
(iii) Jm is independent of τn for any n,m.
The “arrival times” are defined by t0 = 0, tn ≡ τ1 + · · · + τn, n ≥ 1 while we call

τn ≡ tn − tn−1 > 0 the “waiting times”. In terms of these variables the renewal process is
the increasing function t 7→ Nt defined by Nt = n for t on the interval [tn, tn+1), i.e.,

Nt =

∞∑
n=0

n1{tn≤t<tn+1} (1)
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while the more general object

St =

∞∑
n=0

(J1 + · · ·+ Jn)1{tn≤t<tn+1} ≡
Nt∑
n=0

Jn (2)

is called a compound-renewal process (see figure 1). Note that St (respectively Nt) takes
a constant value St = J1 + · · · + Jn (respectively n) on the interval [tn, tn+1) while both
St = Nt = 0 if t < t1. Further St has right-continuous and piece wise constant sample
paths t 7→ St, with jumps discontinuities at tn at which St has a jump St+n − St−n = Jn
(respectively, Nt+n −Nt−n = 1).

Poisson process Nt corresponds to having holding times τn exponentially distributed
τn ∼ E(λ) for some λ > 0; then Nt has Poisson distribution Nt ∼ P(λt). Further St
is termed the compound Poisson process (CPP). In this case both Nt and St are Marko-
vian, independent-increments processes with right-continuous sample paths, namely Levy
processes.

Here we are interested in more general random processes Xt whose evolution in time can
be thought of as the result of the combined effect of a constant drift and the occurrence of
random jumps, i.e., compound renewal processes with drift. Thus we can write

Xt = vt−
Nt∑
n=0

Jn ≡ vt− St (3)

where v ≥ 0 is a constant (the drift) and Jn is jump. Jn represents the sudden variation of a
statistical observable (amount of rainfall in a certain shower etc) and Nt and St are defined
above, cf. eqs. (1) and (2)

This further addition of the drift term is a natural and significant incorporation. The re-
sulting process plays a fundamental role in, say, actuarial studies. Here Nt and St represent,
respectively, the number of claims in [0, t] and the aggregate claims arriving at a non-life
insurance company over the time period [0, t]. Finally, Xt- the surplus process- is a pro-
totype model in risk management to describe the dynamics of the cahsflow at an insurance
company under the assumption that premiums are received at a constant rate v > 0 and that
the company incurs in losses Jn > 0 from claims reported at times tn, n = 0, . . .∞. It was
introduced by Cramer-Lundberg and later generalized by Sparre Anderson to have arbitrary
i.i.d. waiting times, see [12, 13, 14]. See also [15, 16, 17]. More recently, it has been shown
that this process also rules the rate of energy dissipation in nonlinear optical fibers [18, 19].
In both scenarios a problem that arises naturally is that of determining the first exit time off a
given interval [20].

The consideration of these general models is motivated by the believe that the exponential
holding-time assumption underlying the Cramer-Lundberg model may, in many settings, be
inadequate to describe the actuarial situation; the Sparre Anderson model gives more flexi-
bility to fit adequately both waiting times and sample paths. This liberty could be of interest
to capture various stylized features observed in the data like, say, “heavy tails” in the waiting
times distribution or a renewal function m(t) ≡ E

(
Nt
)

which departs from linearity. Prop-
erties of the compound Poisson surplus process, though already considered by Cramer, still
remain an important topic of research.
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Figure 1: A typical sample path t 7→ St of a compound Poisson process with arrival times
{tn}n=0,...∞ and waiting times τn. txr is the time to exit the interval (a, b) starting from x at
time r where t = r represents the present instant.

It turns out that the combined effects of having general waiting times and, in addition, the
incorporation of a drift, render quite difficult the study of the different statistical properties
of the model. Further, generically Nt and St are not Markov processes (cf. Prop. 1 below).
Hence results derived at jump times do not extend to generic present. Hence the issue on how
these results must be corrected when the present instant is not a time at which a claim occurs
follows in a natural way. We find that the solution to these problems is contingent on the
available information. However, due to the ensuing difficulty these more general situations
will be skipped (see nevertheless some comments on this regard at the end of the paper).

§2. Mean exit times

Let Xt be a renewal-point process with drift, r > 0 the actual time and suppose that Xr = x
where x, 0 < x < ξ, is the actual position and ξ a reference level. A fundamental statistics
of the problem is the first exit time of the process from (0, ξ) (see Fig. (1)). We pose the
problem of evaluating such time given that the present is one of the jump times. In insurance
this corresponds to the problem of evaluating the mean time for the insurance company capital
Xt to reach a given level ξ or get bankrupt before. We assume that v > 0 and the jumps Jn
are positive random variables so that vJn > 0. With this choice the effect of the drift is to
increase the process towards ξ while jumps have an opposite effect. Without proof we note
the following:

Proposition 1. The process Xt is only pseudo-Markovian . Concretely,
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(i)The associated "skeleton" process {Yn ≡ Xtn}n=0...,∞ is a discrete time Markov
chain for all choices of jump density h(·).

(ii) The continuous-time process Xt is Markovian iff the waiting time distribution is ex-
ponential ψ(t) = λe−λt.

As a consequence under the exponential assumption the strong Markov property holds
and results derived at a jump time extend to arbitrary present. However no such inference is
possible with more general waiting-times distribution since then Markoviannes is lost.

2.1. Mean time renewal equation
We now derive the integral equation that the mean escape time satisfies. Here we consider
only the mean time when the present is a jump-time r ≡ tn. Given Xtn = x let tn + txtn
be the first time after tn at which the process exits (0, ξ) where 0 < x < ξ, namely tn +
txtn = inf

t
{t ≥ tn : Xt 6∈ (0, ξ)}. We note that {txtn} is a sequence of i.i.d.r.v. whose

distribution depends only on x but does not depend on either n, tn or the "history" of the
process σ(Xs, s ≤ tn). Hence denote by M(x) = E

(
txtn
)

the mean of txtn and E[·] the
expectation operator.

We aim to determine the mean of txtn . Recalling the choice of signs, cf. (3), it follows
that exit through the upper barrier ξ can only happen through the drift effect vt while, by
contrast, escape below the lower end 0 will stem from the jump term. The key fact to realize
is that after tn three possibilities arise: if τn+1 ≥ % ≡ ξ−x

v (we recall that τn+1 ≡ tn+1− tn)
then the drift pushes Xt to reach the level ξ at time tn + %. Otherwise, and if a jump of
magnitude J ≡ Jn+1 occurs at tn+1 such that x + vτn+1 − J ≤ 0 then Xtn+1

goes below
zero and exits the interval (0, ξ). Finally, if this jump satisfies x+vτn+1−J > 0 the process
remains within (0, ξ) and starts afresh with a "surplus" Xtn+1 = x+ vτn+1− J and the time

remaining to exit will be t
Xtn+1

tn+1
. Thus on {Xr = x} is

tn + txtn = (tn + %)1{τn+1≥%} + (tn + τn+1)1{τn+1<%}1B+

(tn + τn+1 + t
Xtn+1

tn+1
)1{τn+1<%}1Bc (4)

where we define the event B ≡ {x+ vτn+1− J ≤ 0}. Rearranging several terms we see
that txtn must satisfy the functional equation

txtn = %1{τn+1≥%} + τn+11{τn+1<%} + t
Xtn+1

tn+1
1{τn+1<%}1Bc (5)

Next, taking conditional expectations one has

E
(
%1{τn+1≥%} + τn+11{τn+1<%}

∣∣∣Xtn = x
)

= %
(

1−Ψ
(
%
))

+

∫ %

0

ldlΨ(l)

=

∫ %

0

(
1−Ψ

(
l
))
dl
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Further, we use the well known tower property of conditional expectation and also that
τn+1 and x+ vτn+1− J are σ(τn+1, J)-measurable. Then, if J = Jn+1 we can evaluate the
expectation of the last term in Eq. (5) as

E
(
t
Xtn+1

tn+1
1{τn+1<%}1Bc

∣∣∣Xtn = x
)

=

E
(
E
[
t
Xtn+1

tn+1
1{τn+1<%}1Bc

∣∣∣Xtn = x, τn+1, J
]∣∣∣Xtn = x

)
=

E
(
1{τn+1<%}1Bc · E

[
t
Xtn+1

tn+1

∣∣∣Xtn = x, τn+1, J
]∣∣∣Xtn = x

)
∫

1{l<%}1{x+vl>y}E
[
t
Xtn+1

tn+1

∣∣∣τn+1 = l, J = y,Xtn = x
]
P
(
τn+1 ∈ dl, J ∈ dy|Xtn = x

)
To proceed further notice that sinceXtn is σ(τ1, . . . τn, J1, . . . Jn)-measurable, the model

assumptions imply that τn+1 and Jn+1 are independent of Xtn :

P
(
τn+1 ∈ dl, J ∈ dy|Xtn = x

)
= P

(
τn+1 ∈ dl

)
P
(
J ∈ dy

)
Further, by the pseudo-Markov property , viz proposition 1, and those derived for the se-
quence txtn we have

E
[
t
Xtn+1

tn+1

∣∣∣τn+1 = l, J = y,Xtn = x
]

=

E
[
t
Xtn+1

tn+1

∣∣∣τn+1 = l, J = y,Xtn = x,Xtn+1
= x+ vl − y

]
=

E
[
tx+vl−y
tn+1

∣∣∣Xtn+1
= x+ vl − y

]
= E

[
tx+vl−y
0

]
= M(x+ vl − y)

Thus

E
(
t
Xtn+1

tn+1
1{τn+1<%}1Bc

∣∣∣Xtn = x
)

=

∫ %

0

P
(
τn+1 ∈ dl

) ∫ x+vl

0

P
(
J ∈ dy

)
M(x+vl−y) =

∫ %

0

ψ(l)dl

∫ x+vl

0

h(y)dyM(x+ vl − y) =
1

v

∫ ξ

x

ψ
( l − x

v

)
dl

∫ l

0

M(l − y)h(y)dy

(letting l 7→ l′ = x+ vl and then dropping primes).
Collecting all these results it follows that M(u) satisfies the linear integral equation

M(x) =

∫ %

0

(
1−Ψ

(
l
))
dl +

1

v

∫ ξ

x

ψ
( l − x

v

)
dl

∫ l

0

M(l − y)h(y)dy (6)

Thus the mean time to exit (0, ξ) satisfies Eq. (6). Unfortunately the latter does not appear
to be solvable in closed form. However, we show in this section that there exists a sub-class
of densities for which such a solution is possible.

Remark 1. For notational convenience we have assumed that Ψ(t) ≡ P(τ1 ≤ t), H(u) ≡
P(J1 ≤ u) have densities ψ and h. However the previous analysis carries over to a general
case and the mean time to exit (0, ξ) is found to solve the integral equation
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M(x) =

∫ %

0

(
1−Ψ

(
l
))
dl +

1

v

∫ ξ

x

dlΨ
( l − x

v

)∫ l

0

M(l − y)dyH(y) (7)

Remark 2. If v = 0 this equation simplifies to

M(x) = µ+

∫ x

0

M(x− y)h(y)dy (8)

which is a classical renewal equation, [4, 5]. Here µ ≡ E(τn) =
∫∞

0

(
1−Ψ

(
l
))
dl.

§3. Example: Exponential and Erlang cases

Here we study the mean exit time for a class of waiting time densities for which it is possible
to solve the linear integral equation (6).

3.1. Exponential case: ψ(t) = λe−λt

Then Eq. (6):

M(x) =
(

1− e−λ%
)
/λ+

1

v

∫ ξ

x

λe−λ
l−x
v dl

∫ l

0

M(l − y)h(y)dy (9)

does not appear to be solvable in a direct way. However, by direct derivation on Eq. (9) we
find that M(x) satisfies also the simpler equation(

− v∂x + λ
)
M(x) = 1 + λ

∫ x

0

M(x− z)h(z)dz, 0 ≤ x <∞ (10)

along with the boundary condition M(x = ξ) = 0-which follows also from Eq. (6).
Note how the right hand side of this last equation has simplified to a renewal type term;

concretely, it is of convolution type and can be solved by Laplace transformation for general
choice of jump-density h. To be specific we shall consider here the case when h(y) =
γe−γy is also exponential although the reasoning carries over to a general density h. We next
introduce the Laplace transforms of h and ψ as the functions of the real variable s ∈ R+:

ψ̂(s) ≡
∫ ∞

0

e−stψ(t)dt =
λ

λ+ s
, ĥ(s) ≡

∫ ∞
0

e−syh(y)dy =
γ

γ + s

Similarly let M̂(s) ≡
∫∞

0
e−sxM(x)dx be the Laplace transform of the unknown func-

tion M(x). We multiply Eq. (10) by e−sx and integrate on x to find∫ ∞
0

e−sx
(
− v∂x + λ

)
M(x)dx =

(
λ− vs

)
M̂(s)− vM0 (11)

∫ ∞
0

e−sxdx = 1/s,

∫ ∞
0

e−sxdxλ

∫ x

0

M(x− z)h(z)dz = λĥ(s)M̂(s) (12)
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where M0 ≡M(x = 0) is at this stage unknown. We have used well known properties of the
Laplace transform; concretely using partial integration one finds∫ ∞

0

e−sxM(n)(x)dx = snM̂(s)−
(
sn−1M(0) + · · ·+ M(n−1)(0)

)
(13)

where M(j) ≡ ∂jM. Similarly Eq. (12) follows by interchange of integrals.
Substituting this into (10) we find that M̂(s) must satisfy(

λ− vs− λĥ(s)
)
M̂(s) = 1/s− vM0

and hence M̂(s) is given by

M̂(s) =
1/s− vM0

−vs
(
s− ε

) (s+ γ) (14)

Then M(x) can be recovered by the Laplace inversion formula as

M(x) =

∫ c+i∞

c−i∞
esx

1/s− vM0

−vs
(
s− ε

) (s+ γ)ds, c > 0 (15)

Here ε = λ
v − γ is the so called loading factor, and c > 0 is arbitrary.

To evaluate the integral (15) we take c and R to be fixed given numbers where c → 0+

and R→∞. We next complexify the variable s and consider a closed contour C = C1∪C2,
say, on the complex s-plane consisting of (i) the line that runs from c−iR to c+iR, (ii) a large
half-circle on the left-half plane joining c+ iR with c− iR. On C1 we can write s = c+ isI
where sI ∈ [−R,R]. By contrast on C2 we have the parametrization s = Reiϕ, π/2 ≤ ϕ ≤
3/2π, xcosϕ < 0 and

|esx| = |exRcosϕ| →
R→∞

0

Hence we have
∫
C

=
∫
C1

+
∫
C2

. In addition asR goes to infinity
∫
C1

= (15), while
∫
C2
→ 0

and

M(x) = lim
R→∞

∫
C1

= lim
R→∞

∫
C

esx
1/s− vM0

−vs
(
s− ε

) (s+ γ)ds (16)

The integrand is a meromorphic function of the complex variable s having a (double) pole
s = 0 and a single one s = ε. By Cauchy theorem this integral is the sum of the residues at
the poles. It follows that

M(x) =
(

(γ + ε)(1− eεx) + γεx
)
/(vε2) +

M0

ε

(
(ε+ γ)eεx − γ

)
(17)

Note that at this stage M(x) depends on a free constant M0 ≡ M(x = 0). While ap-
parently M0 should follows demanding consistency: M(x = 0) = M0 it turns out that this
relation is identically satisfied. Actually M0 follows requiring instead the "missing" bound-
ary condition M(x = ξ) = 0 to hold. Solving and substituting we finally find that, in terms
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of the distance to the boundary x̃ = x − ξ, the mean time to exit (0, ξ) having started at
x, 0 < x < ξ is

M(x) =
1

εv

[γ + ε+ γ2be−εξ − (γ + ε)(1 + γξ)eε(x−ξ)

γ + ε− γe−εξ
+ γx

]

=
γx̃

εv
+

(1 + γξ)

εv
(

1− γe−εξ

γ+ε

)[1− eεx̃] (18)

In the case when there is no drift: v = 0 this expression simplifies drastically. Letting
v → 0 (or ε→∞) we find

M(x) =
(1 + γx)

λ
≡ E(τn+1)

(
1 +

x

E(Jn+1)

)
(19)

The result is easy to understand since in this case obviously the process never increases;
hence it can only scape (0, ξ) through the lower boundary due to the jumps and not before
the fist one occurs. It follows that M(x) can only depend on x but not on the value ξ, that
txtn ≥ τn+1 a.s. P and hence M(x) ≥ E(τn+1) = 1/λ.

Returning to a general case v > 0, notice that the mean time to reach the level 0 having
started from a level x can be recovered from Eq. (18) by letting ξ →∞. This classical result
is of paramount importance in risk theory, cf. [5], as it gives the mean bankruptcy time. It
will be finite iff the loading factor is positive. It reads

M∞(x) =
1

εv

[
1 + γx

]
, ε > 0 and M∞(x) =∞ if ε ≤ 0 (20)

3.2. Erlang waiting times
A second interesting case is obtained when waiting times have Erlang distribution τn ∼
Er(λ,N) with N = 1, 2 . . . . We recall that the Erlang distribution is obtained from the
Gamma distribution when the shape parameter is an integer N and hence has density

ψ(t) = λ
(
λt
)N−1 e−λt

(N − 1)!
(21)

With N = 1 we recover the exponential distribution. Here we consider the natural case
N = 2. In this case Xt is not Markovian. Nevertheless the mean scape time solves Eq. (6).

In this case by operating with the operator
(
− v∂x + λ

)2

Eq. (6) simplifies to

(
− v∂x + λ

)2

M(x) = 2λ+ λ2

∫ x

0

M(x− z)h(z)dz, 0 ≤ x <∞ (22)

Note how again this equation is of convolution type and can be solved by Laplace transfor-

mation. The term
∫∞

0
e−sx

(
−v∂x+λ

)2

M(x)dx will introduce two free constants M0, M′0
that need to be fixed (see Eq. (13)). Eq. (6) also shows that the mean exit time to exit (0, ξ)



Some basic statistics of general renewal processes 125

,

Figure 2: Different plots of Tξ(x, r) for different values of r: r = 0, i.e. Mξ(x), solid
(black) line, r = 0.4, dashed (red) line and r = 10.0, dot-dashed (blue) line. The rest of
the parameters were chosen as follows, ξ = 1.0, v = 0.1, λ = 1.0 and (a) γ = 0.1; (b)
γ = 4.0. In the upper panel we observe that this function is not decreasing with x and
has a maximum in the interior of the interval. In the lower panel we observe a cross-over
phenomenon reflecting the fact that Mξ(x) needs not to be greater than Tξ(x, r).

must satisfy the boundary conditions M(ξ) = 0, M′(ξ) = −1/v which will pin down a
particular solution. The solution depends in both x and ξ. Hence, let Mξ(x) be such solution.
To be specific we consider here the case when h(y) = γe−γy is also exponential. In this case
the solution can be found after tedious calculations. The resulting expression is cumbersome
and reads

Mξ(x) =
1

(λ− 2γv)Ξ

{
2λqv(1 + γx)

+e−pξ
[
qv
(
γv
(
4γ(ξ−x)−1

)
cosh qξ−2λ(1+γξ)epx cosh q(ξ−x)+γve−p(ξ−x) cosh qx

)
+γv

(
2(λ+ γv)γ(ξ − x)− pv

)
sinh qξ − λ

(
λ− γv

+2pvγξ
)
epx sinh q(ξ − x) + pγv2e−p(ξ−x) sinh qx

]}
, (23)

where

p =
λ

v
− γ

2
q =

√
λγ

v
+
γ2

4
, Ξ = λqv − γve−pξ

[
2qv cosh qξ − (λ+ γv) sinh qξ

]
.

Since the process Xt is not Markovian the exit time after jump instants, tx0 , say, is differ-
ent to that corresponding to the "present" being a general time r. We have used a numerical
simulation to recover T (x, r)- the mean exit time when the present r is not necessarily a jump
instant. In figure 2 we plot both T (x, r) and M(x) ≡ Etx0 , cf. eq. (23), for different value of
parameters. Note also that one must have T (x, r = 0) = M(x).

Finally, M∞(x) or mean time to exit (0,∞) is recovered as follows:

M∞(x) = lim
ξ→∞

Mξ(x)
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which exists only if the loading factor is positive: ε ≡ λ
2 −

γ
v > 0. In this case p > q and

M∞(x) =
1

ε
(1 + γx).
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Palacios, G. Sanz (eds.): VII Jornadas Zaragoza – Pau de Matemática
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López de Silanes, M. Palacios, G. Sanz y J. J. Torrens (eds.): Eleventh
International Conference Zaragoza–Pau on Applied Mathematics and
Statistics, 2012, xxvi +208 pp., ISBN: 978-84-15538-15-8.





IS
BN

 9
78

-8
4-

15
77

0-
81

-7

cbta Mono MATEMATICAS.indd   1 07/10/13   13:11




