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SUMMARY

Higher eukaryotic chromosomes are organized into
topologically constrained functional domains; how-
ever, the molecular mechanisms required to sustain
these complex interphase chromatin structures are
unknown. A stable matrix underpinning nuclear
organization was hypothesized, but the idea was
abandoned as more dynamic models of chromatin
behavior became prevalent. Here, we report that
scaffold attachment factor A (SAF-A), originally iden-
tified as a structural nuclear protein, interacts with
chromatin-associated RNAs (caRNAs) via its RGG
domain to regulate human interphase chromatin
structures in a transcription-dependent manner.
Mechanistically, this is dependent on SAF-A’s AAA+

ATPase domain, which mediates cycles of protein
oligomerization with caRNAs, in response to ATP
binding and hydrolysis. SAF-A oligomerization de-
compacts large-scale chromatin structure while
SAF-A loss or monomerization promotes aberrant
chromosome folding and accumulation of genome
damage. Our results show that SAF-A and caRNAs
form a dynamic, transcriptionally responsive chro-
matin mesh that organizes large-scale chromosome
structures and protects the genome from instability.
INTRODUCTION

Mammalian interphase chromosomes are organized into topo-

logically constrained chromatin domains (Belmont et al., 1989),

which are responsive to transcription (Naughton et al., 2013)

and local gene density (Goetze et al., 2007). Gene-poor genomic

regions have a compact large-scale chromatin structure, while
1214 Cell 169, 1214–1227, June 15, 2017 ª 2017 The Authors. Publis
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regions rich in genes and transcriptional activity have a more de-

compacted structure (Gilbert et al., 2004; Goetze et al., 2007;

Naughton et al., 2010). Previously, we suggested that transcrip-

tion and topoisomerase activities, that occur at the gene level,

alter local topology to form supercoiling domains (Naughton

et al., 2013) and these correspond to structures seen by Hi-C

(Rao et al., 2014). It is unclear, however, how these processes

could impact on large-scale chromatin structures.

In contrast to mitosis, where topoisomerases and condensin

play a central role in scaffolding chromatin (Samejima et al.,

2012), the molecular underpinnings of interphase domains are

poorly characterized (Belmont, 2014) and their functional impact

remains unknown. A ‘‘nuclear matrix’’ consisting of insoluble

proteins and RNA particles was proposed to organize inter-

phase chromatin architecture (Berezney and Coffey, 1974; Ped-

erson, 1998), maintain chromosome territories (Ma et al., 1999),

enhance gene expression, and provide a platform for nuclear

processes, but chromatin mobility in vivo (Chubb et al., 2002;

Phair et al., 2004) and the lack of a stable nucleoprotein

structure in live cells undermined the concept (Hancock,

2000). However, the structural contribution of RNA to chromatin

organization remains undisputed: a large proportion of chro-

matin by mass corresponds to RNA (Holmes et al., 1972), mostly

belonging to the loosely termed chromatin-associated RNA

(caRNA) class. The functional roles of caRNAs are hinted by

the observation that they are stably associated with interphase

chromosome territories (Fey et al., 1986; Hall and Lawrence,

2016) and their disruption leads to chromatin condensation

(Hall et al., 2014). The molecular basis for this is unknown, but

it is thought heterogeneous ribonucleoprotein particles

(hnRNPs) provide a docking platform to associate with nascent

transcripts (Melé and Rinn, 2016) while caRNAs might influence

chromatin structure (Caudron-Herger and Rippe, 2012). Recent

studies have been unable to find specific species of RNA, similar

to XIST, which could regulate large-scale chromatin structure,

suggesting instead that diverse caRNAs transiently interact

with chromatin, forming a dynamic compartment (Melé and
hed by Elsevier Inc.
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Rinn, 2016). However, a refinement of this model would require

insight into how the interaction of proteins with caRNAs can

regulate chromatin structure.

Scaffold attachment factor A (SAF-A), also known as hetero-

geneous ribonucleoprotein U (HNRNP-U) (Kiledjian and Drey-

fuss, 1992; Romig et al., 1992), is an abundant protein reported

to bind scaffold attachment regions (Göhring et al., 1997) and

involved in several cellular processes such as pre-mRNA

splicing (Xiao et al., 2012), accumulation at DNA damage sites

(Britton et al., 2014) and Xist-mediated transcriptional silencing

(McHugh et al., 2015). Structurally, SAF-A contains a low

complexity RNA-binding RGG repeat and an ATP-binding

AAA+ domain, known to facilitate the assembly (Erzberger and

Berger, 2006) and operation of diverse protein and nucleoprotein

machines. Other well-characterized AAA+ domain-containing

proteins, such as replication factor C (RFC) and DnaA, oligomer-

ize through their AAA domains, often with nucleic acids, to form

higher molecular weight structures. We characterized SAF-A ac-

tivity to understand the relationship between its structure and

function in regulating chromatin architecture.

We are able to demonstrate that SAF-A regulates transcrip-

tionally active large-scale chromatin structures in human cells.

Using functional mutants of SAF-A, we dissect the underlying

molecular mechanisms to show that SAF-A can cycle from a

monomeric to a homo-oligomeric state through ATP binding

and caRNAs; concomitantly, SAF-A oligomerization drives chro-

matin decompaction while monomerization compacts large-

scale chromatin organization.

We suggest that SAF-A interacts with caRNAs to form a chro-

matin mesh (Nozawa and Gilbert, 2014), and unlike the historical

concept of a nuclear matrix, is highly responsive to ongoing tran-

scription and can undergo dynamic cycles of assembly and

disassembly. Surprisingly, a gross change in chromatin structure

has limited effect on transcription indicating that gene-level

chromatin structure is important for regulating transcription,

rather than large-scale chromatin architecture. Although

changes in large-scale chromatin structure do not influence

gene expression, an alteration in the chromatin landscape had

a dramatic effect on genome stability; loss or mutation of

SAF-A triggered a DNA damage response and chromosomal

instability.
Figure 1. Transcription-Dependent SAF-A Regulation of Interphase Ch
(A) Ideogram of human chromosome 11 (HSA11) showing locations of fosmid pr

(green) and gene-poor (red) regions.

(B) FISH assay for large scale chromatin compaction with probes (red and green) a

Left: Representative images for cells (siControl) or cells depleted of SAF-A (siSAF-

Scale bars, 10 mm. Right: Boxplots showing distribution of distances between pr

nuclei for at least two biological replicates).

(C) Boxplots of distances between probe pairs at 11p15.5 from a FISH assay in

(D) Left: FISH with fluorescently labeled oligo probes covering gene-rich (see A;

SAF-A (siSAF-A). Scale bars, 10 mm. Inset: 3D reconstructions of probe clusters

occupied by probe clusters (n > 20 nuclei for each sample).

(E) Left: FISH for chromosome 18 (HSA18) and 19 (HSA19) territories in cells (siC

tification of territory area (n > 50 nuclei for each sample).

(F) Boxplots showing the distribution of distances between probe pairs at 11p15.5

presence and absence of the transcription inhibitor a-amanitin (5 hr). All conditions

for at least two biological replicates).

p values for a Wilcoxon test: NS, not significant; ***p < 0.001; ****p < 0.0001.

See also Figure S1 and Table S1.
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To unify the structural and enzymatic aspects of SAF-A func-

tion, we speculate that SAF-A/RNA interactions will drive the for-

mation of local chromatin domains or micro-bodies (Brackley

et al., 2016), while its role in regulating large-scale chromatin

structures will partition the genome into functionally diverse seg-

ments. This process is essential for maintaining genome stability

and could provide a constraint to maintain clusters of genes

together in the genome during evolution (Ghanbarian and Hurst,

2015).

RESULTS

SAF-A Remodels Chromatin Structures
SAF-A’s contribution to chromatin structure is unknown; it is nu-

clear diffuse (Figure S1A), but excluded from condensed DAPI

bright regions such as the gene-poor nuclear periphery. SAF-A’s

abundance, localization, and structural characteristics suggest it

may play a role in organizing nuclear architecture (Hall and Law-

rence, 2016). To examine whether SAF-A affects large-scale

chromatin, we analyzed chromatin compaction using three-

dimensional (3D) DNA fluorescence in situ hybridization (FISH)

across loci with different epigenetic states and distinct levels

of chromatin folding (Boettiger et al., 2016; Gilbert et al., 2004)

using fosmid probe pairs (Figures 1A and S1C; Table S1)

(detailed in Naughton et al., 2013). SAF-A small interfering RNA

(siRNA) treatment resulted in a substantial reduction of SAF-A

protein (Figure S1B) and caused a significant compaction of

gene-rich 11p15.5 and 11p15.1 loci enriched in ‘‘open’’ chro-

matin, but not the gene-poor 11p14.1 locus (Figure 1B), indi-

cating that SAF-A is involved in decompacting chromatin. Similar

changes in chromatin structure were observed for additional

gene-rich (2p25.1, 21q22.3, Xq13.1) and gene-poor loci (Xq25,

1p31.2) using fosmid probes positioned 0.1–2.0 Mb apart (Fig-

ure S1D). Depletion of other hnRNP members, such as HNRNP

A1 and HNRNP C, showed no obvious nuclear effects (Fig-

ure 1C), indicating that SAF-A has a unique role among hnRNPs

in regulating chromatin structure. To extend our analysis, we tar-

geted labeled oligo probes to gene-rich and gene-poor regions

on chromosome 11 (Figure 1A) and analyzed chromatin

compaction by FISH and 3D modeling. SAF-A depletion led to

significant compaction of the HSA11 gene-rich domain, but not
romosome Structures
obes at p15.5, p15.1, and p14.1 and oligo probe clusters located in gene-rich

t gene-rich 11p15.5, 11p15.1, or gene-poor 11p14.1 loci in human RPE1 cells.

A); nuclei were counterstained with 40,6-diamidino-2-phenylindole (DAPI; blue).

obe pairs. Shaded boxes show median and interquartile range of data (n = 70

cells (siControl) or cells depleted of hnRNP A1 or hnRNP C.

green) or gene-poor region (see A; red) in cells (siControl) or cells depleted of

to facilitate visualization. Scale bars, 1 mm. Right: Quantification of volumes

ontrol) or cells depleted of SAF-A (siSAF-A). Scale bars, 10 mm. Right: quan-

from a FISH assay in cells (siControl) or cells depleted of SAF-A (siSAF-A) in the

are significantly different from the untreated control (p < 0.0001, n = 100 nuclei



the gene-poor region (Figure 1D), indicating that SAF-A contrib-

utes to the partitioning of the genome into segments with distinct

structures (Boettiger et al., 2016). Changes in chromatin

compaction following SAF-A depletion were observed by

24 hr, while global changes in nuclear area were not apparent

until later, indicating that the effect is due to changes in local

chromatin structure rather than an alteration in nuclear size

(Figure S1F).

The human genome is partitioned into chromosomes with very

different gene densities; we reasoned that if SAF-A predomi-

nantly regulated gene-rich chromosome regions, its depletion

would have a greater effect on gene-rich, rather than gene-

poor chromosomes. To test this, we monitored the chromosome

territory of the gene-rich HSA19 and gene-poor HSA18 before

and after SAF-A depletion. The two similarly sized chromosomes

have different gene densities (45 genes/Mb on HSA18 versus

216 genes/Mb on HSA19) (Figure S1C), and HSA19 has been

shown to adopt amore open chromosome territory configuration

than HSA18 (Croft et al., 1999). Upon SAF-A depletion, we

observed significant chromosome territory compaction, but

HSA19 was compacted significantly more that HSA18, consis-

tent with SAF-A predominantly regulating gene-rich chromo-

some regions at scales up from 100 kb to a whole chromosome

territory (Figure 1E). At the largest nuclear scale, we also

observed a significant change in DAPI texture (Figures S1G

and S1H) after SAF-A depletion.

Previously, we reported that transcription also decompacts

large scale chromosome structures (Naughton et al., 2010). To

determine whether SAF-A and transcription act independently

or in a synergistic manner, we analyzed chromatin compaction

in control cells or cells depleted of SAF-A following treatment

with the transcription inhibitor a-amanitin. Inhibition of transcrip-

tion and loss of SAF-A together did not result in a further

compaction of chromatin than either of the two factors alone,

consistent with the two processes functioning together

(Figure 1F).

Transcriptional Upstream Regulation of SAF-A
We reasoned that if SAF-A and transcription acted together,

there could be two potential models for the functional relation-

ship between SAF-A, transcription, and chromatin: either tran-

scription could regulate SAF-A to alter chromatin structure

(model 1) or SAF-A could have an impact on transcription, which

regulates structure (model 2) (Figure 2A). To discriminate be-

tween these possibilities, we investigated the effect of SAF-A

depletion on cellular transcription using different approaches.

First, we examined global transcription via a short pulse of 5-

ethynyl uridine (5-EU) incorporated into newly transcribed RNA

(�80% pol II transcripts) (Jackson et al., 2000) and quantified

by fluorescent labeling (Figure 2B). Depletion of SAF-A had little

effect on the distribution of transcripts or the apparent levels of

transcription. In contrast, inhibition of transcription using

a-amanitin had a profound effect on newly synthesized RNA.

To confirm these results, [5-3H]uridine was pulsed into cells

and measured in newly synthesized RNA; there was no change

in transcription after 24 or 48 hr of SAF-A depletion (Figure S2A).

This analysis was extended by pulsing cells with 4-thiouridine

before analyzing the nucleoside composition of RNA and DNA
(Figure S2B). SAF-A depletion had little effect on either nascent

RNA or steady-state RNA levels (Figure 2C). Consistently, cyto-

logical markers of transcription (Ki67 and SC35) showed no

changes in their distribution after SAF-A depletion (Figure S2C).

To determine if individual transcripts were affected, we analyzed

mRNA by next generation sequencing. At 24 hr following deple-

tion, only SAF-A was differentially expressed compared to con-

trol cells, while at 48 hr, there were limited changes in cell-cycle-

dependent genes (Figure S2D) consistent with other studies

(Xiao et al., 2012; Ye et al., 2015). These results were validated

by qRT-PCR (Figure 2D) providing overwhelming evidence that

transcription is upstream of SAF-A (model 1). To further support

model 1, we reasoned that changes in transcription might be ex-

pected to influence SAF-A behavior. In control cells SAF-A is

insoluble (Figure 2E), but after transcription, inhibition SAF-A is

released into a soluble fraction consistent with transcription be-

ing functionally upstream of SAF-A (model 1). These surprising

results indicate that while SAF-A exerts a significant effect on

large-scale chromatin structures (Figure 1), there is a limited

concomitant effect on transcription, suggesting it is small-scale

chromatin structures that predominantly impact transcriptional

processes.

SAF-A Actuation by ATP Binding
To understand the relationship between SAF-A and transcription

and how SAF-A mechanistically impacts chromatin, we under-

took a structural analysis of the SAF-A protein. SAF-A encodes

four conserved domains (Figure 3A): SAP (SAF-A/B, acinus,

and PIAS) that has DNA binding activity (Göhring et al., 1997),

SPRY (SPla and the ryanodine receptor) of unknown function,

AAA+ (ATPases associated with diverse cellular activities) (Erz-

berger and Berger, 2006), and a low complexity RGG (arginine

glycine-glycine) RNA-binding domain (Helbig and Fackelmayer,

2003). Globular domain composition and disorder prediction

indicate that the SPRY and AAA+ domain are ordered but sepa-

rated from the SAP and RGG domains (Figure S3A), suggesting

the SPRY and AAA+ domains adopt a defined conformation. 3D

homology modeling of SAF-A AAA+ domain (Figures S3B and

S3C) showed the AAA+ domain has a core aba nucleotide-bind-

ing fold containing highly conserved Walker-A (WA), Walker-B

(WB), and a helical subdomain known as the ‘‘lid.’’ The Walker

Amotif is predicted to be necessary for nucleotide binding, while

the Walker B motif is required for nucleotide hydrolysis.

We directly tested whether SAF-A AAA+ domain could hydro-

lyze ATP or GTP. Purified SAF-A AAA+ fragment, but not SAF-A

Walker A or Walker B mutants, exhibited ATPase activity at

0.15 nmol ATP hydrolyzed per nmol of SAF-A AAA+ fragment

per min, but no GTPase activity (Figure 3B), similar or higher

than other AAA+ proteins such as DnaA (Sekimizu et al., 1987)

and ORC (Klemm et al., 1997) at 0.017 and 0.27 nmol ATP hy-

drolyzed per nmol protein per min, respectively. As the AAA+

domain is located adjacent to an RNA-binding domain, we

speculated that RNA might modulate the SAF-A ATPase activ-

ity. A longer fragment of SAF-A encompassing the AAA+/RGG

domains was purified and the ATPase activity measured in the

presence or absence of RNA. Total RNA increased the

ATPase activity 2.5 times compared to the absence of RNA

(Figure 3B).
Cell 169, 1214–1227, June 15, 2017 1217



Figure 2. SAF-A Modulation of Chromatin Structure Is Downstream and Regulated by Gene Transcription

(A) Alternate models depicting the relationship between transcription, SAF-A, and chromatin structure.

(B) Fluorescence microscopy of cells pulse labeled (30 min) with 5-EU, fixed and conjugated, using click chemistry with Cy5 azide. Control cells (siControl), cells

depleted of SAF-A (siSAF-A), or treated with a-amanitin (5 h). Scale bar, 10 mm.

(C) Bar graph showing nascent and steady-state RNA in control RPE1 cells or cells depleted of SAF-A quantified by measuring the pulsed incorporation of 4-SU,

guanine, and thymidine. Error bars represent SD for two biological replicates.

(D) Relative expression of HPS5, LDHA, and TSG101 in control cells and cells depleted of SAF-A measured by qRT-PCR. Error bars are SEM for at least two

biological replicates.

(E) Left: Western blot showing fractionation of SAF-A protein into soluble and insoluble fractions in control cells or cells treated (5 hr) with a-amanitin or fla-

vopiridol. Right: Immunofluorescence for SAF-A in Triton X-100 extracted cells treated with a-amanitin and counterstained with DAPI. Scale bars, 10 mm.

See also Figure S2.
TodeterminewhetherSAF-Aundergoesaconformationchange

upon ATP-binding, consistent with protein actuation as for other

AAA+ domain proteins (e.g., DnaA), we measured the change in

fluorescence upon nucleotide binding. His-tagged AAA+ frag-

ments of SAF-A were treated with increasing concentrations of

ATP and the quenching of intrinsic fluorescence of tryptophan

and tyrosine residues were measured to reveal a pronounced

alteration in structure upon nucleoside binding (Figure 3C). Muta-

tionof theWalkerAmotif abrogatedATPbindingbutWalkerBmu-

tations had no effect; Kd for ATP binding to wild-type SAF-A and

Walker B mutant SAF-A were 38 mM and 29 mM, respectively.

ATP binding triggers a change in AAA+ domain conformation in

other proteins, which then stabilizes subunit-subunit interactions
1218 Cell 169, 1214–1227, June 15, 2017
(Erzberger et al., 2006). We hypothesized that SAF-A might form

an oligomeric complex upon ATP binding. Further analysis of

SAF-A revealed an additional predicted a helix (aa 512–521) after

canonical b strand 2. This a helix is analogous to the initiator-

specific motif (ISM) observed in DnaA and ORC family proteins

(Duderstadt et al., 2011; Erzberger et al., 2006), which guides

neighboring AAA domains into a non-planar arrangement, pre-

venting formation of a flat ring (Figure 3D) and required for folding

into a spiral oligomer.

Biochemical Characterization of SAF-A Oligomers
To investigate whether SAF-A forms oligomeric chains, we

reasoned that protein-protein cross-linkers would stabilize



Figure 3. SAF-A Possesses an RNA-Depen-

dent ATPase Activity and Is Actuated by

ATP Binding

(A) Top: Diagram detailing SAF-A domains (SAP,

SPRY, AAA+, and RGG), Walker A/B motifs, and

constructs used in this study. Walker A mutation

was K491A while Walker B mutation was D561A.

Bottom: Coomassie-stained SDS-PAGE of puri-

fied SAF-A AAA+ protein.

(B) Left: ATPase or GTPase activity of recombinant

wild-type SAF-A AAA+ domain and Walker A

(deficient in ATP binding) or Walker B (deficient in

ATP hydrolysis) SAF-A AAA+ mutants. Right:

ATPase activity of SAF-A AAA+/RGG protein

fragment with added total RNA or following RNase

treatment. Error bars are SEM for three technical

replicates; data is representative of two biological

experiments.

(C) Fluorescence spectroscopy (Ex 290 nm/Em

360 nm) of SAF-A AAA+ protein (blue) or Walker A

(red) or Walker B (green) mutants with increasing

concentrations of ATP. Data is representative of

two biological replicates.

(D) Cartoon of ATP-DnaA complex showing in-

teractions between neighboring AAA+ modules

(purple) to form a helical filament. Image modified

from (Erzberger and Berger, 2006).

See also Figure S3.
oligomeric SAF-A structures that could then be isolated

from cells. To minimize the likelihood of purifying protein aggre-

gates, we treated cells with cross-linkers with amino acid spec-

ificity (BM(PEG)2 [1,8-bismaleimido-diethyleneglycol], Cys-Cys,

14.7 Å; DSS [disuccinimidyl suberate], Lys-Lys, 11.4 Å; GMBS

[N-g-maleimidobutyryl-oxysuccinimide ester], Cys-Lys, 7.3 Å).

In contrast to aggregates, oligomeric structures have geometric

regularity, so it is less likely that a defined cross-linker will stabi-

lize an aggregate structure. After protein extraction and denatur-

ation, high molecular weight SAF-A species were observed with

all cross-linkers consistent with protein oligomerization (Figures

4A and S4A). Transcription inhibition substantially reduced olig-

omer formation (Figure 4A) suggesting that SAF-A oligomeriza-

tion is transcription-dependent. To identify critical domains for

SAF-A oligomerization, individual FLAG-tagged fragments

were expressed in cells, cross-linked, and isolated. The AAA+/

RGG domain efficiently formed oligomers (Figure 4B) while the

SPRY domain was refractory to oligomerization; the RGG RNA

binding domain was absolutely required (Figure S4B). In the

presence of either ATP or the non-hydrolysable analog ATPgS,

the SAF-A AAA+/RGG formed high molecular weight oligomeric

species indicating that ATP binding maintains the oligomeric

form (Figure 4B). In contrast, a AAA+/RGG Walker A mutant

that is unable to bind ATP showed much less oligomerization,

while Walker B mutant fragment-deficient in ATP hydrolysis

function stably formed oligomers. These results support the

idea that SAF-A undergoes protein oligomerization and hydroly-

sis similar to DnaA (Duderstadt et al., 2010).

To investigate themolecular basis for cyclical SAF-A oligomer-

ization and hydrolysis, we sought to identify the components

involved. Guided by the known DnaA interaction with DNA, we
purified oligomeric SAF-A (Figure 4C, left) to identify whether it

bound to RNA. We found that newly synthesized RNA specif-

ically bound to oligomeric SAF-A (Figure 4C, right) supporting

the idea that SAF-A and RNA form a complex. To analyze the

steps required for SAF-A oligomerization, we pre-treated cells

with RNaseA to monomerize SAF-A (Figure 4D). Addition of total

RNA before cross-linking promoted SAF-A oligomerization,

which could be abrogated by apyrase treatment showing

that SAF-A oligomerization requires both RNA and ATP. To

test SAF-A de-oligomerization, we purified cross-linked oligo-

meric SAF-A from cells and reversed the cross-links using DTT

(Figure 4E). ATP or ATPgS stabilized the oligomers whereas

RNase or apyrase treatment promoted monomerization.

Together, our data show that SAF-A can undergo cycles of olig-

omerization promoted by RNA and ATP binding and ATP hydro-

lysis (Figure 4F).

SAF-A Forms Oligomers In Vivo
To investigate SAF-A dynamics in live cells, we used three com-

plimentary approaches. First, to assay full-length SAF-A oligo-

merization in cells, we designed a proximity ligation assay

(PLA) to detect SAF-A 4 SAF-A interactions (Figure S5A). In

PLA, proteins are detected with antibodies fused to DNA oligos:

close proximity of the proteins allows ligation of the DNA oligos,

which can then be amplified and detected by a fluorescent

signal. Flp-In T-REx 293 cells were depleted of endogenous

SAF-A and then doxycycline treated to express wild-type

FLAG-tagged SAF-A or Walker A or Walker B mutants, at a

physiological level (Figure S5B), and co-transfected with

T7-tagged full-length SAF-A or SAF-A with Walker A or Walker

B point mutations. PLA signals indicating SAF-A interactions
Cell 169, 1214–1227, June 15, 2017 1219



Figure 4. ATP- and RNA-Dependent SAF-A Oligomerization Cycle

(A) Left: Western blot for endogenous SAF-A protein extracted from 293T cells treated with or without a-amanitin and stabilized by cross-linking with different

concentrations of 1,8-bismaleimido-diethyleneglycol (BM(PEG)2). Proteins were resolved by SDS-PAGE to reveal different SAF-A species (oligomer; D-dimer;

M-monomer). Right: Quantification of data in left panel.

(B) Left: Western blot for FLAG-tagged SAF-A AAA+/RGG protein expressed in 293T cells and stabilized with different concentrations of disuccinimidyl suberate

(DSS). Extracted proteins were resolved by SDS-PAGE. Right: SAF-A wild-type, Walker A, or Walker B mutants expressed in 293T cells, treated with ATP or

ATPgS and cross-linked with 0.3 mM BM(PEG)2, extracted, and resolved by SDS-PAGE.

(C) 293T cells expressing full-length FLAG-tagged SAF-A pulse-labeled with 5-ethynyl uridine (5-EU) and stabilized with BM(PEG)2. SAF-A was extracted,

immuno-purified and resolved by native PAGE. Left: Western blot for SAF-A. Right: RNA detection in SAF-A oligomers. Samples were fractionated by native gel

electrophoresis, transferred to membrane, and RNA was labeled by conjugating biotin to pre-incorporated 5-EU using click chemistry and detection using

avidin-HRP.

(D)Western blot for endogenous SAF-A to analyze protein oligomerization. 293T cells pre-treated with RNaseA, then incubated in the presence or absence of total

RNA or apyrase and stabilized by cross-linking with BM(PEG)2. Proteins were extracted and resolved by SDS-PAGE (oligomer; D-dimer; M-monomer).

(E) Western blot for FLAG-SAF-A to analyze protein de-oligomerization. Cells were cross-linkedwith dithio-bis-maleimidoethan (DTME) and stabilized SAF-Awas

immuno-purified. Cross-links were reversed with DTT, then incubated in the presence of RNase, apyrase, or nucleotides and fractionated by native PAGE.

(F) Model for the ATP- and RNA-dependent SAF-A (purple) oligomerization cycle.

See also Figure S4.
(Figure 5A) were found in cells expressing wild-type SAF-A

or the SAF-A Walker B mutant, while no interactions were

observed for the SAF-A Walker A mutant, suggesting that

SAF-A oligomerizes in vivo through ATP binding, while ATP hy-

drolysis is not important for these associations. We next inves-

tigated if transcription regulates SAF-A oligomerization in live
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cells, consistent with its role upstream of SAF-A in model 1 (Fig-

ure 2). To directly test this we treated cells with the transcription

inhibitor a-amanitin and assayed for SAF-A oligomerization by

PLA. After transcription inhibition the number of PLA signals

significantly decreased (Figure 5B), concomitant with a reduc-

tion in SAF-A oligomeric forms (Figure 4A).



Figure 5. ATP and Transcription-Dependent SAF-A Oligomerization in Cells

(A) Left: Proximity ligation assay (PLA) signals in Flp-In T-REx 293 cells depleted of endogenous SAF-A (48 hr) and then doxycycline induced for 24 hr to express

FLAG-tagged wild-type SAF-A or Walker A or Walker B mutants and co-expressing T7-tagged wild-type or mutant versions of SAF-A. Scale bar, 10 mm. Right:

Quantification of PLA signals. p values are for a Wilcoxon test, n > 30 nuclei for two biological replicates.

(B) Boxplot showing number of PLA signals as in (A) for cells treated in the presence or absence of a-amanitin (5 hr treatment). p values for a Wilcoxon test, n = 30

nuclei for two biological replicates.

(C) Model depicting the change in Förster resonance energy transfer (FRET) efficiency between monomeric and oligomeric forms of GFP-SAF-A (green) and

mCherry-SAF-A (red).

(D) Left: Representative confocal images of 293T cells expressing truncated forms of SAF-A: GFP- AAA+/RGG or bothmCherry-AAA+/RGG andGFP-AAA+/RGG.

Pseudo-colored images show FRET efficiency calculated from fluorescence-lifetime imaging microscopy (FLIM) of individual pixels (see the STAR Methods).

Right: Boxplot quantifying average FRET efficiency in GFP-AAA+/RGG (green) or GFP-AAA+/RGG and mCherry-AAA+/RGG (red) cells. p values for Student’s t

test, n > 20 nuclei.

(legend continued on next page)
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Second, we analyzed SAF-A interactions using FLIM-FRET

(fluorescence lifetime imaging microscopy – Förster resonance

energy transfer). FLIM-FRET is a well-established approach to

detect interactions at the nanometer scale (Llères et al.,

2017); we predicted that SAF-A4SAF-A interactions in

oligomers should be detectable by FRET (Figure 5C). Although

fluorescent protein tags inhibited the oligomerization of the

full-length protein, oligomerization could be observed biochem-

ically for GFP and mCherry-tagged AAA+/RGG SAF-A frag-

ments (Figure S5B). We expressed the GFP-tagged AAA+/

RGG fragment in cells, either on its own (donor only) or in com-

bination with a mCherry-tagged version of the same fragment

and measured the fluorescence lifetime of GFP. An interaction

between the two differentially labeled fragments is expected to

result in energy transfer between the GFP and mCherry tags,

associated with a decrease in the fluorescence lifetime of

GFP. The difference in GFP lifetime between the donor alone

(GFP fragment on its own) and the FRET conditions can then

be expressed as FRET efficiency. We found a significant in-

crease in FRET efficiency in cells expressing both GFP and

mCherry tagged AAA+/RGG fragments, strongly indicative of

oligomerization involving the two components (Figure 5D).

Consistently with the PLA data, a decrease in FRET efficiency

was observed for AAA+/RGG Walker A mutant fragments,

confirming the importance of ATP binding for oligomerization

(Figures 5E and S5C). Fragments carrying Walker B mutations

resulted in an increase in FRET efficiency compared to

the wild-type, suggesting a defect in the oligomerization cycle

and underscoring the role of ATP hydrolysis in SAF-A mono-

merization. Abolishing transcription, using two different inhibi-

tors, also impeded oligomerization, as evidenced by a decrease

in FRET efficiency (Figures 5E and S5C).

Finally, as the FLIM-FRET analysis indicated that the Walker

B mutant showed excessive oligomerization, we speculated

that ATP hydrolysis might be important for the reversal and dy-

namics of this process. Consistently, when we examined the

staining patterns of FLAG-tagged wild-type SAF-A and the

two mutants by super-resolution STED microscopy (Fig-

ure S5D), the SAF-A Walker B mutant showed a granular stain-

ing pattern indicative of large SAF-A oligomers, which was not

observed in the wild-type SAF-A or the SAF-A Walker A

mutant (Figures 5F and S5E). Quantification of the granules

showed that the Walker B mutant had significantly more and

brighter granules than for either wild-type or Walker A mutant

(Figure S5F), highly indicative of SAF-A Walker B mutant olig-

omers continuing to undergo oligomerization, forming large

structures. These three pieces of evidence support a model

of cyclical SAF-A oligomerization and monomerization in

response to transcription and regulated by ATP binding and

hydrolysis.
(E) Bar graph of median pixel-by-pixel FRET efficiency in 293T cells expressing G

Control cells or cells treated with the transcription inhibitors a-amanitin or flavopiri

mCherry-tagged wild-type, Walker A, or Walker B SAF-A mutants. p values for S

(F). Super-resolution STED microscopy of FLAG-tagged SAF-A protein. Flp-In T

induced to express wild-type or mutant Walker A or Walker B SAF-A and counte

p values: NS, not significant; ***p < 0.001; ****p < 0.0001.

See also Figure S5.
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SAF-A Regulates Chromatin Structure through caRNAs
We next tested whether SAF-A oligomerization was required for

regulation of large-scale chromatin structures by examining

11p15.5 (Figure 6B) or 2p25.1 (Figure S6A) compaction following

rescue experiments with RNAi-resistant wild-type SAF-A, or

SAF-A encoding Walker A or Walker B mutants at different

time points (Figure 6A, colored triangles). As predicted, wild-

type SAF-A was able to rescue the compacted phenotype and

efficiently decompact chromatin (Figure 6B, box 3). Expression

of the Walker A mutant was unable to rescue the chromatin state

(Figure 6B, box 5) showing that SAF-A oligomerization is

required for chromatin decompaction. Conversely, the Walker

Bmutant was able to decompact the gene-rich region (Figure 6B,

box 7), indicating that oligomerization, and not the dynamic

cycling between oligomeric and monomeric states, is essential

for decompacting large-scale chromatin structure. In the oppo-

site experiment, we tested whether SAF-A monomerization

was necessary for chromatin compaction, taking advantage of

the ability of a-amanitin to compact chromatin (Figure 1F):

expression of the SAF-A protein in the presence of a-amanitin

(Figure 6B, box 8) was able to drive chromatin compaction (Fig-

ure 6B, box 4), however, theWalker Bmutant was unable to drive

chromatin compaction (Figure 6B, box 8) consistent with ATP-

hydrolysis being required to cycle from an oligomeric to mono-

meric state to compact chromatin. Thus, we conclude that

SAF-A oligomer assembly and disassembly regulates large-

scale chromatin structure.

We next addressed how SAF-A interacted with chromatin to

regulate large-scale chromatin structures. We hypothesized

two potential modes of interaction: SAF-A could either be

directly bound to chromatin, or it might bind indirectly, interact-

ing with RNAs (Figure S2B) through the RGG domain (Figure 2A).

In pilot experiments, we found that unlike positive controls,

DNA was not co-precipitated in chromatin immunoprecipitation

(ChIP) assays with antibodies against SAF-A, suggesting the

protein was not directly bound to chromatin. In contrast,

cross-linking immunoprecipitation sequencing (CLIP-seq) ex-

periments have shown that SAF-A is able to bind to virtually all

classes of regulatory RNA (Xiao et al., 2012).To analyze the

mode of SAF-A binding, nuclear samples were treated with

RNaseA/T1 or DNaseI before extraction into a soluble and insol-

uble (chromatin-associated) state; RNase treatment significantly

abolished SAF-A chromatin binding, while DNaseI only had a

limited effect (Figure 6D). To further explore the mechanics of

SAF-A/RNA interaction with chromatin, we used an approach

developed by Hall et al. (2014) based on the observation that

caRNAs, detected by RNA-FISH with a human C0t1 probe in hu-

man-hamster hybrids, remain associated with the chromosome

territory from where they are transcribed, in an unstable manner

(t1/2 = 1 hr, Figure S6E). SAF-A depletion did not affect C0t1 RNA
FP-AAA+/RGG (green) or GFP-AAA+/RGG and mCherry-AAA+/RGG (red). Left:

dol. Right: 293T cells depleted of endogenous SAF-A and expressing GFP- and

tudent’s t test.

-REx 293 cells depleted of endogenous SAF-A (48 hr) and then doxycycline

rstained with DRAQ7. Scale bar, 10 mm. Insets show detail.



Figure 6. SAF-A Oligomerization Regulates Interphase Chromosome Structure via Chromatin-Associated RNAs

(A) Top: Model for chromatin decompaction by SAF-A oligomerization. Bottom: Experimental strategy to test model. Flp-In T-REx 293 cells depleted of

endogenous SAF-A (48 hr) and then doxycycline-induced for 24 hr to express wild-type or mutant SAF-A. Samples were taken at times (colored triangles) for

analysis.

(B) Boxplots showing the distribution of distances between probe pairs at 11p15.5 from a FISH chromatin compaction assay in cells before (0 hr, red rectangle,

box 1), after SAF-A depletion (siSAF-A, dark orange rectangle, box 2), and after re-expression of siRNA-resistant wild-type SAF-A,Walker A, or Walker Bmutants

in the absence (pale orange rectangles, boxes 3, 5, 7) or presence (green rectangles, boxes 4, 6, 8) of a-amanitin (n = 100 for two biological replicates). Colored

bars correspond to time points shown in (A).

(C) Model depicting direct or indirect binding of SAF-A (purple) to chromatin (blue) in the presence of caRNAs (red).

(D) Left: Western blot showing extraction of SAF-A into soluble and insoluble fractions from cells before and after treatment with RNase A/T1 or DNaseI. Right:

Western blot showing FLAG-tagged full length SAF-A or SAF-A truncated at the N (DSAP) or C (DRGG) termini extracted into soluble and insoluble fractions.

(E) Boxplots as described in (B) showing effect of re-expressing SAF-A lacking the RGG-domain on large scale chromatin compaction. Colored bars correspond

to time points in (A).

p values for a Wilcoxon test: NS, not significant; ****p < 0.0001.

See also Figure S6 and Table S1.
binding to chromosomes (Figure S6C) while transcription inhibi-

tion triggered a rapid loss of C0t1 or LINE-1 signal and chromo-

some territory compaction (Figure S6D), consistent with SAF-A

binding to chromatin via caRNAs. We also found that SAF-A
bound to newly transcribed caRNA through its RGG domain

(Figure S6F) and further testedwhether this binding was required

for chromatin decompaction using the approach developed in

Figure 6A. Re-expression of SAF-A DRGG was unable to
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decompact chromatin structures (Figure 6E) indicating that

SAF-A oligomerization regulates large-scale chromatin struc-

tures through an interaction with caRNAs.

SAF-A Is Required for Chromosome Stability
Unexpectedly, our data indicates that altering large-scale chro-

matin structure, by depletion of SAF-A, only has limited impact

on transcription (Figures 2 and S2). However, we speculated

that interphase chromatin structure disruption would have an ef-

fect on genome integrity. We observed diffuse phosphorylated

H2AX (g-H2AX)signals inSAF-A-depletedRPE1cells (FigureS7A),

a response reflective of nuclear stress (Meyer et al., 2013). Diffuse

g-H2AX signals appeared 48 hr after an alteration in large-scale

chromatin structure suggesting that irregular chromatin triggers

the response. We also characterized the effect of Walker A or

Walker B mutations on genomic stability: only the oligomeriza-

tion-deficient Walker A mutant promoted the accumulation of

diffuse g-H2AX pattern (Figure 7A) suggesting that inhibition of

oligomerization and enforced chromatin compaction triggers a

response, indicative of cellular mechanisms that monitor chro-

matin structure integrity. Spiral-shaped and distorted metaphase

chromosomeswere also observed inSAF-A-depleted cells,which

also showed reduction in viability, G1/S phase arrest (Figures 7B

and 7C), chromosomal segregation defects, and the formation

of anaphase bridges staining positive for the BLM protein

(Figure 7C). To assess the long-term impact of an alteration in

chromatin structure on chromosomal instability, we performed

chromosome painting FISH for HSA2 and HSA4 (Figure S7D).

Control cells predominantly had two copies of HSA2 and HSA4

while 25% and 21%, respectively, have more than three chromo-

some signals after the depletion of SAF-A, indicating that an alter-

ation in interphase chromatin structure causes chromosomal

instability. A similar effect could be observed in cells expressing

the SAF-A Walker A mutant, but not the Walker B mutant, indi-

cating that large-scale chromatin structure, regulated by SAF-A

oligomerization, is essential for chromosome stability (Figure 7D).

DISCUSSION

We have demonstrated a previously unknown role for the abun-

dant nuclear protein SAF-A in regulating interphase chromosome

structure via oligomerization with caRNAs. ATP binding through

the SAF-A AAA+ domain mediates oligomerization, while the

RNA-binding domain of SAF-A directly links protein assembly

with caRNAs. Our preliminary data indicates that caRNAs have

a short half-life (�1 hr) in the nucleus, and the caRNA pool is

rapidly turned over suggesting that caRNAs should be consid-

ered as a dynamic nuclear compartment that is involved in chro-

matin structure regulation. It is therefore possible that caRNAs,

generated by normal transcription, decompact large-scale chro-

matin structures facilitating their transport from the nucleus.

Expanding both the classical concept of a nuclear matrix un-

derpinning interphase chromatin domains and more recent ob-

servations of RNA as a fundamental chromatin component

(Hall and Lawrence, 2016), we suggest that SAF-A, together

with heterogeneous caRNAs forms a dynamic chromatin mesh

that regulates chromatin structure. Unlike previously envisioned

static models of the nuclear matrix, this process is dynamic and
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responsive to transcription. From our studies, it is not clear what

structure SAF-A adopts. However, the protein shows compelling

similarity to DnaA protein, and the presence of an ISM suggests it

might be a spiral oligomer (Erzberger et al., 2006). The underlying

regulatory mechanisms for triggering SAF-A oligomerization are

unclear, but SAF-A has a number of predicted phosphorylation

sites and interacts with known kinases (Britton et al., 2014;

Douglas et al., 2015). In addition, a SAF-A homolog, HNRNPUL1,

shows 60% similarity, but there is no evidence for the presence

of aWalker A or Walker Bmotif raising the possibility that it might

function as a regulatory protein to ‘‘cap’’ growing SAF-A chains.

An insight into the functional interplay between SAF-A and

chromatin could be provided by recent simulation experiments

suggesting that non-specific binding-induced-attraction is

sufficient to generate local chromatin domains or chromatin

micro-bodies (Brackley et al., 2016). Formation is driven by

protein-chromatin interactions mediated by RNA that could

partition the genome into functionally open or closed domains,

observed by chromosome conformation capture techniques,

providing an evolutionary constraint for maintaining gene-rich

domains together (Ghanbarian and Hurst, 2015). Surprisingly,

this model does not require explicit boundary elements suggest-

ing that evolutionary domains could divide or merge depending

on local transcription. It is also tempting to speculate that tran-

scription ripples that occur over 100 kb inmammalian cells could

limit the maximum size of functional domains (Ebisuya et al.,

2008). The regulation of chromatin micro-bodies is unknown

but could be regulated by the cyclical ATP-dependent polymer-

ization of SAF-A, while extensive RNA-chromatin interactions

will provide a ‘‘glue’’ to stabilize local chromatin structures.

Previous reports show that SAF-A is essential for mouse

embryonic development (Roshon and Ruley, 2005; Ye et al.,

2015), and numerous mutations have been reported in the

AAA+ domain of SAF-A in the cancer genome sequencing

projects with a pronounced cluster in the AAA+ lid domain (Fig-

ure S7E). It has also recently been reported that haploinsuffi-

ciency for SAF-A causes impaired neurological development in

humans (Deciphering Developmental Disorders Study, 2015).

Consistent with these pathological effects, our data shows that

maintenance of interphase chromosome structure by SAF-A is

necessary to maintain chromosome stability and aberrant chro-

matin structure triggers a DNA damage response (Figure 7). This

suggests the mammalian genome has mechanisms for sensing

changes in large-scale chromatin structure. This is signaled by

an ATM/ATR-dependent response that leads toH2AX phosphor-

ylation and a rapid cell-cycle arrest. While we show that large-

scale chromatin structures are secondary to transcription, our

data highlights that maintenance of chromosome organization

is necessary for chromosome stability, implicating chromatin

architecture as a guardian of the genome.
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Figure 7. Disruption of SAF-A-Dependent Large-Scale Chromatin Structure Causes Genome Instability

(A) Quantification of the frequency of diffuse and focal g-H2AX signals. Flp-In T-REx 293 cells were depleted of endogenous SAF-A (48 hr) and then doxycycline

induced for 24 hr to express wild-type or mutant SAF-A.

(B) Top: Representative images of mitotic chromosomes prepared from RPE1 cells (siControl) or cells depleted of SAF-A (siSAF-A) and stained with DAPI. Scale

bars, 5 mm. Bottom: Quantification of chromosome morphology.

(C) Frequency of anaphase bridges observed after staining with BLM in RPE1 cells (siControl, n = 53) or cells depleted of SAF-A (siSAF-A, n = 39).

(D) Top: DNA FISH for human chromosome 2 (HSA2) and 4 (HSA4) territories in Flp-In T-REx 293 cells depleted of endogenous SAF-A, with wild-type or Walker A

or B SAF-A mutants re-expressed. Nuclei were counterstained with DAPI (blue). Scale bars, 10 mm. Bottom: Quantification of chromosome territory number for

HSA2 and HSA4 (n > 150 nuclei; p values for a chi-square test).

See also Figure S7.
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immunofluorescence)
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anti-g-H2AX (1:1000 for immunofluorescence) Millipore Cat# 05-636

anti-hnRNP A1 (1:3000 for western blotting) Invitrogen Cat# PA5-19431

anti-hnRNP C (1:3000 for western blotting) Santa Cruz Cat# sc32308; RRID: AB_627731

anti-GAPDH (1:5000 for western blotting) Cell Signaling Cat# 2118L; RRID: AB_561053

anti-SAF-A 3G6 (1:5000 for western blotting) Abcam Cat# ab10297

anti-SAF-A for IF (1:200 for immunofluorescence) Bethyl Cat# A300-690A

anti-Ki67 (1:300 for immunofluorescence) Abcam Cat# ab15580; RRID: AB_443209
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Chemicals, Peptides, and Recombinant Proteins

ExtrAvidin�Peroxidase Sigma-Aldrich Cat# E2886

3X FLAG Peptide Sigma-Aldrich Cat# F4799

a-amanitin Sigma-Aldrich Cat# A2263

Flavopiridol Sigma-Aldrich Cat# F3055

Actinomycin D Sigma-Aldrich Cat# A4262

DRB Sigma-Aldrich Cat# D1916

Hygromycin B Roche Cat# 10843555001

Puromycin ThermoFisher Cat# A1113803

Doxycycline Sigma-Aldrich Cat# D9891

Lipofectamine RNAiMAX Reagent ThermoFisher Cat# 13778150

Lipofectamine 2000 Reagent ThermoFisher Cat# 11668019

Lipofectamine 3000 Reagent ThermoFisher Cat# L3000015

TURBO DNase ThermoFisher Cat# AM2239

DNaseI NEB Cat# M0303S

Nuclease P1 Sigma-Aldrich Cat# N8630

RNase A/T1 Ambion Cat# AM2286

PureLink RNase A ThermoFisher Cat# 12091039

RNasin Plus RNase Inhibitor Promega Cat# N2611

Apyrase NEB Cat# M0398S

Disuccinimidyl suberate (DSS) ThermoFisher Cat# 21655

1,8-bismaleimido-diethyleneglycol (BM(PEG)2) ThermoFisher Cat# 22336
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

N-g-maleimidobutyryl-oxysuccinimide ester (GMBS) ThermoFisher Cat# 22309

Dithio-bis-maleimidoethane (DTME) ThermoFisher Cat# 22335

L-cysteine Sigma-Aldrich Cat# 168149

NuPAGE LDS sample buffer ThermoFisher Cat# NP0007

7% tris-acetate gels ThermoFisher Cat# EA03555BOX

NuPAGE Tris-Acetate SDS Running Buffer (20X) ThermoFisher Cat# LA0041

NuPAGE 4-12% Bis-Tris Protein Gels ThermoFisher Cat# NP0323BOX

Bolt 8% Bis-Tris Plus Gels ThermoFisher Cat# NW00085BOX

NuPAGE MOPS SDS Running Buffer (20X) ThermoFisher Cat# NP0001

NativePAGE 4-16% Bis-Tris Protein Gels ThermoFisher Cat# BN1004BOX

NativePAGE Running Buffer Kit ThermoFisher Cat# BN2007

NativePAGE Sample Prep Kit ThermoFisher Cat# BN2008

Immobilon-P Membrane, PVDF, 0.45 mm Merck Millipore Cat# IPVH00010

SuperSignal West Femto Maximum Sensitivity Substrate ThermoFisher Cat# 34094

SuperSignal West Pico Chemiluminescent Substrate ThermoFisher Cat# 34080

5-ethynyl uridine (5-EU) BaseClick Cat# BCN-003-5

4-thiouridine Sigma-Aldrich Cat# T4509

Thymidine Sigma-Aldrich Cat# T9250

Adenosine 50-triphosphate disodium salt hydrate Sigma-Aldrich Cat# A2383

Guanosine 50-triphosphate sodium salt hydrate Sigma-Aldrich Cat# G8877

Adenosine 50-[g-thio]triphosphate tetralithium salt Sigma-Aldrich Cat# A1388

Biotin Azide (PEG4 carboxamide-6-Azidohexanyl Biotin) ThermoFisher Cat# B10184

Alexa Fluor 647 Azide, Triethylammonium Salt ThermoFisher Cat# A10277

Digoxigenin-11-UTP Roche Cat# 00000001109�3088910

Biotin-16-dUTP Roche Cat# 00000001109�3070910

DRAQ7 Abcam Cat# ab109202

Critical Commercial Assays

Duolink In Situ PLA Probe Anti-Mouse PLUS Affinity

purified Donkey anti-Mouse IgG (H+L)

ThermoFisher Cat# DUO92001

Duolink In Situ PLA Probe Anti-Rabbit MINUS Affinity

purified Donkey anti-Rabbit IgG (H+L)

ThermoFisher Cat# DUO92005

Duolink In Situ Detection Reagents Red ThermoFisher Cat# DUO92008

Click-iT EdU Alexa Fluor 647 Imaging Kit (for 5EU labeling) ThermoFisher Cat# C10337

Click-iT Nascent RNA Capture Kit ThermoFisher Cat# C10340

BIOMOL Green Enzo Life Science Cat# BML-AK111-0250

Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) illumina Cat# MRZH116

RNeasy Mini kit QIAGEN Cat# 74104

NEBNext Ultr RNA Library Prep Kit for Illumina NEB Cat# E7530S

High Sensitivity DNA Kits Agilent Genomics Cat# 5067-4626

Deposited Data

RNA-seq data This paper GEO: GSE98541

Experimental Models: Cell Lines

Human: hTERT-RPE1 cell ATCC Cat# ATCC-CRL-4000

Human: 293T ATCC Cat# ATCC-CRL-3216

Human: FlpIn T-REx 293 Cell line ThermoFisher Cat# R78007

Human-Hamster hybrid: GM10253 Coriell Institute N/A

Human: FlpIn T-REx 293 FLAG-SAF-A This paper N/A

Human: FlpIn T-REx 293 FLAG-SAF-A Walker A mut. This paper N/A

(Continued on next page)
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Human: FlpIn T-REx 293 FLAG-SAF-A Walker B mut. This paper N/A

Human: FlpIn T-REx 293 FLAG-SAF-A DSAP This paper N/A

Human: FlpIn T-REx 293 FLAG-SAF-A DRGG This paper N/A

Oligonucleotides

Stealth RNA target sequence: SAF-A

CCUGGGAAUCGTGGCGGATATAATA

ThermoFisher Cat# HSS104917

Stealth RNA target sequence: hnRNP C

GCUUUGCCUUCGUUCAGUAUGUUAA

ThermoFisher Cat# HSS179304

Stealth RNA siRNA Negative Control, Med GC ThermoFisher Cat# 12935300

Custom MyTags libraries MYcroarray N/A

Recombinant DNA

cDNA for SAF-A Genome Cube Cat# IRATp970D1041D

Plasmid: FlpIn 3xFLAG-SAF-A This paper N/A

Plasmid: FlpIn 3xFLAG-SAF-A Walker A mut. This paper N/A

Plasmid: FlpIn 3xFLAG-SAF-A Walker B mut. This paper N/A

Plasmid: FlpIn 3xFLAG-SPRY/AAA+/RGG This paper N/A

Plasmid: FlpIn 3xFLAG-SPRY/AAA+ This paper N/A

Plasmid: FlpIn 3xFLAG-AAA+/RGG This paper N/A

Plasmid: FlpIn 3xFLAG-AAA+/RGG Walker A mut. This paper N/A

Plasmid: FlpIn 3xFLAG-AAA+/RGG Walker B mut. This paper N/A

Plasmid: FlpIn 3xFLAG-AAA+ This paper N/A

Plasmid: FlpIn 3xFLAG-SAF-A DSAP This paper N/A

Plasmid: FlpIn 3xFLAG-SAF-A DRGG This paper N/A

Plasmid: FlpIn GFP-SAF-A This paper N/A

Plasmid: FlpIn GFP-AAA+/RGG This paper N/A

Plasmid: FlpIn GFP-AAA+/RGG Walker A mut. This paper N/A

Plasmid: FlpIn GFP-AAA+/RGG Walker B mut. This paper N/A

Plasmid: FlpIn mCherry-AAA+/RGG This paper N/A

Plasmid: FlpIn mCherry-AAA+/RGG Walker A mut. This paper N/A

Plasmid: FlpIn mCherry-AAA+/RGG Walker B mut. This paper N/A

Plasmid: T7-SAF-A This paper N/A

Plasmid: T7-SAF-A Walker A mut. This paper N/A

Plasmid: T7-SAF-A Walker B mut. This paper N/A

Plasmid: pET32a-AAA+ This paper N/A

Plasmid: pET32a-AAA+ Walker A mut. This paper N/A

Plasmid: pET32a-AAA+ Walker B mut. This paper N/A

Plasmid: pET32a-AAA+RGG This paper N/A

Plasmid: FlpIn LINE1 ORF2 This paper N/A

Plasmid: mCherry-vector This paper N/A

Human Cot-1 DNA ThermoFisher Cat# 15279011

pOG44 ThermoFisher Cat# V600520

pSuper-puro vector harboring hnRNP A1

target sequence

Guil et al., 2006 N/A

Fosmids See Table S1 BacPac resources

Human Chromosome 2 painting probe Cytocell Cat# LPP-02R-A

Human Chromosome 4 painting probe Cytocell Cat# LPP-04G-A

Human Chromosome 18 painting probe MetaSystems Cat# D-0318-050-OR

Human Chromosome 19 painting probe MetaSystems Cat# D-0319-050-FI

(Continued on next page)
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Software and Algorithms

Woolz image processing system Armit et al., 2015 https://github.com/ma-tech/Woolz

MAPaint Armit et al., 2015 N/A

SymPhoTime v5.4.4 PicoQuant https://www.picoquant.com/products/category/

software

TopHat Trapnell et al., 2012 https://ccb.jhu.edu/software/tophat/index.shtml

Cufflinks Trapnell et al., 2012 https://ccb.jhu.edu/software/tophat/index.shtml

Bowtie2 Langmead and Salzberg,

2012

http://bowtie-bio.sourceforge.net/index.shtml

iVision BioVisionTechnologies http://www.biovis.com/ivision.html

Leica Application Suite Advanced

Fluorescence (LAS AF) Software

Leica Microsystems http://www.leica-microsystems.com/home/

SMART Schultz et al., 1998 N/A

MetaPrDOS Ishida and Kinoshita,

2008

http://prdos.hgc.jp/cgi-bin/meta/top.cgi

PHYRE-2 Kelley et al., 2015 http://www.sbg.bio.ic.ac.uk/�phyre2/html/

page.cgi?id=index

Modeler 9v12 Eswar et al., 2007 https://salilab.org/modeller/manual/

PyMol Schrödinger http://www.pymol.org

Pro-origami Stivala et al., 2011 http://munk.csse.unimelb.edu.au/pro-origami/

EsPript v3 Gouet et al., 1999 http://espript.ibcp.fr/ESPript/ESPript/

Other

Prescision Coverslips ZEISS Cat# 474030-9000-000

FluoSpheres Carboxylate-Modified

Microspheres, 0.02 mm, yellow-green

fluorescent (505/515), 2% solids

ThermoFisher Cat# F8787

HisTrap HP, 1 3 5 ml GE Healthcare Life

Sciences

Cat# 17-5248-01

CM Sepharose Sigma-Aldrich Cat# CCF100 Sigma
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Nick Gilbert (nick.

gilbert@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
RPE1, 293T and FlpIn-T-REx-293 cells (ThermoFisher) were cultured as described previously (Naughton et al., 2013).

GM10253A hybrid cells (Coriell) were cultured in RPMI1640 supplemented with 3 mM L-glutamine, 10% fetal calf serum, penicillin

(100 U.ml-1), streptomycin (100 mg.ml-1) and phenol red (8.1 mg.l-1). Transcription was blocked by adding a-amanitin (50 mg.ml�1),

flavopiridol (100 mM), actinomycin D (500 nM) or DRB (50 mM) to cells for the times indicated. Flp-In T-REx 293 was used to establish

stable cell lines for inducible expression of FLAG-tagged SAF-A and their derivatives by transfecting a modified pcDNA5/FRT

Expression vector (ThermoFisher) harboring N-terminal 3 3 FLAG tagged SAF-A or its derivatives, and pOG44 (ThermoFisher)

encoding Flp recombinase. After selection with 50 mg.ml-1 hygromycin B (ThermoFisher) for 2 weeks, the cells were treated with

1 mg.ml-1 doxycycline for 24 hr for inducing expression of proteins.

METHOD DETAILS

Plasmids
cDNA for human SAF-A was obtained from Genome Cube (IRATp970D1041D). Truncation and point mutations of SAF-A were

constructed by a standard PCR cloning strategy and inserted into the corresponding vectors with indicated tags. All plasmids
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were verified by DNA sequencing. siRNA resistant SAF-A was constructed by introducing silent mutations into the nucleotide

sequence (2113-2124 bp) 50-CCTGGGAATCGT-30 as follows: 50- CCaGGaAAcCGa �30. The SAF-A cDNA and derivatives were in-

serted into a modified pcDNA5/FRT Expression vector (ThermoFisher) with an N-terminal 3 3 FLAG tag for transient expression in

293T andRPE1 cells and for stable expression in FlpIn T-REx 293 cells. For recombinant expression in E. coli, SAF-A derivatives were

cloned into a pET32a vector with an N-terminal 63 His tag. For PLA, T7 SAF-A derivatives were cloned into a modified pCGN vector

where the HA tag was replaced by a T7 tag.

RNA interference
For siRNA treatment, cells (10%–20% confluent) were transfected with 10 nMStealth RNA (ThermoFisher) using Lipofectamine RNAi

MAX (ThermoFisher) for the time indicated. Stealth RNA sequences and the identification numbers are CCUGGGAAUCGTGGCGGA

TATAATA HSS104917 for SAF-A and GCUUUGCCUUCGUUCAGUAUGUUAA HSS179304 for hnRNP C. The control RNA is Stealth

RNAi siRNA Negative Control, Med GC (ThermoFisher).

For shRNA treatment, RPE1 cells (80% confluent) were transfected with pSuper-puro vector harboring hnRNP A1 target sequence

using Lipofectamine 2000 (ThermoFisher). After 48 hr selection with 3 mg.ml-1 puromycin, DNA-FISH and western blotting were

performed.

SAF-A extraction
To analyze Triton X-100 soluble/insoluble SAF-A, cells were treated with CSK buffer containing 100 mM NaCl, 0.1% Triton X-100,

300 mM Sucrose, 1 mM MgCl2, 1 mM EGTA, 10 mM PIPES (pH 6.8), and 100 mM PMSF (phenylmethylsulfonyl fluoride) on ice for

10 min, followed by immuno-staining or divided into the supernatant and pellet fractions by centrifugation, at 5000 rpm, 4�C for

5 min, for western blotting. To analyze DNase or RNase A/T1 extraction of SAF-A, cells were treated with CSK buffer containing

100 units.mL-1 DNase I (ThermoFisher) and 2.5 mM CaCl2 or 0.5/20 units.ml-1 RNase A/T1 (Ambion) for 30 min at R.T. and were

divided into the supernatant and pellet by centrifugation, at 5000 rpm, 4�C for 5 min.

Oligomerization assay
1 3 106 293T cells were exposed to disuccinimidyl suberate (DSS; 1 mM, 0.3 mM, 0.1 mM), 1,8-bismaleimido-diethyleneglycol

(BM(PEG)2; 1 mM, 0.3 mM, 0.1 mM) or N-g-maleimidobutyryl-oxysuccinimide ester (GMBS; 1 mM, 0.3 mM, 0.1 mM)

crosslinking for 5 min at R.T. in PBS or permeabilised with 100 mL of reaction buffer including 125 mM NaCl, 50 mM Tris pH 7.0

(for BM(PEG)2) or 50mMPIPES pH7.0 (for DSS or GMBS), 5mMMgCl2 and 0.1%Triton X-100 at 37�C for 10min before crosslinking.

After quenching DSSwith 20mMTris pH 7.0, BM(PEG)2 with 20mML-cysteine (Sigma-Aldrich) or GMBSwith 20mMTris pH 7.0 and

20 mM L-cysteine, cells were processed for western blotting. 0.3 mM cross-linker was used for routine experiments while 1 mMwas

used for SAF-A IPs (Figures 4C and 4E).

For Figure 4B right, reaction buffer was supplemented with 5 mM ATP or ATPgS. For Figure 4D, after pre-treatment with 3 mg.ml-1

PureLink RNaseA (ThermoFisher) in reaction buffer at 37�C for 10min, 293T cell lysates were incubated in the presence or absence of

30 mg.ml-1 total RNA from 293T cells and 5 units.ml-1 Apyrase (NEB) at 37�C for 10min, following by crosslinking. After RNaseA treat-

ment reaction buffer was supplemented with RNasin Plus RNase Inhibitor (Promega) 1000 units.ml-1, 1 mM DTT and 5 mM CaCl2.

Protein gels and western blotting
Cells were suspended in NuPAGE LDS sample buffer (ThermoFisher) with 10 mM DTT, incubated at 100�C for 5 min and sonicated

briefly. For SAF-A oligomer blots, protein samples were resolved on 5 or 8% bis-tris gels or 7% tris-acetate gels (ThermoFisher) and

transferred to Immobilon-P PVDF 0.45 mm membrane (Merck Millipore) by wet transfer. Membranes were probed with antibodies

using standard techniques and detected by enhanced chemiluminescence.

Immunoprecipitation and Native PAGE
FLAG-tagged SAF-A expressed in 293T cells was cross-linked with 1 mM 1,8-bismaleimido-diethyleneglycol (BM(PEG)2) or 1 mM

dithio-bis-maleimidoethane (DTME), was extracted by sonication (103 30 s at amplitude 2 mm), immuno-purified using anti-FLAGM2

agarose beads (Sigma-Aldrich) and eluted with 100 mg.ml-1 33 FLAG peptide (Sigma-Aldrich) suspended in 50mMNaCl, 50mMTris

pH 7.0, 5mMMgCl2 and 0.1%Triton X-100. For Figure 4E, immunoprecipitants were incubated in the presence or absence of 10mM

DTT to reverse crosslinks, 0.5/20 units.ml-1 RNase A/T1, 5 units.ml-1 Apyrase, 1 mM ATP or 1mM ATPgS for 30 min at 37�C. A
4%–16% NativePAGE bis-tris gel (ThermoFisher) was used for native protein fractionation, according to the manufacturer’s instruc-

tions. In Figure 4C, 5-ethynyl uridine was conjugated to 0.2 mM biotin azide (PEG4 carboxamide-6-azidohexanyl biotin;

ThermoFisher) using click chemistry, transferred to PVDFmembrane, followed by incubation with ExtrAvidin�Peroxidase (Sigma-Al-

drich) and detected with SuperSignal West Femto (ThermoFisher).

Purification of recombinant proteins
To obtain SAF-A proteins, E.coli BL21 (DE3) cells transformed with a pET32a vector encoding SAF-A cDNA were grown in 2 3 YT

medium (16 g.ml-1 Tryptone, 10 g.ml-1 Yeast extract, 5 g.ml-1 NaCl) supplemented with 20 mg.ml-1 ampicillin and 20 mg.ml-1 chlor-

amphenicol. Protein expression was induced overnight at 18�C with 1 mM IPTG after OD600 reached 0.6. Cells were lysed in buffer
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containing 50 mM Tris-HCl (pH 8.0), 500 mM NaCl, 60 mM imidazole, 10% glycerol, 0.1% Triton X-100 and 1 mM DTT. The SAF-A

proteins were affinity-purified by HisTrap HP (GE Healthcare Life Sciences), dialysed into 150 mM NaCl, 30 mM imidazole (pH 7.0)

and 1 mM DTT overnight at 4�C and were further purified by CM-Sepharose cation exchange chromatography (Sigma-Aldrich) and

eluted using a 150 to 500 mM NaCl gradient in dialysis buffer.

ATPase activity assay
An ATPase activity assaywas performedwith 3.0 mmSAF-A protein in reaction buffer (50mMTris–HCl (pH 7.5), 125mMNaCl, 10mM

MgCl2, 5 mMDTT, 1 mMATP or 1mMGTP) in a final volume of 50 mL for 30min at 37�C. The 10 mL reaction was quenched with 90 mL

of BIOMOL Green (Enzo Life Science) and free phosphate was detected by absorbance at 620 nm using a Tecan M200Pro. A phos-

phate standard curve was used to estimate the amount of phosphate released during ATP hydrolysis. Error bars denote standard

deviations from three independent samples.

Fluorescence studies by luminescence spectroscopy
Fluorescence experiments were performed at 37�C using a LS 50 PerkinElmer luminescence spectrometer. Reactions comprised

4 mmSAF-A in 50 mM Tris–HCl (pH 7.5), 125 mMNaCl, 10 mMMgCl2, 5 mMDTT. Spectra for SAF-A AAA+ fragments were obtained

with 290 nm excitation wavelength and fluorescence changes calculated at 360 nm. All fluorescence measurements were performed

in duplicate.

Proximity ligation assay (PLA)
FlpIn T-REx 293 cells carrying an inducible copy of wild-type or mutant SAF-A were transfected with stealth RNAi to knock down

endogenous SAF-A using RNAi MAX (ThermoFisher) for 24 hr. Cells were then transfected with plasmids encoding T7-tagged

SAF-A or point mutants with Lipofectamine 3000 (ThermoFisher) and the expression of FLAG-tagged-SAF-A was induced with doxy-

cycline at the same time. After 24 hr, PLA was performed according to the manufacturer’s instructions using Duolink in situ (Sigma-

Aldrich).

[5-3H]uridine incorporation
Nascent transcription was measured as described (Naughton et al., 2013).

5-EU incorporation
Cells were treated with 1mM5-ethynyl uridine (Base Click) and 1mM thymidine (Sigma-Aldrich) for the indicated time. In Figure S6C,

cells were pretreated with 50 ng.ml-1 actinomycin D. Click reaction was performed with Click-iT EdU Alexa Fluor 647 Imaging Kit or

Click-iT Nascent RNA Capture Kit, according to the manufacturer’s instructions (ThermoFisher).

4-thiouridine incorporation and quantification of nucleosides
After 30min incubation with 0.5mM4-thiouridine cells were rinsed with PBS and lysed in DNA lysis buffer (100mMEDTA, 20mMTris

pH 7.5, 50 mM NaCl 0.5% SDS and 300 mg.ml-1 protease K). The cell lysate was incubate at 37�C for 30 min and precipitated in 2

volumes of ethanol. The precipitate was suspended in 70% ethanol overnight and resuspended in 50 mL of combined DNA and RNA

lysis buffer (1 3 DNaseI digestion buffer (NEB) with 1 mM ZnSO4). The nucleic acid was digested with 1 mL Dnase I (NEB) and 2 mL

(1 mg.ml-1) nuclease P1 for 24 hr at 37�C. After this the sample was denatured by heat (95�C for 5 min) and rapidly cooled on ice. 2

volumes of 30 mMNa acetate pH 5.2, (1 mM ZnSO4) was added and the sample was digested with fresh DNaseI (1 ml) and Nuclease

P1 (2 ml) for a further 24 hr at 37�C. 50 mL of lysate was separated by reverse phase HPLC.

HPLC was carried out on a Dionex Ultimate 3000 HPLC system equipped with Chromeleon software, a column chiller (8�C), 5 mm

APEX ODS C18 column, 50 mM ammonium phosphate (monobasic) mobile phase (1 ml.min-1), and a UV absorbance detector

capable of collecting UV absorbance at 5 wavelengths simultaneously. Nucleotides were detected at their peak absorbances: thymi-

dine 50monophosphate (in DNA) at 268 nm (retention time 22.5 min), guanosine monophosphate (in RNA) at 254 nm (retention time

11.5 min), and 4-thiouridine monophosphate (in RNA) at 323 nm (retention time 14.7 min). Nucleotide quantities were measured by

the areas under each peak at the respective peak UV absorbances.

RNA Sequencing and analysis
Total RNA from cells transfected with siRNA for the time indicated were prepared with RNeasy Mini kit (QIAGEN) and treated with

ribo-Zero kit (illumina) to remove ribosomal RNA. RNA-seq libraries were prepared with a NEBNext� Ultra RNA Library Prep Kit

for Illumina (NEB), according to manufacturer’s instructions, and were quantified using a BioAnalyzer 2100 with a High Sensitivity

DNA Kit (Agilent). RNA-seq Libraries were analyzed by Edinburgh Genomics at the University of Edinburgh, UK, for quality control

and sequencing (HiSeq2500, 50 base single-end reads). RNA-seq data were processed using a standard TopHat andCufflinksmeth-

odology (Trapnell et al., 2012). Single end reads were aligned using Tophat 2.0.10 and Bowtie 2.1.0 using a human hg19 bowtie2

index. Aligned reads were processed using Cufflinks 2.2.1 with a human hg19 reference annotation and differential gene expression

calculated between control and knockdown samples with Cuffdiff using a 0.0005 p value cut off.
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Three-dimensional RNA/DNA fluorescence in situ hybridization
3D RNA/DNA FISH was performed as described (Naughton et al., 2010). Fosmid probes (BacPac resources), human LINE1 cDNA

and human C0t1 DNA (ThermoFisher) were labeled in digoxigenin-11-UTP or biotin-16-dUTP. Custom MyTags libraries for Oligo-

DNA-FISH were synthesized to cover 20 kb of genomic sequence positioned every 1 Mb across a 10 Mb region of the genome

(MYcroarray). Gene rich library probes labeled with ATTO 488 cover chr11: 760000 – 10980000. Gene poor library probes labeled

with ATTO 550 cover chr11: 20000000 – 29200000. Each 5 mm probe was hybridized as for DNA-FISH. Chromosome Painting was

performed using a chromosome 2 painting probe labeled with Texas Red and a chromosome 4 painting probe labeled with FITC

(Cytocell) or a chromosome 18 or chromosome 19 paint (MetaSystem) directly labeled with Spectrum Orange or FITC,

respectively.

Image capture and analysis
Image capture and analysis was performed as described (Naughton et al., 2013) and image color balance was adjusted to improve

data visualization in the manuscript.

STED microscopy
Super-resolution images were acquired using a STEDmicroscope. Flp-In T-REx 293 cells depleted of endogenous SAF-A (48 h) and

then doxycycline induced for 24 hr to express wild-type or mutant SAF-A were prepared on high precision cover-glass (Zeiss,

Germany). STED images were acquired on a Leica SP5 SMD g-STED microscope (Leica Microsystems, Germany) using a 100 3

objective lens (HC PL APO 1003 /1.40 Oil STED White) with immersion oil (Leica Type F, refractive index 1.5180). A confocal image

was taken using a 488 nm laser for FLAG-SAF-A and 647 nm laser for DRAQ7 stained DNA. The STED image was taken using 488 nm

for excitation from a white light, super continuum laser and a pulsed 592 nm laser for depletion. Detection was with a HyD detector

with a time gate of 0.5-6 ns. STED image processing and analysis were carried out using the STEDmodule of the LAS AF (Leica Appli-

cation Suite Advanced Fluorescence). STED resolution was assessed by imaging 20 nm fluorescent beads (ThermoFisher). To mea-

sure image granularity nuclei were segmented on DRAQ7 to exclude background and nucleoli using an iVision script. The resulting

mask was used to isolate SAF-A image data, background signal was removed and granules were segmented based on intensity

script and quantified for each nucleus.

Fluorescence lifetime imaging microscopy (FLIM) data acquisition
Förster Resonance Energy Transfer (FRET) is a process whereby the transfer of energy occurs from an excited state fluorophore

(donor) to a second chromophore (acceptor) in close proximity and is used to detect molecular interactions in vivo where two mol-

ecules are less than 10 nm apart. In FLIM-FRET microscopy, fluorescence lifetime is measured as a quantitative readout of FRET,

with interactions causing a decrease in the fluorescence lifetime of the donor molecules. We performed FLIM-FRET experiments

with 293T cells transiently transfected with either GFP-AAA+/RGG SAF-A fragment (donor alone) or GFP-AAA+/RGG and

mCherry-AAA+/RGG together to investigate the oligomerization of SAF-A in different conditions. To deplete endogenous SAF-A,

293T cells were transfected with stealth RNA using RNAiMAX for 24 hr and transfected with GFP-AAA/+RGG and mCherry-

AAA+/RGG wild-type or point mutants with Lipofectamine 3000 for 24 hr. Acquisition was performed on a Leica SP5 SMD (Single

Molecule Detection) confocal laser-scanning microscope using a 63 3 1.4NA HCX PL Apo oil immersion objective lens. The GFP

donor fluorophore was excited using a tunable white light laser operating at 488 nm and 40 MHz pulse rate. Emission was detected

with an external single photon avalanche diode (MicroPhoton Devices) and photon arrival time relative to the laser pulse was deter-

mined using a PicoHarp 300 time-correlated single photon counting (TCSPC) module. FLIMmeasurements were integrated for 120 s

with a 512 3 512 pixel format at a maximum photon count rate of 105 counts per second and subsequently binned to a 256 3 256

pixel format to maximize photon counts per pixel for accurate data fitting.

FLIM-FRET analysis
FLIM analysis was carried out using SymPhoTime v5.4.4 (PicoQuant). The measured fluorescence decay was fitted to a bi-exponen-

tial decay model using the maximum-likelihood estimation method. Fluorescence lifetime values were determined by pixel-by-pixel

fitting, which was guided by an initial global decay fit. Reported fluorescence lifetimes are an amplitude-weighted average of the two

decay components, tamp = (A1t1 + A2t2) / (A1 + A2) (where A1 and A2 are the amplitudes of the decay components and t1 and t2 are the
fluorescence lifetimes) and were only calculated for pixels with greater than 300 photon counts. FRET efficiency, EFRET = 1 – tDA/tD,
where tDA is the lifetime of the donor (GFP) in the presence of the acceptor (mCherry) and tD is the single pixel median amplitude-

weighted fluorescence lifetime reported for the GFP donor-only sample, calculated per pixel from the GFP-mCherry samples. Image

maps representing FRET efficiency per pixel were constructed in R using the spatstat package.

Protein sequence analysis and domain identification
The domain composition of SAF-A was initially observed using SMART (Schultz et al., 1998) and then the most likely domain

sequence lengths extended on the basis of homology searches of the Protein Data Bank (PDB) taking into consideration additional

conserved secondary structure elements for the SAP (PDB ID: 1ZRJ), SPRY (PDB ID: 3TOJ) and AAA (3ZVL) domains, respectively.

The C-terminal RNA binding region was annotated on the basis of functional studies (Kiledjian and Dreyfuss, 1992). The disordered
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regions were predicted using MetaPrDOS (Ishida and Kinoshita, 2008) by integrating results from 5 disorder prediction methods (see

Figure S3A).

Fold recognition and 3D homology modeling of SAF-A AAA domain
The SAF-A isoform 2 AAA domain sequence (aa 469-653) was analyzed using PHYRE-2 (Kelley et al., 2015) to assess fold compat-

ibility. All returned top hits were AAA superfamily related with 100% confidence. The AAA domain from the crystal structure of the

mammalian polynucleotide kinase 30 phosphatase PDB ID: 3ZVL chain A (1.65 Å) was selected as a template for modeling the

SAF-A AAA domain based upon an HHPred search of the PDB70 database. The HMM-HMM target-template alignment was used

as input for modeling after manual checking of alignment, secondary structure equivalence, gap positioning and undertaking minor

editing. A PsiPred secondary structure prediction identified an additional predicted a -helix (aa 512-521) and an extended a-helix (aa

533-554) when compared with the template located after the canonical b strand 2; these additional predicted secondary structure

features were restrained during the model building process. A total of 100 models were built using Modeler 9v12 (Eswar et al.,

2007) and the model with the lowest ‘‘DOPE’’ energy (Shen and Sali, 2006) was selected as the representative model, and assessed

for valid stereochemistry (Ramachandran plot: 98.9% of residues in favored and allowed regions) and packing quality (average

Z-score �1.04). PyMol (http://www.pymol.org) was used for 3D visualization, analysis and figure preparation. Pro-origami was

used to create the 2-D cartoon topology schematic (Stivala et al., 2011). The target-template alignment was generated and annotated

using EsPript v3 (Gouet et al., 1999).

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical significance of compaction was tested using a nonparametricMann–Whitney U (Wilcoxon) test (using R programming).

p < 0.05 was taken as statistically significant. For oligo probe DNA-FISH analysis, theWoolz image processing system, initially devel-

oped for the eMouseAtlas program (Armit et al., 2015), was used to analyze the distribution of 3D DNA-FISH spot images. MAPaint, a

Woolz based interactive 3D segmentation tool, was used to delineate spot domains. From these domains convex hulls and their vol-

umes were then computed. The open source Woolz image processing system is freely available from https://github.com/ma-tech/

Woolz. For analyzing DAPI texture cells were grown overnight on slides, stainedwith DAPI andmounted. 12 bit imageswere collected

using a 405 nm laser on a SP5 confocal microscope (Leica) using a 1003 objective and were segmented to exclude background and

nucleoli using a custom iVision (BioVis) script. Segmented nuclei were sub-sampled 1003 eachwith an 83 8, 123 12, 163 16, 203

20, 24 3 24 and 28 3 28 window (i.e., 600 measurements per nucleus using an iVision script). Sub-sampled images were imported

into R and visualized using the spatstat package. To quantify texture images were transformed to a gray level co-occurrence matrix

(GLCM) using the radiomics package and second order matrix statistics were calculated.

DATA AND SOFTWARE AVAILABILITY

The accession number for RNA sequencing reported in this paper is NCBI GEO: GSE98541.
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Figure S1. Characterization of SAF-A’s Ability to Regulate Interphase Chromosome Structures, Related to Figure 1

(A) Immunofluorescence staining showing the distribution of SAF-A (red) and DAPI-stained DNA (blue) in ARPE-19 cells. Scale bars, 10 mm.

(B) western blot for SAF-A and GAPDH in RPE1 cells (siControl) and cells depleted of SAF-A (siSAF-A).

(C) Ideogram of human chromosome 1 (HSA1), 2 (HSA2), 18 (HSA18), 19 (HSA19), 21 (HSA21) and X (HSA X) showing fosmid probe pairs used in this study at

1p31.2, 2p25.1, 21q22.3, Xq13.1 and Xq25. Whole chromosome paints were used for HSA 18 and HSA 19.

(D) Top, representative images of FISH experiments showing control cells (siControl) or cells depleted of SAF-A (siSAF-A). Scale bars, 10 mm. Bottom, boxplots of

inter-probe distances at gene rich Xq13.1, 2p25.1 and 21q22.3 regions and gene poor Xq25 and 1p31.2 from a FISH chromatin compaction assay in RPE1 cells. P

values for a Wilcoxon test (n > 50; NS = not significant; **p < 0.01; ***p < 0.001).

(E) western blot for hnRNPA1 (left panel) or hnRNPC (right panel) and histone H3 in RPE1 control cells (siControl) and cells depleted of hnRNP A1 (left) or hnRNP

C (right).

(F) Left, boxplots of distances between probe pairs at 11p15.5 from a FISH assay in control cells (siControl) or cells depleted of SAF-A (siSAF-A) for increasing

amount of time (24, 48, 72 h). Right, boxplots of nuclear area in control cells (0 h) or cells depleted of SAF-A (siSAF-A) for increasing times (24, 48, 72 h).

(G) Confocal images of DAPI-stained nuclei in control RPE1 cells (siControl) and RPE1 cells depleted of SAF-A (siSAF-A). Scale bar, 5 mm.

(H) Diagram showing how nuclei are sampled to measure DNA texture.

(I) Boxplots for different sample window sixes (x axis) for different texture properties (y axis) in control (red) and SAF-A depleted (green) cells. Contrast – local

intensity variation; Correlation – gray level linear dependence; Energy – homogeneity (a homogeneous scene will have only a few gray levels); Entropy – ho-

mogeneity (Homogeneous scenes have a high entropy).



Figure S2. SAF-A Loss Does Not Impact on Gene Transcription, Related to Figure 2

(A) Bar graph showing [5-3H]uridine incorporation into nascent RNA in control RPE1 cells or cells depleted of SAF-A. Error bars are SEM for at least two biological

replicates.

(B) HPLC traces showing the identification and quantification of 4-SU nucleoside monophosphate (top, red circle), guaninemonophosphate and thymidinemono

phosphate peaks (bottom, red boxes) after isolating and fractionating nucleosides from whole cell extracts pulsed with 4-SU in the presence or absence of

competitor ribonucleosides.

(C) Immunofluorescence staining for Ki67 (red) or SC35 (green) in RPE1 control cells (siControl), cells depleted for SAF-A (siSAF-A) or treated with transcription

inhibitor a-amanitin, flavopiridol, actinomycin D or DRB (each for 5 h). Scale bar, 10 mm.

(D) Volcano plots for RNA-seq data for RPE1 control cells compared to cells depleted of SAF-A for 24 or 48 hr. Significantly differently expressed genes (q < 0.05)

are shown in red.



Figure S3. Structural Characteristics of SAF-A and Identification of Walker and Initiator-Specific Motifs, Related to Figure 3

(A) SAF-A encodes four conserved domains: SAP (SAF-A/B, Acinus and PIAS) (Aravind and Koonin, 2000) which has DNA binding activity (Göhring et al., 1997),

SPRY (Spla andRyanodine receptor) of unknown function (Ponting et al., 1997), AAA+ (ATPases Associatedwith diverse cellular Activities) (Erzberger and Berger,

2006), and a low complexity RGG (arginine glycine-glycine) RNA-binding domain (Helbig and Fackelmayer, 2003; Thandapani et al., 2013). Probability of protein

disorder across SAF-A calculated using different algorithms. Amino acid number is given on x axis while y axis depicts the levels of protein disorder.

(B) Sequence and structure homology between SAF-A AAA+ domain and mammalian PNK (PDB-3ZVL) structure showing predicted a helices, b sheets and

putative Walker motifs. Conserved amino acids are labeled in red and similar amino acids are marked in yellow.

(C) Left, predicted ribbon diagram of SAF-A, modeled on PDB-3ZVL, showing putative Walker motifs and ISM. Right, cartoon of SAF-A protein showing key

domains and ISM.



Figure S4. Role of SAF-A Domains in Protein Oligomerization, Related to Figure 4

(A) western blot for endogenous SAF-A protein in 293T cells cross-linked with increasing concentrations of 1,8-bismaleimido-diethyleneglycol (BM(PEG)2),

disuccinimidyl suberate (DSS), N-g-maleimidobutyryl-oxysuccinimide ester (GMBS) and fractionated by SDS-PAGE (Oligomer; D-dimer; M-monomer).

(B) western blot for FLAG-tagged SAF-A domains (AAA+; AAA+/RGG; SPRY/AAA+; SPRY/AAA+/RGG) expressed in 293T cells, cross-linked using dis-

uccinimidyl suberate (DSS) and fractionated by SDS-PAGE (Oligomer; D-dimer; M-monomer).



(legend on next page)



Figure S5. PLA and FLIM-FRET Controls to Analyze SAF-A Interactions, Related to Figure 5

(A) Cartoon representing proximity ligation assay (PLA) to analyze protein-protein associations in cells.

(B) western blot for FLAG-tagged wild-type, Walker A or Walker B mutant SAF-A and endogenous SAF-A in Flp-In T-Rex 293 cell lines induced by doxycycline.

GAPDH was used as a loading control.

(C) western blot for GFP-tagged full length or AAA+/RGG domain SAF-A expressed in 293T cells, cross-linked using 1,8-bismaleimido-diethyleneglycol

(BM(PEG)2) and fractionated by SDS-PAGE.

(D) Representative confocal images under different experimental conditions in 293T cells expressing fluorescently tagged forms of SAF-A: GFP-AAA+/RGG or

GFP-AAA+/RGG with free mCherry or cells expressing both mCherry-AAA+/RGG and GFP-AAA+/RGG and pseudo-colored images showing FRET efficiency

calculated from fluorescence-lifetime imaging microscopy (FLIM) of individual pixels. Right, distribution of pixel FRET efficiency for multiple (5 – 20) nuclei.

(E) Calibration of STED microscopy using 20-nm fluorescent beads. Scale bar, 500 nm.

(F) Super-resolution STED and confocal microscopy of FLAG-tagged wild-type SAF-A or SAF-A Walker A or Walker B mutants in Flp-In T-Rex 293 cells. Cells

were depleted of endogenous SAF-A and FLAG tagged proteins induced by doxycycline treatment. Cells were counterstained with DRAQ7. Scale bar, 10 mm.

(G) Left, boxplot showing SAF-A granules per nucleus in FLAG-tagged wild-type SAF-A or SAF-A Walker A or Walker B mutants as in Figure 5F and (E). P values

for aWilcoxon test (n > 30 nuclei; ****p < 0.0001). Right, density plot showingmean SAF-A granule intensity in nuclei expressing wild-type ormutant SAF-A (n > 30

nuclei for each sample).



(legend on next page)



Figure S6. SAF-A Oligomerization Regulates Interphase Chromatin Structure via Chromatin-Associated RNAs but Is Not Required to

Maintain C0t1 and LINE-1 RNA, Related to Figure 6

(A) Boxplots showing the distribution of distances between probe pairs at 2p25.1 from a FISH chromatin compaction assay in cells before (0 hr, red rectangle,

box 1), after SAF-A depletion (siSAF-A, dark orange rectangle, box 2) and after re-expression of siRNA-resistant wild-type SAF-A,Walker A orWalker Bmutants in

the absence (pale orange rectangles, box 3, 5, 7) or presence (green rectangles, box 4, 6, 8) of a-amanitin (n > 100). Colored bars correspond to time points shown

in Figure 6A.

(B) Immunofluorescence for SAF-A in Triton X-100 extracted RPE1 cells treated with RNaseA/T1, counterstained with DAPI. Scale bar, 10mm.

(C) DNA-FISH for human chromosome 3 (HSA3, C0t1 DNA probe) in a human-hamster hybrid cell line (GM10253A) that stably carries HSA3 in conjunction with

RNA-FISH to assay for the binding and distribution of caRNAs (C0t1 RNA probe) or LINE-1 ORF2 RNA in control cells (siControl) and cells depleted for SAF-A

(siSAF-A) and cells treated with the transcription inhibitors a-amanitin or actinomycin D. Scale bars, 10 mm.

(D) Boxplot showing area occupied by HSA3 territory (C0t1 DNA probe) as in panel C in GM10253A control cells (siControl), cells depleted for SAF-A (siSAF-A) and

cells treated with the transcription inhibitors a-amanitin or actinomycin D (5 h). P values for a Wilcoxon test (n > 30 nuclei; ****p < 0.0001).

(E) Fluorescence microscopy in RPE1 cells pre-treated with low dose (50 ng/ml) actinomycin D (60 min) and pulse labeled (15 min) with 5-ethynyl uridine (5-EU),

fixed at the indicated time post 5-EU treatment. 5-EU was conjugated to Cy5 in a click chemistry reaction for visualization.

(F) Top left, dot blotting of RNA co-purifiedwith FLAG-tagged full length SAF-A or SAF-A truncated at theC terminus to remove theRGGdomain; Flp-In T-REx 293

cells were doxycycline induced for 24 hr to express wild-type or mutant SAF-A. RNA was labeled (15 min) with 5-EU followed by crosslinking with BM(PEG)2 and

immune-purified with FLAG antibody, and conjugated using click chemistry with a biotin azide and detected by streptavidin-conjugated horseradish peroxidase

and chemiluminescence. Top right, dot blot showing RNA co-purified with FLAG-tagged full length SAF-A. Bottom, quantification of 5-EU and RNA signals shown

in panel E and F.



Figure S7. Characterization of Genome Instability and Distribution of SAF-A Cancer Mutations, Related to Figure 7

(A) Left, immunofluorescence staining for g-H2AX in RPE1 control cells (siControl) or cells depleted of SAF-A (siSAF-A). Scale bar, 10 mm. Right, quantification of

the frequency of diffuse and focal g-H2AX signals, data representative of two biological replicates.

(B) Growth curve for RPE1 cells (siControl) and cells depleted of SAF-A (siSAF-A) across a 72 hr time period.

(C) Cell cycle profile for control cells (siControl) and cells knocked down for SAF-A (siSAF-A). After knock-down cells were synchronized using aphidicolin for 24 hr

and released. Aliquots were taken at 0, 2, 4, 6 hr, stained with propidium iodide and the DNA content analyzed by flow cytometry.

(D) Left, FISH for human HSA2 and HSA4 chromosome territories in RPE1 control cells (siControl) or cells depleted of SAF-A (siSAF-A). Scale bar, 10 mm. Right,

quantification of chromosome territory number for HSA2 and HSA4 (n > 75, p values are for a Chi squared test).

(E) Left, distribution of SAF-A AAA+ mutations from COSMIC (Catalogue Of Somatic Mutations In Cancer) in the SAF-A AAA+ domain. Right, diagram showing

position of the AAA+ lid domain.
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