000089778 001__ 89778
000089778 005__ 20210902121659.0
000089778 0247_ $$2doi$$a10.3390/mi11030283
000089778 0248_ $$2sideral$$a117888
000089778 037__ $$aART-2020-117888
000089778 041__ $$aeng
000089778 100__ $$aHuber, C.
000089778 245__ $$aA multiparameter gas-monitoring system combining functionalized and non-functionalized microcantilevers
000089778 260__ $$c2020
000089778 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089778 5203_ $$aThe aim of the study is to develop a compact, robust and maintenance free gas concentration and humidity monitoring system for industrial use in the field of inert process gases. Our multiparameter gas-monitoring system prototype allows the simultaneous measurement of the fluid physical properties (density, viscosity) and water vapor content (at ppm level) under varying process conditions. This approach is enabled by the combination of functionalized and non-functionalized resonating microcantilevers in a single sensing platform. Density and viscosity measuring performance is evaluated over a wide range of gases, temperatures and pressures with non-functionalized microcantilevers. For the humidity measurement, microporous Y-type zeolite and mesoporous silica MCM48 are evaluated as sensing materials. An easily scalable functionalization method to high-throughput production is herein adopted. Experimental results with functionalized microcantilevers exposed to water vapor (at ppm level) indicate that frequency changes cannot be attributed to a mass effect alone, but also stiffness effects dependent on adsorption of water and working temperature must be considered. To support this hypothesis, the mechanical response of such microcantilevers has been modelled considering both effects and the simulated results validated by comparison against experimental data.
000089778 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089778 590__ $$a2.891$$b2020
000089778 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b23 / 64 = 0.359$$c2020$$dQ2$$eT2
000089778 591__ $$aPHYSICS, APPLIED$$b69 / 160 = 0.431$$c2020$$dQ2$$eT2
000089778 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b76 / 106 = 0.717$$c2020$$dQ3$$eT3
000089778 591__ $$aCHEMISTRY, ANALYTICAL$$b46 / 83 = 0.554$$c2020$$dQ3$$eT2
000089778 592__ $$a0.574$$b2020
000089778 593__ $$aControl and Systems Engineering$$c2020$$dQ2
000089778 593__ $$aMechanical Engineering$$c2020$$dQ2
000089778 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000089778 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089778 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000089778 700__ $$aMorales, J.J.
000089778 700__ $$aMehdaoui, A.
000089778 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000089778 773__ $$g11, 3 (2020), 283 [22 pp]$$pMicromachines (Basel)$$tMICROMACHINES$$x2072-666X
000089778 8564_ $$s1462296$$uhttps://zaguan.unizar.es/record/89778/files/texto_completo.pdf$$yVersión publicada
000089778 8564_ $$s505425$$uhttps://zaguan.unizar.es/record/89778/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089778 909CO $$ooai:zaguan.unizar.es:89778$$particulos$$pdriver
000089778 951__ $$a2021-09-02-09:13:02
000089778 980__ $$aARTICLE