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Abstract— A method for deriving respiratory rate from an 

armband, which records three-channel electrocardiogram (ECG) 
using three pairs of dry (no hydrogel) electrodes, is presented. The 
armband device is especially convenient for long-term (months-
years) monitoring because it does not use obstructive leads nor 
hydrogels/adhesives, which cause skin irritation even after few 
days. An ECG-derived respiration (EDR) based on respiration-
related modulation of QRS slopes and R-wave angle approach was 
used.  Moreover, we modified the EDR algorithm to lower the 
computational cost. Respiratory rates were estimated with the 
armband-ECG and the reference plethysmography-based 
respiration signals from 15 subjects who underwent breathing 
experiment consisting of five stages of controlled breathing (at 0.1, 
0.2, 0.3, 0.4, and 0.5 Hz) and one stage of spontaneous breathing. 
The respiratory rates from the armband obtained a relative error 
with respect to the reference (respiratory rate estimated from the 
plethysmography-based respiration signal) that was not higher 
than 2.26% in median nor interquartile range (IQR) for all stages 
of fixed and spontaneous breathing, and not higher than 3.57% in 
median nor IQR in the case when the low computational cost 
algorithm was applied. These results demonstrate that 
respiration-related modulation of the ECG morphology are also 
present in the armband ECG device. Furthermore, these results 
suggest that respiration-related modulation can be exploited by 
the EDR method based on QRS slopes and R-wave angles to obtain 
respiratory rate, which may have a wide range of applications 
including monitoring patients with chronic respiratory diseases, 
epileptic seizures detection, stress assessment, and sleep studies, 
among others. 
 

Index Terms—Wearable devices, electrocardiogram (ECG), 
Respiratory rate, ECG derived respiration (EDR) 
 

I. INTRODUCTION 
ESPIRATORY rate is a sensitive clinical marker in many 
pulmonary diseases [1], e.g., it is the first marker for acute 

respiratory dysfunction [2], and it is useful for detection of 
periodic breathing [3] which leads to a higher mortality in 
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patients suffering from heart failure [4]. Taking into 
consideration the high sensitivity of respiratory rate as an 
indicator of serious illness, it has received little attention in the 
clinical field for a long time, being denominated either 
neglected [5] or forgotten [6] vital signs by some researchers. 
However, the importance of respiratory rate for the general 
health is recently receiving more attention [7] and its 
consideration in continuous monitoring is of high interest. 

Multimodal analysis of respiratory rate and 
electrocardiogram (ECG) opens a wider range of applications 
including sleep studies [8], epileptic seizure detection [9], stress 
level assessment [10], and monitoring patients suffering from 
chronic respiratory diseases such as asthma [11] or chronic 
obstructive pulmonary disease (COPD). The chronic 
respiratory patients are affected by destabilizations (or 
“exacerbations”) which makes them to seek medical help and 
often lead to their hospitalization. These exacerbations are one 
of the main causes of mortality among patients with COPD and 
asthma [12], [13]. Furthermore, the prognosis of the patients 
with COPD and asthma exacerbation depends on a timely 
diagnosis and treatment [12], [13]. Daily monitoring of ECG 
and respiratory rate could be useful for early detection of 
exacerbations, allowing a better prognosis of this type of 
patients. Thus, a wearable cardiorespiratory monitor would 
have a wide range of applications. 

The wearable continuous ECG monitoring options in the 
clinical routine are Holter/event monitors and more recently 
developed chest-patch devices. The Holter and event monitors 
are cumbersome devices with obtrusive electrode leads. 
Furthermore, these devices use wet (hydrogel-based) 
electrodes, which often lead to skin irritation [14] because of 
the hydrogel and the adhesive needed to fix the electrodes to the 
skin [15]. This limits Holter monitors to be usable only for 
short-term monitoring (few weeks). Although the patch devices 
do not have the disadvantage of obstructive leads, they also use 
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hydrogels and adhesives causing skin irritation when used for 
long periods of time. In order to overcome these disadvantages, 
an armband ECG monitor device is being developed in our lab 
at the University of Connecticut. This device consists of an 
armband that is worn on the left upper arm, and it records 3 
ECG channels using differentially 3 pairs of dry electrodes also 
developed in our lab [16]. Thus, the armband setup remains a 
very convenient setup for long-term daily ECG monitoring 
since skin irritant hydrogen and adhesives are not used. 

With respect to respiration monitoring approaches, they 
require cumbersome devices that usually interfere with natural 
breathing and are intractable for some applications such as sleep 
studies, stress tests, and monitoring normal daily living [17]. 
Thus, other methods for deriving respiration from other non-
invasive signals have been proposed in the literature. Some of 
these methods use signals which can be acquired in ambulatory 
environments, such as ECG or pulse photoplethysmogram [18], 
or even smartphones [19]. Methods for obtaining respiratory 
rates from the ECG are also known as ECG derived respiration 
(EDR) methods, and they exploit different respiration-related 
modulations that can be observed in the ECG. On one hand, 
there is a well-known phenomenon referred as the respiratory 
sinus arrhythmia (RSA) which consists of a respiration-
synchronous modulation of the heart rate [20]. However, the 
RSA is driven by the autonomic nervous system, thus, limits the 
applications based on RSA for some subjects (and thus 
excluding, among others, patients with atrial fibrillation and/or 
patients with pacemakers). On the other hand, respiration 
modulates the ECG morphology through two effects: first, the 
movement of the electrodes relative to the heart, and, second, 
the impedance changes in the chest due to the variation of the 
amount of air in the lungs during the respiratory cycle. In a 
previous study, a method exploiting this respiration-related 
modulation of the ECG morphology through the measurement 
of QRS slopes and R-wave angle showed good performance 
when evaluated with exercise stress test recordings [21], which 
are characterized by high non-stationarity and noise. However, 
the armband remains a much more challenging setup than the 
conventional ECG recorded by hydrogel electrodes over the 
chest. The armband’s ECG signal-to-noise ratio is lower due to 
the nature of the electrodes (dry, using no hydrogel), and their 
close proximity to each other (all on the left upper arm). 
Moreover, the respiration-related movement of the left upper 
arm with respect to the heart is limited in comparison to the case 
of the chest. Therefore, the EDR methods based on ECG 
morphology may perform significantly worse (or even not show 
a significant respiratory modulation) when using the signals 
from the armband. 

In this paper, the EDR method based on QRS slopes and R-
wave angle [21] is evaluated with ECG signals recorded by the 
armband device. A pilot study showed promising results in 5 
subjects during controlled-breathing at 0.1, 0.2, 0.3, and 0.4 Hz 
[22]. The study has been further developed including 10 
additional subjects (a total of 15) and 2 additional stages: one 
stage with controlled breathing at 0.5 Hz, and another stage 
with spontaneous breathing.  Moreover, we have modified the 
EDR algorithm in order to lower its computational cost so that 

real-time respiratory rates can be obtained. 

II. MATERIALS AND METHODS 

A. Data acquisition and preprocessing 
Armband-ECG and respiratory signals were simultaneously 

recorded from 15 healthy volunteers (11 male) during a 
controlled breathing exercise.  The experimental protocol was 
approved by the Institutional Review Board at the University of 
Connecticut (Protocol H16-107). These volunteers were sitting 
and asked to breathe at a constant rate guided by a video in five 
different stages, with each lasting for 150 s: 0.1, 0.2, 0.3, 0.4, 
and 0.5 Hz. Subsequently, the protocol included a stage with 
subjects breathing spontaneously in the supine position for 5 
minutes. The armband used 3 pairs of carbon-black dry 
electrodes [16] to record 3-channel ECG with a sampling rate 
of FS = 1000 Hz. A photo of the armband and the configuration 
of multi-ECG channels is shown in Fig. 1. For reference 
purposes, a respiratory signal was recorded by using two 
plethysmography-based respiration bands (Respitrace, 
Ambulatory Monitoring, Inc., Ardsley NY, USA), and 
digitalized with a 16-bit A/D converter (PowerLab/4SP, 
ADInstruments, Inc., Dunedin, New Zealand) at a sampling rate 
of 200 Hz. The respiratory signal, which is computed by the 
device as the sum of the outputs of the two plethysmographic 
bands, was resampled to 4 Hz. 

A band-pass filter was applied to the armband signals 
because they contain significant EMG artifacts. The cut-off 
frequencies of the bandpass were set to 3 Hz and 25 Hz. Note 
that the 3 Hz high-pass cut-off frequency does not distort 
respiratory frequencies when EDR is extracted from QRS 
slopes, since the QRS frequency content is well above 3Hz, in 
contrast to the baseline. The 3 band-pass filtered ECG signals 
are denoted as x1(n), x2(n), x3(n) in this paper. The principal 
component analysis (PCA) was performed on the 3-channel 
ECG, and the first principal component was used as the 
processed ECG data. This new ECG signal is denoted xPCA(n) 
in this paper. An example of the 3-channel ECG signals and the 
xPCA(n) can be observed in Fig. 2. 

 
 
Figure 1. Photography of the wearable armband device, and the electrode 
configuration for the three ECG channels x1(n), x2(n), and x3(n). 
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B. Electrocardiogram-derived respiration signals 
Three EDR signals were computed from each ECG channel 

based on beat-morphological features, specifically, the QRS 
slopes and the R-wave angle. This EDR technique was chosen 
because it was shown to be the most robust technique when 
tested in different scenarios [23], including highly non-
stationary and noisy environments [21]. The first step of the 
method involves ECG delineation for obtaining Q (or QRS 
onset when no Q wave is present), R, and S (or QRS offset when 
no S wave is present) peaks of the ith detected QRS complex 
(𝑛𝑛Q𝑖𝑖 , 𝑛𝑛R𝑖𝑖, and 𝑛𝑛S𝑖𝑖 , respectively). R peaks (𝑛𝑛R𝑖𝑖) were detected 
by the algorithm based on variable frequency complex 
demodulation presented in [24]. Then, for each of the ECG 
channels, Q and S peaks (𝑛𝑛Q𝑖𝑖  and 𝑛𝑛S𝑖𝑖) were set as the time 
instants where the ECG has minimum amplitude within 40 ms 
before and after 𝑛𝑛R𝑖𝑖, respectively. Subsequently, the points of 
maximum variation from 𝑛𝑛Q𝑖𝑖  to 𝑛𝑛R𝑖𝑖, and from 𝑛𝑛R𝑖𝑖 to 𝑛𝑛S𝑖𝑖  are 
computed: 
𝑛𝑛U𝑖𝑖 = argmax

𝑛𝑛∈�𝑛𝑛Q𝑖𝑖,𝑛𝑛R𝑖𝑖�
{|𝑥𝑥′(𝑛𝑛)|}, (1) 

𝑛𝑛D𝑖𝑖 = argmax
𝑛𝑛∈�𝑛𝑛R𝑖𝑖,𝑛𝑛S𝑖𝑖�

{|𝑥𝑥′(𝑛𝑛)|}, (2) 

where x’(n) represents the first derivative of the ECG channel. 
Then, a straight line is fitted to the ECG signal by the least 
squares in two intervals of 8 ms: one centered at 𝑛𝑛U𝑖𝑖, and the 
other centered at 𝑛𝑛D𝑖𝑖 . Their slopes are denoted 𝐼𝐼US𝑖𝑖 and 𝐼𝐼DS𝑖𝑖 
respectively, and they are used to measure the R-wave angle: 

𝛷𝛷R𝑖𝑖 = arctan�
𝐼𝐼US𝑖𝑖−𝐼𝐼DS𝑖𝑖

0.4�6.25+ 𝐼𝐼US𝑖𝑖𝐼𝐼DS𝑖𝑖�
�, (3) 

which is scaled to match units in the conventional ECG tracings 
in clinical print-outs (25 mm/s and 10 mm/mV). 

These features related to the QRS morphology were used to 
obtain an unevenly (beat by beat) sampled version of EDR 
signals: 

𝑑𝑑{US,DS,𝛷𝛷}
𝑢𝑢 (𝑛𝑛) = ∑ {𝐼𝐼US𝑖𝑖 , 𝐼𝐼DS𝑖𝑖 ,𝛷𝛷R𝑖𝑖}𝑖𝑖 𝛿𝛿�𝑛𝑛 − 𝑛𝑛R𝑖𝑖�. (3) 
Later, a median-absolute-deviation-based rule was applied 

for outlier rejection, and a 4-Hz evenly sampled version of each 
series was obtained by cubic splines interpolation. Then, these 
evenly-sampled version of the EDR signals were band-pass 
filtered [0.075, 1] Hz. The resulting EDR signals are denoted 
without the superscript “u” in this paper, i.e., 𝑑𝑑US(𝑛𝑛), 𝑑𝑑DS(𝑛𝑛), 
and 𝑑𝑑𝛷𝛷(𝑛𝑛). In this way, three EDR signals per ECG channel 
were obtained. An example of the obtained EDR signals can be 
observed in Fig. 3. Further details about the algorithm can be 
found in [21]. 

An additional parameter was derived from these QRS slopes 
by computing their differences (𝐼𝐼US𝑖𝑖 - 𝐼𝐼DS𝑖𝑖). This parameter is 
called QRS slopes range (SR) and it was proposed in [25] for 
obtaining an EDR signal in the time domain that combines the 
information of both QRS slopes. This combination is faster than 
the combination proposed in [21] (see Section II-C), hence, SR 
may be more appropriate for wearables such as the armband 
from the point of view of computational time. A new EDR 
signal was obtained based on SR, and it is denoted 𝑑𝑑SR(𝑛𝑛) in 
this paper. 

In this work, a low-computational-cost (LC) version of the 
algorithm was developed. First, x1(n), x2(n), x3(n) were 
downsampled to 250 Hz, and the xPCA(n) was also sampled at 
250 Hz. Subsequently, QRS complexes (𝑛𝑛QRS𝑖𝑖) were detected 
in xPCA(n) by the algorithm based on the variable frequency 
complex demodulation described in [24]. Then, for each of the 
ECG channels, 𝑛𝑛R𝑖𝑖

LC was set as the time instant when the ECG 
has maximum amplitude within 80 ms centered in 𝑛𝑛QRS𝑖𝑖  (note 
that, 𝑛𝑛QRS𝑖𝑖  and 𝑛𝑛R𝑖𝑖

LC are the same for xPCA(n)), and Q and S peaks 
(𝑛𝑛Q𝑖𝑖

LC and 𝑛𝑛S𝑖𝑖
LC) were set as the time instants where the ECG has 

minimum amplitude within 40 ms before and after 𝑛𝑛R𝑖𝑖
LC, 

respectively. Subsequently, the LC version of QRS slopes (𝐼𝐼US𝑖𝑖
LC  

 
 
Figure 2. An example of 20 seconds of armband-ECG signals x1(n), x2(n), x3(n), and the ECG channel generated by the first component of the PCA xPCA(n). A 
respiration-related modulation can be observed in the amplitude of the four shown ECG channels. In this example, subject was breathing at 0.3 Hz. 
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and 𝐼𝐼DS𝑖𝑖
LC ) were computed as the maximum of the first derivative 

of studied ECG signal with no posterior line fitting [25]: 
𝐼𝐼US𝑖𝑖
LC = max

𝑛𝑛∈�𝑛𝑛Q𝑖𝑖
LC,𝑛𝑛R𝑖𝑖

LC�
{|𝑥𝑥′(𝑛𝑛)|}, (4) 

𝐼𝐼DS𝑖𝑖
LC = max

𝑛𝑛∈�𝑛𝑛R𝑖𝑖
LC,𝑛𝑛S𝑖𝑖

LC�
{|𝑥𝑥′(𝑛𝑛)|}. (5) 

The LC version of QRS slopes range and the R-wave angle 
𝛷𝛷R𝑖𝑖
LC was computed, this time using 𝐼𝐼US𝑖𝑖

LC  and 𝐼𝐼DS𝑖𝑖
LC . Then, LC-

EDR signals were computed from these LC features (QRS 
slopes range and R-wave angle) by a similar procedure to the 
non-LC case, i.e., consisting of the median-absolute-deviation 
outlier rejection rule, cubic splines interpolation, and band-pass 
filtering. Therefore, two LC-EDR signals were obtained per 
ECG channel: one based on QRS slopes range (𝑑𝑑SRLC(𝑛𝑛)), and 
the other based on R-wave angle (𝑑𝑑𝛷𝛷LC(𝑛𝑛)). Figure 4 shows an 
example of a QRS complex with its corresponding fitted 
straight lines from where 𝐼𝐼US𝑖𝑖 and 𝐼𝐼DS𝑖𝑖 are computed, and, in 
addition, it shows the first derivative of the 250-Hz-sampled 
version of the signal, from which 𝐼𝐼US𝑖𝑖

LC  and 𝐼𝐼DS𝑖𝑖
LC  are computed. 

C. Respiratory rate estimation 
The respiratory rate was estimated by using a time-frequency 

algorithm which can offer an estimate using information from 
several EDR signals [21]. The first step of the algorithm is the 
computation of power spectrum for the jth EDR signal and the 
kth running interval of 42 s (Sj(k, f)). The Sj(k, f) is obtained by 
the Welch periodogram, using windows of 12 s with 50% 
overlap. A Sj(k, f) was generated at each 5 s, and the 

concatenation of all segments resulted in a time-frequency 
power spectrum. 

The second step of the algorithm is a peak-conditioned 
average of normalized-in-power Sj(k, f), denoted 𝑆̅𝑆(𝑘𝑘,𝑓𝑓) in this 
paper. A 𝑆̅𝑆(𝑘𝑘, 𝑓𝑓) is generated each 5 s from the Sj(k, f) of the 
surrounding 25 s. Thus, up to five Sj(k, f) per each used EDR 
signal can take part in 𝑆̅𝑆(𝑘𝑘, 𝑓𝑓). However, only those power 
spectra having a “peaked” shape are chosen. The decision of 
whether a Sj(k, f) has a peaked shape or not is based on the 
power around a peak with respect to the total power within the 
band where respiration is expected (a time-varying sub-band 
within [0.075, 1] Hz which depends on the previous estimates). 
Note that in time instants where none of the qualifying Sj(k, f) 
does has a peaked shape, the respiratory rate would not be 
estimated at that specific time. This algorithm is described in 
more detail in [21]. 

Respiratory rate, 𝑓𝑓RES(𝑘𝑘), was estimated every 5 s during 
each one of the stages of the protocol (0.1 Hz, 0.2 Hz, 0.3 Hz, 
0.4 Hz, 0.5 Hz, and spontaneous breathing) from the three 
combinations consisting of: 

• C3ECG: The three EDR signals (𝑑𝑑US(𝑛𝑛), 𝑑𝑑DS(𝑛𝑛), and 
𝑑𝑑𝛷𝛷(𝑛𝑛)) from x1(n), x2(n), and x3(n) (9 EDR signals). 

• CPCA: The three EDR signals (𝑑𝑑US(𝑛𝑛), 𝑑𝑑DS(𝑛𝑛), and 
𝑑𝑑𝛷𝛷(𝑛𝑛)) from xPCA(n) (3 EDR signals). 

• CALL: All the EDR signals in C3ECG or in CPCA (12 EDR 
signals). 

An example of the obtained 𝑆̅𝑆(𝑘𝑘, 𝑓𝑓) during spontaneous 
breathing can be observed in Fig. 5. Similar combinations based 
on the slope range approach were computed in order to assess 
the difference in performance of such approach and the original 
methods in [21]. 

 
 
Figure 4. (a) Example of QRS complex in x1(n) and its corresponding 𝑛𝑛Q𝑖𝑖, 𝑛𝑛R𝑖𝑖, 
and 𝑛𝑛S𝑖𝑖. The fitted straight lines from where the QRS slopes (𝐼𝐼US𝑖𝑖 and 𝐼𝐼DS𝑖𝑖) are 
estimated, are shown in magenta. (b) In addition, the first derivative of the 250-
Hz-sampled version of x1(n), where the LC estimations of QRS slopes (𝐼𝐼US𝑖𝑖

LC  and 
𝐼𝐼DS𝑖𝑖
LC ) are computed.  

 
Figure 3. Example of 20 seconds of EDR signals from xPCA(n): (a) 𝑑𝑑US(𝑛𝑛), (b) 
𝑑𝑑DS(𝑛𝑛), (c) 𝑑𝑑𝛷𝛷(𝑛𝑛), and (d) 𝑑𝑑SR(𝑛𝑛). Reference respiratory signal r(n) is also 
shown for visual comparison (e). In this example, subject was breathing at 0.3 
Hz. 
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• 𝐶𝐶3ECGSR : The two LC-EDR signals (𝑑𝑑SR(𝑛𝑛) and 𝑑𝑑𝛷𝛷 (𝑛𝑛)) 
from x1(n), x2(n), and x3(n) (6 EDR signals). 

• 𝐶𝐶PCASR : The two EDR signals (𝑑𝑑SR(𝑛𝑛) and 𝑑𝑑𝛷𝛷 (𝑛𝑛)) from 
xPCA(n) (2 EDR signals). 

• 𝐶𝐶ALLSR : All the EDR signals in 𝐶𝐶3ECG or in 𝐶𝐶PCA (8 EDR 
signals). 

In addition, similar combinations were used for combining 
the LC-EDR signals: 

• 𝐶𝐶3ECGLC : The two LC-EDR signals (𝑑𝑑SRLC(𝑛𝑛) and 𝑑𝑑𝛷𝛷LC(𝑛𝑛)) 
from x1(n), x2(n), and x3(n) (6 EDR signals). 

• 𝐶𝐶PCALC : The two EDR signals (𝑑𝑑SRLC(𝑛𝑛) and 𝑑𝑑𝛷𝛷LC(𝑛𝑛)) from 
xPCA(n) (2 EDR signals). 

• 𝐶𝐶ALLLC : All the EDR signals in 𝐶𝐶3ECGLC  or in 𝐶𝐶PCALC  (8 EDR 
signals). 

The reference respiratory rates, fRES(k), were derived from the 
plethysmography-based respiratory signals using the same 
algorithm. Relative error of the respiratory rate estimations with 
respect to the reference respiratory rate was computed for each 
subject and stage of the protocol as: 
𝑒𝑒(𝑘𝑘) = 𝑓𝑓RES(𝑘𝑘)−𝑓𝑓RES(𝑘𝑘)

𝑓𝑓RES(𝑘𝑘)
× 100. (6) 

The Friedman statistical test and the Bonferroni correction 
were used for analysis of differences of e(k) for the different 
methods. The paired non-parametric Friedman statistical test 
was chosen because it was observed that e(k) were not normal 
distributed, and the Bonferroni correction was applied in order 
to control the familywise error rate because multiple 
comparisons were performed. 

III. RESULTS 
There were no periods when none of the qualifying Sj(k, f) 

has a peaked shape, so respiratory rate could be estimated in all 
the cases for all subjects. 

Two out of the 15 subjects showed a mean heart rate lower 
than twice the respiratory rate when they breathe at 0.5 Hz. 
These two subjects’ results were not taken into account for the 

respiration rate at 0.5 Hz. The reason for this exclusion is that 
respiratory information is obtained only at the beat occurrence, 
i.e., its intrinsic sampling rate equals to the heart rate. 
Therefore, the highest trackable frequency is half of the mean 
heart rate due to Nyquist theorem. 

Table I shows the inter-subject median of the intra-subject 
median and interquartile range (IQR) of e(k) for each studied 
combination of EDR signals, and for each stage of the protocol. 
In addition, Table II shows the percentage of respiratory rate 
estimates for which e(k) was less than 5% (R<5%), and the 
percentage of respiratory rate estimates for which e(k) was less 
than 3% (R<3%) are also shown. Figure 6 shows regression plots 
and Bland-Altman plots for the best methods in terms of 
accuracy and computation time. The significant differences 
(p<0.05) found by the Friedman statistical test are shown in 
Table III. 

Moreover, the mean computational time per minute of 
signal, using Matlab R2017b on an Intel Core I7 4770, is shown 
in Table IV for each one of the studied methods. 

IV. DISCUSSION 
An EDR algorithm has been evaluated for respiratory rate 
estimation derived from a wearable armband ECG monitor. The 
armband device was developed in our lab at the University of 
Connecticut, and it records three-channel ECG signals using 
three pairs of dry electrodes. This ECG device is much more 
convenient for a daily monitoring because it does not use 
obstructive leads nor wet (hydrogel) electrodes, in contrast to 
the conventional Holter monitor. A pilot study was presented in 
[22]. The study was further developed by including 10 
additional subjects (a total of 15), monitoring breathing using 
both controlled breathing and spontaneous breathing.  We have 
also modified the EDR algorithm in order to lower its 
computational cost. 

The original algorithm in [21] obtained very promising 
results with medians and IQRs of relative error with respect to 
the reference signal not greater than 2.26% for all stages when 

 
Figure 5. Example of peak-conditioned average 𝑆𝑆̅(𝑘𝑘,𝑓𝑓) obtained from the combinations during spontaneous breathing: (a) C3ECG, (b) CPCA, and (c) CALL. 𝑆𝑆̅(𝑘𝑘,𝑓𝑓) 
obtained from the reference respiratory rate is also shown for visual comparison (d). In addition, the 𝑆𝑆̅(𝑘𝑘,𝑓𝑓) obtained from the LC version of the methods are also 
shown: (e) 𝐶𝐶3ECGLC , (f) 𝐶𝐶PCALC , and (g) 𝐶𝐶ALLLC . 
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using CALL. Furthermore, R<5% and R<3% obtained when using 
CALL were no lower than 74.83% and 67.62%, respectively, in 
all cases. These results demonstrate that the respiration-related 
modulation in the ECG can be accurately derived with the 
armband even if it does not use electrodes over the chest.  Thus, 
our results suggest that the respiratory-related modulation of the 
ECG morphology can be exploited by the method based on 
QRS slopes and R-wave angles to derive respiratory rate from 
the armband-ECG signals. These results are even better than 
those obtained in [21], where a relative error of 0.50% ± 4.11% 
(mean ± standard deviation) was obtained using conventional 
ECG signals during restricted-movement conditions. The 
reason of this observation may be that in [21], the protocol 

includes the abrupt cardiovascular changes that a tilt table test 
creates. Futures studies may include evaluation of the armband 
in this kind of scenario. 

The C3ECG obtained the highest R<5% in all six stages, while 
CALL obtained it in five stages, and CPCA in none of the stages. 
Regarding R<3%, C3ECG obtained the highest value in three 
stages, while CALL obtained it in five stages, and CPCA in only 
one stage. However, CALL obtained similar results than C3ECG in 
every stage. These results suggest that the information of EDR 
signals from xPCA(n) is redundant with the information of EDR 
signals from the original ECG channels, at least in a big part, 
for the original method in [21]. Thus, taking into consideration 
that the mean computational time per minute of C3ECG was 

  Original methods in [20] Slopes range and R-wave 
angle methods LC methods 

  Median of 
medians 

Median of 
IQRs 

Median of 
medians 

Median of 
IQRs 

Median of 
medians 

Median of 
IQRs 

0.1 Hz 
C3ECG 1.40% 1.11% 1.43% 0.72% 1.12% 1.90% 
CPCA 0.65% 1.33% 1.21% 0.77% 0.27% 1.68% 
CALL 1.39% 1.15% 1.00% 0.72% 0.61% 1.72% 

0.2 Hz 
C3ECG -0.08% 0.42% 0.20% 0.33% -0.17% 0.57% 
CPCA 0.13% 0.47% 0.14% 0.33% 0.07% 0.38% 
CALL -0.15% 0.47% 0.13% 0.31% -0.45% 0.49% 

0.3 Hz 
C3ECG 0.07% 0.43% 0.08% 0.59% 0.04% 0.90% 
CPCA -0.05% 0.64% 0.04% 0.55% -0.01% 0.66% 
CALL 0.07% 0.43% 0.15% 0.59% 0.02% 0.74% 

0.4 Hz 
C3ECG 0.00% 0.35% 0.00% 0.39% -0.21% 0.77% 
CPCA 0.03% 0.42% 0.00% 0.43% 0.04% 0.44% 
CALL 0.00% 0.41% -0.01% 0.41% -0.05% 0.36% 

0.5 Hz 
C3ECG -0.24% 0.39% 0.04% 0.29% -0.36% 0.46% 
CPCA -0.12% 0.34% -0.05% 0.38% -0.21% 0.37% 
CALL -0.20% 0.37% 0.00% 0.44% -0.23% 0.32% 

Spontaneous 
C3ECG -0.26% 3.06% -0.15% 3.20% -0.09% 6.46% 
CPCA -0.25% 6.66% -0.32% 3.63% 0.04% 3.57% 
CALL -0.03% 2.26% -0.19% 2.51% -0.05% 4.59% 

 
Table I. Inter-subject medians of intra-subject median and interquartile range (IQR) of obtained e(k) for each studied combination of EDR signals and each stage 
of the protocol. 

  Original methods in [20] Slopes range and R-wave 
angle methods LC methods 

  R<5% R<3% R<5% R<3% R<5% R<3% 

0.1 Hz 
C3ECG 93.33% 75.79% 90.27% 80.53% 85.96% 64.56% 
CPCA 92.98% 77.54% 90.27% 74.78% 92.63% 70.88% 
CALL 90.53% 72.28% 91.15% 81.42% 86.67% 65.26% 

0.2 Hz 
C3ECG 100.00% 100.00% 100.00% 100.00% 94.04% 92.98% 
CPCA 98.25% 97.54% 97.36% 96.48% 97.89% 97.54% 
CALL 100.00% 100.00% 100.00% 100.00% 97.54% 96.84% 

0.3 Hz 
C3ECG 100.00% 100.00% 100.00% 100.00% 89.12% 86.32% 
CPCA 93.33% 92.28% 93.42% 92.54% 92.98% 91.93% 
CALL 100.00% 100.00% 100.00% 100.00% 92.98% 90.53% 

0.4 Hz 
C3ECG 93.33% 90.53% 92.48% 91.59% 64.21% 62.46% 
CPCA 90.53% 89.82% 91.59% 91.15% 83.86% 83.86% 
CALL 93.33% 91.23% 92.04% 91.15% 75.79% 73.68% 

0.5 Hz 
C3ECG 94.74% 94.33% 97.45% 96.94% 75.30% 74.90% 
CPCA 88.26% 87.45% 88.27% 88.27% 76.92% 76.11% 
CALL 94.74% 94.33% 89.80% 88.78% 75.30% 74.90% 

Spontaneous 
C3ECG 74.83% 67.48% 76.15% 70.34% 65.44% 55.78% 
CPCA 67.89% 61.22% 70.34% 62.30% 71.70% 62.31% 
CALL 74.83% 67.62% 76.75% 71.09% 69.39% 58.50% 

 
Table II. Percentage of estimates for which e(k) was less than 5% (R<5%) and the percentage of respiratory rate estimates for which e(k) was less than 3% (R<3%) 
are also shown. 
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slightly lower than that of CALL (a 2.77% lower, 4378.23 ms vs. 
4502.92 ms), our recommendation is to use the C3ECG set. 

Alternatively, the approach based on QRS slopes range 
proposed in [25] for obtaining a combined EDR signal in the 
time domain was also used. It consist of the unconditional 
subtraction of 𝑑𝑑DS(𝑛𝑛) to 𝑑𝑑US(𝑛𝑛) EDR signals. This approach is 
interesting in this context because it avoids the computation of 
one Sj(k, f) and its peakness assessment. As 𝑑𝑑US(𝑛𝑛) and 𝑑𝑑DS(𝑛𝑛) 
are counterphase, this approach is very similar to combine them 
with the peak-conditioned average as proposed in [21]. Note 
that both approaches (𝑑𝑑US(𝑛𝑛), 𝑑𝑑DS(𝑛𝑛), and 𝑑𝑑𝛷𝛷(𝑛𝑛) vs. 𝑑𝑑SR(𝑛𝑛) 
and 𝑑𝑑𝛷𝛷(𝑛𝑛), combined by peakness-conditioned average in both 
cases) would lead to identical results if the oscillations of 

𝑑𝑑US(𝑛𝑛) and 𝑑𝑑DS(𝑛𝑛) had similar power and they were peaked 
enough in the same time intervals. Results were similar to those 
obtained for the original methods in [21], in terms of both inter-
subject medians of intra-subject median and IQR of e(k) (see 
Table I), and of R<5% and R<3% (see Table II). These results 
suggest that two approaches to combine QRS slopes 
information (the peak-conditioned average proposed in [21] and 
the unconditional subtraction proposed in [25]) lead to a similar 
respiratory rate estimation. In fact, the Friedman test did not 
find significant differences between e(k) obtained from the 
original methods in [21] and their analogous SR methods (see 
Table III). Furthermore, the SR approach obtained slightly 
better results during spontaneous respiration. Thus, the use of 
QRS slopes range is preferred, as it offers similar accuracy with 
a slightly lower computational time (4.87% for C3ECG, from 
4519.92 ms to 4299.71 ms per minute of signal). In this way, 
our recommendation for accurate respiratory rate estimation is 
to use 𝐶𝐶3ECGSR , whose respiratory rate estimates obtained a very 
strong correlation with respect to reference, and did not show a 
dependence on the actual respiratory rate (see Fig. 6). 

The EDR methods were modified in order to lower their 
computational cost, based on a decimation to 250 Hz, a 

 Original 
methods in 

[20] 

Slopes range 
and R-wave 

angle methods 
LC methods 

C3ECG 4519.52 ms 4299.71 ms 1076.89 ms 
CPCA 1166.18 ms 1111.58 ms 988.53 ms 
CALL 4645.42 ms 4426.73 ms 1088.29 ms 

 
Table IV. Mean computation time per minute of signal using Matlab R2017b 
on an Intel Core I7 4470. 

  Original methods in [20] Slopes range and R-wave 
angle methods LC methods 

  C3ECG CPCA CALL C3ECG CPCA CALL C3ECG CPCA CALL 

Original 
methods in [20] 

C3ECG       * * * 
CPCA    *   * * * 
CALL    * *  * *  

Slopes range and 
R-wave angle 

methods 

C3ECG       * * * 
CPCA       * * * 
CALL       * * * 

LC methods 
C3ECG        * * 
CPCA          
CALL          

 
Table III. Significant differences found by the Freidman statistical test. 

 
Figure 6. Regression plots (top row) and Bland-Altman plots (bottom row) for 𝐶𝐶3ECGSR , 𝐶𝐶PCALC , and 𝐶𝐶PCASR . Correlations (r) are given at the top of regression plots, and 
bias and limits of agreement (LOA, computed as twice 2×1.96×SD) are shown at top of Bland-Altman plots.  
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common QRS detection for all the ECG channels, a more 
simple estimation of QRS slopes (from which the R-wave angle 
is computed), and the combination of 𝑑𝑑USLC(𝑛𝑛) and 𝑑𝑑DSLC(𝑛𝑛) EDR 
signals by an unconditional subtraction instead of the peak-
conditioned spectral average. The more simple estimation of 
QRS slopes consists of taking the maximum of the first 
derivative with no posterior line fitting. It is worthy to note that, 
as a decimation to 250 Hz was performed previously, a line 
fitting within 8 ms would take into consideration only 2 
samples, leading to a slope identical to the first derivative at that 
instant. 

Results in terms of medians and IQRs of e(k) slightly worse 
in general. Furthermore, the Friedman statistical test found 
significant differences in e(k) obtained from LC combinations 
with respect to their analogous combinations of the other 
methods: C3ECG and CPCA in the case of original methods, and 
all three (C3ECG, CPCA, and CALL) in the case of the SR methods. 
However, medians and IQRs of e(k) were not higher than 3.57% 
for all stages when using 𝐶𝐶PCALC , suggesting that these LC 
methods also can exploit the respiration-related modulations in 
armband-ECG signals to derive good estimates of the 
respiratory rate. 𝐶𝐶PCALC  obtained the highest R<5% in all six stages 
of the protocol, while 𝐶𝐶ALLLC  did in one stages, and 𝐶𝐶3ECGLC  did not 
obtain it in any of the stages. With respect to R<3%, 𝐶𝐶PCALC  
obtained the highest R<3% in all six stages of the protocol, while 
𝐶𝐶ALLLC  and 𝐶𝐶3ECGLC  did not obtain it in any of the stages. This 
suggest that in the case of LC methods, the information added 
by the EDR signals from xPCA(n) complements the information 
of EDR signals from the original ECG channels, leading to 
higher number of recordings with accurate respiratory rate 
estimates. 

The mean of computational time per minute using Matlab 
R2017b on an Intel Core I7 4470 was measured. These 
computational times should not be extrapolated to those that 
would be measured on wearable devices, as their 
microprocessors’ computational speed is usually more limited. 
However, the comparison between them can provide an idea of 
the relative speed of one method with respect to the other, even 
if these relations may change when using a different 
computational microprocessor. Computational times were 
considerably lower for the 𝐶𝐶3ECGLC  and 𝐶𝐶ALLLC  methods than for 
their corresponding original methods (76.17% and 76.57%, 
respectively), and a more moderate improvement (15.23%) in 
these terms was observed in the case of 𝐶𝐶PCALC . Again, C3ECG and 
𝐶𝐶ALLLC  obtained similar results in these terms (1076.89 ms and 
1088.29 ms, respectively). The 𝐶𝐶PCALC  obtained a slightly lower 
computational time per minute of signal (988.53 ms). Thus, our 
recommendation for fast estimation of respiratory rate is to use 
the LC version of 𝐶𝐶PCALC , which reduced the computational time 
a 77.01% with respect to our recommendation for accurate 
respiratory rate estimation using the QRS-slopes range 
approach (𝐶𝐶3ECGSR ), and a 78.13% with respect to its associated 
version in original methods in [21] (𝐶𝐶3ECG). However, this 
improvement of computation time comes at the cost of a 
decrease in accuracy of the estimation. In fact, estimations of 
𝐶𝐶PCALC  showed a lower correlation with the reference, although 
still strong (0.87). Furthermore, a slight tendency to 

underestimate the respiratory rate can be observed in the Bland-
Altman plot (see Fig. 6). 

Computational time and accuracy are a trade-off. A good 
solution is 𝐶𝐶PCASR , whose estimates did not show significant 
differences with those of 𝐶𝐶3ECGSR  (our recommendation for 
accurate estimates), while the computational time was only 
slightly higher (12.45%) than 𝐶𝐶PCALC  (our recommendation for 
fast estimates). In addition, estimations from 𝐶𝐶PCASR  showed a 
very high correlation with the reference (0.97), and did not 
show a dependence on the actual respiratory rate. However, it 
should be kept in mind that 𝐶𝐶PCASR  uses a sampling rate of 1000 
Hz while 𝐶𝐶PCALC  uses a sampling rate of 250 Hz, with 
implications for battery consumption and required memory of 
the final device. 

Those fragments associated with a respiratory rate higher 
than half the mean heart rate were also excluded, because the 
EDR methods would track an alias rate in such situations. This 
was the case for two subjects at the stage of controlled breathing 
at 0.5 Hz. This is the consequence of forcing the subjects to 
breathe at a high rate while the body is not demanding it. A high 
respiratory rate with a low heart rate does not represent a 
realistic physiological situation. In such situations when the 
autonomic nervous system requires a high respiratory rate, it 
also requires a high heart rate (which leads to a high pulse rate), 
e.g., during exercise. However, this issue, which affects all 
beat-to-beat EDR methods, remains a limitation for monitoring 
patients with a non-physiological heart rate (such as those 
treated with beta-blockers). 

A limitation of this study is that the respiratory rate 
estimation has been evaluated only with healthy subjects, as 
some common problems may appear in specific applications 
including respiratory related pathologies. Even if successfully 
demonstrated that the armband can accurately track respiratory 
rates, its behavior during pathological respiratory events such 
as obstructive apnea has to be examined. Further studies have 
to be conducted in order to evaluate the usefulness of 
respiratory information obtained from the armband in specific 
applications. However, the respiratory rate tracking in healthy 
subjects is useful in some applications, such as general well-
being and stress level assessment [10]. 

Although there were no segments from which respiratory rate 
could not be estimated, during any of the studied stages and any 
of the studied EDR sets, this is not the normal expectation when 
monitoring daily life. In this study, the subjects were not 
moving, but EMG artifacts are certainly expected in the 
armband ECG signals during daily monitoring. It is noted that 
in [21], the peakness-based criterion showed good performance 
in detecting those EDR segments from which an accurate 
respiratory rate can be obtained. In addition, ECG signal quality 
indices can be used as a first step in order to detect when good 
quality ECG signal is available and when it is not.  A recent 
study revealed that the armband can provide usable ECG data 
(for detecting QRS complexes) during daily life in more than 
75% (in median) of the non-bed time and more than 98% of the 
bed time, while the percentages of usable data found by an 
automatic strict artifact detector were 53% and 95% for non-
bed and bed time, respectively [26]. Thus, a high number of 
artifacts are expected during daily life, however, the armband 
device can be worn for long periods of time (months or even 
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years), leading to a much higher total amount of quality data 
than the alternatives based on Holter, event, or patch monitors.  

V. CONCLUSSIONS 
Respiration-related modulation of the ECG morphology can 

be observed in the ECG signals recorded by the armband 
wearable device based on three pairs of dry electrodes worn 
over the upper left arm. Furthermore, this modulation can be 
exploited by the EDR method based on QRS slopes and R-wave 
angles for deriving respiratory rates with a relative error not 
higher than 1.40% in median (inter-subject median of median) 
and 3.06% in IQR (inter-subject median of IQR) when using 
the C3ECG set. Computational time can be reduced a 78.13% 
assuming a lower accuracy, specifically, the highest median of 
relative error was 0.27%, and its highest IQR was 3.57% when 
using the 𝐶𝐶PCALC  set. 

These results are promising and allow us to consider the 
armband ECG device as a potential wearable cardiorespiratory 
monitor which can be worn daily for long periods of time 
(months or years), having a wide range of potential applications 
including monitoring patients with chronic respiratory diseases, 
epileptic seizures detection, stress assessment, and sleep 
studies, among others. 
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