Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems

Tancogne-Dejean, N. ; Oliveira, M.J.T. ; Andrade, X. ; Appel, H. ; Borca, C.H. ; Le Breton, G. ; Buchholz, F. ; Castro, A. (Universidad de Zaragoza) ; Corni, S. ; Correa, A.A. ; De Giovannini, U. ; Delgado, A. ; Eich, F.G. ; Flick, J. ; Gil, G. ; Gomez, A. ; Helbig, N. ; Hübener, H. ; Jestädt, R. ; Jornet-Somoza, J. ; Larsen, A.H. ; Lebedeva, I.V. ; Lüders, M. ; Marques, M.A.L. ; Ohlmann, S.T. ; Pipolo, S. ; Rampp, M. ; Rozzi, C.A. ; Strubbe, D.A. ; Sato, S.A. ; Schäfer, C. ; Theophilou, I. ; Welden, A. ; Rubio, A.
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
Financiación H2020 / H2020 Funds
Resumen: Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).
Idioma: Inglés
DOI: 10.1063/1.5142502
Año: 2020
Publicado en: Journal of Chemical Physics 152, 12 (2020), 124119 [32 pp.]
ISSN: 0021-9606

Factor impacto JCR: 3.488 (2020)
Categ. JCR: PHYSICS, ATOMIC, MOLECULAR & CHEMICAL rank: 9 / 37 = 0.243 (2020) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 81 / 162 = 0.5 (2020) - Q2 - T2

Factor impacto SCIMAGO: 1.071 - Medicine (miscellaneous) (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Physical and Theoretical Chemistry (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/694097/EU/Quantum Spectroscopy: exploring new states of matter out of equilibrium/QSpec-NewMat
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-09:18:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-06-23, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)