000089682 001__ 89682
000089682 005__ 20210902121657.0
000089682 0247_ $$2doi$$a10.1186/s13071-020-04053-x
000089682 0248_ $$2sideral$$a117807
000089682 037__ $$aART-2020-117807
000089682 041__ $$aeng
000089682 100__ $$aCuéllar, A.C.
000089682 245__ $$aModelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning
000089682 260__ $$c2020
000089682 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089682 5203_ $$aBackground: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. Methods: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. Results: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. Conclusions: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.
000089682 536__ $$9info:eu-repo/grantAgreement/EUR/EMIDA ERA-NET VICE/314-06.01-2811ERA248
000089682 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089682 590__ $$a3.876$$b2020
000089682 591__ $$aTROPICAL MEDICINE$$b3 / 23 = 0.13$$c2020$$dQ1$$eT1
000089682 591__ $$aPARASITOLOGY$$b8 / 38 = 0.211$$c2020$$dQ1$$eT1
000089682 592__ $$a1.403$$b2020
000089682 593__ $$aParasitology$$c2020$$dQ1
000089682 593__ $$aInfectious Diseases$$c2020$$dQ1
000089682 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089682 700__ $$aKjær, L.J.
000089682 700__ $$aBaum, A.
000089682 700__ $$aStockmarr, A.
000089682 700__ $$aSkovgard, H.
000089682 700__ $$aNielsen , Sø.A.
000089682 700__ $$aAndersson, M.G.
000089682 700__ $$aLindström, A.
000089682 700__ $$aChirico, J.
000089682 700__ $$aLühken, R.
000089682 700__ $$aSteinke, S.
000089682 700__ $$aKiel, E.
000089682 700__ $$aGethmann, J.
000089682 700__ $$aConraths, F.J.
000089682 700__ $$aLarska, M.
000089682 700__ $$aSmreczak, M.
000089682 700__ $$aOrlowska, A.
000089682 700__ $$aHamnes, I.
000089682 700__ $$aSviland, S.
000089682 700__ $$aHopp, P.
000089682 700__ $$aBrugger, K.
000089682 700__ $$aRubel, F.
000089682 700__ $$aBalenghien, T.
000089682 700__ $$aGarros, C.
000089682 700__ $$aRakotoarivony, I.
000089682 700__ $$aAllène, X.
000089682 700__ $$aLhoir, J.
000089682 700__ $$aChavernac, D.
000089682 700__ $$aDelécolle, J.C.
000089682 700__ $$aMathieu, B.
000089682 700__ $$aDelécolle, D.
000089682 700__ $$aSetier-Rio, M.L.
000089682 700__ $$aScheid, B.
000089682 700__ $$aChueca, M.Á.M.
000089682 700__ $$aBarceló, C.
000089682 700__ $$0(orcid)0000-0003-0663-8411$$aLucientes, J.$$uUniversidad de Zaragoza
000089682 700__ $$0(orcid)0000-0002-6279-0453$$aEstrada, R.$$uUniversidad de Zaragoza
000089682 700__ $$aMathis, A.
000089682 700__ $$aVenail, R.
000089682 700__ $$aTack, W.
000089682 700__ $$aBødker, R.
000089682 7102_ $$11009$$2773$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Sanidad Animal
000089682 7102_ $$11009$$2X$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cProy. investigación HRA
000089682 773__ $$g13 (2020), 194  [18 pp.]$$pParasites & Vectors$$tParasites and Vectors$$x1756-3305
000089682 8564_ $$s16916445$$uhttps://zaguan.unizar.es/record/89682/files/texto_completo.pdf$$yVersión publicada
000089682 8564_ $$s40378$$uhttps://zaguan.unizar.es/record/89682/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089682 909CO $$ooai:zaguan.unizar.es:89682$$particulos$$pdriver
000089682 951__ $$a2021-09-02-09:10:51
000089682 980__ $$aARTICLE