000089733 001__ 89733
000089733 005__ 20210902121805.0
000089733 0247_ $$2doi$$a10.1038/s41467-020-14300-5
000089733 0248_ $$2sideral$$a118104
000089733 037__ $$aART-2020-118104
000089733 041__ $$aeng
000089733 100__ $$aDeSoto, L.
000089733 245__ $$aLow growth resilience to drought is related to future mortality risk in trees
000089733 260__ $$c2020
000089733 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089733 5203_ $$aSevere droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3, 500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
000089733 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2013-48843-C2-2-R
000089733 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089733 590__ $$a14.919$$b2020
000089733 591__ $$aMULTIDISCIPLINARY SCIENCES$$b4 / 73 = 0.055$$c2020$$dQ1$$eT1
000089733 592__ $$a5.559$$b2020
000089733 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2020$$dQ1
000089733 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000089733 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000089733 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089733 700__ $$aCailleret, M.
000089733 700__ $$aSterck, F.
000089733 700__ $$aJansen, S.
000089733 700__ $$aKramer, K.
000089733 700__ $$aRobert, E.M.R.
000089733 700__ $$aAakala, T.
000089733 700__ $$aAmoroso, M.M.
000089733 700__ $$aBigler, C.
000089733 700__ $$0(orcid)0000-0003-2436-2922$$aCamarero, J.J.
000089733 700__ $$aCufar, K.
000089733 700__ $$aGea-Izquierdo, G.
000089733 700__ $$aGillner, S.
000089733 700__ $$aHaavik, L.J.
000089733 700__ $$aHeres, A.M.
000089733 700__ $$aKane, J.M.
000089733 700__ $$aKharuk, V.I.
000089733 700__ $$aKitzberger, T.
000089733 700__ $$aKlein, T.
000089733 700__ $$aLevanic, T.
000089733 700__ $$aLinares, J.C.
000089733 700__ $$aMäkinen, H.
000089733 700__ $$aOberhuber, W.
000089733 700__ $$aPapadopoulos, A.
000089733 700__ $$aRohner, B.
000089733 700__ $$aSangüesa-Barreda, G.
000089733 700__ $$aStojanovic, D.B.
000089733 700__ $$aSuárez, M.L.
000089733 700__ $$aVillalba, R.
000089733 700__ $$aMartínez-Vilalta, J.
000089733 773__ $$g11 (2020), 545 [9 pp]$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000089733 8564_ $$s1708578$$uhttps://zaguan.unizar.es/record/89733/files/texto_completo.pdf$$yVersión publicada
000089733 8564_ $$s54144$$uhttps://zaguan.unizar.es/record/89733/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089733 909CO $$ooai:zaguan.unizar.es:89733$$particulos$$pdriver
000089733 951__ $$a2021-09-02-09:57:38
000089733 980__ $$aARTICLE