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ABSTRACT

The electromagnetic and thermal properties of a double pancake coil made of second generation high tem-
perature superconductor, 2G-HTS, have been studied. The coil was wound with no-insulation between turns (NI
coil) and was later impregnated with epoxy resin and glued to a copper support plate. The coil was thermally
anchored to the cryocooler cold finger and cooled by conduction. After several thermal cycles no degradation of
its superconducting properties was observed.

The coil was operated under high vacuum and high currents (up to 400 A in steady conditions) at different
temperatures in the range between 5 K and 77 K, with special focus on the analysis above 30 K. The charge and
discharge characteristics, and the experimentally measured and numerically estimated critical currents, have
been studied. The different loss contributions during current ramp and the thermal contact conductance between
different parts of the double pancake coil have been measured. The implications of these two factors on the

thermal stability and the behaviour of the whole cryogenic system are discussed.

1. Introduction

Superconducting coils based on high temperature superconductors
(HTS) are of great interest for their possible use in electric power ap-
plications, such as superconducting generators, motors, magnetic en-
ergy storage systems, etc. [1-4]. Also they may offer important ad-
vantages compared to low-temperature superconducting (LTS) coils.
Some examples of traditional and well-established LTS applications are
resonance magnetic imaging, nuclear magnetic resonance and high-
energy particle accelerators. HTS would allow higher operating tem-
peratures or magnetic fields, eliminating the requirement of liquid
helium in certain commercial applications [5-7].

Superconducting magnets may suffer from quench during operation,
that is, the irreversible superconducting-to-normal transition of the coil,
which could cause a permanent damage if it is not appropriately han-
dled. No-insulated (NI) coils, without turn-to-turn insulation, have been
the subject of intense research in the last few years [8-15], especially
those based on second generation high temperature superconductors, 2G-
HTS. NI coils reach greater compactness than the standard ones, and are
more robust against thermal instabilities [16]. Thus, they would enable
safer operation at large currents, preventing possible coil degradation in
case of quench. On the contrary, they present a delay between the field
and the current ramp that can be a drawback for certain applications.
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Since HTS and MgB; coils are usually designed to operate at tem-
peratures above 20 K, they can be cooled by direct thermal contact with
the cryocooler cold head [10,13,14,17-20]. Thus, no liquid helium
would be needed, unlike traditional low temperature superconducting
magnets, although cryogen-free LTS working at 4-10 K [21,22] as well
as hybrid magnets [23-24] have also been built and tested. Achieving
high thermal conductance values between the cryocooler and the whole
system, including current leads and current contacts, is crucial.
Otherwise, thermal runaway can occur if the system is not sufficiently
thermalized. Since this is more critical for high operating currents, the
range of 100-200 A has been usually chosen for conduction-cooled HTS
magnets [10,13,14,17-19]. Nevertheless, due to the high price of the
HTS conductors, increasing the operating current even at the expense of
certain reduction in the operating temperature, would reduce the cost,
as less length of conductor would be necessary.

The aim of the present work is to analyse the superconducting be-
haviour of a 2G-HTS NI double pancake coil and its thermal stability
under conduction-cooling conditions. The coil has been energized with
high currents, up to around 450 A, and operated at variable tempera-
tures, focusing on intermediate temperatures between 30 K and 60 K.
The critical current values have been estimated numerically and com-
pared with the experimental values. The characteristic parameters of
the coil as a function of the temperature, such time constants during
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Table 1
Characteristics of the 2G-HTS tapes and double-pancake coil.

Conductor used 2G-HTS, SuperPower Inc
SCS4050-AP Ref. M4-180-4 0508

Width (w)/Thickness/Total length 4 mm/163 pym/14 m

Coil geometry Round, double pancake

Impregnation Stycast 1266 (after dry winding)
Insulation between turns Bare

Diameter inner/outer (Din/Dout) 67 mm/77 mm

Distance between pancake coils 1 mm

Number of turns 30 x 2

Magnetic field per ampere at centre 0.985 mT/A (Experimental)
1.035 mT/A (Simulation)
3.5 mT/A (Simulation)
0.386 mH (Experimental)

0.406 mH (Simulation)

Max. field per ampere in the winding
Inductance, L

charge and discharge tests, as well as the characteristic resistance of the
coil, have been analysed. The effect of thermal cycling in the super-
conducting and thermal properties of the coil has also been analysed.

2. Experimental
2.1. Characteristics of the double pancake 2G-HTS coil

A double pancake (DP) coil, without electrical contact resistance be-
tween both pancake coils, was manufactured using 2G-HTS conductors
provided by SuperPower Inc. The main characteristics of the used tape and
fabricated coil are collected in Table 1. The conductor has a critical current
I. = 124 A at 77 K and self-field. It has a width of 4 mm and a total
thickness of 163 pm (including the 50-um Hastelloy substrate and 110-um
total thickness of copper stabilizer). Each pancake coil has 30 turns and the
distance between the upper and lower coil is 1 mm. The coil was dry-
wound around a 304L stainless steel cylinder of 67 mm diameter and
0.3 mm thickness, which acts as mechanical support. No-insulation be-
tween turns was used. During winding, several thin copper sheets were
soldered to the HTS conductor to easily solder voltage taps and thermo-
couples after coil fabrication. Subsequently, it was impregnated with
Stycast-1266 epoxy resin, which has low viscosity. Stycast-2850 FT, which
has higher thermal conductivity and viscosity, was used to glue the DP coil
to a 2-mm thick copper plate and to fill the gap between both pancake
coils. The copper support plate was mechanically anchored to the second
stage of the cryocooler ensuring a good thermal contact between them.

The coil was instrumented using several voltage taps and two ther-
mocouples, as shown schematically in Fig. 1. The measured voltages are

TC-low

Lower coil

Upper coil

J f

Current leads
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named as follow. Vo, is the total voltage of the DP coil; Vi, and Vi,
the voltages of the lower and upper pancake coils, respectively. The
voltage of the innermost turn (#1) of the upper pancake coil, V.1, was
also measured to rule-out any possible damage during fabrication.

A Hall probe is installed at the centre of the DP coil to measure the
axial magnetic field, Bcenwe- TWo thermocouples, TC-up and TC-low,
were placed in the outermost turns of the upper and lower pancake coils,
respectively. Moreover, to measure the thermal contact conductance
between both pancakes and between the lower coil and the copper
support plate, a manganin heating wire with resistance of 5 Q was glued
to the top surface of the coil using GE varnish, as shown in Fig. 1(b).

2.2. Experimental set-up

An experimental set-up was developed to test superconducting de-
vices cooled by conduction at variable operating temperatures and
currents up to 500 A. The analysed devices are in high vacuum and
thermally anchored to the second stage of a cryocooler (SRDK-415D,
Sumitomo). The system enables variable operating temperatures, T,
from 5 K to 77 K, controlled by means of an additional heater and a
Lakeshore temperature controller.

The voltages between different taps of the coil and current leads, the
Hall probe and thermocouple signals were recorded using a data ac-
quisition device, which is controlled by a LabView program. Two
Agilent DC power supplies were used for these experiments, one pro-
vides maximum currents and voltages of 100 A and 20 V, and the other
of 875 Aand 5 V.

2.3. Current leads

Current leads, which connect room temperature (RT) to the coil,
were designed to work in vacuum at operating currents up to 400 A (in
steady conditions) and at 500 A (for pulses of several seconds). In order
to minimize the heat input into the superconducting device, each cur-
rent lead has three sections whose ends are connected by bolted joints
that are thermally anchored to three heat sinks per lead, HSO, HS1 and
HS2, as it is shown in Fig. 2(a). Electrical insulation is achieved by
coating the Cu with an alumina layer. HSO is thermally anchored to the
2nd stage of the cryocooler (cold finger) and HS1 to the 1st stage. The
coldest section of the current lead (between HS1 and HSO sinks) is a
commercial HTS current lead from HTS-110, made from 1st generation
HTS wires with an alloyed matrix used to minimise the thermal con-
ductivity. The other sections were fabricated with copper. A small li-
quid nitrogen (LN) vessel was built inside the cryostat to add some extra

(b)

Current

Copper plate leads

Fig. 1. (a) Scheme of the voltage tap positions and thermocouples within the double pancake coil (only few turns are drawn for clarity purposes). Both points
connected by the discontinuous line in this drawing correspond to the same point in the real DP coil. The voltage of the total coil, Vcor, was measured with taps a and
b; voltages of the upper (Vy,;,) and lower (Vi) pancake coils with taps d-b and a-c, respectively. Vy.; (d-e) is the voltage of turn #1 (the innermost turn) of the upper
coil. (b) Schematic 3D view of the DP coil with the heater glued at the top surface of the coil.
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refrigeration power, since the cooling power of the used cryocooler is
not sufficient to achieve temperatures below 70-77 K in the 1st stage,
for currents of 500 A. Note that the theoretical minimum heat input
value of a metal current lead between 300 K and 77 K in vacuum
conditions is = 0.04 W/A (per lead) [25]. The sink HS2 is in thermal
contact with the LN vessel, bolted to the outer surface of the bottom of
the vessel, i.e. it is neither immersed in the liquid nor cooled by in-
terchange gas.

Considering Ekin predictions [25] and using finite element software
COMSOL, the current leads were optimised for steady operating cur-
rents of 400 A. The warmer section of each current lead consists of a
copper cylinder (25 cm length, 1 cm diameter) soldered to a copper
braided wire (13 cm length, 25 mm? cross sectional area), which ends
in HS2. The part between HS2 and HS1 is a Cu braided wire of 30 cm
length and 25 mm? section. At 400 A, the estimated heat inleak values
into the heat sinks HS2 and HS1 are 14.7 W and 5 W, respectively, per
lead. Moreover, the numerically calculated heat loads in each lead due
to ohmic losses are 15 W (in the lead section between RT and HS2), and
3.5 W (between HS2 and HS1 heat sinks).

Different experiments were performed to test the current leads be-
fore measuring the superconducting coil. Fig. 2 shows the time evolu-
tion of voltages in the current lead copper sections and temperatures
T1(t), and T»(t), measured in the lead at the thermal joints to HS1 and
HS2, respectively, for different values of the applied current ranging
from 10 A to 400 A. It is observed that the system achieves steady
conditions, although the equilibrium in the section between HS2 and
HS1 is reached considerably faster than in the warmer section (between
RT and HS2). The larger temperature differences between this lead
section ends, together with the greater copper mass and the higher heat
capacity of the warmer section, explain this behaviour. Therefore, this
would be the most critical part of the current lead. The smooth evo-
lution of T,(t) for all applied currents contrasts with the oscillations of
T1(t), which might be due to refrigeration fluctuations of the cryocooler

compressor. These fluctuations were not observed in the second stage
and do not affect the thermal stability of system. The current is kept
constant by the power supply.

At equilibrium conditions, the measured heat loads due to ohmic
losses at 400 A were 17.5 W per lead (in the section between RT and
HS2) and 4.8 W (between HS1 and HS2). These values are of the order
but systematically higher than the numerical predictions, probably due
to underestimations of the electrical contact resistances between the
different sections of the lead. The values of the thermal contact con-
ductance of the electrically insulated joints at the heat sinks, h;, have
been estimated as:

_1Q

N €h)

where Q is the numerically calculated total heat inleak into the heat
sink, AT is the measured temperature difference across the thermal joint
in steady state conditions, and A, is the contact area of the joint. We
have obtained values of h; ~ 850 and 1800 W m~2 K~! for HS1
(Ac = 20 cm?) and HS2 (A, = 17 cm?), respectively.

3. Results and discussion
3.1. Charge and discharge tests

Charge and discharge tests of the coil have been performed at op-
erating temperatures from 5 K to 77 K and currents well below I.. A
typical test at two different current ramp rates (10.3 A/s and 3.4 A/s) is
displayed in Fig. 3. Once reached the set current of 98 A, it was kept
constant during several seconds and, subsequently, switched-off
(sudden discharge).

The electrical behaviour of the NI coil has been modelled [9] by a
simple equivalent circuit consisting of two impedances in parallel, and
thus the applied current, I(t), divides in two paths: One carries the
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Fig. 3. Charge and discharge tests of the NI coil at 30 K, up to 98 A, for two
different charging rates (10.3 and 3.4 A/s): (a) Applied current, I(t), axial
magnetic field at the coil centre, Beenwe(t), and estimated I,(t) and I,(t) curves.
(b) Coil voltage Vcon.(t) measured during the experiment. Note that the scale
has been cut-off for better observation of the voltage during charge.

current along the spiral conductor path, I, (), and its impedance is
given by the coil self-inductance, L, in series with a current-variable
resistance, R,(I,). The other is the equivalent resistance, R,, which
would be mainly determined by the turn-to-turn electrical contacts and
carries the current in the radial direction of the coil, I,(t). The Kirchhoff
and charge conservation laws relate the parameters of the equivalent
circuit to I(t) and the coil voltage, Vcor(t), by Egs. (2)-(3). Due to the
axial symmetry of the coil, I(t) does not contribute to the magnetic
field, and, in consequence, the magnetic field is proportional to I, Eq.
(4). The constant k is fixed by the geometry of the coil and does not
change with temperature.

B _dI(0)

VCOIL(t) = RrIr(t) =L dt + ch (I¢)I¢([) (2)

I(6) = L() + I (8) 3
— Bcemre(t)

0= @

The current dependence of R,(I,) is caused by current sharing be-
tween the thin superconductor layer and the metallic components of the
2G-HTS tape conductor. It takes into account the non-linear I-V beha-
viour of the superconductor and the ohmic resistance of the metallic
components [8,9].

According with these equations, k was firstly determined experi-
mentally from the magnetic field at the coil centre, Becpyre, measured at
constant current and steady conditions (I, = I), obtaining k = 0.985(5)
mT/A for the analysed DP coil. I,(t) was derived from Eq. (4); and I.(t)
using Eq. (3). Finally, from I,(t) and I.(t), the values of L and R, can be
estimated from the experimental Vo () values using Eq. (2).

The Beentre(t), I(t) and Vo (t) curves directly measured, and I,(t)
and L(t) currents derived from the above equivalent circuit equations,
are displayed in Fig. 3. The higher the current ramp rates, the larger the
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maximum values of I(t), in consonance with longer time delays be-
tween I(t) and Beene(t). For these conditions, the maximum I, values
were 9 A and 3 A for 10.3 A/s and 3.4 A/s, respectively. Moreover,
values of L = 0.386 mH and R, = 0.44 mQ were estimated at 30 K.
During the linear ramp, after a transient, Vcor(t) becomes constant,
with values increasing proportionally with the applied current ramp
rate. When the set current is reached, after a similar transient time,
Beentre(t) becomes constant and Vcop(t) zero, indicating that all the
current flows through superconducting paths, with the entire coil below
L.

The sudden switch-off of the applied current, which has a char-
acteristic time constant of about 10 ms, produces an exponential decay
of Beentre(t) with much larger time constants, 7 = 860 ms at 30 K. It also
produces sharp negative peaks of the coil voltage (Vcon, = —60 mV in
this case) and turn-to-turn flowing current inverse to I,
I, = —I, = —98 A), followed by an exponential relaxation (Fig. 3). In
these conditions, the sudden coil discharge produced a temperature rise
of = 0.5 K (measured by the thermocouple TC-up).

For further analysis of the adequacy of the used equivalent circuit, it
is interesting to evaluate the electric energy loss, Qioss(t), given by:

Quoss () = Qin (£) — Qm (1) 5)

where Q;,(t) is the energy supplied to the coil from the beginning of the
current ramp (¢t = 0) to the time t; and Q,(t) is the magnetic energy
stored in the coil at time t:

Qn(® = [ Veon (IOt ©

_1/p
Qu(®) = JLE(®) -
Moreover, the energy dissipated by the currents flowing in the ra-
dial direction during the ramp is estimated by:

Q0= [ owd= [ RO .

Fig. 4 shows Qioss(t), Qin(t), Qm(t) and Q.(t), calculated using Egs.
(5)-(8) from the measurements at 30 K, ramp rate of 10.3 A/s up to 98
A, already displayed in Fig. 3. It is worth mentioning the good corre-
spondence between Qss(t) and Q.(t). This behaviour, which was also
observed for ramp rate of 3.4 A/s, indicates that the main energy loss
contribution during charging is due to the turn-to-turn current, whereas
the magnetization loss [26] is negligible for these conditions. The
electric energy loss during the whole ramp up to 98 A decreases from
0.3 J (for 10.3 A/s) to 0.11 J (for 3.4 A/s). The power losses due to turn-

25 100
20 [ 7 80
3> 15 | ~60 _
e | —aQ, | =
w 1.0 = __Qm -1 40

r loss 4
[ ——Q

05 [ r — 20
i /

0.0 b ————————— 0
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Fig. 4. Total energy supplied to the coil at 30 K, Q;,(t), energy loss, Qjoss(t),
magnetic energy stored in the coil, Q,,(t), and energy dissipated by the currents
flowing in the radial direction, Q.(t), when the current is linearly ramped up to
98 A at 10.3 A/s, calculated using Egs. (5)-(8) from the experimental results in
Fig. 3.



A. Cubero, et al.

i 4 7 *—R ] 080
T om. & L/R r )
4 - r ,®

—~ 09 [ e Joro 4
L [ ‘> @
o / @,
(3 [72]
€ o8 [ / &
S S s® - 0.60 §
8 -.___. . Ve @
8 o7 [ oA By
[0 P . —
= s . Jo0s0 3
= o6 [ e e ]

. ]

-7 [ 2% 1 0.40

05 ®~ -

L P P PR B i P P T S NS T S N Y

0 10 20 30 40 50 60 70 80

T(K)

Fig. 5. Temperature dependence of the exponential decay time constant, z, of
the magnetic field, B, in case of sudden discharges of the coil; equivalent radial
resistance, R,, estimated experimentally during coil charging; and corre-
sponding L/R, values for I < I.. Dashed and dotted lines are 2nd order poly-
nomial fits to guide the eye.

to-turn current, Q,, reach maximum values of 36 mW (for 10.3 A/s) and
4 mW (for 3.4 A/s) during the same ramp. The balance between the
electric power loss and the conduction cooling power results in a small
temperature increment of 0.1 K (measured by TC-up) at the end of the
current ramp up to 98 A for the rate of 10.3 A/s, but no temperature
increase was measured for 3.4 A/s. This is the reason why the latter was
chosen to estimate experimentally the critical current of the coil, as it
will be seen in Section 3.3.

The time constant 7(T) obtained from the magnetic field decay for
sudden discharges of the coil at different temperatures is plotted in
Fig. 5, together with the equivalent resistance R.(T) and the L/R.(T)
ratio estimated from Egs. (2)—(4). Since the experimentally obtained L
values are almost constant between 5 K and 77 K (L 0.386
mH, = 2%), the temperature variation of the characteristic time con-
stant z(T) is only due to R,(T). Note that R(T) almost doubles from 5 K
to 77 K, in good agreement with the reported temperature dependence
of electric contact resistance between two single 2G-HTS tapes [27].

From the deduced equivalent resistance in the radial direction R,, it
is possible to estimate the turn-to-turn electrical contact resistance, R,,
assuming that this is homogeneous for all turns, so that:
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where N is the number of turns of each pancake, r; is the radius of i-turn
and w is the tape width. At 77 K, the obtained R, = 0.74 * 0.01 mQ,
would then correspond to R, = 110 pQ cm?.

The values of R, for NI coils would depend on many factors, such as
the tape surface condition (oxidation and roughness), the use of metal
cladding between turns, the resin impregnation or the winding tension
[9,11,13,26,27]. At 77 K, reported R, values typically range between 10
and 100 pQ cm?. The estimated value obtained in this work is thus in
this range, but in the upper bound, probably due to the use of Stycast
after winding, although this does not alter significantly the behaviour
observed for non-impregnated coils.

3.2. Numerical estimation of the coil critical currents at different
temperatures

For design purposes, as well as to prevent damaging the coil during
testing, it is very useful to have an estimation of the expected critical
currents of the coil at different temperatures. The load-line method has
been commonly used in LTS coils to calculate their critical current [28].
This method compares the calculated maximum magnetic field in the
winding at different operating currents, with the I.-B isotherms mea-
sured in a single conductor. By plotting these values together, the
crossing points would give the coil’s critical current value at each
temperature. In case of HTS, this procedure is not as straightforward as
in LTS. This is because critical current of HTS does not only depend on
the magnitude of the magnetic field, B, but also on the orientation of
this field with respect to the tape surface, 6. Moreover, I.(0) depends on
temperature and field [29].

Different methods have been proposed to estimate the critical cur-
rent of HTS coils [29-31]. In this work, we used a method similar to the
so-called “modified load-line method” in [31], which takes into account
the anisotropy of the superconductor. As for the conventional load-line
method, the first step is to calculate the magnetic field inside the
winding for a given applied current, I, assuming that the current dis-
tributes uniformly in the winding. Fig. 6(a) shows the magnetic flux
lines and the field amplitude inside the winding calculated for I = 475
A. As it is observed in the figure, for a particular turn (fixed x value),
the amplitude and orientation of the magnetic field vary significantly
along the z direction, i.e. along the width of the tape. The field gradient
across the tape thickness, d, was not considered here because, due to the
geometry of these conductors (d < w), it would be much less relevant.
For each turn, B(z) and 6(z) curves can be obtained from Fig. 6(a) for a

R =2 ZN R given operating current. With these data and by using the dependence
=1 2w ) on (B,6,T) of the critical current per unit width, I./w, previously
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measured in a similar short sample (SuperPower Inc, SCS4050-AP, M4-
134-3) [32], the local (I./w)(z) values can be calculated for each turn.
The integration of these values along the width of the tape would give
an estimation of the critical current of each turn, I. .. Note that this
assumption is an approximation to the critical state model behaviour.
This process is repeated for different current values. Analogously to the
standard load-line method, the minimum of all I, values, coincident
with the applied current, would give the critical current of the coil.

Fig. 6(b) shows the calculated critical currents of several turns at
temperatures of 30 K and 60 K and applied currents I = I. = 475 A and
173 A, respectively. It must be remarked that in both cases the inner-
most turns limit the critical current of the coil. This is because this
region has the lower local critical currents, whereas the coil zone
around turn number 20 has the highest critical current, which coincides
with the lowest magnetic field region. Similar behaviour has been ob-
served experimentally in single pancake coils fabricated with similar
coated conductors [33]. As it can be seen in the figure, the distribution
of local critical currents inside the winding depends on the temperature,
because so does I.(B,0). It is worth mentioning that although for self-
field conditions, as considered here, the innermost turns become typi-
cally critical before the rest of the coil, this is not always the case for
2G-HTS coils due to the relevance of the specific I.(B,6) behaviour of
the used tape [31]. The validity of the assumptions used in the mod-
eling will be discussed further below.

3.3. Experimental critical currents of the DP coil at different temperatures

To estimate experimentally the critical current of the coil, the current
was ramped up at rates of 3.0 or 3.3 A/s up to a set value, held constant
for several seconds and subsequently set to zero. The voltages in different
regions of the coil were measured during these experiments, which were
performed at different temperatures from 70 K down to 30 K. At each
temperature, several current ramps were applied. The maximum current
of the ramp was increased progressively in different runs. If the ramp
current exceeds the local critical current in any part of the winding, a
significant increase in the coil voltage will be measured. In this case, a
resistive component of the coil voltage will be seen when the current is
held constant after the ramp, unlike the purely inductive behaviour ob-
served in Fig. 3(b) when the applied current is well below I..

As an example of this behaviour, Fig. 7 displays the obtained results
when ramping the current up to 159 and 447 A, at 60 K and 30 K,
respectively. The figure shows the applied current; the magnetic field at
coil centre; the voltages Vip(t), Viow(t) and Vy.1(8); and temperature Ty,
(t), measured by the thermocouple placed in the upper coil.

As it is seen in Fig. 7(b) and (f), when ramping-up the current, the
voltages measured in the upper and lower coils have initially an in-
ductive component (with almost constant values of about 0.6 mV). But
once reached a certain current value during the ramp, voltage Vypy(t)
increases significantly, indicating that the applied current has exceeded
the local critical current in this part of the coil. These resistive signals
can be easily visualised when the current is held constant after the
ramp. In the conditions of Fig. 7, resistive signals were observed in fact
in both pancakes, but with Vy, always considerably higher than Vi,
which indicates that the upper coil has lower critical current than the
lower one. For example, at 60 K and 159 A, Vi, = 280 pV and
Viow = 25 uV were measured (Fig. 7(b)). Besides, the voltage of the
innermost turn of the upper coil, Vy.1(t), also shows a transition to the
resistive regime during the ramp, with Vy; = 31 pV after the ramp
(Fig. 7(c)), which is significantly smaller than Vy,. This indicates that
several turns are above their local I. values, especially at low tem-
peratures, which is in agreement with numerical estimations of
Fig. 6(b), showing several turns with similar I. ., in the inner part of
the coil. Note that at 60 K, there was a small irregularity in the current
ramp linearity at t = 54.4 s, which produced an additional inductive
contribution in the voltages, without further consequences.

Fig. 7(d) and (h) shows the time evolution of the temperature Typ(t)
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during the experiments at 60 K and 30 K, respectively. In the first case,
the temperature remains constant during most of the current ramp, but
begins to increase in the later stages of the ramp and continues rising
when the current is kept constant. The appearance of resistive losses
when current exceeds the local critical current caused a coil tempera-
ture increment ATy, =~ 0.3 K during the entire experiment. Note that
the increase of Ty, (t) finishes at the beginning of coil discharge, with a
delay of about 4-6 s, which is also observed in the experiment at 30 K.
At 30 K, there is no appreciable temperature increase in the initial
stages of the ramp (t < 55s,I < 150 A), but later the temperature
starts rising and reaches ATy, =~ 0.3 Katt = 1355 (I = 420 A). Finally,
Typ, increases sharply, and so does Vyy,. In order to further analyse the
behaviour of the coil at 30 K, Fig. 8 shows the time dependence of the
total energy provided to the coil during the ramp, Q;,(t), together with
other relevant energy curves, Qoss(t), Qum(t) and Q.(t), calculated using
Egs. (5)—(8). In this case, it is clearly seen that Q.s(t) is higher than the
turn-to-turn loss contribution, Q,(t). For example, at the end of the
current ramp Qoss = 2.75 J while Q, = 0.46 J. As it is shown in the
inset of Fig. 8, this is because the loss power produced in the super-
conducting tapes, Qy., becomes relevant for these conditions, where:

dI, (1)

Qe (1) = (VCOIL ®-L )Iq, () = ReU)I (1)

10

For the slow current ramp used here, this loss power component
becomes increasingly relevant upon increasing the current. For I < I,
this term gives the losses produced in the superconductor, which is
subjected to variable current and variable magnetic field during the
ramp. When the current is close or exceeds the critical current, the
resistive contribution of the metallic elements of the tapes is added
[26]. On the contrary, Q; remains almost constant ~ 4 mW during the
ramp. This would explain the coil heating observed in Fig. 7(h), in
contrast with the case analysed in 3.1, when at the same temperature
and ramp rate, but with applied currents well below the critical current
of the coil, the temperature of the coil remained constant.

As expected, at 30 K the heating of the coil is more important than
at 60 K. This is caused by several factors. In one hand, at 30 K the
applied currents are much higher than at 60 K (with similar coil vol-
tages). On the other hand, upon decreasing the temperature, the heat
capacity decreases and the absolute thermal resistance increases, as it
will be further analysed in the next section. Nevertheless, it must be
remarked that resistive coil voltages above 250 uV and high applied
currents were held for several seconds without triggering a quench.

Critical currents of superconductors are usually defined using the
1 pV/cm criterion. However, due to the uneven magnetic field dis-
tribution inside the coil, it should be preferable to use more restrictive
criteria to define I. [30,31], otherwise some regions may be well below
their local I, while others can withstand high voltages, which can cause
local hot spots and, eventually, produce irreversible damage to the coil.

Fig. 9 compares the coil critical current values obtained experi-
mentally using the 0.1 pV/cm criterion and the I.(T) values estimated
with the modified load-line method explained in Section 3.2. It is worth
noting the good correspondence between experimental and estimated
values, with almost identical temperature dependence but with ex-
perimental values about 10% lower than numerical estimations. Some
of the assumptions considered in the model could explain the observed
differences: i) The current was assumed uniformly distributed in the
winding, but in reality the differences of I./w(z) would produce a re-
distribution of the current across the tape’s width, which would then
affect the magnetic field distribution in the winding [31]. ii)) The I.
(B,0)/w dependence was assumed to be independent of w. iii) In the
numerical calculation, the lift factors, I.(T,B,60)/1.(77 K,self-field), have
been obtained from experimental results measured in a different short
sample [32]. That tape corresponds to the same type (SCS4050-AP) and
was produced in the same reactor (M4), as the conductor used in this
work. Nevertheless, several groups have reported differences among
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Fig. 7. Applied current, I(t), magnetic field at the coil centre, Bcenee(t); voltages measured in both pancake coils (Vyp(t) and Vi 4w (t)) and in the innermost turn of the
upper pancake coil (Vy.1); and temperature Ty,, measured by the thermocouple TC-up (placed in the upper coil). Figs. (a)-(d) correspond to measurements at
T = 60 K and current ramp rate of 3 A/s up to 159 A; (e)-(h) at T = 30 K and current ramp rate of 3.3 A/s up to 447 A.

identical nominal commercial tapes [34-36], which could be attributed
to pinning centre density variations [36]. Therefore, the used I.(B,0)/w
dependence can only be considered as typical but not universal.

3.4. Effect of thermal cycling and thermal properties

2G-HTS coils may suffer certain degradation of their super-
conducting properties if delamination of the tapes during thermal cy-
cling occurs [37]. To analyse this effect, the coil voltage during current
ramping above I. was measured after subjecting the coil to a number of
thermal cycles (N¢ycies) between 300 K and cryogenic temperatures.

Fig. 10 shows the upper coil voltage Vy,(t) at 60 K for identical
linear current ramps up to 159 A at 3 A/s, after 3, 4 and 5 thermal
cycles. The resistive voltage at 159 A increased from 280 pV to 390 uv
from the third to the forth cycle, which in principle may indicate certain
deterioration of the coil. Nevertheless, when heating up the system after
this measurement, it was observed that the epoxy that joined the coil to
the copper support plate was partially separated from the copper plate.
Therefore, the coil and copper plate were reglued. When the system was
subsequently cooled (N¢ycies = 5), the measured resistive voltage Vy,
decreased down to about 210 pV at the same conditions (see Fig. 10).

Therefore, this indicates that the differences in the measured resistive
voltage upon thermal cycling were not due to the coil degradation but
to the inadequate epoxy adhesion to copper.

To analyse the properties of the thermal contact between the dif-
ferent parts of the DP coil, a constant power Qpeater = 0.1 W was ap-
plied to the heater glued to the uppermost surface of the coil (see in
Fig. 1(b)). As seen in Fig. 11, this produces an increase of the tem-
peratures in the upper, Typ(t), and lower, Tiow(t), pancake coils. The
temperature in the copper support was maintained constant by a tem-
perature controller (see 2.2), so that all the system eventually reaches a
steady state.

Thus, the absolute thermal resistance between the lower coil and
the copper plate can be estimated as Rinow-cu) = ATrow-co/OQheater, With
ATiowcu = Trow — Tcu at the steady state. Similarly, the absolute
thermal resistance between the upper and lower coils Reup-
Low) — ATUp-Low/Qheater with ATUp»Low = TUp — Trow- The obtained
values Rinow-coy = 7.6 K/W and Rgwup-rowy = 4.3 K/W at 60 K; in-
crease to 12.6 and 5.9 K/W, respectively, at 30 K.

The corresponding thermal contact conductance values of the joint
between the lower coil and the copper plate, h; can be estimated using
Eq. (1). In this case Q = Qpeater = 0.1 W, AT = ATiow.cy and A, =



A. Cubero, et al.

__0.12] iPower loss (W)
0.10] r
40 L
1 0.08] 7" "7
’
0.06] /
0.04 Q ’ I
3O_~ s SN i
s 002 i &
~ ¥ -
& 0.001- -
5 S — 7
5 27 0 20 40 60 80 100 120 140 160 7 ~——Q I
time (s) in
10 -
0 [
T T T T T T T
0 20 40 60 80 100 120 140 160
time (s)

Fig. 8. Total energy supplied to the coil, Q;,(t), energy loss, Qoss(t), magnetic
energy stored in the coil, Q,(t), and energy dissipated by the currents flowing in
the radial direction, Q.(t), calculated from experiments at 30 K, current ramp up
to 447 A at 3.3 A/s. The inset shows the power loss contributions Q; and Q. for
the same experiment. The vertical dotted lines in the inset marks the beginning
and the end of the current ramp.

500 —mm———————— 1
I " ]
I —e— experimental | |
400 |- ----®--- simulation i
< : ]
3 : :
o 300+ -
< I |
= i J
O L 4
= 200 ]
100 [ ]

PR S T S N ST S SR AN SN S SN T (NN SN SN SO S T SR SR SR SN NN T S S

20 3 40 50 60 70 80
T(K)

Fig. 9. Critical current of the DP coil obtained experimentally (using a 0.1 uv/
cm criterion) compared with the estimated values using the modified load-line
method explained in 3.2.

U(Doui® — Din2)/4 = 11.3 cm?, and thus, we obtain values of h; =116.3
and 70.2 W m~2 K™! at 60 K and 30 K, respectively. There are many
factors that influence h;, such as copper surface preparation, thickness
and type of epoxy, area of the joint, etc. [38]. Nevertheless, considering
the value of ; = 500 W m~2 K~ at 10 K reported for Cu/epoxy/Cu
joints by other authors [38,39] (for A. = 1 cm?, epoxy SC5 and epoxy
thickness of 80 um), and the values obtained here for the electrically
insulated thermal joints at the current lead heat sinks in Section 2.3,
there is considerable scope for enhancing this thermal joint.

4. Conclusions

The thermal stability, thermal cycling and electromagnetic beha-
viour of a non-insulated (NI) conduction-cooled double pancake (DP)
2G-HTS coil have been studied between 5 K and 77 K, focusing on the
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Fig. 11. Evolution of temperatures Typ(t) and Ty,w(t) when applying constant
heating power Qpeaer = 0.1 W to the uppermost surface of the coil, and with
the copper plate maintained at 60 K. Points correspond to experimental values
and the continuous lines to exponential fits that give ATjow.cu = 0.76 K and
ATyp.row = 0.43 K at the steady state.

analysis above 30 K. The DP coil was operated at high currents, both
above and below the coil critical current, and in high vacuum condi-
tions. The coil was epoxy impregnated after winding and subsequently
glued with an epoxy resin to a copper support plate, which was an-
chored the second stage of a cryocooler.

The thermal stability of the whole cryogenic system was analysed,
with especial attention to the behaviour of current leads, which were
designed with two intermediate heat sinks. The electrically insulated
thermal joints of the heat sinks, which have high thermal contact
conductance (h; = 1800 and 850 W m 2K 'at = 80Kand = 35K,
respectively) provides the necessary thermal stability to the system.

Charging and discharging tests of the coil have been performed and
analysed using a simple equivalent circuit to estimate the contributions
of turn-to-turn and magnetization losses during the ramp, for different
ramp rates, obtaining good correspondence with the observed coil
heating. The derived turn-to-turn contact resistance R, = 110 uQ cm? at
77 K and about half at 5 K, are of the order but in the upper bound of
results reported by other groups in similar non-insulated 2G-HTS coils
without epoxy resin impregnation.

A good correspondence between the experimental coil critical
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currents and the estimated values, using a modified load-line method to
account for the tape anisotropy, were found between 30 K and 70 K
with almost identical temperature dependence, but experimental values
=10% lower.

At 30 K, with applied overcurrents (currents above I.) of 447 A that
gave coil resistive voltages above 250 uV, it was possible to hold the
system for several seconds without triggering a quench. Moreover, the
coil was subjected to several thermal cycles from 300 K to the cryogenic
operating temperatures without observing degradation of its super-
conducting properties, indicating the electro-thermal robustness of the
NI manufacture.

Several experiments were performed to analyse the thermal contact
between the different parts of the DP coil (i.e., copper support plate,
and lower and upper coils). It was found that the joint between the coil
and the support plate constitutes the weak-point of the coil system. This
was due to an inadequate adhesion between copper and epoxy, and
needs further work.
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