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Abstract— A wearable armband electrocardiogram (ECG) 

monitor has been used for daily life monitoring. The armband 
records three ECG channels, one electromyogram (EMG) 
channel, and tri-axial accelerometer signals. Contrary to  
conventional Holter monitors, the armband-based ECG device is 
convenient for long-term daily life monitoring because it uses no 
obstructive leads and has dry electrodes (no hydrogels), which do 
not cause skin irritation even after a few days. Principal 
component analysis (PCA) and normalized least mean squares 
(NLMS) adaptive filtering were used to reduce the EMG noise 
from the ECG channels. An artifact detector and an optimal 
channel selector were developed based on a support vector 
machine (SVM) classifier with a radial basis function (RBF) kernel 
using features that are related to the ECG signal quality. Mean HR 
was estimated from the 24-hour armband recordings from 16 
volunteers in segments of 10 seconds each. In addition, four 
classical HR variability (HRV) parameters (SDNN, RMSSD, and 
powers at low and high frequency bands) were computed. For 
comparison purposes, the same parameters were estimated also 
for data from a commercial Holter monitor. The armband 
provided usable data (difference less than 10% from Holter-
estimated mean HR) during 75.25%/11.02% (inter-subject 
median/interquartile range) of segments when the user was not in 
bed, and during 98.49%/0.79% of the bed segments. The 
automatic artifact detector found 53.85%/17.09% of the data to be 
usable during the non-bed time, and 95.00%/2.35% to be usable 
during the time in bed. The HRV analysis obtained a relative error 
with respect to the Holter data not higher than 1.37% (inter-
subject median/interquartile range). Although further studies 
have to be conducted for specific applications, results suggest that 
the armband device has a good potential for daily life HR 
monitoring, especially for applications such as arrhythmia or 
seizure detection, stress assessment, or sleep studies.  
 

Index Terms—Wearable devices, electrocardiogram (ECG), 
ECG denoising, electromyogram (EMG), artifact detection 
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I. INTRODUCTION 
LECTROCARDIOGRAM is the basis for the diagnosis of 
most cardiac arrhythmias and other cardiac pathologies. 

Many of these pathologies produce paroxysmal symptoms in 
the ECG, e.g., atrial fibrillation [1], which is associated with 
increased mortality and morbidity [2]. Therefore, continuous 
long-term ECG monitoring is desirable for such arrhythmia 
applications. Furthermore, ECG monitoring allows the 
measurement of the heart rate (HR) variability (HRV) which 
remains a powerful tool for autonomic nervous system (ANS) 
assessment [3]. This further expands the range of potential 
applications of long-term ECG monitoring, including epileptic 
seizure detection [4], stress assessment [5], and sleep studies 
[6], among others, which rely only on QRS detection. 

Another interesting technology for long-term HR and HRV 
monitoring is the pulse photoplethysmographic (PPG) signal. 
The PPG has been receiving a lot of attention lately  because it 
can be measured on the wrist by smartwatches, making it very 
convenient for daily life monitoring. However, the PPG signal 
is highly vulnerable to artifacts, and many data points have to 
be discarded [7]. Different studies using PPG in different 
settings report different amounts of usable data, including 
14.76% [8], 24% [9], 25% [10], and 56% [11]. 

The only wearable continuous ECG monitoring options are 
Holter/event monitors and the more recently-developed patch 
devices. Holter and event monitors have some disadvantages, 
including that they are cumbersome devices with obtrusive 
leads, and they use  hydrogel-based electrodes, which often lead 
to skin irritation [12] due to the use of hydrogel and adhesives 
needed to fix the position of the electrodes [13]. This makes 
Holter monitors usable only for short-term monitoring (<2 
weeks). A patch monitoring device eliminates the electrode 
leads but still requires hydrogels, which often cause skin 
irritation since subjects wear the patch for a prolonged period 
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of time. A wearable armband device aimed to monitor ECG 
during long periods, overcoming the limitations of Holter and 
patch devices, is being developed in our lab at the University of 
Connecticut. This armband is designed to be worn on the left 
upper arm, and incorporates three pairs of hydrophobic dry 
electrodes, which were also developed in our lab. Using these 
electrodes differentially, the armband can record 3 ECG 
channels simultaneously (see Fig. 1). A photo of the first 
prototype and another image of its sensing part can be observed 
in Fig. 1. The dimensions of the enclosed circuit board of this 
prototype are 65 × 64 × 28 mm, while the dimensions of its 
sensing part are 170 × 33 × 0.1 (1.5 when includes electrode 
thickness) mm. Note that this is a first prototype, created for 
assessing the feasibility of monitoring HR and HRV using dry 
electrodes over the upper arm. Although the prototype is 
currently large, the “sensing part” is thin, and the dimensions of 
the box can be considerably reduced in the final design. 

Although the armband setup is much more convenient for 
long-term monitoring, it remains a more challenging scenario 
than the Holter setup mainly because of two reasons: not using 
hydrogel, and the electrodes’ location. Although the impedance 
matching (with the skin) of the electrodes is good [14], it is still 
not as good as that provided by hydrogels. With respect to the 
location of the electrodes, the armband device is located in the 
left upper arm while the Holter and patch devices use electrodes 
over the chest. This leads to a lower signal power of the 

acquired ECG signal, and it is more susceptible to 
electromyogram (EMG) signals (mainly from the biceps and 
triceps). The EMG artifact contamination remains the most 
challenging obstacle for obtaining good fidelity armband ECG 
recordings. Some techniques for reducing the EMG artifact in 
ECG signals have been presented in the literature. As EMG 
overlaps with ECG in time and frequency, adaptive filtering 
techniques are usually used [15], [16], such as least mean 
squares (LMS) or its normalized version (NLMS) [17]. When 
multiple leads are available, the space diversity can be 
exploited. Principal component analysis (PCA) is an approach 
that exploits this, and has been proposed to attenuate the EMG 
artifact in the ECG [18]. The first principal component 
extracted by PCA is expected to be the component in which the 
noise has been reduced the most, especially for noises with 
muscular origin. 

However, a pilot study showed that the quality of the 
armband-acquired ECG signals was high enough to obtain 
respiratory rate using ECG-morphology features during lab-
controlled conditions with no movement [19]. Another pilot 
study showed promising results for 24 hours HR monitoring 
[20]. In this paper, the wearable armband device is evaluated as 
a 24 hour monitor during daily life. The study includes the 
application of PCA and NLMS signal processing techniques to 
deal with the EMG noise, the development of an automatic 
channel selector which selects the highest quality ECG signal 
at each time moment, and an automatic artifact detector which, 
significantly, discards noise-corrupted data largely due to EMG 
artifact. The methods are evaluated with a data set composed of 
24-hour armband recordings during routine daily life, and 
simultaneously recorded Holter ECG signals.  

II. MATERIALS AND METHODS 

A. Data acquisition and preprocessing 
The wearable armband records three ECG channels and one 

EMG channel with a sampling rate of FS = 1000 Hz using three 
pairs of carbon-black dry electrodes [14]. In addition, the 
armband records tri-axial accelerometer channels with a 
sampling rate of 100 Hz. A picture of the armband and the 
configuration of multi-ECG channels is shown in Fig. 1. 
Moreover, Fig. 2 shows a picture of how the armband is 
designed to be worn on the upper left arm. Armband signals 

 
 

(a) 

 

(b) 

 
Fig. 1. a) Armband device prototype and electrode configuration for the 3 ECG 
channels and the EMG channel. b) Sensing part of the prototype. 
  

 
Fig. 2.  Subject wearing the armband device. 
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were continuously recorded from 16 healthy subjects aged 
27.56±8.82 years (mean ± standard deviation) for 24 hours. The 
subjects were instructed to carry out their normal activities but 
without exercise. For reference purposes, three ECG channels 
were simultaneously recorded by a conventional commercially-
available Holter: Rozinn RZ 153+ (Glendale, NY, USA). 

The ECG signals from the armband were down-sampled to 
256 Hz. Many of the potential applications for the armband are 
based on beat occurrences, and the value of this sampling rate 
is a trade-off  between the time resolution and the computational 
cost. The value of 256 Hz was chosen because it is close to the 
minimum recommended for calculating the classical HRV 
indices [3], which are also based on beat occurrences. 

Furthermore, the ECG signals from the armband were found to 
be highly contaminated by noise, mainly due to the EMG from 
the local muscles when subjects moved their left arm. Thus, a 
strong band-pass filter was applied in order to remove much of 
the EMG artifact from ECG data. The low and high cut-off 
frequencies of this filter were set to 3 Hz and 25 Hz, 
respectively, based on the frequency bands used in the literature 
for QRS detection [21]. These filtered ECG signals are denoted 
x1(n), x2(n), and x3(n). Figure 3 shows an example of these 
signals. 

B. Channel synthesis 
Two ECG channels were synthesized from the armband data, 

to attenuate the effect of the EMG noise: one based on PCA 

 
Fig. 3.  A 2-minute segment of armband-recorded ECG channels (a) x1(n), (b) x2(n), and (c) x3(n), (d) recorded EMG channel x4(n), (e) ECG synthesized channel 
based on PCA xPCA(n) (f) EMG noise estimated by PCA xN(n), (g) ECG synthesized channel based on NLMS xNLMS(n), and (h) the ECG channel selected by the 
optimal channel selector xARMBAND(n), where detected QRS complexes are represented with black ‘X’. The color of xARMBAND(n) corresponds to the color of the 
chosen channel at each instant. The segment from 20 to 30 seconds is represented in black because it was considered an artifact by the artifact detector. 
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[22], and another one based on the NLMS filter [17]. 
PCA channel: The first principal component extracted by 

PCA is expected to be the component in which the EMG noise 
has been most attenuated [18]. Similarly, the last principal 
component is expected to be the component in which the EMG 
noise is expected to be the most prominent. The armband data 
were split into 10-second segments, and PCA was applied 
segment by segment to all three ECG channels and the EMG 
channel. Then, the first component was normalized in 
amplitude with respect to its standard deviation, and inverted in 
case its minimum were greater than its maximum in absolute 
value. The concatenation of the resulting first principal 
component from the 10-s segments is denoted xPCA(n) in this 
paper, and it was considered as an additional ECG channel. In 
parallel, the concatenation of the last principal component from 
the 10-s segments is xN(n), and it was used as noise estimation 
for the NLMS adaptive filter. 

NLMS filter: The NLMS filter can be seen as an adaptive 
Wiener filtering technique in which the filter is adapted based 

on the difference between the desired and the obtained filter. It 
can be used to attenuate the influence of a known corrupting 
noise on a corrupted signal, e.g., to attenuate the EMG noise in 
the ECG [17]. An additional ECG channel was obtained by 
applying a NLMS filter using xPCA(n) as the corrupted signal, 
and xN(n) as an estimation of the corrupting noise. An example 
of the two synthesized ECG channels can be observed in Figure 
3, and a 10-s zoom in can be observed in Figure 4. 

C. Artifact detection 
An ECG artifact detection technique was developed based on 

the support vector machine (SVM) classifier with radial basis 
function (RBF) kernel [23]. It was designed to classify ECG 
segments of 10 seconds as normal or artifact, as this duration is 
enough to estimate the mean heart rate [24]. In addition, another 
criterion based on the level of signal power found in the 
accelerometers was used. A 10-second segment was considered 
as an artifact if either the SVM-based ECG artifact detector 
classified it as an artifact, or if a certain level of signal power 
was found in the accelerometers. 

Features of the ECG artifact detector: Different signal 
quality indices (SQI) which are available in the literature were 
studied as potential features for the classifier. The SQI found in 
the literature can be divided into two groups: those based on 
fiducial features and those based on non-fiducial features [25]. 
When based on fiducial features, one detects the beats followed 
by the mean level and/or regularity of the resulting inter-beat 
intervals. However, abnormal values of mean level and, 
especially, of regularity of the inter-beat intervals are the key 
features for many potential applications, such as arrhythmia 
detection [1], epileptic seizure detection [4], stress assessment 
[5], and sleep studies [6]. The most valuable data for such 
applications may be considered of low quality by the SQI based 
on abnormal values of mean level and/or regularity of inter-beat 
intervals. Thus, no fiducial features were considered in this 
work. Nine other non-fiducial features were considered in this 
work: 
• Shannon entropy (m1) [26], which provides a quantitative 

measure of the average uncertainty present in a signal, 
quantifying how different its probability density function is 
from a uniform distribution. Thus, a clean ECG signal is 
expected to have a lower Shannon entropy than an EMG-
corrupted ECG signal. 

• Multiscale entropy (m2) [27] is another measure of average 
uncertainty, in this case obtained from a sample entropy 
analysis of the signals for different time scale factors. As 
with the Shannon entropy, a clean ECG signal is expected 
to have a smaller multiscale entropy than an EMG-corrupted 
ECG signal has. 

• Ratio of powers (m3) [28], defined as the ratio between 
power in the frequency band 5-20 Hz with respect to the 
total power, which is expected to be higher when it is 
computed from a clean ECG than when it is computed from 
an EMG-corrupted ECG. 

• Self-correlation (m4) [29], defined as the autocorrelation at 
the highest peak, excluding the zero lag. As an ECG signal 
has a higher periodicity than an EMG signal, this self-

 
 

Fig. 4.  A 10-second segment of armband recorded ECG channels (a) x1(n), (b) 
x2(n), and (c) x3(n), (d) recorded EMG channel x4(n), (e) ECG synthetized 
channel based on PCA xPCA(n) (f) EMG noise estimated by PCA xN(n), and (g) 
ECG synthetized channel based on NLMS xNLMS(n). 
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correlation value is expected to be higher for a clean ECG 
than for an EMG-corrupted ECG. 

• Shannon entropy (m5), mean (m6), and variance (m7) of the 
first intrinsic mode function [30] are related to uncertainty 
and the power of the higher frequency components. Thus, 
they are expected to be lower for a clean ECG than for an 
EMG-corrupted ECG. 

• Skewness (m8) [31], which is expected to be further from 
zero for a clean ECG than for an EMG-corrupted ECG.  

• Kurtosis (m9) [31], which is expected to be higher for a clean 
ECG than for an EMG-corrupted ECG. 

Training set for the ECG artifact detector: The 10-second 
segments of the first hour from 5 subjects were labelled as 
artifact, normal, or neither. This labelling was based on the 
comparison of the mean HR estimated from the armband and 
the mean HR estimated from the Holter. The segment was 
considered as “artifact” if these mean HR estimations differed 
by more than 20%, whereas it was considered as “clean” if these 
mean HR estimations differed by less than 2%. 4,821 segments 
were labelled as normal, and 1,410 as artifact. Subsequently, 
the 9 features noted above were computed for distinguishing 
between artifact and normal segments, and 1,410 normal 
segments were selected by a k-means algorithm in order to 
balance the groups and to obtain a good representation of the 
underlying distribution of the data. K-means was used to set 
1,410 clusters in the “normal” class, and their centroids. Then, 
the element closest to each one of those centroids was selected. 
Therefore, a total of 2,820 segments (1,410 normal and 1,410 
artifacts) were considered for the subsequent training of the 
SVM classifier. Feature selection was performed by a forward 
wrapper approach, which consisted of adding one feature at a 
time and selecting the one which provided the highest accuracy, 
and stopping when the obtained accuracy was lower than that 
obtained with one less feature. Subsequently, the SVM 
classifier was trained using only those features selected by the 
wrapper.  

Test set for the ECG artifact detector: In order to assess the 
performance of the classifier, a test set was created by labelling 
the 10-second segments of the first hour from the 11 subjects 
who were not included in the training set. The criterion for 
labelling was exactly the same as that used for labeling the 
training set. The test set was composed of a total of 9,899 
fragments (3,800 artifacts + 6,099 normal). 

Accelerometer-based rule for artifact detection: The level of 
power in the accelerometers was defined as: 
𝑃𝑃ACC = var�𝑥𝑥X (𝑛𝑛) + 𝑥𝑥Y (𝑛𝑛) + 𝑥𝑥Z (𝑛𝑛)�, (1) 
where xX(n), xY(n), and xZ(n) denote the x, y, and z 
accelerometer channels, respectively, and var(·) denotes the 
variance. A 10-second segment was considered as artifact if 
PACC was higher than a certain threshold. This criterion was 
included in order to detect some of the artifacts that were not 
detected from the ECG signal by the SVM-based detector, 
under the assumption that some may be related to movements. 
In order to set this threshold, PACC was computed from those 
segments of the training set which were classified as “normal” 
by the ECG-based artifact detector. The threshold was set to 

0.02864 G2, which maximized the accuracy and did not discard 
more than  0.01% of (labelled as) “normal” segments. 

D. Channel selection 
Among three ECG channels, the best signal fidelity channel 

was selected for every 10-second segment for further 
processing. Five channels were considered by the optimal 
channel selector: x1(n), x2(n), x3(n), xPCA(n), and xNLMS(n). The 
selection was based on the SVM classifier with RBF kernel 
used for artifact detection. The selected ECG channel was 
determined to be the one with the highest likelihood of 
belonging to the “normal” group. In the event that several 
channels obtained the same likelihood of belonging to the 
“normal” class, a similar signal quality was expected in those 
signals. The algorithm gives preference to the original channels 
x1(n), x2(n), and x3(n), in this order, and later to xPCA(n) and 
xNLMS(n), in this sequence. In this manner, a unique armband 
ECG signal xARMBAND(n) was created by concatenating those 
selected segments at different time points. Figure 3h shows an 
example of xARMBAND(n). 

E. Mean heart rate measurement 
The location of the QRS complexes of x1(n), x2(n), x3(n), 

xPCA(n), xNLMS(n), and xARMBAND(n) were automatically detected 
by an algorithm based on variable frequency complex 
demodulation (VFCDM) and some adaptive threshold rules 
[32]. This algorithm was applied in segments of 20 seconds 
with 5 seconds of overlap, leaving 10 effective seconds at each 
segment. The fiducial point of each QRS complex, 𝑛𝑛QRS𝑖𝑖 , was 
set to that where the absolute value of the amplitude was 
maximum (R peak). Then, the instantaneous HR was computed 
from 𝑛𝑛QRS𝑖𝑖  as the inverse of the beat-to-beat intervals: 

𝑑̂𝑑𝐻𝐻𝑅𝑅𝑢𝑢 (𝑛𝑛) = 𝐹𝐹𝑆𝑆 ∑
1

𝑛𝑛𝑄𝑄𝑄𝑄𝑆𝑆𝑖𝑖−𝑛𝑛𝑄𝑄𝑄𝑄𝑆𝑆𝑖𝑖−1
𝛿𝛿�𝑛𝑛 − 𝑛𝑛𝑄𝑄𝑄𝑄𝑆𝑆𝑖𝑖�𝑖𝑖  ,  (2) 

where the superscript “u” denotes that the signal is unevenly 
sampled. A 4-Hz-evenly-sampled version of 𝑑̂𝑑HR𝑢𝑢 (n) was 
obtained by cubic-splines interpolation, and it is denoted as 
𝑑̂𝑑HR(𝑛𝑛) in this paper. 

For comparison purposes, the mean HR was calculated also 
from the Holter device by a similar procedure, obtaining the 
reference HR series 𝑑𝑑HR(𝑛𝑛). The channel selector was not used 
in this case. Instead, the first channel was always used. The 
artifact detector was also not used. In order to identify those 
segments with artifacts in this channel, two different QRS 
detectors ([32] and [33]) were applied on the same signal. Those 
segments in which these QRS detectors offered a different 
output were considered artifacts and they were discarded for 
further analysis. The segments from the armband data identified 
as artifacts by the artifact detector were also discarded from 
further analysis. Note that this is a stricter criterion than that 
used for the armband-ECG signals. This criterion requires that 
a rudimentary QRS detector performs as good as the 
sophisticated approach on the analyzed segment. This stricter 
criterion allows us to be sure that we only evaluate the armband 
performance when we have a reliable reference, without 
discarding too much data. However, this criterion cannot be 
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applied to the armband data without discarding too many data 
segments as the armband signals are noisier in general, and the 
rudimentary QRS detector usually does not work for the 
armband. 

The delay between 𝑑̂𝑑HR(𝑛𝑛) and 𝑑𝑑HR(𝑛𝑛) series was estimated 
(and corrected) as the lag that maximized their cross 
correlation. Then, the percentage of 10-second segments where 
the mean HR estimated from the armband (mean of 𝑑̂𝑑HR(𝑛𝑛)) 
differed by less than 10% from the mean HR estimated from the 
Holter (mean of 𝑑𝑑HR(𝑛𝑛)) was computed. This analysis was 
performed for non-bed time and for bed time independently. 
Bed time was reported by each subject, and further adjusted 
manually by visual inspection of the accelerometer signals. In 
addition, these percentages were computed also using only 
those 10-s segments that were determined to be usable 
according to the artifact detector described in Section II-C. 

F. Heart rate variability analysis 
HRV analysis was performed in 5-min-length (overlapped 4 

min) windows in which segments from xARMBAND(n) were 
determined to be usable according to the artifact detector 
described in Section II-C. The length of 5 minutes was chosen 
since it is recommended in [3]. Four standard HRV parameters 
were computed: standard deviation of successive normal-to-
normal beat intervals (SDNN), the root mean square of 
successive differences of normal-to-normal beat intervals 
(RMSSD), the power of 𝑑̂𝑑HR(𝑛𝑛) within the low frequency band 
[0.04 Hz, 0.15 Hz] (LF), and the power of 𝑑̂𝑑HR(𝑛𝑛) within the 
high frequency band [0.15 Hz, 0.4 Hz] (HF) [3]. These four 
parameters were computed also from xHOLTER(n) and used as the 
reference. 

For each one of the 5-min-lengh windows, the relative error 
of the armband-derived parameters with respect to the Holter-
derived parameters was computed. For each subject, the (intra-
subject) median and IQR of this relative error was computed.  
In addition, the inter-subject median and IQR of those intra-
subject medians and IQRs were also computed. 

III. RESULTS 

A. Artifact detector 
The forward wrapper selected all the 9 studied features for 

the SVM-based ECG artifact detector and channel selector, in 
the following order: m9, m3, m7, m1, m8, m4, m5, m2, m6. The 
PACC-based threshold was set to 0.02864 G2, as it maximized 
the accuracy and did not discard more than a 0.01% of (labelled 
as) “normal” segments. 

The resulting classifier obtained an accuracy of 90.79% in 
the test set, a sensitivity of 92.05%, a specificity of 90.00%, a 
positive predictive value of 85.15%, and a negative predictive 
value of 94.79%. 

B. 24-hour heart rate monitoring 
Table I shows the median and interquartile range (IQR) of 

the percentage of segments where the heart rate was accurately 
estimated (less than 10% of relative error with respect to the 

TABLE I 
MEDIAN AND INTERQUARTILE RANGE (MEDIAN / IQR) OF THE PERCENTAGE OF SEGMENTS WITH ACCURATE HEART RATE ESTIMATES (LESS THAN 10% OF 

RELATIVE ERROR WITH RESPECT TO THE HOLTER) FROM THE WEARABLE ARMBAND DEVICE; OF THE PERCENTAGE OF SEGMENTS WITH USABLE ARMBAND DATA 
ACCORDING TO THE ARTIFACT DETECTOR; AND OF PERCENTAGE OF SEGMENTS WITH HOLTER USABLE DATA; DURING NON-BED TIME AND DURING BED TIME. 
 

 
Non-bed time Bed time 

Percentage of segments with Percentage of segments with 

usable data accurate heart rate usable data accurate heart rate 

x1(n) 40.75% / 24.81% 98.99% / 0.71% 94.28% / 2.39% 99.28% / 0.24% 

x2(n) 45.02% / 17.60% 99.06% / 0.62% 94.49% / 4.20% 99.33% / 0.19% 

x3(n) 42.98% / 23.49% 98.72% / 0.61% 93.86% / 11.83% 99.22% / 0.19% 

xPCA(n) 39.34% / 24.04% 98.98% / 0.67% 91.84% / 9.72% 99.31% / 0.23% 

xNLMS(n) 36.83% / 17.58% 99.15% / 0.65% 84.29% / 17.04% 99.29% / 0.16% 

xARMBAND(n) 53.85% / 17.09 % 98.54% / 0.99% 95.00% / 2.35% 99.25% / 0.21 % 

xHOLTER(n) 85.07% / 15.45% - 97.14% / 5.08% - 

 

TABLE II 
INTER-SUBJECT MEDIAN AND IQR OF INTRA-SUBJECT MEDIANS OF OBTAINED 
RELATIVE ERROR WITH RESPECT TO THE HOLTER DEVICE WHEN ESTIMATING 
HRV PARAMETERS FROM xARMBAND(n), FOR ALL 16 SUBJECTS, AND FOR ONLY 

THOSE 11 SUBJECTS THAT WERE NOT USED FOR TRAINING THE ARTIFACT 
DETECTOR. 

 
 

  
Relative error 

Intra-subject median 
(median / IQR) 

   16 subjects 11 subjects 

16
 su

bj
ec

ts N
on

-b
ed

 ti
m

e SDNN -0.04% / 0.25% -0.07% / 0.15% 

RMSSD -0.05% / 0.58% -0.20%  / 0.57% 

LF -0.03% / 0.25% 0.03% / 0.43% 

HF 0.07% / 1.15% -0.09% / 1.50% 

B
ed

 ti
m

e 

SDNN -0.09% / 0.15% -0.11% / 0.13% 

RMSSD -0.10% / 0.27% -0.14% / 0.29% 

LF 0.16% / 0.21% 0.17%  / 0.23% 

HF -0.31% / 1.37% -0.29% / 1.31% 

 

TABLE I 
MEDIAN AND INTERQUARTILE RANGE (MEDIAN / IQR) OF THE PERCENTAGE OF SEGMENTS WITH ACCURATE HEART RATE ESTIMATES (LESS THAN 10% OF 

RELATIVE ERROR WITH RESPECT TO THE HOLTER) FROM THE WEARABLE ARMBAND DEVICE; OF THE PERCENTAGE OF SEGMENTS WITH USABLE ARMBAND DATA 
ACCORDING TO THE ARTIFACT DETECTOR; AND OF THE PERCENTAGE OF SEGMENTS WITH HOLTER USABLE DATA; DURING NON-BED TIME AND DURING BED TIME. 

 

 
Non-bed time Bed time 

Percentage of segments with Percentage of segments with 

usable data accurate heart rate usable data accurate heart rate 

x1(n) 40.75% / 24.81% 98.99% / 0.71% 94.28% / 2.39% 99.28% / 0.24% 

x2(n) 45.02% / 17.60% 99.06% / 0.62% 94.49% / 4.20% 99.33% / 0.19% 

x3(n) 42.98% / 23.49% 98.72% / 0.61% 93.86% / 11.83% 99.22% / 0.19% 

xPCA(n) 39.34% / 24.04% 98.98% / 0.67% 91.84% / 9.72% 99.31% / 0.23% 

xNLMS(n) 36.83% / 17.58% 99.15% / 0.65% 84.29% / 17.04% 99.29% / 0.16% 

xARMBAND(n) 53.85% / 17.09 % 98.54% / 0.99% 95.00% / 2.35% 99.25% / 0.21 % 

xHOLTER(n) 85.07% / 15.45% - 97.14% / 5.08% - 
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Holter) from the armband device, during both non-bed time and 
bed time. In addition, Table I shows the median and IQR of the 
percentage of usable data obtained from the armband device 
according to the artifact detector as well as the percentage of 
usable data from the Holter, during both non-bed time and bed 
time. Note that these results were based on skipping the first 
hour of the 5 subjects that were used for training the artifact 
detector. A Bland-Altman plot illustrating the HR estimated 
from xARMBAND(n) vs. the HR estimated from the Holter device 
is shown in Fig. 5. The obtained bias was 0.08 bpm, and the 
length of the limits of agreement was 6.58 bpm. Correlation 
between these measures was 0.95. 

Table II shows the inter-subject median and IQR of intra-
subject medians when estimating HRV parameters with respect 
to the Holter device, also based on skipping the first hour of the 
5 subjects that were used for training the artifact detector. Note 
that a negative relative error corresponds to an underestimation 
of the studied parameter. These median values are illustrated in 
Fig. 6. The correlations between the HRV parameters estimated 
by the armband and those estimated from the Holter were 
0.9479, 0.9142, 0.9989, and 0.9984 for SDNN, RMSSD, LF, 
and HF, respectively. 

IV. DISCUSSION 
ECG data from a wearable armband have been analyzed for 

HR monitoring during daily life. The armband simultaneously 

records three ECG channels and one EMG channel. However, 
the ECG channels were often contaminated with EMG artifacts 
during arm movements. In order to automatically discard the 
noisy data due to EMG corruption, a novel artifact detector was 
developed, based on the SVM classifier with RBF kernel and 
nine features that have been reported to be related to the ECG 
signal quality in the literature [25]. All nine features were 
selected by a forward-wrapper approach, suggesting that the 
features have complementary information about the signal 
quality, at least in part. The classifier was trained using the ECG 
segments of the first hour from 5 subjects, and tested with the 
ECG segments of the first hour from the remaining 11 subjects. 
The obtained accuracy in the test set was 90.79%, with a 
negative predictive value of 94.79%. This means that when a 
segment is detected as “normal,” the expectance of not having 
a clean ECG signal is 5.21%. Note that, in this case, a clean 
ECG signal is that from which the mean HR was estimated with 
an error lower than 1%. In addition, a segment was considered 
to contain artifacts if a certain level of power was found in the 
accelerometer signals. This accelerometer-based criterion was 
designed to find the artifacts that were not detected by the ECG-
based artifact detector. A total of 85.31% of the detected 
artifacts were found by the ECG-based detector, while 45.52% 
of the detected artifacts were found by the accelerometer-based 
criterion. A total of 37.12% of the detected artifacts were found 
by both criteria. We learned that the accelerometer criterion 
should be applied first (as it is faster), and then is no need to 
compute the ECG-based criterion if an artifact is found. 

The mean HR was estimated in every 10-second segment 
from each ECG channel of the armband x1(n), x2(n), and x3(n), 
and was compared to the mean HR estimated from the Holter 
monitor, which was taken as the Gold Standard reference data. 
The estimation was considered accurate if the mean HR differed 
by less than 10% from the estimation based on the Holter 
monitor. Note that this is a stringent criterion, as 10% in 10 
seconds corresponds to an error of only one beat in a typical 
resting HR (around 60 per minute). 

Results obtained from these armband ECG channels were not 
optimal during the non-bed time. The best channel in terms of 
median of percentage of segments with usable data was x2(n) 
(45.02%), obtaining an accurate HR estimate in a median of 
99.06% of usable segments. Results were much better during 
bed time, when the movements of the subjects were greatly 
reduced. During bed time, the median of percentage of usable 
segments was 94.49%, and the mean HR was estimated 
accurately from 99.33% (in median) of these segments. 
However, none of these ECG channels was observed to be 
consistently the cleanest ECG signal for every subject at every 
time. A possible reason for this observation is that the electrode 
distribution (around the left upper arm) makes the recorded 
leads to be very dependent on the shape of the arm. 
Furthermore, the armband can slightly rotate during the 
recording, affecting the lead channels. Note that x1(n) could be 
x2(n) or x3(n) with the appropriate device rotation. 

In order to clean the EMG noise, two signal processing 
techniques were applied: PCA [18] and NLMS filtering [17]. 
PCA was performed in segments of length as short as 10 

 
 

Fig. 5.  Bland-Altman plot illustrating the HR estimated from xARMBAND(n) ( 
𝑑̂𝑑HRM) with respect to the HR estimated from the Holter dHRM. The obtained bias 
was 0.08 bpm, and the length of the limits of agreement was 6.58 bpm. 

 
 

Fig. 6.  Boxplot of intra-subject median of obtained relative error when 
estimating HRV parameters. Boxes on the left (in blue) are from non-bed time 
data, and boxes on the right (in black) are from bed time data.  
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seconds, making it robust against possible device rotations. 
xPCA(n) obtained usable data from a median of 39.34% during 
the non-bed time, and of 91.84% during bed time. This 
performance is lower than the performance of the original 
channels x1(n), x2(n), and x3(n). A possible reason for these 
results is that the electrodes of the armband are very close to 
each other, giving the leads a similar influence from the EMG, 
which is substantial, especially during arm movements. 
Furthermore, a strong EMG component would lower the 
automatic gain control which consequentially attenuates the 
ECG signal. This indicates that when local muscles (mainly left 
biceps and left triceps) contract, the EMG component becomes 
a principal component. This may be the reason why xNLMS(n) 
did not fare well (36.83% during the non-bed time and 84.29% 
during the bed time). The NLMS filter relies on the availability 
of good estimation of the noise, while our estimation of the 
noise (the last component from the PCA) often contained the 
desired signal (the ECG), albeit its magnitude was small when 
compared to the noise-free ECG case. 

Similarly, for ECG channels x1(n), x2(n), and x3(n), none of 
the synthetized ECG channels were observed to be consistently 
the most clean ECG at all times, thus, they were treated as two 
additional ECG channels and a novel channel selector was 
developed in order to choose the best channel at each time. The 
channel selector was based on the SVM classifier with RBF 
kernel used for artifact detection. This SVM classifier was used 
to select the most clean ECG channel among the 5 eligible 
channels (x1(n), x2(n), x3(n), xPCA(n), and xNLMS(n)), for every 
10-second segment. A new signal xARMBAND(n), composed of 
the cleanest segment at each time, was generated. Results 
obtained with xARMBAND(n) outperformed those obtained from 
any of the ECG channels separately in terms of median 
percentage of usable data during both non-bed and bed time, 
while they were similar in terms of percentage of usable 
segments with accurate HR, demonstrating the advantage of 
best channel selection. During the non-bed time, a median of 
53.85% usable data was obtained. Results during bed time were 
much better, obtaining usable data from a median of 95.00% of 
the segments. Note that this is very close to xHOLTER(n) 
performance during the bed time (97.77% usable data). 

Furthermore, the median of the percentage of usable 
segments providing an accurate HR estimation was 98.54% 
during non-bed time, and 99.25% during bed time. The Bland-
Altman plot in Fig. 5 did not show a dependence of the accuracy 
of the usable segments on the actual HR. Moreover, the HRV 
analysis in 5-min-length windows of continuous usable 
armband data obtained a relative error with respect to the Holter 
with inter-subject median and IQR of intra-subject medians not 
higher than 1.54% (see Table II), and they showed strong 
correlation. The analysis was repeated using only those 11 
subjects that were not used for training the artifact detector in 
order to assess the possible bias of the results due to a possible 
overfitting. In this case, the mean HR was accurately estimated 
from a median of 98.55% of the segments detected as “clean” 
during the non-bed time, and a median of 99.29% during the 
bed time. These results are very similar to those obtained when 
using all subjects (98.54% and 99.25%, respectively), 

suggesting that the artifact detector did not overfit to those 5 
subjects that were used for training. Furthermore, the relative 
errors obtained for the HRV analysis were also similar for both 
cases (See Table II), reinforcing this suggestion. These results 
suggest that the analysis for all of the subjects is not biased. A 
possible reason is that no differences were observed in the 
signals from the different subjects, thus, no overfitting to those 
5 subjects is expected. Furthermore, the classifier was trained 
using only the first hour from those 5 subjects, and those data 
(from that first hour) were not used for further analyses, so no 
bias due to overfitting to those particular segments is expected. 

Therefore, the obtained HR and HRV estimations were 
accurate for almost all the segments detected as usable by the 
artifact detector, suggesting that the segments automatically 
classified as clean are reliable for QRS detection. However, 
some of the segments that were automatically classified as 
artifact may be also reliable for this purpose (false positives), 
so the actual coverage of the armband device may be higher. In 
order to assess the actual coverage of the armband device, the 
percentage of segments of xARMBAND(n) that offered an accurate 
estimation of mean HR was computed. This analysis revealed 
that the mean HR was accurately estimated from 75.25% / 
11.02% (inter-subject median/IQR) of the armband-ECG 
segments during the non-bed time, and from 98.49% / 0.79% 
during bed time. This means that 21.40% (in median) of the 
segments during the non-bed time and 3.49% (in median) of the 
segments during the bed time were automatically classified as 
artifacts while they could provide an accurate estimation of the 
mean HR. Thus, the artifact detector is strict: those  data that 
were automatically classified as clean are reliable at the expense 
of discarding a high amount of reliable data. Hence, there is 
room for improving this in the artifact detection, especially 
during the non-bed time. 

However, these results are promising and suggest that the 
armband has a strong potential to be a wearable long-term ECG 
monitor, especially during bed time, which can potentially be 
used for overnight recordings such as sleep studies. During non-
bed time, the armband records considerably less usable data per 
day than a conventional Holter monitor, but it causes no skin 
irritation and it is much more comfortable for the patient, so it 
can be worn for months or even years when compared to the 
Holter. Therefore, the armband can provide much more usable 
data in total than the Holter even if it offers less usable data per 
day. Moreover, the obtained coverages were higher than those 
reported for PPG-based wearable devices. Only 134 of 908 
segments (14.76%) were reported to be usable from PPG during 
lab-controlled conditions in [8]. A mean coverage of 76.34% 
was reported in [10], using PPG, where recordings from 
patients in bed during controlled-movement-restricted 
conditions were analyzed. In [9], 24% coverage from PPG was 
reported when requiring the same accuracy as a Holter device 
during 24-hour recordings. A higher mean coverage during 24-
hour recordings was reported  in [11], where 56% of data from 
PPG was considered to be usable. For comparison of these 
numbers with those obtained by the armband, it should be noted 
that subjects in [11] are patients aged 67.4±12.1 years, so they 
may have much less active life styles than the subjects (healthy 
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volunteers aged 27.56±8.82 years) analyzed in the present 
study. It should also be noted that 24-hour recordings include 
both non-bed and bed time. The overall coverage of the 
armband during the 24-hour recordings in this study was 
83.51%±8.00%. 

These results suggest that the armband is very interesting for 
applications that may benefit from long-term ECG monitoring, 
such as paroxysmal arrhythmia detection, seizure detection, 
stress assessment, and monitoring of chronic respiratory 
patients. However, some specific problems may occur in 
different applications, such as patient movements that could 
lead to unusable data in the precise moment when it is most 
valuable. E.g., a patient could move the arm every time that he 
or she has a short-period AF episode due to chest pain, or every 
time he or she has a seizure. Thus, further studies have to be 
conducted in order to evaluate the full potential of the armband 
in different applications and scenarios. Furthermore, in this 
paper the armband has been evaluated for QRS detection 
(through HR and HRV). Further studies have to be conducted 
for evaluating the armband device as a monitor for other ECG 
features which may be relevant in some applications, such as 
the ST elevation for ischemia. 

V. CONCLUSIONS 
The results suggest that the armband device is suitable for 

daily life HR monitoring, obtaining usable data approximately 
3/4 of the non-bed time (median of 75.25%) and almost all the 
bed time (median of 98.49%). The automatic artifact algorithm 
found 53.85% (median) of data to be usable during the non-bed 
time, and 95.00% during the bed time. However, further studies 
must be conducted in order to assess the full potential of the 
armband for specific applications, such as arrhythmia detection, 
sleep studies, seizure detection, stress assessment, or 
monitoring of chronic respiratory patients. 
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