IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON INTELLIGENT AND COGNITIVE
TECHNIQUES FOR INTERNET OF THINGS

Received February 7, 2020, accepted February 25, 2020, date of publication February 28, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977087

Computing in the Blink of an Eye: Current
Possibilities for Edge Computing and
Hardware-Agnostic Programming

MOHAMMAD HOSSEIN GHASEMI', OSCAR LUCIA"“3, (Senior Membesr, IEEE),

AND SERGIO LUCIA"“12, (Member, IEEE)

IChair of Internet of Things for Smart Buildings, Technische Universitit Berlin, 10587 Berlin, Germany

2Einstein Center Digital Future, 10117 Berlin, Germany

3Electronic Engineering and Communications Department, Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain

Corresponding author: Sergio Lucia (sergio.lucia@tu-berlin.de)

This work was supported in part by the Spanish Ministerio de Ciencia e Innovacién (MICINN) and Agencia Espadla de
Investigacion (AEI) under Project RTC-2017-5965-6, in part by the EU through the FEDER Program, in part by the Diputacién General de
Aragén (DGA)-FSE, in part by DGA under Project LMP106_18, in part by the German Research Foundation, and in part by the Open

Access Publication Fund of TU Berlin.

ABSTRACT With the rapid advancements of the internet of things, systems including sensing, communica-
tion, and computation become ubiquitous. The systems that are built with these technologies are increasingly
complex and therefore require more automation and intelligent decision-making, while often including
contact with humans. It is thus critical that such interactions run smoothly in real time, and that the automation
strategies do not introduce important delays, usually not larger than 100 milliseconds, as the blink of a
human eye. Pushing the deployment of the algorithms on embedded devices closer to where data is collected
to avoid delays is one of the main motivations of edge computing. Further advantages of edge computing
include improved reliability and data privacy management. This work showcases the possibilities of different
embedded platforms that are often used as edge computing nodes: embedded microcontrollers, embedded
microprocessors, FPGAs and embedded GPUs. The embedded solutions are compared with respect to their
cost, complexity, energy consumption and computing speed establishing valuable guidelines for designers of
complex systems that need to make use of edge computing. Furthermore, this paper shows the possibilities
of hardware-agnostic programming using OpenCL, illustrating the price to pay in efficiency when software

can be easily deployed on different hardware platforms.

INDEX TERMS Internet of Things, edge computing, FPGA, system on chip, neural network.

I. INTRODUCTION

The developments in the internet of things (IoT) are enabling
the design and deployment of complex systems with ubiqui-
tous sensing capabilities. However, the full potential of the
internet of things will be unveiled only if this data can be
properly processed and smart decision-making strategies can
be computed, leading to important benefits in the form of
energy savings, improved security or improved performance
of complex interconnected systems that have a critical impact
on the life of millions of persons. Typical examples of such
complex systems include energy networks, smart buildings,
smart factories or intelligent transportation systems. The
large amount of data collected with IoT devices must be

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Jia

41626

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

properly processed to obtain an added value from such sen-
sors [1]. The common system architecture for today’s IoT
systems is the cloud computing paradigm. In cloud-based
systems, data is gathered by the edge devices and then trans-
ferred to the cloud servers to be processed. These systems
require high-bandwidth internet connection to all edge nodes.
Also, the cloud servers must be powerful enough to pro-
cess all the data in the specific time. Different algorithms
are then run based on the collected data. Recently, machine
learning techniques, and especially deep learning [2], have
become very popular due to the advanced predicting capa-
bilities of deep learning models as well as the low effort
required for feature engineering, which is substituted by an
enlarged size of a neural network where the most impor-
tant features of a selected application are automatically
learnt.

VOLUME 8, 2020

https://orcid.org/0000-0002-1284-9007
https://orcid.org/0000-0002-3347-5593
https://orcid.org/0000-0003-3551-8654

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

IEEE Access

—_—

Core network

&

9

End points

Latency/Power/Bandwidth

i g .;_—‘a-;*.--:,- Applications

FIGURE 1. Edge computing.

Transferring all these data from edge to cloud is a big
challenge for future internet infrastructure and, additionally,
many critical IoT systems must have a very short response
time (FIGURE 1). For example, in applications with human-
machine cooperation, the time delay between user input
and the system response must be below the recognizable
time by the human so the user does not notice this delay,
and a cooperation can take place in a natural manner [4].
In other application such as autonomous cars, response time
for decision-making is vital and it cannot rely on a cloud
infrastructure [5].

In this context, edge computing is called to play an ever
increasing key role in the development of IoT-powered sys-
tems [6]. While traditional edge processing has been lim-
ited to the filtering or aggregation of sensor data [7], the
increasing improvement of computing hardware, algorithms
and tailored implementations enables the deployment of com-
plex decision-making strategies even on resource-constrained
hardware platforms.

The design of IoT systems is a very interdisciplinary field.
It is therefore difficult for a hardware designer to fully under-
stand the details of complex machine learning algorithms.
At the same time, it is a difficult challenge for a domain
specialist to choose the optimal hardware on which different
types of algorithms should be deployed. Alleviating such
challenges is the main motivation of this work.

The main contribution of this paper is the evaluation
of the most commonly used embedded computing platforms
for the evaluation of a deep neural network that can serve
as guideline for system designers or domain specialists. The
case study of the evaluation (not the training) of a neu-
ral network includes many modern decision-making algo-
rithms, ranging from predictive maintenance [8], to smart
energy management systems [9] or face recognition [10]. The
trade-offs for each platform are presented with a focus on
computing performance, power consumption, complexity of
implementation and hardware cost.

The hardware heterogeneity of IoT systems is an additional
challenge for the design, programming and maintenance of
such systems. Changing an algorithm from a general-purpose
CPU to a low-cost microcontroller or a FPGA is a very
time consuming and error-prone task. Hardware-agnostic
programming languages, such as OpenCL [11], try to alle-
viate this problem by providing the possibility of deploy-
ing (almost) the same code on different hardware platforms.

VOLUME 8, 2020

The universality of such implementation comes at the cost of
a performance decrease because customization to the details
of each hardware platform is limited. This paper illustrates
how large the performance decrease of a universal implemen-
tation is for the use-case of the evaluation of a deep neural
network on different hardware platforms.

Several studies have been published in recent years that
benchmark the performance of different edge devices. For
example, [12] presents a detailed performance comparison
of different Graphical Processing Units (GPUs). Most of the
works that consider several hardware platforms for edge com-
puting and machine learning focus on a comparison of CPU
and GPU [13], [14]. Only few works consider the deploy-
ment on other edge devices, such as Raspberry Pis [15] or
FPGAs [16]. In contrast, this paper presents the possibilities
of very diverse embedded platforms, ranging from micro-
controllers to GPUs, to provide broad guidelines for many
different possible applications. The hardware heterogeneity
is often subject of study [17], [18], but very few works have
considered the use of hardware-agnostic languages [13], [19]
that can lead to simple deployment on different platforms.
An additional contribution of this work is to provide a quan-
tifiable overview of the tradeoffs in performance that a gen-
eral hardware-agnostic programming offers when compared
to a tailored implementation, as for example, a detailed digital
design in the case of FPGAs.

This paper is organized as follows. Section II presents the
main advantages of edge computing and why it is important
for future IoT systems. Section III describes the benchmark
used to evaluate the different hardware platforms. The studied
platforms and the main results of the paper are described in
Section IV. Section V discusses the main conclusions that
can be drawn from the results as well as the possibilities of
a hardware-agnostic implementation using OpenCL. Finally,
Section VI presents the conclusions and future planned work.

Il. COMPUTING ON THE EDGE

With the advances of ubiquitous sensing and computing,
the problem of processing an increasing amount of data
becomes a significant challenge. The traditional and sim-
plest solution to handle this issue was to collect all this
data from field devices and send it to the cloud to be han-
dled in a client-server paradigm [3], [20]. This trend was
strongly supported by the development of the elastic comput-
ing approaches and their implementation in different cloud
services. The development of low-cost, low power microcon-
trollers, cost effective FPGAs as well as tools to facilitate the
hardware design (such as High Level Synthesis) increased
significantly the possibilities of edge computing and their
integration in Industry 4.0 [21] and telecommunications
5G technology [22].

The idea of edge computing can refer to different forms
of computing, including cloudlets or mobile edge comput-
ing [3]. This work considers the case of edge computing
where intelligent algorithms, for example, based on deep neu-
ral networks, can be run (not trained) on embedded devices.

41627

IEEE Access

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

Enabling technologies HISTORY

FUTURE

High Level
Synthesis (HLS)
High processing
capabilities GPU

technology

Cost-effective
FPGA technology
Amazon EC2
service
Advanced training of
neural networks

GPU technology

Low-cost
microcontroller

1990 2000

Content Delivery
Network (Akamai)
Mobile Computing for Conceptual foundation of
speech recognition Edge Computing
(Nobel, 1997) (Satyanarayanan/Bahl/C4
Pervasive ceres/Davies, 2009)
computing (1997) Peer to Peer P2P (2001)

Mobile Computing
(Satyanarayanan, 2001) RACS

(Nokia/IBM, 2013)

CLIENT — SERVER ERA

Fog computing
(Bonomi, 2012)

Low-cost embedded CPUs

High-Performance Cost-Effective

* Big Data
Microcontrollers

* Conectivity

* Dispersion management

* Algorithms for efficient
processing of information.

* Security and privacy tools

Machine Learning / Deep Neural Networks
Embedded System on Chip architectures

Cost of computing and sensors plung

Open Edge Computing OEC
(Vodafone/Intel/Huawei/CMU, 2015) loT « Applications extension
Open Fog constortium * Industry integration
(Cisco/MSFT/Intel/Dell/ARM/Princeton, 2015) |* Industry 4.0 deployment
* 5G integration
« Energy efficiency

* Lower management cost

IEEE / ACM Symp. on Edge Computing
(WAS, 2016)

Edge computing milestones

FIGURE 2. Historical introduction to edge computing: enabling technologies and applications [3].

There are several reasons to do so, such as lower latencies
or lower energy consumption, which are illustrated in the
remainder of this section.

A. BANDWIDTH SHORTAGE

By 2025, it is expected that there will be more than 40 billion
connected IoT devices generating 79.4 zettabytes of data,
following an annual growth of 28.7% [23]. Most data will
be created by surveillance applications, but new applications
in the industrial and medical areas will significantly increase
the available data. Despite advances in communications, this
will greatly exceed communication capabilities, highlighting
the importance of edge computing.

Recent works have shown that it is possible to achieve
intelligent decision-making even on resource constrained
embedded devices. For example, optimization-based tech-
niques used for energy management systems were deployed
on microcontrollers [24], as well as power electronic con-
trollers on FPGAs [25]. This avoids the necessity to contin-
uously send all data and decisions to the cloud, limiting it to
less frequent updates and upgrades.

B. SECURITY AND PRIVACY

Today, millions of embedded devices are used in safety
and security critical applications such as industrial control
systems, modern vehicles, and critical infrastructure [26].
IoT devices are always producing, consuming and exchang-
ing critical data and this makes the security of the [oT system
very important [7]. Edge computing can help the security
and privacy aspects of IoT applications from several view-
points [27], [28]. First, if less data is sent over the net-
work, less data is vulnerable to unsecured communication.
Additionally, more processing power at the edge results in
more encryption and decryption power which can bring more
security. For applications that contain sensitive personal data
as in the field of smart homes, increasing the amount of edge
computing can reduce the amount of data that users need to
share with cloud services, leading to larger control of data
ownership and data sovereignty issues by the user [29].

41628

C. RESPONSE TIME

The latency of a cloud based system is affected by several
different factors, including network effective bandwidth and
computation power available at the cloud server [30]. These
results in an unpredictability in the response time of the
application. But in many applications, the reliability of the
system actually depends on a specific and limited response
time.

Ill. PROPOSED BENCHAMRK: DEEP LEARNING
Comparing performance of different hardware platforms and
different software implementations is a challenging task.
In order to obtain fair and comparable results, the evaluation
of a deep neural network is chosen as a benchmark. Neural
networks already play a significant role in intelligent systems
and, because of recent developments in deep learning, it is
expected that their role will be even more relevant in the
future.

In this work, we used a fully connected deep neural net-
work with three neurons in the input layer and two neurons
in the output layer. This structure corresponds to the neural
network necessary to represent a predictive controller of a
half-bridge power inverter for induction heating as presented
in [31]. Control of power electronics, e.g., in the field of
power systems or smart grid is an example where cloud
computing is not possible because intelligent decisions based
on sensor information need to be taken in the range of
microseconds.

A feedforward deep neural network is defined as a com-
position of several functions that compute the neural network
function of N : R — R™, and can be written as:

Nx;0,M,L)y=fry108L0fpo...og10fi(x), (1)

where the input of the network is x € R™ and the output
of the network is y € R™. M is the number of neurons in
each hidden layers and L is the number of hidden layers. Each
hidden layer applies an affine function:

fi—1) = Wi + by, (2)

VOLUME 8, 2020

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

IEEE Access

Number of layers L = 100, M neurons per layer

FIGURE 3. Proposed deep neural network benchmark.

where £_1 € RM is the output of the previous layer with
& = x. In a standard neural network, a nonlinearity in the
form of an activation function is used after each affine func-
tion. As activation function, a rectifier linear unit function has
been used, which is defined as:

g1(fi) = max(0, f7). 3)

The parameter 6 = {61,...,0r4+1} contains all the

weights W; and biases b; of the affine functions of each
layer /.

The main task for neural network inference computation
is the affine function calculation. To calculate the output
value of each layer, a matrix-vector multiplication and a
vector addition must be performed. This calculation can be
represented in digital form as:

M
g =) Wig+b. Vi=1...M, “
j=1

in which &’ and & are respectively the outputs of the current
and the previous layer [32].

To enable a fair comparison between different hardware
platforms, a neural network with L = 100 hidden layers
is chosen, except for the embedded microcontroller where
10 layers are selected because of the significant lower mem-
ory capacity. To show performance of the hardware platforms
for varying problem sizes, the number of neurons per layer M
is varied. FIGURE 3 presents a schematic representation of
the benchmark used throughout this work.

By changing the number of layers and the number of
neurons in every layer, and measuring the time and energy
consumption that each platform needs to perform the required

computations defined in (1), the capabilities for edge comput-
ing of each platform can be compared.

IV. PLATFORM EVALUATION

A set of the most commonly used embedded computing plat-
forms has been chosen to be compared as possible IoT edge
computing alternatives (FIGURE 4): a low-power microcon-
troller, and embedded microcontroller, a Field Programmable
Gate Array System on Chip (FPGA SoC) as well as an
embedded Graphical Processing Unit (GPU). Additionally,
two different general-purpose reference systems (not embed-
dable) have been included for comparison purposes: a com-
mon laptop CPU and a laptop GPU. This section describes the
most relevant specifications of the chosen hardware platforms
and discusses the obtained results. Each embedded platform
has been compared with a focus on different performance
indicators: computation capabilities, energy and power con-
sumption, implementation complexity and cost.

A. GENERAL PURPOSE REFERENCE SYSTEMS

1) INTEL I5 PROCESSOR

In order to put the performance of the embedded devices
into perspective, all embedded platforms are compared to a
general-purpose CPU that runs under the Windows Operating
System. The technical specifications of the general-purpose
CPU are listed in Table 1.

For general purpose CPU, the neural network inference
was implemented exploiting Intel’s MKL library. Using this
library has resulted in 45 times improvement in performance
in comparison with a simple single core application run-
ning on the same device. The main motivation of using
an optimized implementation for Intel’s CPUs is to have
a fair comparison between the embedded platforms and a
general-purpose CPU, as optimized implementations have
been attempted for each hardware platform.

2) NON-EMBEDDED GPU

A standard integrated Graphical Processing Unit is also con-
sidered as reference system. Its specifications are summa-
rized in Table 2. Finally, the comparative results of both
general purpose reference systems are included in Table 7 to
enable a direct comparison.

FIGURE 4. Evaluated platforms. From left to right: microcontroller, embedded processor, FPGA SoC, and embedded GPU.

VOLUME 8, 2020

41629

IEEE Access

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

TABLE 1. Specifications of the general-purpose CPU device.

TABLE 4. Specifications of the embedded processor device.

Specification Value Specification Value
Number of cores 2 Board Model Raspberry Pi 3 B+
Number of threads 4 SoC Part number Broadcom BCM2837B0
Base frequency 2.5 GHz Processor 4 core Cortex-AS53 (ARMVS) 64-bit
Max turbo frequency 3.1 GHz Clock frequency 1.4 GHz
Memory beside CPU 6 GB Memory (RAM) 1GB LPDDR2 SDRAM
Memory type DDR3
Number of cores 2

TABLE 2. Specifications of the Geforce GPU device.

Specification Value
Geforce GT 630M

Device name

CUDA Cores 96 Nvidia Fermi cores
Core speed Up to 800 MHz
Memory 2GB DDR3

TABLE 3. Specifications of the microcontroller device.

Specification Value

Part number EFM32GG990F1024
Memory (RAM) 128 KB
Memory (Flash) 1 MB
Clock Frequency 48 MHz

B. MICROCONTROLLER

Because of their simplicity and efficiency, microcontrollers
have always been used as processing unit in embedded
applications like edge computing. For example, in [33],
a microcontroller design has been introduced for IoT edge
computing and its performance and power consumption has
been measured. Due to advances in microelectronics, we now
have access to relatively high-performance and low-power
microcontrollers. In this work, the EFM32 Giant Gecko board
manufactured by Silicon Lab has been used.

The micro-controller unit of this board is based on ARM
Cortex-M3 architecture. This is a mid-range low power
microcontroller, so it is a suitable example for IoT edge
devices. The specifications of this microcontroller are pre-
sented in Table 3.

The performance results for the neural network infer-
ence application on this microcontroller are shown in
FIGURE 7 (a). Standard microcontrollers have only a few
hundreds of kilobytes of RAM. Because of this, it was not
possible to evaluate large neural networks, and this is the
only hardware platform where a smaller network with only
10 layers has been used. Small networks can still be used to
perform advanced decision-making strategies as shown in [9]
for the smart building energy management system. In addi-
tion, the best performance achieved with this microcontroller
and the pick power consumption are shown in Table 7.

Because the specific microcontroller used in this work
does not have a dedicated floating-point unit, it must emu-
late all the floating-point operations in the software level

41630

using integer operations. This has a significant impact on
the performance of the microcontroller inferring a neural
network. Therefore, in microcontroller design flow, changing
the accuracy of the computation from floating-point to fixed-
point, may have a large impact on the final performance and
must be considered by the developer. Also, in order to keep
the accuracy in an acceptable level, a fixed-point analysis is
required before the implementation.

C. EMBEDDED PROCESSOR

A possible solution to alleviate the problem of limited per-
formance and memory typical of low-cost microcontrollers
is to use embedded processors. Embedded processors can
run at significantly higher clock frequencies (up to 2 GHz)
and can have memory capacities up to several GBs. In this
work, the neural network inference problem is evaluated on
a Raspberry Pi3 B4 embedded processor. The specifications
of the Raspberry Pi3 B+ board used in this work are shown
in Table 4.

Embedded processors usually need operating systems to
handle some system level tasks like memory management
and process handling. This also adds to the complexity
of application development with embedded processors. The
performance results of the implementation of the neural
network inference with an embedded processor are shown
in FIGURE 7 (b). Peak performance and power consumption
of the embedded processor in neural network inference appli-
cation are also shown in Table 7.

D. FPGA

FPGA-SoCs were introduced in order to combine the flexibil-
ity of software design and the performance gain of FPGAs.
In this work, a Xilinx Zynq device has been chosen as the
target FPGA-SoC. The evaluation board used in this work is
Zybo Z7 made by Digilent. The specifications of the Zybo Z7
board are in Table 5.

To have a more complete conclusion about FPGA-SoC
implementation, we have evaluated all major design method-
ologies for FPGA-SoCs. The structure of a typical system in
an FPGA-SoC is shown in FIGURE 5. The main application
is performed in the software side (shown in the picture as the
Hard Processing System) and the computation-intensive parts
are implemented in the FPGA side (shown in the picture as
Custom Hardware). The key difference between the various
implementation methodologies for FPGA-SoC lies on the
different approaches to design and implement the accelerator
part in the FPGA side and how to integrate it with software
side.

VOLUME 8, 2020

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

IEEE Access

TABLE 5. Specifications of the Xilinx ZYNQ device.

Specification Value
Device name Z-7020

SW side

Processor Dual-Core ARM Cortex-A9 MP Core

L1 cache 32KB Instruction, 32KB Data per processor

L2 cache 512 KB
External Memory 1 GB DDR3

FPGA side

Logic cells 85K
Total Block RAM 4.9 Mb

DSP slices 220

.
Hard Processor System (HPS)

>

HPS-FPGA Interface

IP Library Cores Custom HW

t t ¢ $ $ $
Field Programmable Gate Array (FPGA)

.

FIGURE 5. System structure of a typical FPGA-SoC system.

To accelerate an application with the FPGA-SoC, first
the bottleneck of the application must be determined. The
bottleneck of the application is the part that needs a signif-
icant amount of computation and where the majority of the
execution time is spent. To find this, first the application must
be profiled.

One way of profiling an application is to run it and then
record the execution time for each function. Then by com-
paring this execution times, we can decide on which part to
be accelerated in FPGA part. In neural network inference,
the vector-matrix multiplication operation to calculate the
results of every layer of the neural network is the bottle
neck of the application. For this reason, in all FPGS-SoC
implementations, we consider the hardware accelerator to be
a matrix-vector multiplier co-processor.

In our work, we have followed three main approaches
to design the system in the FPGA-SoC platform. These
approaches are explained as follows.

1) REGISTER TRANSFER LEVEL (RTL)

There are a lot of research efforts to accelerate a neural
network inference task with FPGAs. For example in [34],
PIE has been introduced as a novel pipelined implementation
to reach parallelism between layers in addition to in layer
parallelism. Also in [35], a layer based structure has been
introduced to perform the inference task in CNNs. Both these
works have reported an improvement in performance and

VOLUME 8, 2020

| e

FIGURE 6. System structure of a typical FPGA-SoC system.

Vector memory

power consumption in FPGA implementation in comparison
to regular implementations.

In this work, we have designed an accelerating core for
neural network inference task. The main idea in this accelerat-
ing core is to benefit from the pipelining capability of FPGAs
to parallelize the computation for each output neuron of a
layer. Because we have assumed that all the data is coming
from the DDR memory through the AXI bridge between the
PL and PS side, the bottleneck of the performance becomes
this data movement in the system.

In RTL design, first the accelerator core is manually
designed and implemented with a hardware descriptor lan-
guage (HDL). After testing and verifying the core, it is inte-
grated with the software side with a platform design tool for
which we have here used Vivado System Integrator. To reach
a high-performance implementation for the matrix-vector
multiplier accelerator core, we have proposed a hardware
structure that is shown in FIGURE 6.

2) HIGH LEVEL SYNTHESIS (HLS)

In this approach, the accelerator core is designed and
described with a high level programing language like
C/C++ [25], [36]. Then, this highly described system is
synthesized to a lower level hardware system. In this work,
this is done through Xilinx HLS design flow. This gives
the opportunity to design the accelerator core with C/C++
language and skip the complexity of RTL design and its
verification.

Several works have considered this type of implementation
for a neural network. For example, in [37] a pipelined archi-
tecture for a CNN has been implemented using Xilinx HLS
compiler. The goal in that design was to use the loop unrolling
and pipelining techniques to get the most possible hardware
utilization and performance.

The integration of the accelerator core with the software
side must still be done manually within the Vivado System
Integrator. However, because of the limited customization
capabilities, it is expected that the HLS implemented core is
not as efficient as of the RTL design, both in performance and
in area usage.

The most important directives that are given to the
HLS compiler to customize as much as possible the hard-
ware design are the following. The directive #pragma HLS
PIPELINE II = [is used to pipeline the main matrix vector
multiplication with initiation interval equal to 1. #pragma
HLS INLINE is used to make the hierarchal structure smaller
and also make the opportunity of resource sharing between
functions in the code.

41631

IEEE Access

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

Microcontroller

10000

[
o
o
o

100

Time (ms)

[ERN
o

0 10 20 30 40

Neurons per layer
(@)
FPGA

100000
10000
1000
100

Time (ms)

10 —e— SDSoC —e—RTL

HLS =~ ====- 100 ms
0 500 1000 1500
Neurons per layer

()

1

Embedded Processor
100000

10000
1000
100
10

Time (ms)

—@— Single Core

0 500 1000 1500

Neurons per layer
(b)
GPU
—@— Jetson
—®— Geforce
1000 - eeea- 100 ms

100
10

100000
10000

Time (ms)

1
0 500 1000 1500
Neurons per layer

(d)

2000 2500

FIGURE 7. Performance results for the studied platforms: (a) microcontroller, (b) embedded processor, (c) FPGA RTL, HLS and SDSoC

implementations, and (d) Jetson TX2 and GForce GPUs.

TABLE 6. Specifications of the Nvidia embedded GPU device.

Specification Value
Device name Nvidia Jetson TX2
CPU HMP Dual Denver 2/2MB L2 + Quad ARM®
A57/2MB L2
GPU NVIDIA Pascal™, 256 NVIDIA CUDA® cores
Memory 8 GB 128-bit LPDDR4 58.3 GB/s

3) SOFTWARE DEFINED SYSTEM (XILINX SDSOC)

In this implementation method, the system is completely
defined and implemented in a software environment. The part
of the design that needs to be accelerated in the FPGA side is
marked as hardware-accelerated and all the accelerator cores’
design and integration with the software side is performed
automatically. Again, it is expected that at the same time
that this will bring simplicity in the design process, it will
also reduce the efficiency of the final design. The same
HLS compiler and the same HLS directives are used in this
case for the hardware accelerator.

The performance and power consumption of the three
implementations previously described, with a decreasing
level of implementation complexity, are presented
in FIGURE 7 (c). As it has been previously explained, RTL
achieves the highest performance due to the higher optimiza-
tion grade whereas HLS and SDSoC designs simplifies the
design process at the cost of significant performance loss.

41632

E. EMBEDDED GPU

Another way to accelerate an edge application is to use an
embedded GPU besides the main processor. In this work,
a Nvidia Tegra Jetson TX2 SoC with embedded GPU has
been used. The specifications of the GPU-SoC are listed
in Table 6.

As discussed in the previous subsection, in a heteroge-
neous implementation, the part of the application that requires
large computation is accelerated in a co-processor. Within
the Tegra Jetson TX2 SoC considered in this work, the co-
processor is a Nvidia Pascal GPU with 256 computing
cores. The main difference with respect to the FPGA-SoC
is in the type of the co-processor. In contrast to the repro-
grammable hardware present in FPGAs, the GPU-SoC offers
a co-processor that contains many small processing units able
to run the same operation on different parts of the data.

The results for the performance achieved with the Embed-
ded GPU-SoC are shown in FIGURE 7 (d). According to
the performance results and the power consumption mea-
surement, the embedded GPU achieves the maximum per-
formance and the best ratio of computation performance
to power consumption from all embedded platforms. These
values have been listed in the Table 7.

The Jetson TX2 SoC that has been used in this work
is an GPU designed especially for embedded applications.
It means that it has been optimized for logic size, cost and
energy consumption. This optimization has effects on the
performance of the device. But even when comparing it

VOLUME 8, 2020

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

IEEE Access

TABLE 7. Summary of performance, power consumption and design complexity for the evaluated platforms.

Type of Platform Platform Max Performance Power Performance per Design complexity
(MFLOP) consumption (W) Power ratio
(MFLOP/W)
Intel CPU 9670 35 260.0 Low
General Purpose
Geforce GPU 10200 33 309.0 Medium
Microcontroller (float) 0.0042 0.017 0.247 Low
Embedded Processor 53.46 5 10.62 Low
FPGA-SoC (RTL) 200 2.1 95.00 High
Embedded Devices
FPGA-SoC (HLS) 40 2.1 19.04 Medium
FPGA_SoC (SDSoC) 5 2.1 3.80 Low
Jetson TX2 9560 7.5 1274.0 Medium
Intel CPU 5382 35 153.0 Low
OpenCL Geforce GPU 368 33 11.0 Low
FPGA-SoC 11.4 22 5.7 Low

with a non-embedded, more powerful GPU, the performance
of the device is comparable (see FIGURE 7 (d)) with a
significant decrease in power consumption as can be seen
in Table 7.

F. PLATFORM INDEPENDENT IMPLEMENTATION

One big challenge for IoT developers to move their designs
toward edge computing is linked to the platform-dependent
implementation. Designing a system based on an embedded
GPU is completely different from implementing the same
system based on an FPGA-SoC. The details of each hardware
platform are very diverse, and they must be considered to
have an optimized system.

To deal with this diversity in design and implementa-
tion methods, some solutions have been introduced. In this
work, the use of OpenCL as a unified design method for all
platforms has been evaluated. An OpenCL neural network
inference application has been tested on the three different
platforms that currently support OpenCL and were used in
this work (Intel CPU, Geforce GPU and FPGA SoC).

OpenCL is a heterogeneous programming language that is
designed to be platform independent. However, it is still not
possible to have exactly the same OpenCL code running on
all platforms.

An OpenCL code consists of two different parts, the host
program that runs on the main processor and the device
program (kernel code) that is going to be accelerated on
the co-processor which can be a GPU, an FPGA or sim-
ply another CPU. Because of the different architecture in
co-processor devices, it is not possible to get the same per-
formance gain from them with the same kernel code. For
example, in FPGAs, pipelining is very important but for
GPUs data parallelism is more vital.

The performance results for each platform running the
OpenCL application are listed in Table 7. As expected,
the performance of the OpenCL program is significantly
lower than the individually optimized application for each

VOLUME 8, 2020

platform. However, the much lower complexity of the imple-
mentation may make it considerable for edge computation
and IoT development.

V. DISCUSSION

This section discusses the main conclusions and observations
that can be obtained from the results presented previously.
While the exact performance metrics might depend on the
application at hand, it is expected that these results can serve
as an indicator for the estimated performance of the different
hardware platforms and the different types of implementa-
tion which can be used as guidelines by non-expert soft-
ware/hardware designers (see summary on FIGURE 8).

A. PERFORMANCE

For heterogeneous computing platforms, it is very important
to consider the concept of concept of the computation to
communication (CTC) ratio when analyzing the obtained
results (see VI). As explained in [37], with higher CTC ratios,
more performance gain is achievable until the boundaries of
the system’s memory capabilities are reached.

The considered embedded IoT test application has a low
CTC ratio. In each layer of our test neural network applica-
tion, we are performing a matrix-vector multiplication and a
vector-vector addition. The CTC rate will be different signifi-
cantly larger for applications that use large input dimensions,
as e.g., in the field of image recognition. This means that
the I/O bandwidth can rapidly become the main bottleneck
of the implementation, reducing the advantages of hardware
accelerators.

Among the embedded devices evaluated in this work,
microcontrollers have weakest computing performance,
in the order of tens of KFLOPS. Most of low-cost low-energy
microcontrollers do not have a dedicated floating-point unit
and they have to emulate those operations in software
level. Changing the accuracy of the computations from
floating-point to fixed-point can improve their performance
significantly. In this work, a 32-bit fixed-point operation

41633

IEEE Access

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

MFLOPS
5
4
3
1/Complexity i 1/Latency
0
1/Cost 1/Power
OuC embedded uP FPGA GPU

FIGURE 8. Comparative chart.

A
n
a .
Q
= >,
8 s\\(9
S L
£ -8& /" Computational roof (GFLOPS)
£ S
& &
| IS
© ya
C 4
- Ratio of (FLOP)/(DRAM
byte access)

Computation to communicatio ratio

FIGURE 9. Computational roof detailed in [37].

instead of floating point resulted in three times lower com-
puting times for the same network.

Embedded processors use an operating system to handle
tasks like scheduling and memory management. Still, because
of more powerful processors and also more memory available
to them, these processors deliver significantly more perfor-
mance than microcontrollers.

For further increases in performance on embedded
devices, heterogeneous implementations can be considered.
FPGA-SoCs are suitable platforms for edge computing and
bring a wide variety of implementation options. The appli-
cation type is very important when choosing a proper imple-
mentation method for FPGA-SoCs, especially in cases where
the input/output bandwidth between accelerator code and
software, or the optimization of the digital resources, is the
main bottleneck. Automatic tools such as HLS significantly
reduce the design time but can also lead to important per-
formance decreases when compared to a very detailed RTL
implementation. For instance, whereas RTL implementation
can easily achieve initialization intervals equal to one for the
FPU MAC unit, i.e. one new data each clock cycle, HLS or
SDSoC implementations require more cycles. Although in
other applications this issue can be addressed by interleaving

41634

the input array to the core, this is not useful in the con-
sidered edge computing application where task parallelism
rather than data parallelism is required. The parallelization
capabilities of embedded GPUs can be easily leveraged to
obtain very strong performances, especially in the case of
large problems.

B. POWER CONSUMPTION

For embedded devices that are going to be used in the
edge of the IoT systems, power consumption is a crit-
ical performance indicator. In some of the applications,
the edge device must operate with battery power. As expected,
low-power microcontrollers have the least power con-
sumption among all the platforms. However, to have a
fair comparison between platforms, the performance per
power ration is evaluated for all platforms and shown
in Table 7.

As it can be seen, the power consumed by the embed-
ded devices is much less than the power consumption of
the general-purpose CPUs and GPUs. Among embedded
devices, embedded GPUs are promising alternatives for com-
plex calculations on the edge, as they have significantly
better performance/power ratio as it can be seen for the
Jetson TX2.

To measure the power for the Jetson TX2 and the
EFM32 microcontroller, the available internal measurement
capabilities that the boards offer were used. For the FPGA
board, the overall power was measured using an external
microcontroller and a shunt resistor. The power consumption
that is reported in Table 7 for the general-purpose platforms is
the one provided by the specifications of the hardware given
by the vendor.

C. COMPLEXITY OF DESIGN

More complexity in design means more development time
that results in longer time to market and higher development
costs. While the flexibility in software design is usually high,
it is not the case for hardware design. In order to combine the
positive features of each side, techniques like heterogeneous
programming and hardware-software co-design have been
introduced.

In this work, heterogeneous programming was evaluated
using with OpenCL and CUDA on FPGAs and GPUs. CUDA
resulted in a better performance for Nvidia’s GPUs, but the
main advantage of OpenCL is that it is hardware independent
and it is usable for both GPUs and FPGAs.

Also, the HLS tools are becoming popular for hardware
design, especially in FPGAs. New approaches in HLS tech-
niques have enabled the developers to manage hardware
accelerated applications without writing even a single line of
HDL code. They need much lower design time, but they are
still limited in design flexibility. However, many designs can
be tested easily, making it possible to perform an automated
sweep of the design space to obtain near optimal hardware
designs as done in [29].

VOLUME 8, 2020

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

IEEE Access

TABLE 8. Computing alternatives with a running time of 100 ms.

Power # Neurons
Platform W) # Layers per layer # Parameters
Microcontroller 0.017 10 11 1265
Embedded 5 100 152 2311160
Processor
FPGA-SoC
(RTL) 2.1 100 272 7399 760
FPGA-SoC
(HLS) 2.1 100 138 1 905 090
FPGA-SoC
(SDSoC) 2.1 100 43 185115
Embedded GPU 7.5 100 2048 419 440 640
D. CcosT

Cost is an important decision factor that will determine in
many applications the technology to be deployed. Nowadays,
the cheapest technology available are microprocessor, exist-
ing a wide range of families and manufacturers available in
a range of prices starting in just few cents. However, as it
has been explained, their edge computing capabilities are
limited. In recent years, proliferation of embedded CPUs such
as Raspberry Pi and others has made possible the implemen-
tation of inexpensive stand-alone solutions within the range
of tens of dollars, making them an excellent option for the
low-mid cost range or large deployments. Finally, when high
computing capabilities are required, both GPUs and FPGAs
are required. Despite the high computing capabilities and
parallel processing of FPGAs, advances in microelectronics
combined with the optimized GPU architectures have made
the latter option to have the best performance — cost / energy
ratio.

E. COMPUTING IN THE BLINK OF AN EYE

A common feature in most edge devices is their short
response times. Many of these devices are used to interact
with human users. To provide users with the required per-
formance, the possibility of human-machine cooperation or
a pleasant user experience, these devices must be able to
response within a short time interval that is not recognizable
by user. To illustrate the possibilities of each platform for
real-time human-machine, Table 8 presents the largest neural
network that can be evaluated in the approximate time of the
eye blinking (100 ms), including also the necessary power.
The size of the neural network with three inputs and two
outputs can be measured by the number of layers and neurons
in each layer, or by the total amount of parameters that define
the neural network. All the information can be seen in Table &,
which shows that embedded GPUs can deal with the largest
networks.

VI. CONCLUSION

Rapid developments of the internet of things, have made
sensing, communication and computation ubiquitous. These
technologies are increasingly complex and, therefore,
require more automation and intelligent decision-making.

VOLUME 8, 2020

When interacting with humans, low latency becomes essen-
tial, being the focus of this work.

In this paper, some the most relevant technologies to imple-
ment edge computing systems available to designers have
been reviewed and discussed, including microprocessors,
embedded processors, FPGAs, and embedded GPUs. In order
to compare and discuss these technologies, a relevant deep
neural network case of study has been selected and imple-
mented in the different platforms and development tools.

The obtained results for each platform have been compared
in terms of processing power, energy, latency, design com-
plexity, and cost. Nowadays, microprocessors offer the most
affordable solution for low-complexity and low-cost systems,
whereas embedded processors are excellent alternatives when
additional processing power is required. Modern FPGAs also
offer high performance, at the cost of additional complex-
ity. This can be solved by using HLS or SDSoC design
methodologies, at the cost of reducing the system perfor-
mance. Finally, modern GPU architectures offer not only the
best computation capabilities but also the best computation-
energy ratio, being the hardware platform of choice for highly
demanding computing edge systems.

REFERENCES

[1] E. Baccarelli, P. G.V.Naranjo, M. Scarpiniti, M. Shojafar, and

J. H. Abawajy, “Fog of everything: Energy-efficient networked computing

architectures, research challenges, and a case study,” IEEE Access, vol. 5,

pp. 9882-9910, 2017.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

p. 436, May 2015.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, no. 1, pp. 30-39, Jan. 2017.

F. Lamnabhi-Lagarrigue, “Systems & control for the future of humanity,

research agenda: Current and future roles, impact and grand challenges,”

Annu. Rev. Control, vol. 43, pp. 1-64, Jan. 2017.

[S] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78-81, May 2016.

[6] W.Yu,F Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A sur-
vey on the edge computing for the Internet of Things,” IEEE Access, vol. 6,
pp. 6900-6919, 2018.

[7]1 R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-enhanced
10T,” IEEE Access, vol. 5, pp. 3302-3312, 2017.

[8] S.-J. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, “A neural network
integrated decision support system for condition-based optimal predictive
maintenance policy,” IEEE Trans. Syst., Man, Cybern., A, Syst. Humans,
vol. 37, no. 2, pp. 226-236, Mar. 2007.

[9] B. Karg and S. Lucia, “Deep learning-based embedded mixed-integer
model predictive control,” in Proc. Eur. Control Conf. (ECC), Jun. 2018,
pp. 2075-2080.

[10] R. Feraund, O.J. Bernier, J.-E. Viallet, and M. Collobert, “A fast and
accurate face detector based on neural networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 1, pp. 42-53, Jan. 2001.

[11] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66-73, May 2010.

[12] S.Mittal, “A survey on optimized implementation of deep learning models
on the NVIDIA Jetson platform,” J. Syst. Archit., vol. 97, pp. 428-442,
Jan. 2019.

[13] J. Gu, Y.Liu, Y. Gao, and M. Zhu, “OpenCL caffe: Accelerating and
enabling a cross platform machine learning framework,” in Proc. ACM
Int. Conf., vols. 19-21, 2016, pp. 1-5.

[14] T. Chen, M.Li, Y.Li, M. Lin, N. Wang, M. Wang, T. Xiao, B.Xu,
C.Zhang, and Z.Zhang, “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015,
arXiv:1512.01274. [Online]. Available: http://arxiv.org/abs/1512.01274

2

—

[4

=

41635

IEEE Access

M. H. Ghasemi et al.: Computing in the Blink of an Eye: Current Possibilities for Edge Computing

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

X. Zhang, Y. Wang, and W. Shi, “PCamp: Performance comparison of
machine learning packages on the edges,” in Proc. USENIX Workshop Hot
Topics Edge Comput. (HotEdge), 2018, vol. 2, no. 1, pp. 1-6.

M. Papadonikolakis, C.-S.Bouganis, and G. Constantinides, ‘Perfor-
mance comparison of GPU and FPGA architectures for the SVM train-
ing problem,” in Proc. Int. Conf. Field-Program. Technol., Dec. 2009,
pp- 388-391.

T. Hao et al., “Edge AIBench: Towards comprehensive end-to-end edge
computing benchmarking,” in Benchmarking, Measuring, and Optimiz-
ing (Lecture Notes in Computer Science), vol. 11459, C. Zheng and
J. Zhan, Eds. Cham, Switzerland: Springer, 2019. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-32813-9_3#citeas
C.-H. Hong and B. Varghese, “Resource management in Fog/Edge com-
puting,” ACM Comput. Surv., vol. 52, no. 5, pp. 1-37, Sep. 2019.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44-54.

M. Gusev and S. Dustdar, “Going back to the roots—The evolution of edge
computing, an IoT perspective,” IEEE Internet Comput., vol. 22, no. 2,
pp. 5-15, Mar. 2018.

D. Georgakopoulos, P.P.Jayaraman, M. Fazia, M. Villari, and
R. Ranjan, “Internet of Things and edge cloud computing roadmap
for manufacturing,” IEEE Cloud Comput., vol. 3, no. 4, pp. 66-73,
Jul. 2016.

K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, “Energy-efficient offloading for mobile edge computing
in 5G heterogeneous networks,” IEEE Access, vol. 4, pp. 5896-5907,
2016.

Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022,”
Cisco, San Jose, CA, USA, White Paper, 2019.

G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad,
“Model predictive control (MPC) for enhancing building and HVAC sys-
tem energy efficiency: Problem formulation, applications and opportuni-
ties,” Energies, vol. 11, no. 3, p. 631, Mar. 2018.

S. Lucia, D. Navarro, O. Lucia, P. Zometa, and R. Findeisen, “Optimized
FPGA implementation of model predictive control for embedded systems
using high-level synthesis tool,” IEEE Trans Ind. Informat., vol. 14, no. 1,
pp. 137-145, Jan. 2018.

M. Mukherjee, R.Matam, L.Shu, L.Maglaras, M. A. Ferrag,
N. Choudhury, and V. Kumar, “Security and privacy in fog computing:
Challenges,” IEEE Access, vol. 5, pp. 19293-19304, 2017.

J. A. Stankovic, “Research directions for the Internet of Things,” IEEE
Internet Things J., vol. 1, no. 1, pp. 3-9, Feb. 2014.

A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and pri-
vacy challenges in industrial Internet of Things,” in Proc. 52nd
ACM/EDAC/IEEE Des. Autom. Conf. (DAC), Jun. 2015, pp. 1-6.

K. Irion, “Government cloud computing and national data sovereignty,”
Policy Internet, vol. 4, nos. 3—4, pp. 40-71, Jan. 2013.

X. Meng, W. Wang, and Z. Zhang, ‘“‘Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21355-21367, 2017.

S. Lucia, D. Navarro, B. Karg, H. Sarnago, and O. Lucia, “Deep learning-
based model predictive control for resonant power converters,” IEEE Trans
Ind. Informat., to be published.

B. Karg and S. Lucia, “Efficient representation and approximation of
model predictive control laws via deep learning,” 2018, arXiv:1806.10644.
[Online]. Available: http://arxiv.org/abs/1806.10644

A. Pullini, D. Rossi, I. Loi, A. Di Mauro, and L. Benini, “Mr. Wolf: A 1
GFLOP/s energy-proportional parallel ultra low power SoC for IOT edge
processing,” in Proc. IEEE 44th Eur. Solid State Circuits Conf. (ESSCIRC),
Sep. 2018, pp. 274-2717.

Y. Zhao, Q. Yu, X. Zhou, X. Zhou, X. Li, and C. Wang, “PIE: A pipeline
energy-efficient accelerator for inference process in deep neural net-
works,” in Proc. IEEE 22nd Int. Conf. Parallel Distrib. Syst. (ICPADS),
Dec. 2016, pp. 1067-1074.

C. Huang, S. Ni, and G. Chen, “A layer-based structured design of CNN
on FPGA,” in Proc. IEEE 12th Int. Conf. ASIC (ASICON), Oct. 2017,
pp. 1037-1040.

O. lJimenez, O.Lucia, I Urriza, L. A.Barragan, D.Navarro, and
V. Dinavahi, “Implementation of an FPGA-based online hardware-in-
the-loop emulator using high-level synthesis tools for resonant power
converters applied to induction heating appliances,” IEEE Trans. Ind.
Electron., vol. 62, no. 4, pp. 22062214, Apr. 2015.

41636

[37] C. Zhang, P.Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
Monterey, CA, USA, 2015, pp. 161-170.

MOHAMMAD HOSSEIN GHASEMI was born

in Shiraz, Iran, in 1993. He received the B.Sc. and

M.Sc. degrees in electrical engineering from the

University of Tehran, Tehran, Iran, in 2015 and
2018, respectively.

From 2017 to 2018, he was a Guest Student at

TU Berlin, Berlin, Germany, for two semesters.

7 His current research interests include embed-

1y/ / ded system design, hardware-software co-design,

b L edge-computing in the Internet of Things (IoT)

applications, and high-performance computing.

OSCAR LUCIA (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees (Hons.) in electri-
cal engineering from the University of Zaragoza,
Spain, in 2006 and 2010, respectively.

From 2006 to 2007, he held a Research Intern-
ship at the Bosch and Siemens Home Appli-
ances Group. Since 2008, he has been with the
Department of Electronic Engineering and Com-
munications, University of Zaragoza, where he is

. currently an Associate Professor. He was a Visiting
Scholar with the Center for Power Electronics Systems (CPES), Virginia
Tech, in 2009 and 2012. He has also been with TU Berlin, Germany,
since 2019. His main research interests include resonant power conversion,
wide-bandgap devices, and digital control, mainly applied to contactless
energy transfer, induction heating, electric vehicles, and biomedical appli-
cations. In these topics, he has published more than 75 international journal
articles and 125 conference papers. He has filed more than 40 international
patents.

Dr. Lucia is a member of the Aragon Institute for Engineering Research
(I3A) and an Active Member of the Power Electronics (PELS) and the
Industrial Electronics (IES) societies. He is currently an Associate Editor of
the IEEE TrANsAcCTIONS on INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS
on Power ELEcTrONICS, and the IEEE OPEN JOURNAL of the INDUSTRIAL
ELECTRONICS SOCIETY.

SERGIO LUCIA (Member, IEEE) received the
M.Sc. degree in electrical engineering from the
University of Zaragoza, in 2010, and the Dr. Ing.
degree in optimization and automatic control from
TU Dortmund, in 2014.

He then joined the Otto-von-Guericke-
Universitdit Magdeburg, and visited the Mas-
sachusetts Institute of Technology, as a
Postdoctoral Fellow. Since May 2017, he has
been an Assistant Professor and holds the Chair
of Internet of Things for Smart Buildings, TU Berlin, and the Einstein
Center Digital Future. His research efforts focus on decision-making under
uncertainty, distributed control, and embedded optimization using micro-
controllers, and FPGAs in the framework of the Internet of Things. His
applications of interest include smart buildings and energy systems. He is
an Active Member of the IEEE CSS Society. He is an Associate Editor of
the Journal of Process Control.

VOLUME 8, 2020

