000089865 001__ 89865
000089865 005__ 20210902121711.0
000089865 0247_ $$2doi$$a10.1038/s41467-020-15810-y
000089865 0248_ $$2sideral$$a117704
000089865 037__ $$aART-2020-117704
000089865 041__ $$aeng
000089865 100__ $$aManai, G.
000089865 245__ $$aBidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles
000089865 260__ $$c2020
000089865 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089865 5203_ $$aA key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory–Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination.
000089865 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089865 590__ $$a14.919$$b2020
000089865 591__ $$aMULTIDISCIPLINARY SCIENCES$$b4 / 73 = 0.055$$c2020$$dQ1$$eT1
000089865 592__ $$a5.559$$b2020
000089865 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2020$$dQ1
000089865 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000089865 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000089865 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089865 700__ $$aHouimel, H.
000089865 700__ $$aRigoulet, M.
000089865 700__ $$aGillet, A.
000089865 700__ $$aFazzini, P.F.
000089865 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, A.$$uUniversidad de Zaragoza
000089865 700__ $$aBalor, S.
000089865 700__ $$aRoblin, P.
000089865 700__ $$aEsvan, J.
000089865 700__ $$aCoppel, Y.
000089865 700__ $$aChaudret, B.
000089865 700__ $$aBonduelle, C.
000089865 700__ $$aTricard, S.
000089865 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000089865 773__ $$g11 (2020), 2051  1-7$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000089865 8564_ $$s2215942$$uhttps://zaguan.unizar.es/record/89865/files/texto_completo.pdf$$yVersión publicada
000089865 8564_ $$s59085$$uhttps://zaguan.unizar.es/record/89865/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089865 909CO $$ooai:zaguan.unizar.es:89865$$particulos$$pdriver
000089865 951__ $$a2021-09-02-09:20:39
000089865 980__ $$aARTICLE