000089811 001__ 89811
000089811 005__ 20220426091135.0
000089811 0247_ $$2doi$$a10.1111/1462-2920.15051
000089811 0248_ $$2sideral$$a118278
000089811 037__ $$aART-2020-118278
000089811 041__ $$aeng
000089811 100__ $$aWrobel, A.
000089811 245__ $$aThe inverse autotransporters of Yersinia ruckeri, YrInv and YrIlm, contribute to biofilm formation and virulence
000089811 260__ $$c2020
000089811 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089811 5203_ $$aYersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.
000089811 536__ $$9info:eu-repo/grantAgreement/EC/H2020/704903/EU/Bacterial Adhesion Control through Surface TArgeted Regulation/BAC-STAR$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 704903-BAC-STAR
000089811 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089811 590__ $$a5.491$$b2020
000089811 591__ $$aMICROBIOLOGY$$b30 / 136 = 0.221$$c2020$$dQ1$$eT1
000089811 592__ $$a1.954$$b2020
000089811 593__ $$aMicrobiology$$c2020$$dQ1
000089811 593__ $$aEcology, Evolution, Behavior and Systematics$$c2020$$dQ1
000089811 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089811 700__ $$aSaragliadis, A.
000089811 700__ $$aPérez-Ortega, J.
000089811 700__ $$aSittman, C.
000089811 700__ $$aGöttig, S.
000089811 700__ $$aLiskiewicz, K.
000089811 700__ $$aSpence, M.H.
000089811 700__ $$aSchneider, K.
000089811 700__ $$aLeo, J.C.
000089811 700__ $$0(orcid)0000-0002-8134-0693$$aArenas, J.$$uUniversidad de Zaragoza
000089811 700__ $$aLinke, D.
000089811 7102_ $$11009$$2773$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Sanidad Animal
000089811 773__ $$g22, 7 (2020), 2939-2955$$pEnviron. microbiol.$$tEnvironmental Microbiology$$x1462-2912
000089811 8564_ $$s527069$$uhttps://zaguan.unizar.es/record/89811/files/texto_completo.pdf$$yVersión publicada
000089811 8564_ $$s48640$$uhttps://zaguan.unizar.es/record/89811/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089811 909CO $$ooai:zaguan.unizar.es:89811$$particulos$$pdriver
000089811 951__ $$a2022-04-26-08:53:28
000089811 980__ $$aARTICLE