000089858 001__ 89858
000089858 005__ 20220405150416.0
000089858 0247_ $$2doi$$a10.1007/s10494-020-00141-1
000089858 0248_ $$2sideral$$a117994
000089858 037__ $$aART-2020-117994
000089858 041__ $$aeng
000089858 100__ $$aSassi, Paolo
000089858 245__ $$aExperimental Analysis of Gas–Liquid–Solid Three-Phase Flows in Horizontal Pipelines
000089858 260__ $$c2020
000089858 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089858 5203_ $$aThe dynamics of three-phase flows involves phenomena of high complexity whose characterization is of great interest for different sectors of the worldwide industry. In order to move forward in the fundamental knowledge of the behavior of three-phase flows, new experimental data has been obtained in a facility specially designed for flow visualization and for measuring key parameters. These are (1) the flow regime, (2) the superficial velocities or rates of the individual phases; and (3) the frictional pressure loss. Flow visualization and pressure measurements are performed for two and three-phase flows in horizontal 30 mm inner diameter and 4.5 m long transparent acrylic pipes. A total of 134 flow conditions are analyzed and presented, including plug and slug flows in air–water two-phase flows and air–water-polypropylene (pellets) three-phase flows. For two-phase flows the transition from plug to slug flow agrees with the flow regime maps available in the literature. However, for three phase flows, a progressive displacement towards higher gas superficial velocities is found as the solid concentration is increased. The performance of a modified Lockhart–Martinelli correlation is tested for predicting frictional pressure gradient of three-phase flows with solid particles less dense than the liquid.
000089858 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-75791-C2-2-P/1-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 713679-MFP$$9info:eu-repo/grantAgreement/EC/H2020/713679/EU/Martí i Franquès COFUND/MFP
000089858 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089858 590__ $$a2.305$$b2020
000089858 591__ $$aTHERMODYNAMICS$$b32 / 60 = 0.533$$c2020$$dQ3$$eT2
000089858 591__ $$aMECHANICS$$b70 / 135 = 0.519$$c2020$$dQ3$$eT2
000089858 592__ $$a0.738$$b2020
000089858 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000089858 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000089858 593__ $$aPhysical and Theoretical Chemistry$$c2020$$dQ1
000089858 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089858 700__ $$aStiriba, Youssef
000089858 700__ $$0(orcid)0000-0001-7930-272X$$aLobera, Julia$$uUniversidad de Zaragoza
000089858 700__ $$0(orcid)0000-0003-1955-6714$$aPalero, Virginia$$uUniversidad de Zaragoza
000089858 700__ $$aPallarès, Jordi
000089858 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000089858 773__ $$g105 (2020), 1035–1054$$pFlow turbul. combust.$$tFlow, Turbulence and Combustion$$x1386-6184
000089858 8564_ $$s3194125$$uhttps://zaguan.unizar.es/record/89858/files/texto_completo.pdf$$yVersión publicada
000089858 8564_ $$s19565$$uhttps://zaguan.unizar.es/record/89858/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089858 909CO $$ooai:zaguan.unizar.es:89858$$particulos$$pdriver
000089858 951__ $$a2022-04-05-14:37:25
000089858 980__ $$aARTICLE