

EDITORIAL • OPEN ACCESS

Focus on multilayer networks

To cite this article: Yamir Moreno and Matjaž Perc 2020 New J. Phys. 22 010201

View the <u>article online</u> for updates and enhancements.

New Journal of Physics

The open access journal at the forefront of physics

Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics

OPEN ACCESS

PUBLISHED

23 December 2019

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

EDITORIAL

Focus on multilayer networks

Yamir Moreno^{1,2,3} and Matjaž Perc ¹⁰ ^{4,5,6}

- ¹ Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, E-50018 Zaragoza, Spain
- ² Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, E-50009 Zaragoza, Spain
- 3 ISI Foundation, I-10126 Turin, Italy
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- ⁵ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- ⁶ Complexity Science Hub Vienna, Josefstädterstraße 39, A-1080 Vienna, Austria

E-mail: yamir.moreno@gmail.com and matjaz.perc@gmail.com

Abstract

Multilayer networks have in recent years emerged as an important new paradigm of network science. Groundbreaking research has shown that processes that unfold on different but interdependent network layers can not be simply reduced to a conglomerate of additive processes on a single network. On the contrary, small and seemingly unimportant changes in one network layer can have farreaching and indeed catastrophic consequences in other network layers. Such cascades of failures can lead to concurrent malfunctions in electrical power grids, they can gridlock traffic, and accelerate epidemics, to name just some examples. In the light of this functional relevance, network science has had to redefine structural measures, rethink growth processes, and come up with new mathematical formulations for multilayer networks. The field is still very much alight and vibrant, and with the focus on multilayer networks, the New Journal of Physics has given due space to the forefront research along these lines.

The past two decades have seen the coming of age of network science as a self-sufficient and independent research discipline, which at the same time has, perhaps like no other field of research, the potential to be seamlessly integrated, to enrich, and to synergize with other branches of science, from sociology and economy to biology, chemistry, and physics. The impetus for this fascinating development came with the discovery that seemingly diverse networks have universal properties that pervade across social, biological, and technological systems. In 1998, Watts and Strogatz [1] termed this the collective dynamics of 'small-world' networks, observing that electric power grids, food chains, brain networks, protein networks, transcriptional networks, and social networks are all highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. Hence the name 'small-world' networks. Their simple and intuitive mathematical model was a hit, and although it yields a degree distribution that is unrealistic for most real-world networks, it was soon applied prolifically across the social and natural sciences. One year later, Barabási and Albert proposed the growth and preferential attachment model to describe the universal scaling in degree distributions of many realistic networks [2]. Their model, too, enjoyed—and still enjoys—fantastic popularity. The third major discovery came with the realization that many networks have groups of nodes that are much strongly interconnected with one another than they are to other nodes of the network, which today is well-known as community structure [3]. Combined, these and other breakthroughs propelled network science towards the top of the hottest fields of multidisciplinary research of the 21st century, as evidenced by several highly influential and cited reviews [4-7]. Physics, and in particular statistical physics and complexity, played a major role in the unfolding, emergence and establishment of modern network science.

Just as it looked like the pace of progress in network research might be starting to cool down, the Buldyrev et al [8] paper was published in 2010, reporting catastrophic cascade of failures in interdependent networks. The relevance of this seminal contribution lies in that it has pointed out in no uncertain terms the limitations of the field's focus on single, isolated, and non-interacting networks. The latter limitation is critical when it comes to analyzing real systems, given that modern economic, infrastructural, technological, as well as social and

New J. Phys. 22 (2020) 010201 Y Moreno and M Perc

computer networks are coupled together and therefore should be best described as interdependent and multilayer networks. It was an important breakthrough, and while some argued that this is solely a matter of the viewpoint in that processes in different network layers could be added up and described as a conglomerate process on a single-layer network, it soon became clear that the challenge is by far not that simple. In the best tradition of complex systems, for multilayer networks too, the whole is not the same that the sum of its parts.

Indeed, further important discoveries followed fast, first with the generalization of network communities to multilayer networks [9], which allowed studies of community structure in more general settings including networks that evolve, have multiple types of links, as well as multiple scales. Subsequently, it was shown that even elementary physical processes like diffusion are fundamentally affected by multiplexity [10], and ultimately a mathematical formulation of multilayer networks was put forward [11]. Therein, the traditionally used adjacency matrices, which are useful to describe traditional single-layer networks, were replaced by a tensorial framework that allows the generalization of several important quantities and dynamical processes on multilayer networks, including degree centrality, clustering coefficients, eigenvector centrality, modularity, Von Neumann entropy, and diffusion. As previously for single-layer and isolated networks, popular and likewise highly cited reviews dedicated to temporal, multiplex, and multilayer networks attest to the vibrancy of this field of research [12–14], which has since found applications for better understanding epidemic spreading [15, 16], vaccination [17], evolution of cooperation [18], information cascades [19], and biological organization at different scales [20].

This fascinating development had not gone unnoticed at the New Journal of Physics, where the decision was made to host a focus issue dedicated to multilayer networks. Just little over a year after the first call for submissions was out, it is clear that the field is still beaming with outstanding research that addresses some of the most pressing societal and technological challenges of our time. In total, 23 papers have been published [21–43], covering subjects ranging from social contagion, interlayer competition, public cooperation, belief percolation, explosive synchronization, and epidemic spreading to cascading dynamics, consensus ranking, congestion, and meme spreading. Given the diversity of the topics that are covered by multilayer networks, it is challenging to pull a common thread through, and even to select, contributions that have been published in a brief editorial. Interested readers are therefore cordially invited to browse through the collection and discover for themselves the full breadth of research that has been covered and to select their favorite papers.

The future will certainly see further attention devoted to multilayer networks. We plan to present a perspective that will revise what are the most promising directions and future challenges in the field. The aims are to more accurately describe and understand collective social phenomena that are due to the interactions among individuals, groups, and governments, as well as to more efficiently tackle technological challenges that arise due to the interconnectedness of different components of information, computing, and transportation infrastructure. The hope is to ultimately develop better social systems, more efficient policies, and more resilient technologies for a sustainable future.

Acknowledgments

We would like to thank the Editorial office of the New Journal of Physics for the strong support, and all the authors and reviewers for their invaluable and deeply appreciated contributions towards making this focus issue such as success. This work was supported in part by the Government of Aragon, Spain through grant E36-17R (FENOL), by MINECO and FEDER funds (FIS2017-87519-P), by Intesa Sanpaolo Innovation Center, and by the Slovenian Research Agency (Grants J4-9302, J1-9112, and P1-0403).

ORCID iDs

Yamir Moreno https://orcid.org/0000-0002-0895-1893 Matjaž Perc https://orcid.org/0000-0002-3087-541X

References

- [1] Watts D J and Strogatz S H 1998 Nature 393 440-2
- [2] Barabási A L and Albert R 1999 Science 286 509-12
- [3] Girvan M and Newman M E 2002 Proc. Natl Acad. Sci. USA 99 7821-6
- [4] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47-97
- [5] Newman M E J 2003 SIAM Rev. 45 167-256
- [6] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D 2006 Phys. Rep. 424 175–308
- [7] Fortunato S 2010 Phys. Rep. 486 75-174
- [8] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025-8

- [9] Mucha P J, Richardson T, Macon K, Porter M A and Onnela J P 2010 Science 328 876-8
- [10] Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente C, Moreno Y and Arenas A 2013 Phys. Rev. Lett. 110 028701
- [11] De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter M A, Gómez S and Arenas A 2013 Phys. Rev. X 3 041022
- [12] Holme P and Saramäki J 2012 Phys. Rep. 519 97-125
- [13] Boccaletti S, Bianconi G, Criado R, del Genio C, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1–122
- [14] Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A 2014 J. Complex Netw. 2 203-71
- [15] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925-79
- [16] de Arruda G F, Rodrigues F A and Moreno Y 2018 Phys. Rep. 756 1–59
- [17] Wang Z, Bauch CT, Bhattacharyya S, d'Onofrio A, Manfredi P, Perc M, Perra N, Salathé M and Zhao D 2016 Phys. Rep. 664 1–113
- [18] Wang Z, Wang L, Szolnoki A and Perc M 2015 Eur. Phys. J. B 88 124
- [19] Jalili M and Perc M 2017 J. Complex Netw. **5** 665–93
- [20] Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A and Perc M 2018 Phys. Life Rev. 24 118-35
- [21] Pósfai M, Braun N, Beisner B A, McCowan B and D'Souza R M 2019 New J. Phys. 21 055001
- [22] Min B and San Miguel M 2019 New J. Phys. 21 035004
- [23] Choi J and Goh K I 2019 New J. Phys. 21 035005
- [24] Van Lidth de Jeude J, Aste T and Caldarelli G 2019 New J. Phys. 21 025002
- [25] O'Brien J D, Dassios I K and Gleeson J P 2019 New J. Phys. 21 025001
- [26] Liu R R, Jia C X and Lai Y C 2019 New J. Phys. 21 045002
- [27] Cencetti G and Battiston F 2019 New J. Phys. 21 035006
- [28] Wang H, Qu C, Jiao C and Rusze W 2019 New J. Phys. 21 035001
- [29] Zhou Y, Zhou J, Chen G and Stanley H E 2019 New J. Phys. 21 035002
- [30] Solé-Ribalta A, Arenas A and Gómez S 2019 New J. Phys. 21 035003
- [31] Liu J, Fan Y, Zhang J and Di Z 2019 New J. Phys. 21 015007
- [32] Kachhvah A D and Jalan S 2019 New J. Phys. 21 015006
- [33] Li H J and Wang L 2019 New J. Phys. 21 015005
- [34] Estrada E 2019 New J. Phys. 21 015004
- [35] Han D and Li X 2019 New J. Phys. 21 015002
- [36] An N, Chen H, Ma C and Zhang H 2018 New J. Phys. 20 125006
- [37] Dang W, Gao Z, Lv D, Liu M, Cai Q and Hong X 2018 New J. Phys. 20 125005
- [38] Valdez L, Rêgo H A, Stanley H, Havlin S and Braunstein L 2018 New J. Phys. 20 125003
- [39] Zhu X, Tian H, Chen X, Wang W and Cai S 2018 New J. Phys. 20 125002
- [40] de Arruda G F, Cozzo E, Rodrigues F A and Moreno Y 2018 New J. Phys. 20 095004
- [41] Chang H C H and Fu F 2018 New J. Phys. 20 095001
- [42] Pitsik E, Makarov V, Kirsanov D, Frolov N, Goremyko M, Li X, Wang Z, Hramov A and Boccaletti S 2018 New J. Phys. 20 075004
- [43] Xia C, Li X, Wang Z and Perc M 2018 New J. Phys. 20 075005