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Abstract: Grafting is the most used propagation method in viticulture and is the unique control
strategy against Phylloxera. Nevertheless, its practice remains limited mainly due to inconsistent
graft success and difficulties in predicting graft compatibility responses of proposed scion–rootstock
combinations, slowing down the selection of elite rootstocks. Aiming to identify optimal phenotypic
parameters related to graft (in)compatibility, we used four clones of two grapevine cultivars that
show different compatibility behavior when grafted onto the same rootstock. Several physiological
parameters, internal anatomy of the graft union, chlorophyll fluorescence, and pigment contents of
homo- and heterografts were monitored in a nursery-grafting context. The measurements highlighted
enhanced performance of the heterografts due to rooting difficulties of Vitis vinifera homografts.
This suggests that in viticulture, homografts should only be used as compatibility controls regarding
qualitative attributes. By observing the internal anatomy of the union, we found that grapevines
might require longer times for graft healing than anticipated. While Affinity Coefficients were not
informative to assess incompatibility, leaf chlorophyll concentration analysis proved to be a more
sensitive indicator of stress than the analysis of chlorophyll fluorescence. Overall, we conclude that
graft take correlated best with callus formation at the graft junction three weeks after grafting.

Keywords: Vitis; grapevine; grafting; graft incompatibility; graft success prediction; rootstock;
rootstock breeding; Richter 110; Syrah; Touriga Nacional

1. Introduction

Grafting is an ancient method for plant propagation and plant improvement. During recent
decades, the use of grafting expanded to commercially propagate horticultural crops [1] and it is
currently applied in orchards, greenhouses, and gardening. For grapevines, grafting represents the
longest use of a biological control strategy ever applied, as it saved and keeps saving viticulture
and the wine industry from the devastating effects of the soil-borne aphid Phylloxera (Daktulosphaira
vitifoliae Fitch). Since American vines showed resistance to “Phylloxera”, Vitis vinifera scions started
to be grafted onto American resistant rootstocks or their hybrids, and nowadays, more than 80% of
all vineyards worldwide are composed of heterografted Vitis species [2]. Although the use of grafted
crops is increasing, its practice remains limited mainly due to inconsistent graft success with variant
scion and rootstock species [3]. It has been reported that 39% of bench grafted vines are deemed
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defective at the nursery [4]. Consequently, nurseries are frequently required to double the production
of grafted vines to guarantee their contracts. Graft incompatibility can be defined as the failure to
form a successful graft union between two plant parts when all other requirements, such as technique,
timing, phytosanitary and environmental conditions are satisfied [5].

Both compatible and incompatible plants are defined in the graft research field in such that they
can be grafted and form a vascular connection [6]. Nevertheless, incompatible grafted plants do not
exhibit normal growth behavior and lifespans whereas compatible grafted plants demonstrate normal
growth behavior. Measurements for the degree of (in)compatibility are often based on graft success
rates or other sometimes not well defined physiological and morphological indicators. In general,
compatibility measurements include indicators related to growth behavior and stress symptoms. All of
these can be displayed immediately or delayed and in some cases, they can take as long as 20 years to
manifest, as seen in conifers and oaks [7]. Although it is believed that the likelihood of graft success
is higher when scion and rootstock are closely related or of the same species, graft compatibility
between scion and rootstock can vary greatly even between related species and grapevine clones [5].
Inline, predictive and standardized measurements to evaluate compatibility levels would be useful for
breeders when considering the use of a rootstock with a specific graft combination [3], particularly in
the case of new genotypes under selection with unknown grafting properties [8–10]. Indeed, to release
a new grapevine rootstock into the market, several traits need to be evaluated including “Phylloxera”
and nematode resistance, salt and drought tolerance, and last but not least, graft compatibility with
scion species need to be assessed [11].

Considering that grapevine breeding has generation cycles that may last 25 years [12], it is obvious
how incompatibility could impede the effort of breeding programs, slowing-down the selection of elite
genotypes. Despite the importance of grafting and high graft success rates for many crop plants and its
unavoidability in grapevine propagation, surprisingly little is understood, even with over one hundred
years of scientific research [3]. Intending to unveil graft biology and incompatibility, a number of
reports exist on (i) the phenotypic traits and field performances of several graft combinations [13–15];
(ii) the anatomy of grafted grapevines [16,17]; (iii) the biochemistry of grapevine grafts with focus
on phenolic compounds [18,19] and on isoenzymes [20]; (iv) the molecular aspects concerning the
transcriptome of different graft combinations [5,21,22]; and (v) total protein profiles [20]. Although
numerous detection methods have been employed, no simple indicator seems to accurately predict
compatibility behavior of variant scion–rootstock combinations, which would be valuable to shorten
breeding cycles and to limit the production losses of nurseries and growers.

To address the known limitations in graft success predictions, we evaluated several methods
that have been described as predictive for graft (in)compatibility in different plant species. Aiming to
screen for suitable indicators of successful grapevine grafts, we employed the rootstock Richter 110
(110R) that was reported to have different graft success rates when combined with clones of Touriga
Nacional, one of the most important Portuguese cultivar [5,19], and of cv. Syrah [23]. In particular,
Syrah clone 383, one of the most susceptible to the reported vine decline, is no longer available
for the market [24]. To further address the parameters regarded as indicative for scion–rootstock
incompatibility, we re-evaluated reported methods and monitored several physiological indicators at
the early callusing stage, 3 weeks after grafting (21 DAG), and at the hardening stage, 5 months after
grafting (152 DAG), of cv. Syrah and cv. Touriga Nacional grafted onto 110R rootstock, known to have
a different degree of compatibility with these plants [5,18,19,23]. We compared also reported Affinity
Coefficient calculations based on stem growth measurements as a measure for graft compatibility.
Furthermore, we analyzed the internal anatomy of the graft union and the leaf chlorophyll and
carotenoid content and chlorophyll fluorescence parameters serving as plant stress indicators.
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2. Materials and Methods

2.1. Plant Material and Experimental Details

Cuttings of certified virus-free plants of four registered V. vinifera clones cv. “Syrah”, clone 383 and
470 (SY383 and SY470, ENTAV-INRA/FR clones) and cv. “Touriga National”, clone 21 and 112 (TN21
and TN112, ISA/PT and JBP/PT clones, respectively) and cuttings of the rootstock 110R (V. berlandieri X
V. rupestris, JBP/PT clone) were used. Graft combinations were selected according to the incompatibility
reported for SY383 grafted on 110R (SY383/110R) [18,23] and for TN112/110R [5,19]. One hundred
grafts per combination were performed, as well as one hundred homografts (grafts of each genotype
with themselves). All grafts were performed on 27 April 2018 by bench omega-grafting of dormant
cuttings under commercial nursery conditions at the Plansel nursery located in Montemor-o-Novo,
Portugal (291 m above sea level, 38◦39′ N, and 8◦13′ W). The nursery provided all plant material except
SY383 cuttings which were collected from the Portuguese National Ampelografic Collection (PRT 051),
INIA Dois Portos, INRB I.P. (Quinta da Almoinha). All procedures concerning the handling of plant
material were carried out by the nursery under phytosanitary guidelines used for their commercial
clients. Grafts were dipped in paraffin (containing 0.11% of Quinidol and 0.004% of 2,5-Dichlorobenzoic
acid) and underwent 21 days of stratification (at 30 ◦C and 80%–90% relative humidity) to induce
callusing at the graft interface. On 18 May 2018, the grafted plants were transferred to the field nursery
in a randomized complete block design (RCBD) with 4 blocks (25 repetitions/block) for hardening
under drip irrigation. The main climatic parameters for the field trial were monitored throughout
the experiment (Figure S1) using daily meteorological data collected for Montemor-o-Novo at the
Évora weather station, Portugal [25] (38◦65′ N; 8◦21 W; altitude: 247 m) for the period from 22 May to
1 October 2018.

2.2. Growth Parameters

Sprouting and rooting rates of the grafted plants were recorded at the end of the callusing
stage—21 days after grafting (DAG) and at the hardening stage—152 DAG. The sprouting rate at 152
DAG is named “graft take” as, at this time point, sprouted grafts are considered successful. The two
time points were chosen because callus formation is a prerequisite for a successful graft [7] and because
5 months is considered sufficient time to assess levels of incompatibility in the field [26]. Six biological
repetitions per graft combination were randomly selected from each of the 4 blocks (n = 24) and the
following growth parameters measured at 21 DAG: (i) Length of the main shoot (cm), (ii) root number,
(iii) length of the major root (cm), (iv) stem diameters at the base of the sprouted shoot, at the graft
union and 5 cm below the union (mm) and (v) score of callusing on a scale from 0 to 4 based on visual
evaluation, where 0 = no callus, 1 = 25%, 2 = 50%, 3 = 75%, and 4 = 100% of callus formed around the
graft union. At 152 DAG, the following data were collected on the survived grafts that were monitored
at 21 DAG: (i) Length of the main shoot (cm), (ii) stem diameters 5 cm above and below the union
(mm) and at the graft union. The stem diameters were measured with a digital compass (DigiMax,
Swiss Precision, CA, USA).

2.3. Internal Characterization of the Union

At 152 DAG, the graft union of the same plants sampled for the growth parameters monitored,
were longitudinally sectioned at the graft area. Anatomy on the surface of the union was recorded
and evaluated for vascular continuity on both the right and the left part of the pith, adapting the
method of Herrero [27]. According to this method, 5 categories (from A to E) were used for evaluation,
where category A represents a perfect union in which the graft line is almost invisible. Category B
shows few structural imperfections and/or slight discontinuities between wood and bark or cambial
invaginations. Category C is characterized by bark discontinuities and D by wood discontinuities.
Category E includes broken/unattached unions and/or unions with dead tissue in the proximity of
the union line. Graft unions were scored as follows: unions showing at least one side scored as A or
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B categories (A/−, B/−) were considered compatible. C/C, C/D, C/E scored unions were considered
intermediate while D/D, D/E, E/E unions were considered incompatible.

2.4. Affinity Coefficients (ACs)

The measured stem diameters at 152 DAG were used as data input on the four affinity coefficients
(ACs) formulas developed by Branas, Perraudine, Spiegel-Roy and Lavee, and Onaran, which were
already reviewed and applied in Vitis [14]. Below, the ACs formulae used in this work are listed:

Perraudine: good affinity when AC � 12. If > 12, the rootstock is thicker.

AC = [C/A + (C + A)/2B] + 10AC (1)

Branas: good affinity when AC � 10. If > 10, the rootstock is thicker.

AC = [C/A × (C + A)/2B] × 10 (2)

Spiegel-Roy and Lavee: good affinity when AC � 0.

AC = (C/A) − 1 (3)

Onaran: good affinity when AC � 100.

AC = (C × 100)/A = % (4)

where, A is scion diameter (mm), B is graft union diameter (mm), C is rootstock diameter (mm).

2.5. Chlorophyll Fluorescence and Pigments Content

Chlorophyll fluorescence parameters were measured at 152 DAG using the OS-30p+ Chlorophyll
Fluorometer (Opti-Sciences, Hudson, NH, USA). After 20 min of dark adaptation, the first expanded
leaf in 6 grafts/combination/block was measured according to the OJIP protocol described in the
fluorometer’s manual. We ensured that a total of 6 measurements were recorded when fewer than
6 grafts had survived in a given block. Leaf samples for pigment quantification were the same as those
used for chlorophyll fluorescence measurements. In total, 1.27 cm2 of leaf area was excised from the
sampled leaf, submerged in 2 mL of 95% ethanol and stored at 4 ◦C for two weeks. Then, chlorophyll and
carotenoids contents were determined using Ultraspec 4000 UV/Visible Spectrophotometer (Pharmacia
Biotech, Piscataway, NJ, USA) according to the method of Lichtenthaler [28]. Pigments absorbances
were measured between 0.3 and 0.85 [29]. In the case of absorbance values > 0.85, a dilution of the
samples was made, and the dilution factor was considered in the quantification.

2.6. Statistical Analysis

Statistical analysis of the collected data for all graft combinations at each time point, except for the
results from the internal characterization of the union, was performed in RStudio (RStudio Team, 2015.
RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA, http://www.rstudio.com/)
by Kruskal–Wallis test and multiple comparisons of treatments, in the R-package “agricolae”, which
uses the criterium Fisher’s least significant difference as a post hoc test [30]. For sprouting, graft take,
and rooting rates a Fisher’s exact test was performed for all graft combinations at each time point.
Pearson correlations were carried out between graft take rates and the parameters analyzed at 21
and 152 DAG. To compute the significant levels for Pearson correlation the “rcorr” function in the
R-package “Hmisc” was used [31]. For visualization, the R package “corrplot” was used [32]. Data are
shown as mean values of original data ± SE (standard error). Significant differences are reported at
* p < 0.05, ** p < 0.01, *** p < 0.001.

http://www.rstudio.com/
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3. Results

3.1. Grafting onto 110R Rootstock Leads to Higher Graft Take Rates

Several external symptoms have been associated with incompatible graft unions, including a high
rate of graft take failures, leaves yellowing, early defoliation, a decline in the vegetative growth, marked
differences in vigor and the seasonal biological clock, overgrowth of one of the partners or at the graft
zone and the break of the union [7]. Our results showed that at 21 DAG a few homografts sprouted
compared with their respective heterografts, suggesting that grafting onto 110R supports and induces
early sprouting of the scion genotypes (Figure 1a), which is consistent with other studies [33,34].
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Figure 1. Percentage of graft take, sprouting, and rooting at 21 and 125 DAG in all graft combinations.
(a) Sprouting and rooting percentages at 21 DAG; (b) graft take and rooting percentages at 152 DAG in
the same population analyzed at 21 DAG. Different letters indicate significant differences between all
graft combinations with p < 0.05 (n = 94–100 per graft combination) according to Fisher’s exact test.

Indeed, at 21 DAG, more than 80% of 110R homografts, approx. 50% of the Touriga Nacional
homografts, and less than 25% of Syrah homografts sprouted, suggesting that 110R is an early sprouting
genotype followed by Touriga Nacional and Syrah. Nevertheless, when Touriga Nacional and Syrah
clones were grafted onto 110R, more than 90% of these heterografts sprouted at this time, while
the sprouting rate of SY383/110R was just 77% (Figure 1a). At 152 DAG, graft take rates showed a
marked difference between homo- and heterografts, which seems to depend on the 110R rootstock
genotype rather than to the type of graft (homo- or heterograft). In line, the success of graft takes in
V. vinifera homografts ranged from 13% (TN21/TN21) to 35% (SY383/SY383), whereas in heterografts,
it ranged from 85% (SY383/110R) to 98% (TN112/110R). Among heterografts, just SY383/110R displayed
a significantly lower graft take, while this was not observed for TN112/110R. Interestingly, the rootstock
homograft (110R/110R) displayed a graft take success with 98 %, which is in the same order as detected
with most heterografts (except SY383/110R) (Figure 1b). This led us to hypothesize that the low graft
take of the V. vinifera homografts could be due to a lower rooting capacity of these genotypes in
comparison with 110R, an American hybrid specifically selected to be used as rootstock [35]. Indeed,
this hypothesis was supported by the Pearson correlation calculation between rooting and graft take at
152 DAG, indicating a correlation value of 0.89 (p < 0.05).

Concerning callus formation degree in the studied graft combinations, we detected a significantly
higher callus formation in all heterografts (average grade of 4) when compared with the homografts
(average grade of 3) (Table 1). Callus proliferation was expected not only because of the natural wound
response but also because of the effect of 2,5-dichlorobenzoic acid added to the paraffin.
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Table 1. Average of callus grade, root number, root length, and shoot length detected at 21 and 152 DAG.

21 DAG 152 DAG

Callus Grade (0–4) Roots Number Root Length (cm) Shoot Length (cm) Shoot Length (cm)

Graft Combination *** *** *** *** ***

110R/110R 3.9 ± 0.1 abc 4.1 ± 0.6 a 1.6 ± 0.3 a 4.3 ± 0.6 a 78 ± 6.2 cd
TN21/TN21 3.0 ± 0.3 d 5.3 ± 0.9 a 1.6 ± 0.2 a 1.9 ± 0.5 bcd 95 ± 7.4 bc

TN112/TN112 1.5 ± 0.2 e 5.7 ± 1.2 a 1.1 ± 0.2 a 0.9 ± 0.3 cde 127 ± 8.2 ab
SY383/SY383 3.4 ± 0.2 bcd 0.5 ± 0.2 b 0.2 ± 0.1 b 0.4 ± 0.1 de 78 ± 3.8 cd
SY470/SY470 3.3 ± 0.3 cd 0.8 ± 0.3 b 0.3 ± 0.2 b 0.0 ± 0.0 e 139 ± 9.0 a
TN21/110R 4.0 ± 0.0 a 3.0 ± 0.5 a 1.3 ± 0.3 a 2.9 ± 0.4 ab 80 ± 7.7 cd
TN112/110R 4.0 ± 0.0 ab 4.1 ± 0.8 a 1.8 ± 0.4 a 3.5 ± 0.4 a 63 ± 4.1 d
SY383/110R 3.9 ± 0.1 abc 3.8 ± 0.7 a 1.9 ± 0.3 a 2.1 ± 0.4 abc 66 ± 3.9 d
SY470/110R 4.0 ± 0.0 a 3.9 ± 0.6 a 1.8 ± 0.3 a 4.3 ± 0.5 a 78 ± 4.6 cd

Graft Type *** ns ns *** ***

Homograft 3.0 ± 0.1 a 3.3 ± 0.4 1.0 ± 0.1 1.5 ± 0.2 a 97 ± 3.9 a
Heterograft 4.0 ± 0.0 b 3.7 ± 0.3 1.7 ± 0.1 3.2 ± 0.2 b 72 ± 2.7 b

± SE standard error; 21 DAG n = 24; 152 DAG n = 11–24. Significant differences according to Kruskal–Wallis test are indicated by asterisks symbols *** p < 0.001; “ns” indicates
non-significant differences.
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It is commonly thought that grapevine grafts will develop their final root system only when
plotted in a field. However, the development of adventitious roots can be observed already at 21
DAG and might be indicative of the rooting capacity of the genotypes under study. Indeed, while
the individual graft combination had a strong effect, the type of graft (homo- or heterograft) did not
produce a statistically significant difference in root development at 21 DAG. The only significantly
lower rooting performance was detected with Syrah homografts compared to all other combinations.
Here the mean values were below 1 for SY383/SY383 and SY470/SY470 combinations with 0.5 ± 0.2 and
0.8 ± 0.3, respectively (Table 1). Nevertheless, no differences were detected comparing Syrah scions
heterografts with other heterografts suggesting that the scion does not influence the rooting ability of
the rootstock indicating that this is an autonomous trait of the rootstock.

The length of the main scion shoot depended on the graft type at both 21 and 152 DAG and
suggests an influence of the used rootstock on scion’s growth. At 21 DAG, homografts displayed a
significantly lower shoot length than heterografts (i.e., 1.5 vs. 3.2 cm) (Table 1). This difference is in
accordance with the observed delayed sprouting of homografts. Interestingly, the situation inverted
at 152 DAG, with the homografts displaying a significantly higher shoot length than heterografts
(i.e., 97 vs. 72 cm) (Table 1). This suggests that the expansion growth rate of homografts was higher
than that of heterografts, which is consistent with reports from other studies [36].

With respect to the stem diameters evaluated, a significant difference was detected between all
different graft combinations above, below, and at the graft union at both time points (Table 2).
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Table 2. Mean values of the Stem Diameters (SD) detected at 21 and 152 DAG.

21 DAG 152 DAG

SD Above SD Graft Union SD Below SD Above SD Graft Union SD Below

Graft Combination *** *** ** *** *** ***

110R/110R 3.21 ± 0.18 ab 14.26 ± 0.35 a 9.47 ± 0.29 ab 5.08 ± 0.37 c 18.18 ± 0.88 ab 10.86 ± 0.44 bc
TN21/TN21 1.55 ± 0.32 cd 10.94 ± 0.38 cd 8.82 ± 0.17 ab 6.88 ± 0.48 abc 15.67 ± 0.68 bc 11.01 ± 0.46 abc

TN112/TN112 1.46 ± 0.41 bcd 9.38 ± 0.29 d 8.42 ± 0.15 b 6.77 ± 0.40 bc 13.88 ± 1.04 c 11.45 ± 0.47 abc
SY383/SY383 1.46 ± 0.46 bcd 12.01 ± 0.49 bc 9.70 ± 0.29 a 7.59 ± 0.40 ab 17.80 ± 0.51 ab 12.90 ± 0.44 ab
SY470/SY470 0.00 ± 0.00 d 11.20 ± 0.44 cd 11.20 ± 0.44 ab 10.61 ± 0.90 a 18.98 ± 0.79 ab 14.0 ± 0.72 a
TN21/110R 3.55 ± 0.27 a 13.9 ± 0.27 a 13.90 ± 0.27 a 5.33 ± 0.33 c 17.99 ± 0.62 ab 10.24 ± 0.37 c
TN112/110R 4.25 ± 0.30 a 13.85 ± 0.34 a 13.85 ± 0.34 ab 5.39 ± 0.33 c 17.58 ± 0.63 abc 10.14 ± 0.46 c
SY383/110R 3.26 ± 0.48 a 13.31 ± 0.29 ab 13.31 ± 0.29 a 5.91 ± 0.35 c 18.05 ± 0.68 ab 10.30 ± 0.30 c
SY470/110R 2.85 ± 0.28 abc 14.09 ± 0.29 a 14.09 ± 0.29 ab 6.20 ± 0.28 bc 19.28 ± 0.52 a 10.17 ± 0.39 c

Graft Type *** *** ** *** * ***

Homograft 1.54 ± 0.17 a 11.56 ± 0.23 a 9.05 ± 0.11 a 7.18 ± 0.28 a 16.99 ± 0.4 a 12.04 ± 0.25 a
Heterograft 3.47 ± 0.18 b 13.79 ± 0.15 b 9.56 ± 0.14 b 5.7 ± 0.16 b 18.23 ± 0.31 b 10.21 ± 0.19 b

± SE standard error; SD above, below, and at the graft union measured at 21 (n = 24) and 152 DAG (n = 11–24) for all graft combinations and graft type. Significant differences according to
Kruskal–Wallis test are indicated by asterisks * p < 0.05, ** p < 0.01, *** p < 0.001.
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At 21 DAG, all heterografts showed larger stem diameters than homografts in all sections measured
(i.e., 3.5 vs. 1.5 mm above the union; 13.8 vs. 11.6 mm at the graft union; and 9.6 vs. 9.1 mm below the
union) (Table 2). Interestingly, the situation was different at 152 DAG, since homografts displayed
larger stem diameters than heterografts above the union (7.2 vs. 5.7 mm) and below (12 vs. 10.2 mm).
Notably, all heterografts showed significantly increased stem diameters (18.2 mm) compared with
homografts (17 mm) at the graft union. Over time, the stem diameter growth of the homografts was
2.5 times greater than in heterografts above the graft union (i.e., 5.9 mm increase in homografts vs.
2.2 mm increase in heterografts) (Figure S2). Below the union, the increase was four times greater in
the homografts compared to the heterografts (3 mm vs. 0.7 mm, respectively). However, heterografts
showed a similar stem diameter growth to that of homografts at the graft interface (4.4 mm vs. 5.3 mm,
respectively) (Figure S2).

3.2. Graft Unions Are Frequently Incomplete at Five Months after Grafting

Anatomic studies are frequently performed to assess graft success in cherry [37], peach [38],
apricot [36], pear, and quince [39]. In grapevine, grafting anatomy has also been investigated, mainly
by non-destructive methods such as X-ray tomography and MRI [16,17]. Nevertheless, the five graft
categories (A, B, C, D, and E) established by Herrero (1951), with “A” showing a perfect union and “E”
showing unattached unions and/or unions with death tissue [27] have not been applied to Vitis so far
(Figure 2a).

Using this approach, just SY470 homografts scored as compatible for all replicates. TN21/TN21
and SY470/110R graft unions scored as compatible and intermediate, while the unions of all
the other graft combinations displayed all three classes from compatible unions to intermediate
compatible and incompatible unions (Figure 2b). Thus, using this categorization, the most compatible
combinations were SY470 and TN21 homografts, and TN112/110R heterografts, with 100%, 83%, and
83% of compatibility, respectively. On the other side, the graft combinations with a high degree
of incompatibility were SY383 and 110R homografts (33% and 21% respectively), and TN21/110R
and SY383/110R heterografts both with 17% of incompatible unions. Given that homografting should
result in the highest graft compatibility value as the growth rate and vasculature pattern should
be equal between rootstock and scion, it is surprising that there is enormous variability within the
combinations, regardless of whether they are homo- or heterografts. Additionally, bark (category C)
and wood (category D) discontinuities in the graft zone were frequently observed. These findings
suggested that grafted grapevines might require long times to complete the healing of a union.
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Figure 2. Internal characterization of the graft union. (a) Example images of the category A to E
charactering the internal graft unions. Category A represents a perfect union in which the graft line is
almost invisible. Category B shows few structural imperfections and/or slight discontinuities between
wood and bark or cambial invaginations. Category C is characterized by bark discontinuities and D by
wood discontinuities. Category E includes broken/unattached unions and/or unions with dead tissue
in proximity of the union line. (b) Proportion (%) of compatible, intermediate, and incompatible classes
detected per graft combination.

3.3. Affinity Coefficients (ACs) Calculated for the Same Graft Combination Vary According to the Formula Used

Looking for the early determinants of long-term graft success of different graft combinations,
several AC formulas based solely on stem diameter measurements of scion and rootstock have been
proposed and applied in vineyards [14,16] and orchards [40], since growth differences above and below
the graft union are regarded as a sign of incompatibility [14].

ACs calculated using the Parraudine formula indicated good compatibility for all analyzed
combinations, since all calculated values were close to 12 (Table S1). ACs calculated using
Branas’ formula identified 110R and SY383 homografts as the more compatible combinations,
while TN112/TN112 and SY470/110R were the combinations with the worse calculated affinity since
their coefficients were far from the ideal value (10). Using Branas’ coefficient, significant differences
were found among graft combinations and also between graft type, suggesting homografts as more
compatible than heterografts (Table S1). No statistical significant difference was detected between
homo- and heterografts when the formula of Parraudine, Spiegel-Roy and Lavee, and of Onaran were
used, although differences were detected among graft combinations (Table S1). In summary, the ACs



Agronomy 2020, 10, 706 11 of 20

calculated for the same graft combination vary according to the formula used, and they are not reliable
indicators of graft (in)compatibility for the used graft combinations.

3.4. Chlorophylls Analysis Is a More Sensitive Indicator of Stress than the Analysis of Chlorophyll Fluorescence

In this study, chlorophyll fluorescence parameters, fast chlorophyll fluorescence induction curve
(OJIP curve), and the quantification of leaf pigments were tested to screen the graft combinations
for their compatibility behavior. The main chlorophyll fluorescence parameters investigated were:
Vj (variable fluorescence at the J step), PI (Performance Index), Fv/Fm and Fv/Fo (maximum quantum
yield of photosystem II–PSII). Nevertheless, no significant differences were detected for any of the
parameters, with the exception of Fv/Fo, for which a significant difference (p < 0.01) was found for
SY470 homografts compared with 110R and SY383 homografts (data not shown). This combination
stood out by having the lowest values of the maximum quantum efficiency of PSII (Fv/Fm = 0.72) and,
in particular, a significantly lower Fv/Fo (2.74). Fv/Fo is considered a more sensitive parameter for
plant stress, capable of amplifying small variations detected by Fv/Fm, since it is normalized over
the minimal fluorescence (Fo) [41]. The optimal Fv/Fm value for stress-free plants is around 0.83 [42].
In our study, Fv/Fm values for all graft combinations varied from 0.72 to 0.77, suggesting that all graft
combinations were subjected to stress at the moment of the measurements. It has been shown that
some types of plant stress affect specific parts of the OJIP curve. For example, severe nitrogen stress
displays a K strep at 300 µs [43]. To investigate whether grafting and/or incompatibility could have a
similar effect, OJIP curves for all graft combinations were plotted. Nevertheless, the transients were
almost overlapping, denoting that homografts’ OJIP curve does not differ from heterografts’ and no
unusual step was observed on the OJIP traces (Figure S3) suggesting that, in our study, OJIP curves of
grafted grapevines are not affected by the graft combination.

Methods to quantify chlorophylls in plants are used to estimate the effect of different stress factors
on the efficiency of photosynthesis [44]. Furthermore, it was proposed that measurements of chlorophyll
concentrations in scion leaves allow the identification of graft incompatibility in Prunus species [38].
To evaluate this on Vitis grafts, we measured chlorophyll a (Chl(a)), b (Chl(b)), total (Chl(a+b)),
and carotenoids (Carot) concentrations in leaves formed on scions of the different graft combinations.
The ratios Chl(a)/Chl(b) and Chl(a+b)/Carot were also calculated. In TN21, TN112, SY470 homografts
and in SY470/110R heterografted plants, the detected Chl(a) concentrations were lower than in the
other graft combinations. The same homografts also displayed a lower amount of Chl(b) and overall,
homografts are significantly less enriched in Chl(b) than heterografts (Table 3).
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Table 3. Mean values of chlorophyll and carotenoid content per graft combination and graft type.

Chl(a) (mg/cm2) Chl(b) (mg/cm2) Carot (mg/cm2) Chl(a)/Chl(b) Chl(a+b)/Carot

Graft Combination ** *** ns *** ***

110R/110R 0.023 ± 0.001 a 0.01 ± 0.001 ab 0.004 ± 0.000 2.6 ± 0.1 a 9.5 ± 0.9 ab
TN21/TN21 0.019 ± 0.001 ab 0.007 ± 0.001 bc 0.005 ± 0.000 2.7 ± 0.1 ab 5.4 ± 0.2 cd

TN112/TN112 0.019 ± 0.001 ab 0.008 ± 0.001 bc 0.004 ± 0.000 2.6 ± 0.1 ab 6.3 ± 0.5 bcd
SY383/SY383 0.022 ± 0.001 a 0.011 ± 0.001 ab 0.004 ± 0.000 2.4 ± 0.1 a 10.2 ± 3.0 abc
SY470/SY470 0.016 ± 0.001 b 0.005 ± 0.000 c 0.004 ± 0.000 2.9 ± 0.1 b 5.1 ± 0.1 d
TN21/110R 0.022 ± 0.001 a 0.011 ± 0.001 ab 0.004 ± 0.000 2.1 ± 0.1 a 8.2 ± 1 abc
TN112/110R 0.022 ± 0.001 a 0.014 ± 0.001 a 0.004 ± 0.000 1.7 ± 0.1 a 14.7 ± 4.0 a
SY383/110R 0.022 ± 0.001 a 0.011 ± 0.001 ab 0.005 ± 0.000 2.1 ± 0.1 a 7.0 ± 0.7 bcd
SY470/110R 0.020 ± 0.001 ab 0.009 ± 0.001 ab 0.004 ± 0.000 2.3 ± 0.1 ab 7.4 ± 0.6 abcd

Graft Type ns *** ns *** ns

Homograft 0.020 ± 0.001 0.009 ± 0.000 a 0.004 ± 0.000 2.6 ± 0.1 a 8.0 ± 0.9
Heterograft 0.021 ± 0.001 0.011 ± 0.000 b 0.004 ± 0.000 2.1 ± 0.1 b 9.3 ± 1.1

± SE: standard error; significant differences according to Kruskal–Wallis test are indicated by asterisks ** p < 0.01 and *** p < 0.001; “ns” indicates non-significant differences (n = 24).
Abbreviations: Chl(a) = chlorophyll a; Chl(b) = chlorophyll b; Carot = carotenoids.
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With exception of SY383 genotypes showing no changes in chlorophyll content regardless of the
rootstock, it seems that grafting onto 110R leads to higher amounts of Chl(a) and Chl(b) in the scion
when compared with the respective homografts (Table 3). Although this effect is only significant for
Chl(b), this implies increased root uptake and/or translocation of nitrogen or other micronutrients
across the graft junction in plants grafted onto 110R rootstock. The decreased contents in both Chl(a)
and Chl(b) in the SY470 homografts (Table 3) could also explain the detected reduced quantum yield of
PSII in these plants. Indeed, a reduction in the quantum yield of PSII is generally associated with the
stress-induced degradation of chlorophylls, which has been partially attributed to the sensitivity of the
membranes to oxidative stress [41].

Carotenoids, necessary for photoprotection in photosynthesis, play an important role as precursors
of signaling during plant development under abiotic/biotic stress [45]. However, no differences were
detected in carotenoids contents with respect to the graft combinations (Table 3). Therefore, the statistical
differences found among graft combinations for the Chl(a+b)/Carot ratio are more likely related to the
differences in chlorophyll content. The analysis of pigment contents in leaves seems a more sensitive
indicator of stress than the analysis of chlorophyll fluorescence, even if just Chl(b) contents were
differentiating homo- from heterografts.

3.5. Graft Take Correlates with Callus Formation and with the Improvement of Scion–Rootstock Translocation

We next performed a statistical correlation analysis with respect to the graft take rates on
the parameters recorded at 21 DAG and 152 DAG. Figure 3a shows that root and shoot length,
the measurements of stem diameters, and the degree of callus development were all positively
correlated with graft take at 21 DAG. However, root length and the stem diameter below the union
displayed low correlation coefficients (r ≤ 0.3), while the highest correlations were obtained for stem
diameter at the graft zone and above the union, the degree of callus development and shoot length
(r = 0.65, 0.57, 0.54, and 0.52, respectively). Considering that the measurements of stem diameters
above the unions were done only on sprouted scions at 21 DAG and that stem diameters at the graft
zone increased with the degree of callusing, we conclude that overall graft take correlated best with
scion growth and with the proliferation of callus tissue around the union.

Given that many grafts fail before scion sprouting, it is clear why shoot growth positively correlated
with graft take at 21 DAG. Nevertheless, shoot length negatively correlated (r = −0.51) with graft
take at 152 DAG (Figure 3b), with the stem diameters above and below the union (r = −0.49 and r =

−0.45 respectively), and with the Chl(a)/Chl(b) ratio (r = −0.36). Positive correlations with graft take at
152 DAG were found for the stem diameters at the graft zone and Chl(a) and Chl(b) contents, although
only the Chl(b) content disclosed a correlation coefficient higher than 0.3 (Figure 3b). Interestingly,
correlation coefficients with graft take rates measured at 152 DAG seem higher at 21 DAG than at
152 DAG, suggesting that early predictions do not necessarily imply low confidence of the prediction.
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Figure 3. Pearson correlation of the graft take value versus all the parameters investigated at 21 and 152
DAG. (a) at 21 DAG: roots number, length of the major root, shoot length, stem diameters (SD) above,
below and at the graft zone and callus score. (b) Pearson correlation of the graft take values versus
the parameters investigated at 152 DAG: shoot length, stem diameter (SD) above, below and at the
graft zone, Chlorophyll a (Chl(a)), Chlorophyll b (Chl(b)), carotenoids (Carot), ratio Chl(a) and Chl(b),
ratio total chlorophylls and Carot, and the following chlorophyll fluorescence values: Vj, PI, Fv/Fm,
Fv/Fo. Positive correlations are displayed in blue and negative correlations in red colors. The size
of the circles and color intensities are proportional to the correlation coefficients. Correlations with
p value > 0.01 are considered insignificant and are left blank.

4. Discussion

Much effort has been dedicated to the search of physiological [11,17], metabolic [18,19,46],
and molecular [5,21,22] markers to predict in an early growth stage graft compatibility in grapevine
with the aim of improving rootstock selection and propagation. To reveal grafting-related physiological
symptoms that might enable nurseries to predict whether a graft combination is likely to succeed,
we applied several methods at two time points (21 DAG and 152 DAG) to score graft compatibility of
graft combinations known to show distinct compatibility behavior [5,18,19,23]. Surprisingly, at 5 months
after grafting (152 DAG), graft take rates did not match our expectations since V. vinifera homografts
had lower graft take rates than heterografts. Notably, the rootstock homograft (110R/110R) performed
as well as heterografts that have the 110R rootstock. We noticed a correlation of the 110R rooting ability
with graft success, which might explain the low take rates detected with the V. vinifera homografts
(<40%). Here, it should be noted that all grafted plants were cultivated at the same field lot over the
same growth period. Thus, we can exclude exogenous factors such as soil quality or local stresses.
In addition, it can be excluded that insufficient water supply could have impacted the root formation as
all grafted plants were grown under drip irrigation. Considering that exogenous factors were similar
to all grafted plants and that we found a significant correlation between used rootstock and the rooting
capacity of heterografts, we encourage the use of homografts as compatibility controls in viticulture
just for studying qualitative attributes and not to quantify graft success.

It is widely known that rootstocks are selected for rooting and grafting capacity, abiotic and biotic
stress tolerance, and their ability to impact the phenotype of the grafting scion [47]. In this work,
110R rootstock anticipates the sprouting of the heterografted scion and exerts control over scion growth.
It is conceivable that the early dormancy break of the rootstock (110R) is responsible for the increased
heterograft scion bud burst response. In our study, cuttings with only one bud were grafted onto the
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rootstock, implying dependence of bud break on rootstock reserves. Thus, it seems that the sooner the
rootstock will break dormancy, activating carbon supply for the scion, the sooner they may sprout.
The analysis of the internal anatomy of the graft union led us to realize that graft healing is not yet
complete at five months after grafting. Milien et al. (2012) [17] compared the anatomy of “good“ and
“bad” grafts eight months after grafting and observed that the omega-cut line was visible in both graft
types and that, on “bad” grafts, connectivity was incomplete and necrotic tissue was present at the
graft junction. The inspection of grapevine graft unions through MRI also revealed areas in the graft
zone with no vascular connection even in 2 years-old grafts [16]. Our results are in agreement with
other studies on woody species, in which graft incompatibility may not become apparent for several
years [3]. Thus, graft (in-)compatibility studies in grapevines should include later time points than five
months after grafting.

Concerning the methods applied to predict graft compatibility, several AC formulas based
solely on stem diameter measurements of scion and rootstock have been proposed and applied in
vineyards [14,16] and orchards [40], since growth differences above and below the graft union are
regarded as a sign of incompatibility [14]. Nevertheless, in this work, the ACs were not suitable
predictors to assess graft incompatibility levels of the used graft combinations as they resulted in
contradicting conclusions.

An alternative approach is the use of methods to quantify chlorophylls in plants as an indicator
of the effect of different stress factors on the efficiency of photosynthesis [44]. Grafting causes stress
to the grafting partners, since the mechanical wound results in localized cell death, loss of water,
solutes, and disruption of the vascular system [3]. Repair of graft junctions, callus formation, and lack
of vascular continuity imply a high metabolic demand that has to be sustained by the photosynthetic
activity of the scion [3]. Light energy absorbed by chlorophyll drives photosynthesis (photochemistry)
but is also re-emitted (fluorescence) and dissipated by heat. Since these processes compete with
each other, the yield of chlorophyll fluorescence gives information on the quantum efficiency of
photochemistry [48]. For this reason, chlorophyll fluorescence imaging and the determination of leaf
chlorophyll concentrations using the Soil Plant Analysis Development (SPAD) can be early diagnosis
tools of graft incompatibility [38,49]. Notably, we found chlorophyll concentration measurements a more
sensitive parameter to identify changes between different graft combinations than the measurements
of chlorophyll fluorescence.

Overall, homografts were found less enriched in leaf chlorophylls than heterografts, although just
Chl(b) was significantly different. The fact that both types of chlorophylls are reduced in the same graft
combinations suggests that Chl(b) is not converted into Chl(a) in the context of the Chl(b)-to-Chl(a)
pathway [50]. Rather, it might be indicative of a reduced root-to-shoot translocation of water and
soil nutrients, particularly of nitrogen, since chlorophyll is one of the most important points of its
accumulation [44]. Nevertheless, many mineral deficiencies are also known to produce specific pigment
distribution within the same plant [51] and the selective mineral uptake of different rootstocks [8] might
be equally implicated. Furthermore, a decrease in chlorophylls content is a common phenomenon
under drought stress, and it is frequently associated to an increase in Chl(a)/Chl(b) ratio since the
reduction of Chl(b) is greater than that of Chl(a) under drought stress [45]. Although, this is consistent
with our results, since the graft combinations with the lowest values of chlorophylls (i.e., TN21, TN112,
SY470 homografts and SY470/110R heterografts) also displayed the highest values of Chl(a)/Chl(b) ratio.

The growth parameters that best correlated with graft take rates were shoot length and the degree
of callusing at 21 DAG, and a higher Chl(b) content and a lower swelling above and below the union at
152 DAG. As anticipated, this might imply that graft success correlates with the improvement of the
scion–rootstock translocation via vasculature. However, it should be noted that positive correlations
between graft take and scion growth at 21 DAG must be carefully evaluated, since grapevine scion
sprouting relies on rootstock reserves. Excessive scion growth would deplete metabolite reserves
before a functional root system can be established, which taken together would lead to a graft failure
due to plant death.
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The formation of a callus bridge between the grafted plant parts represents the beginning of the
connectivity leading to the formation of a continuous vasculature between the grafting partners [3] and
is suspected of predetermining the future compatibility or incompatibility response [52]. Additionally,
callus formation is considered a prerequisite for the development of a successful graft junction [7].
Accordingly, the degree of callus formation was suggested as a valuable indicator of good graft take in
grapevines [13,33]. Our results confirmed the reported positive correlations between the degree of
callusing and the success of grafting in grapevines. Therefore, considering that grapevine grafts undergo
callusing during a relatively short period (21 days), allowing only grafts with well-developed callus to
proceed to the further hardening stage might be already of economic advantage at a nursery perspective.

Scion and rootstock stem diameters are frequently monitored in field studies to aid the assessment
of compatibility levels as a measure of graft success [13,34,36]. Although the swellings often develop
above unions with vascular discontinuities, it also can simply appear because of differences in relative
scion and rootstocks’ growth rates [53]. Therefore, stem swelling of one of the grafting partners is
not a reliable indicator of graft incompatibility in other species according to Hartman et al. (2011) [7].
Nevertheless, in this study, stem diameter correlation coefficients with graft take at both time points
are among the highest ones and stem swelling above and/or below the graft union was suggested
to lead to decreased water and nutrient flow through the union causing wilting [54]. Furthermore,
swelling of the scion has been associated with a blockage of carbohydrates at the graft zone and
with phloem degeneration [54]. Recently, it was reported that narrow stem size in Vitis rootstocks
imposes a morphological constraint on the scion via reduced annual vascular formation reflected by the
annual ring size, which consequently leads to reduced hydraulic conductivity, limiting physiological
performance and yield [55] and, consequently, to limited shoot growth. Whether this would explain
the association between incompatibility and the increase in one of the partners’ stem diameters still
need to be investigated.

Comparison between homo- and heterografted plants with graft take success can be valuable
to understand scion–rootstock interactions during graft formation. Our results pointed out a crucial
role of the rootstock genotype in the vegetative growth and the Chl(b) content of the scion, although
scions did not seem to influence the rooting ability of the rootstock. Heterografts exhibited a higher
graft take rate, better callus development, and enrichment in Chl(b), which could be explained either
by an increased root uptake rate or by a higher healing capacity of the graft union. Nevertheless,
the internal anatomy of the union does not support the hypothesis that the healing of heterografts’
unions plays a role. In addition, the fact that scion growth was reduced in heterografts does not fit to an
increased root-to-shoot translocation in these plants. Moreover, the detected rootstock effect on scion
bud burst suggests that scion–rootstock communication takes place as soon as callus is formed between
the partners and that this communication is able to impose developmental decisions and growth
habits on the scion. Overall, it seems that the quality, rather than the quantity, of the scion–rootstock
translocation system, is responsible for the detected alterations in plant performance when a different
rootstock genotype is used. Finally, the correlations analysis between all these traits may reduce the
number of parameters and plants needed to be screened for graft compatibility, which might be of
interest for breeders considering the high number of graft replicates needed to assess each combination
between different rootstocks and new cultivars from different breeding programs.

5. Conclusions

Standardized methods to detect graft incompatible grapevine combinations at early stages would
be very valuable to improve rootstock breeding and nurseries selection. Nevertheless, phenotyping
incompatibility in woody species is a challenge, since compatibility symptoms are often difficult to
discriminate from the effect of environmental stresses and often unpredictably arise early or very
late after grafting. By applying several methods described as indicative of incompatibility in several
crops on grapevine grafts with known compatibility behavior, we found that graft take rates are not
always indicative of compatibility and therefore they are not per se sufficient to assess compatibility
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levels in viticulture, where graft success is also dependent on the rooting ability of the rootstock.
Moreover, the use of homograft compatibility controls should be carefully evaluated, as they did not
show the highest graft take rates. Among the parameters investigated, the grade of callus development
at 21 DAG as an indicator of graft success, might be most valuable for practical nursery’s applications.
We encourage the analysis of leaf chlorophyll contents rather than the use of chlorophyll fluorescence
measurements. Conversely, we discourage the use of Affinity Coefficients based on stem diameters,
although stem diameters were found to strongly correlate with graft success, which could be misleading
as swelling is also associated with incompatibility of grafts. In summary, our measurements and
assessment of predictive graft success parameters might be useful for both researchers and breeders
for evaluating graft (in)compatibilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/5/706/s1.
Figure S1: Time course of main climatic parameters (daily means) in the field trial throughout the experiment
(May–September 2018). Figure S2: Mean values of Stem Diameter (SD) expansion from 21 to 152 DAG. Table S1:
Mean values of the affinity coefficients calculated by the formulas of Parraudine, Branas, Spiegel-Roy and Lavee,
and Onaran. Figure S3: OJIP curves of homo- and heterografts.

Author Contributions: Conceptualization, writing—review and editing S.T. supported by F.K., A.P., and P.F.;
data curation S.T., A.P. and F.K.; project administration, resources P.F.; methodology S.T. and F.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação para a Ciência e Tecnologia (FCT) for the Ph.D. grant with
the reference PD/BD/128399/2017. The authors acknowledge the research unit GREEN-it “Bioresources for
Sustainability” (UID/Multi/04551/2013).

Acknowledgments: The authors thank Jose Valadas and João Carvalho from Plansel Nursery for the acquisition
and management of the plants. José Eduardo Eiras Dias, Jorge Cunha and João Brazão from the National Institute
for Agricultural and Veterinary Research (INIAV-Dois Portos) for the provision of SY383 cuttings.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Scientia horticulturae current status
of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. (Amst.) 2010, 127, 93–105.
[CrossRef]

2. Ollat, N.; Bordenave, L.; Tandonnet, J.P.; Boursiquot, J.M.; Marguerit, E. Grapevine rootstocks: Origins and
perspectives. Acta Hortic. 2016, 1136, 11–22. [CrossRef]

3. Pina, A.; Cookson, S.; Calatayud, A.; Trinchera, A.; Errea, P. Chapter 5—Physiological and molecular
mechanisms underlying graft compatibility. In Vegetable Grafting Principles and Practices; Colla, G.,
Perez-Alfocea, F., Schwarz, D., Eds.; CABI Oxfordshire: Wallingford, UK, 2017; pp. 132–154,
ISBN 13 978 1 78639 058 5.

4. Waite, H.; Whitelaw-Weckert, M.; Torley, P. Grapevine propagation: Principles and methods for the
production of high-quality grapevine planting material. N. Zeal. J. Crop. Hortic. Sci. 2015, 43, 144–161.
[CrossRef]

5. Assunção, M.; Santos, C.; Brazão, J.; Eiras-Dias, J.E.; Fevereiro, P. Understanding the molecular mechanisms
underlying graft success in grapevine. BMC Plant Biol. 2019, 19, 1–17. [CrossRef] [PubMed]

6. Pina, A.; Errea, P. A review of new advances in mechanism of graft compatibility-incompatibility.
Sci. Hortic. (Amst.) 2005, 106, 1–11. [CrossRef]

7. Hartman, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.G. Principles of grafting and budding. In Hartmann
and Kester’s Plant Propagation: Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 2011;
pp. 415–463.

8. Bianchi, D.; Grossi, D.; Simone Di Lorenzo, G.; Zi Ying, Y.; Rustioni, L.; Brancadoro, L. Phenotyping of the
“G series” Vitis hybrids: First screening of the mineral composition. Sci. Hortic. (Amst.) 2020, 264, 109155.
[CrossRef]

9. Bianchi, D.; Grossi, D.; Tincani, D.T.G.; Simone Di Lorenzo, G.; Brancadoro, L.; Rustioni, L. Multi-parameter
characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiol. Biochem.
2018, 132, 333–340. [CrossRef]

http://www.mdpi.com/2073-4395/10/5/706/s1
http://dx.doi.org/10.1016/j.scienta.2010.08.003
http://dx.doi.org/10.17660/ActaHortic.2016.1136.2
http://dx.doi.org/10.1080/01140671.2014.978340
http://dx.doi.org/10.1186/s12870-019-1967-8
http://www.ncbi.nlm.nih.gov/pubmed/31510937
http://dx.doi.org/10.1016/j.scienta.2005.04.003
http://dx.doi.org/10.1016/j.scienta.2019.109155
http://dx.doi.org/10.1016/j.plaphy.2018.09.018


Agronomy 2020, 10, 706 18 of 20

10. Migliaro, D.; De Lorenzis, G.; Di Lorenzo, G.S.; De Nardi, B.; Gardiman, M.; Failla, O.; Brancadoro, L.;
Crespan, M. Grapevine non-vinifera genetic diversity assessed by simple sequence repeat markers as a
starting point for new rootstock breeding programs. Am. J. Enol. Vitic. 2019, 70, 390–397. [CrossRef]
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Agroecological aspects. Pestic. Phytomed. (Belgrade) 2014, 29, 21–34. [CrossRef]

45. Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013,
51, 163–190. [CrossRef]

46. Davis, A.R.; Perkins-veazie, P.; Box, P.O.; West, H.; Levi, A.; King, S.R. Grafting effects on vegetable quality.
Hortscience 2008, 43, 1670–1672. [CrossRef]

47. Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J.
Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437.
[CrossRef]

48. Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding
some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [CrossRef]

49. Calatayud, Á.; San, A.; Pascual, B.; Vicente, J.; López-galarza, S. Scientia horticulturae use of chlorophyll
fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Sci. Hortic. (Amst.)
2013, 149, 13–18. [CrossRef]

50. Ito, H.; Tatsuyuki, O.; Tanaka, A. Conversion of Chlorophyll b to Chlorophyll a via 7-Hydroxymethyl
Chlorophyll. J. Biol. Chem. 1996, 271, 1475–1479. [CrossRef]

51. Rustioni, L.; Grossi, D.; Brancadoro, L.; Failla, O. Iron, magnesium, nitrogen and potassium deficiency
symptom discrimination by reflectance spectroscopy in grapevine leaves. Sci. Hortic. (Amst.) 2018, 241,
152–159. [CrossRef]

52. Pina, A.; Errea, P.; Martens, H.J. Graft union formation and cell-to-cell communication via plasmodesmata in
compatible and incompatible stem unions of Prunus spp. Sci. Hortic. (Amst.) 2012, 143, 144–150. [CrossRef]

53. Andrews, P.K.; Serrano Marquez, C. Volume 15—Graft incompatibility. In Horticultural Reviews; Janick, J.,
Ed.; John Wiley & Sons, Inc.: Oxford, UK, 1993; pp. 183–232. ISBN 978-0-471-57338-8.

http://dx.doi.org/10.12706/itea.2016.015
http://dx.doi.org/10.21273/HORTSCI.30.6.1316
http://dx.doi.org/10.21273/HORTSCI.41.6.1389
http://dx.doi.org/10.1093/treephys/19.10.645
http://dx.doi.org/10.1590/0103-8478cr20120521
http://dx.doi.org/10.1093/jexbot/51.345.659
http://www.ncbi.nlm.nih.gov/pubmed/10938857
http://dx.doi.org/10.2298/PIF1401021P
http://dx.doi.org/10.1007/s11099-013-0021-6
http://dx.doi.org/10.21273/HORTSCI.43.6.1670
http://dx.doi.org/10.1016/j.tplants.2015.11.008
http://dx.doi.org/10.1093/jxb/ert208
http://dx.doi.org/10.1016/j.scienta.2012.04.019
http://dx.doi.org/10.1074/jbc.271.3.1475
http://dx.doi.org/10.1016/j.scienta.2018.06.097
http://dx.doi.org/10.1016/j.scienta.2012.06.017


Agronomy 2020, 10, 706 20 of 20

54. Pereira, I.D.S.; Antunes, L.E.C.; Picolotto, L.; Fachinello, J.C. Incompatibilidade de enxertia em Prunus Graft
incompatibility in Prunus. Cienc. Rural 2014, 449, 1519–1526. [CrossRef]

55. Shtein, I.; Hayat, Y.; Munitz, S.; Harcavi, E.; Akerman, M.; Drori, E.; Schwartz, A.; Netzer, Y. From structural
constraints to hydraulic function in three Vitis rootstocks. Trees-Struct. Funct. 2017, 31, 851–861. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1590/0103-8478cr20131074
http://dx.doi.org/10.1007/s00468-016-1510-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Material and Experimental Details 
	Growth Parameters 
	Internal Characterization of the Union 
	Affinity Coefficients (ACs) 
	Chlorophyll Fluorescence and Pigments Content 
	Statistical Analysis 

	Results 
	Grafting onto 110R Rootstock Leads to Higher Graft Take Rates 
	Graft Unions Are Frequently Incomplete at Five Months after Grafting 
	Affinity Coefficients (ACs) Calculated for the Same Graft Combination Vary According to the Formula Used 
	Chlorophylls Analysis Is a More Sensitive Indicator of Stress than the Analysis of Chlorophyll Fluorescence 
	Graft Take Correlates with Callus Formation and with the Improvement of Scion–Rootstock Translocation 

	Discussion 
	Conclusions 
	References

