000089553 001__ 89553
000089553 005__ 20210104111914.0
000089553 0247_ $$2doi$$a10.1016/j.energy.2019.05.144
000089553 0248_ $$2sideral$$a112728
000089553 037__ $$aART-2019-112728
000089553 041__ $$aeng
000089553 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000089553 245__ $$aRenewable energy sources and power-to-gas aided cogeneration for non-residential buildings
000089553 260__ $$c2019
000089553 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089553 5203_ $$aOne promising technology to manage and store renewable electricity from wind or solar sources is Power to Gas (PtG). PtG combines H2 from electrolysis –run by renewable electricity– with CO2 to produce synthetic CH4. A suitable option to get the required CO2 streams is the integration with carbon capture technologies, in particular with oxy-fuel combustion. The application proposed in this study is a cogeneration system that combines PtG, oxyfuel boiler, wind energy and photovoltaic solar production to be applied in buildings. This paper describes the concept and analyses the influence of equipment dimensions varying the relative size and the proportion of the solar-wind installed power for two locations representative of North and South European countries. Results: Show that higher solar and wind powers are required in the Northern region to satisfy coverage of thermal demand. It results in longer time displacement of energy storage towards cold months. Accordingly to the generation patterns of wind and solar energies, higher solar proportion results in longer energy storage periods. Therefore, solar resource is more suitable than wind power to exploit the potential of PtG technology, although the size of the overall systems increases.
000089553 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-76850-R
000089553 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000089553 590__ $$a6.082$$b2019
000089553 591__ $$aTHERMODYNAMICS$$b3 / 61 = 0.049$$c2019$$dQ1$$eT1
000089553 591__ $$aENERGY & FUELS$$b20 / 112 = 0.179$$c2019$$dQ1$$eT1
000089553 592__ $$a2.166$$b2019
000089553 593__ $$aBuilding and Construction$$c2019$$dQ1
000089553 593__ $$aCivil and Structural Engineering$$c2019$$dQ1
000089553 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000089553 593__ $$aManagement, Monitoring, Policy and Law$$c2019$$dQ1
000089553 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1
000089553 593__ $$aFuel Technology$$c2019$$dQ1
000089553 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000089553 593__ $$aEnergy (miscellaneous)$$c2019$$dQ1
000089553 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000089553 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, Pilar$$uUniversidad de Zaragoza
000089553 700__ $$0(orcid)0000-0002-6103-7136$$aLlera, Eva María$$uUniversidad de Zaragoza
000089553 700__ $$0(orcid)0000-0001-9967-5806$$aPeña, Begoña$$uUniversidad de Zaragoza
000089553 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis Miguel$$uUniversidad de Zaragoza
000089553 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000089553 773__ $$g181, 15 (2019), 226-238$$pEnergy$$tEnergy$$x0360-5442
000089553 8564_ $$s1217279$$uhttps://zaguan.unizar.es/record/89553/files/texto_completo.pdf$$yPostprint
000089553 8564_ $$s277133$$uhttps://zaguan.unizar.es/record/89553/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000089553 909CO $$ooai:zaguan.unizar.es:89553$$particulos$$pdriver
000089553 951__ $$a2021-01-04-11:05:52
000089553 980__ $$aARTICLE