000089756 001__ 89756
000089756 005__ 20210902121714.0
000089756 0247_ $$2doi$$a10.3390/nano10050818
000089756 0248_ $$2sideral$$a117857
000089756 037__ $$aART-2020-117857
000089756 041__ $$aeng
000089756 100__ $$aSedelnikova, O.V.
000089756 245__ $$aLight-induced sulfur transport inside single-walled carbon nanotubes
000089756 260__ $$c2020
000089756 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089756 5203_ $$aFilling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor-acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.
000089756 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089756 590__ $$a5.076$$b2020
000089756 591__ $$aPHYSICS, APPLIED$$b35 / 160 = 0.219$$c2020$$dQ1$$eT1
000089756 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 106 = 0.481$$c2020$$dQ2$$eT2
000089756 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 178 = 0.309$$c2020$$dQ2$$eT1
000089756 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b103 / 333 = 0.309$$c2020$$dQ2$$eT1
000089756 592__ $$a0.919$$b2020
000089756 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000089756 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000089756 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089756 700__ $$aGurova, O.A.
000089756 700__ $$aMakarova, A.A.
000089756 700__ $$aFedorenko, A.D.
000089756 700__ $$aNikolenko, A.D.
000089756 700__ $$aPlyusnin, P.E.
000089756 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000089756 700__ $$aBulusheva, L.G.
000089756 700__ $$aOkotrub, A.V.
000089756 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000089756 773__ $$g10, 5 (2020), 818 [12 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000089756 8564_ $$s1693112$$uhttps://zaguan.unizar.es/record/89756/files/texto_completo.pdf$$yVersión publicada
000089756 8564_ $$s474775$$uhttps://zaguan.unizar.es/record/89756/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089756 909CO $$ooai:zaguan.unizar.es:89756$$particulos$$pdriver
000089756 951__ $$a2021-09-02-09:23:10
000089756 980__ $$aARTICLE