000089620 001__ 89620
000089620 005__ 20211216131134.0
000089620 0247_ $$2doi$$a10.3390/ma13020331
000089620 0248_ $$2sideral$$a117439
000089620 037__ $$aART-2020-117439
000089620 041__ $$aeng
000089620 100__ $$0(orcid)0000-0001-8689-6482$$aAguado, Sergio$$uUniversidad de Zaragoza
000089620 245__ $$aConfiguration optimisation of laser tracker location on verification process
000089620 260__ $$c2020
000089620 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089620 5203_ $$aMachine tools are verified and compensated periodically to improve accuracy. The main aim of machine tool verification is to reduce the influence of quasi-static errors, especially geometric errors. As these errors show systematic behavior, their influence can be compensated. However, verification itself is influenced by random uncertainty sources that are usually not considered but affect the results. Within these uncertainty sources, laser tracker measurement noise is a random error that should not be ignored and can be reduced through adequate location of the equipment. This paper presents an algorithm able to analyse the influence of laser tracker location based on nonlinear optimisation, taking into consideration its specifications and machine tool characteristics. The developed algorithm uses the Monte Carlo method to provide a zone around the machine tool where the measurement system should be located in order to improve verification results. To achieve this aim, different parameters were defined, such as the number of tests carried out, and the number and distribution of points, and their influence on the error due to the laser tracker location analysed.
000089620 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T56-17R$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2017-90106-R
000089620 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089620 590__ $$a3.623$$b2020
000089620 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b17 / 80 = 0.213$$c2020$$dQ1$$eT1
000089620 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b152 / 333 = 0.456$$c2020$$dQ2$$eT2
000089620 591__ $$aPHYSICS, CONDENSED MATTER$$b27 / 69 = 0.391$$c2020$$dQ2$$eT2
000089620 591__ $$aPHYSICS, APPLIED$$b51 / 160 = 0.319$$c2020$$dQ2$$eT1
000089620 591__ $$aCHEMISTRY, PHYSICAL$$b79 / 162 = 0.488$$c2020$$dQ2$$eT2
000089620 592__ $$a0.682$$b2020
000089620 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000089620 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000089620 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089620 700__ $$0(orcid)0000-0002-1093-8233$$aPérez, Pablo
000089620 700__ $$0(orcid)0000-0003-4839-0610$$aAlbajez, José Antonio$$uUniversidad de Zaragoza
000089620 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria, Jorge$$uUniversidad de Zaragoza
000089620 700__ $$0(orcid)0000-0001-9617-1004$$aVelázquez, Jesús$$uUniversidad de Zaragoza
000089620 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000089620 773__ $$g13, 2 (2020), 331  [13 pp.]$$pMATERIALS$$tMATERIALS$$x1996-1944
000089620 8564_ $$s1766780$$uhttps://zaguan.unizar.es/record/89620/files/texto_completo.pdf$$yVersión publicada
000089620 8564_ $$s495574$$uhttps://zaguan.unizar.es/record/89620/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089620 909CO $$ooai:zaguan.unizar.es:89620$$particulos$$pdriver
000089620 951__ $$a2021-12-16-13:04:21
000089620 980__ $$aARTICLE