000089861 001__ 89861
000089861 005__ 20210902121622.0
000089861 0247_ $$2doi$$a10.1002/admi.201902104
000089861 0248_ $$2sideral$$a118008
000089861 037__ $$aART-2020-118008
000089861 041__ $$aeng
000089861 100__ $$aKim, K.H.
000089861 245__ $$aChemical Sensing with Atomically Thin Platinum Templated by a 2D Insulator
000089861 260__ $$c2020
000089861 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089861 5203_ $$aBoosting the sensitivity of solid-state gas sensors by incorporating nanostructured materials as the active sensing element can be complicated by interfacial effects. Interfaces at nanoparticles, grains, or contacts may result in nonlinear current–voltage response, high electrical resistance, and ultimately, electric noise that limits the sensor read-out. This work reports the possibility to prepare nominally one atom thin, electrically continuous platinum layers by physical vapor deposition on the carbon zero layer (also known as the buffer layer) grown epitaxially on silicon carbide. With a 3–4 Å thin Pt layer, the electrical conductivity of the metal is strongly modulated when interacting with chemical analytes, due to charges being transferred to/from Pt. The strong interaction with chemical species, together with the scalability of the material, enables the fabrication of chemiresistor devices for electrical read-out of chemical species with sub part-per-billion (ppb) detection limits. The 2D system formed by atomically thin Pt on the carbon zero layer on SiC opens up a route for resilient and high sensitivity chemical detection, and can be the path for designing new heterogenous catalysts with superior activity and selectivity.
000089861 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000089861 590__ $$a6.147$$b2020
000089861 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b46 / 178 = 0.258$$c2020$$dQ2$$eT1
000089861 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b85 / 333 = 0.255$$c2020$$dQ2$$eT1
000089861 592__ $$a1.671$$b2020
000089861 593__ $$aMechanics of Materials$$c2020$$dQ1
000089861 593__ $$aMechanical Engineering$$c2020$$dQ1
000089861 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089861 700__ $$aHe, H.
000089861 700__ $$aRodner, M.
000089861 700__ $$aYakimova, R.
000089861 700__ $$aLarsson, K.
000089861 700__ $$aPiantek, M.
000089861 700__ $$0(orcid)0000-0002-3260-9641$$aSerrate, D.$$uUniversidad de Zaragoza
000089861 700__ $$aZakharov, A.
000089861 700__ $$aKubatkin, S.
000089861 700__ $$aEriksson, J.
000089861 700__ $$aLara-Avila, S.
000089861 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000089861 773__ $$g(2020), 1902104 [7 pp]$$pAdv. mater. interfaces$$tAdvanced Materials Interfaces$$x2196-7350
000089861 8564_ $$s472069$$uhttps://zaguan.unizar.es/record/89861/files/texto_completo.pdf$$yVersión publicada
000089861 8564_ $$s30597$$uhttps://zaguan.unizar.es/record/89861/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089861 909CO $$ooai:zaguan.unizar.es:89861$$particulos$$pdriver
000089861 951__ $$a2021-09-02-08:48:08
000089861 980__ $$aARTICLE