000089770 001__ 89770
000089770 005__ 20210902121712.0
000089770 0247_ $$2doi$$a10.1039/d0ra00943a
000089770 0248_ $$2sideral$$a117879
000089770 037__ $$aART-2020-117879
000089770 041__ $$aeng
000089770 100__ $$0(orcid)0000-0002-0769-7168$$aAlegre-Requena, Juan V.
000089770 245__ $$aSulfonamide as amide isostere for fine-tuning the gelation properties of physical gels
000089770 260__ $$c2020
000089770 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089770 5203_ $$a(S)-2-Stearamidopentanedioic acid (C18-Glu) is a known LMW gelator that forms supramolecular gels in a variety of solvents. In this work, we have carried out the isosteric substitution of the amide group by a sulfonamide moiety yielding the new isosteric gelator (S)-2-(octadecylsulfonamido)pentanedioic acid (Sulfo-Glu). The gelation ability and the key properties of the corresponding gels were compared in terms of gelation concentration, gel-to-sol transition temperature, mechanical properties, morphology, and gelation kinetics in several organic solvents and water. This comparison was also extended to (S)-2-(4-hexadecyl-1H-1, 2, 3-triazol-4-yl)pentanedioic acid (Click-Glu), which also constitutes an isostere of C18-Glu. The stabilizing interactions were explored through computational calculations. In general, Sulfo-Glu enabled the formation of non-toxic gels at lower concentrations, faster, and with higher thermal-mechanical stabilities than those obtained with the other isosteres in most solvents. Furthermore, the amide-sulfonamide isosteric substitution also influenced the morphology of the gel networks as well as the release rate of an embedded antibiotic (vancomycin) leading to antibacterial activity in vitro against Staphylococcus aureus.
000089770 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E07-17R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2017-88091-P
000089770 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089770 590__ $$a3.361$$b2020
000089770 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b81 / 178 = 0.455$$c2020$$dQ2$$eT2
000089770 592__ $$a0.746$$b2020
000089770 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000089770 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000089770 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089770 700__ $$aGrijalvo, Santiago
000089770 700__ $$aSampedro, Diego
000089770 700__ $$aMayr, Judith
000089770 700__ $$aSaldías, César
000089770 700__ $$aMarrero-Tellado, José Juan
000089770 700__ $$aEritja, Ramón
000089770 700__ $$0(orcid)0000-0002-5244-9569$$aPérez Herrera, Raquel$$uUniversidad de Zaragoza
000089770 700__ $$aDíaz Díaz, David
000089770 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000089770 773__ $$g10, 19 (2020), 11481-11492$$pRSC ADVANCES$$tRSC Advances$$x2046-2069
000089770 8564_ $$s1225702$$uhttps://zaguan.unizar.es/record/89770/files/texto_completo.pdf$$yVersión publicada
000089770 8564_ $$s61201$$uhttps://zaguan.unizar.es/record/89770/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089770 909CO $$ooai:zaguan.unizar.es:89770$$particulos$$pdriver
000089770 951__ $$a2021-09-02-09:21:55
000089770 980__ $$aARTICLE