OmniSCV: An omnidirectional synthetic image generator for computer vision
Resumen: Omnidirectional and 360º images are becoming widespread in industry and in consumer society, causing omnidirectional computer vision to gain attention. Their wide field of view allows the gathering of a great amount of information about the environment from only an image. However, the distortion of these images requires the development of specific algorithms for their treatment and interpretation. Moreover, a high number of images is essential for the correct training of computer vision algorithms based on learning. In this paper, we present a tool for generating datasets of omnidirectional images with semantic and depth information. These images are synthesized from a set of captures that are acquired in a realistic virtual environment for Unreal Engine 4 through an interface plugin. We gather a variety of well-known projection models such as equirectangular and cylindrical panoramas, different fish-eye lenses, catadioptric systems, and empiric models. Furthermore, we include in our tool photorealistic non-central-projection systems as non-central panoramas and non-central catadioptric systems. As far as we know, this is the first reported tool for generating photorealistic non-central images in the literature. Moreover, since the omnidirectional images are made virtually, we provide pixel-wise information about semantics and depth as well as perfect knowledge of the calibration parameters of the cameras. This allows the creation of ground-truth information with pixel precision for training learning algorithms and testing 3D vision approaches. To validate the proposed tool, different computer vision algorithms are tested as line extractions from dioptric and catadioptric central images, 3D Layout recovery and SLAM using equirectangular panoramas, and 3D reconstruction from non-central panoramas.
Idioma: Inglés
DOI: 10.3390/s20072066
Año: 2020
Publicado en: Sensors 20, 7 (2020), 2066 [25 pp.]
ISSN: 1424-8220

Factor impacto JCR: 3.576 (2020)
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 14 / 64 = 0.219 (2020) - Q1 - T1
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 26 / 83 = 0.313 (2020) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 82 / 273 = 0.3 (2020) - Q2 - T1

Factor impacto SCIMAGO: 0.636 - Analytical Chemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Biochemistry (Q2) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Instrumentation (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096903-B-100
Financiación: info:eu-repo/grantAgreement/ES/UZ/JIUZ-2019-TEC-03
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-07-28-11:57:37)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-06-16, última modificación el 2023-07-28


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)