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Abstract: Heliostat alignment evaluation is among the main issues in solar tower 
concentration plant operation and maintenance. This paper describes a novel method used to 
evaluate heliostat misalignment and its experimental verification. This method provides a 
different way of visualizing beam centroid pointing errors by generating the complete 
deviation curve for each axis. This, for example, would be useful for verifying a heliostat’s 
correct alignment by using a measurement performed out of the receiver target, using these 
traces to calculate its reflection’s expected location, given a known misalignment. This 
measurement could be performed during operation simply by including a reflective element in 
the heliostat and two detector arrays on the tower’s surface. This model has been tested for 
various types of misalignments of a heliostat at different hours, dates, and heliostat locations. 
The simulation results have been validated by using an experimental setup at a scale of 1:100. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Central receiver solar power plants generally implement open loop control for the tracking 
system of heliostats to ensure that the light they reflect will continuously converge on the 
receiver area [1]. One of the main influential factors in the global efficiency of concentrating 
solar power technology is the total power directed over the course of a day to the receiver. 
Pointing errors cause a drift of the concentrated beam, which moves away from its ideal 
trajectory, directly diminishing power plant performance [2]. 

Due to the relevance of this effect, several simulation methods to predict the tracking error 
of a single heliostat based on information about its geometrical errors have been presented in 
[3,4]. In [5], Jones and Stone shows the calculated positions of the heliostat beam on the 
target at 1-hour increments, implementing fixed values for three main types of geometric 
error sources: encoder reference offset, mirror alignment and heliostat tilt. In [6], Díaz-Felix 
et al simulated tracking errors by adding an angular deviation angle to the vector normal to 
the heliostat, in azimuth or elevation, relative to its ideal orientation. Numerical results are 
also shown, illustrating daily drift trajectories for a fixed value of the deviation angle. In [7], 
Guo et al introduces a simulation model of sun-beam traces over the target plane for an 
azimuth–elevation tracking heliostat, also considering fixed geometric error sources. Other 
models as [6] introduce Montecarlo distributions to predict random deviation error values 
over the course of the day. Usually, these kind of simulations evaluate the impacts of 
geometric errors on the tracking accuracy of the reflection beam considering only the ray 
reflected at the center of the heliostat for a fixed geometric error. Because of that, each trace 
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evaluates only a particular heliostat error condition, and the evolution of the tracking error 
with the magnitude of the geometric error is not directly illustrated. 

In this paper we evaluate, instead of a single ray, the two sets of rays that would be 
reflected from the center of the heliostat for different values of its alignment error. One set of 
rays belongs to azimuthal errors and the other to elevation errors. This kind of simulation 
provides a better understanding of the relationship between tracking error curves evolution 
and geometric error values, and their limits can be directly established for each heliostat 
location. Furthermore, the resultant curves can be useful to evaluate performance and errors 
in closed-loop control of central receiver that use the reflection of solar light in the heliostat 
plane [8,9]. 

2. Description 

We define the geometric error in the alignment of a heliostat as the angular difference 
between the real and ideal vectors normal to the plane of the heliostat. This error originates 
mainly from three different sources in the tracking and the mechanical structure of the 
heliostats: encoder reference offset error, mirror alignment error and heliostat tilt error 
[10,11]. This alignment error is put on display in the curve traced on the target plane by the 
central solar ray reflected on the mirror surface, when it is evaluated over the course of a 
single day. In absence of errors, this curve would collapse to a single point. 

In this paper, we calculate the evolution of the tracking error as a function of the 
geometric error. We achieve that by tracing the two sets of rays reflected by the heliostat 
towards the central tower when considering different values of elevation and azimuthal 
geometric errors. 

In order to generate these sets of rays, we place two cylindrical mirror surfaces at the 
location of the heliostat. One of them, coaxial to the elevation-rotating axis of the heliostat, 
produces the rays reflected for different elevation errors. The other, with its axis orthogonal to 
the elevation axis and parallel to the heliostat surface plane, generates the rays reflected for 
every azimuthal error. The position and curvature radius of these cylinders depend on the type 
of error to be analyzed, as described below. 

As an example, Fig. 1 illustrates the cylindrical surface for elevation geometric error in 
the case of a reference offset error in an encoder. It shows in the elevation plane view, three 
positions of the heliostat mirror, ( )iH ε , when it is deviated in an angle iε from the ideal 

position. For this type of error, the cylinder center is at the rotation point of the heliostat 
(point C) and its radius r is the distance to the center of the heliostat. The cylindrical surface 
is the envelope of the positions ( )iP ε of the heliostat center for all the range of elevation error 

values
iε . Therefore, vectors ( )in ε normal to this surface are also vectors normal to the 

heliostat when it is rotated an angle
iε . As will be described later in the simulation model, 

each pair of values ( ) ( )( ),i iP nε ε of the cylindrical surface defines a point of reflection of the 

incident sun-beam and results in a ray reflected towards the receiver plane. This model can be 
extended to the other two sources of error (mirror misalignment and heliostat tilt), as will be 
described later. 
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3. Theoretical model 

In order to simulate the evolution of the tracking error as a function of the geometric error, it 
is necessary to calculate every single ray reflected by two perpendicular cylindrical surfaces. 
Those rays depend on the position of the sun, the position of the concentrator, and the 
position of the heliostat. The former is obtained from the declination angleδ and the hour 
angleω , indicating the sun elevation angle above the ground and the rotation from north to 

east respectively. Thus, we can define a solar vector S


 [12,13]: 

 ( ) ( ), ,S cos cos , cos sin ,sin .x y zS S S δ ω δ ω δ= = −


 (1) 
The center of the receiver target in the tower will be the origin of our local coordinate 

system, where the X-axis is perpendicular to the target plane, Y-axis is parallel to the tower 
face and Earth’s surface and the Z-axis is perpendicular to the Earth’s surface (Fig. 3). 

 ( ) ( ), , 0,0,0o o oO x y z= =
 (2) 

This local coordinate system may not match, depending on the orientation of the tower, 

the coordinate system used to describe the solar vector S


. In this case, we must transform the 

solar vector S


to the local coordinate system, using rotation matrices relative to each axis. 

 

( ) ( ) ( )
( ) ( )

1 0 0

0 cos sin ,

0 sin cos
xT α α α

α α

 
 = − 
 
   (3) 

 

( )
( ) ( )

( ) ( )

cos 0 sin

0 1 0 ,

sin 0 cos
yT

β β
β

β β

 
 =  
 −   (4) 

 

( )
( ) ( )
( ) ( )

cos sin 0

sin cos 0 ,

0 0 1
zT

γ γ
γ γ γ

 −
 =  
 
   (5) 

where ( )
xT α describes a rotation of an angle α around the X-axis. ( )yT β and ( )zT γ are 

the same for the other two axes. 

Following Eq. (5), we can transform the solar vector S


to our local coordinate system
localS


using the angle between the tower and the North direction ϕ . 

 ( )local zS T Sϕ=
 

 (6) 
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P
p y

x

P
p z

x

x
Y y R

R

x
Z z R

R

 = −

 = −
  (12) 

Equation (12) calculates the projections of both real and virtual reflected rays. Only real 
rays will actually reach the plane YZ (x = 0) after being reflected by the heliostat, so we have 
to make sure that the sign of 

Px is opposite to that of 
xR . 

We can now calculate the projection of the reflected ray for any vector normal to the 
heliostat. Our first aim is to obtain the vector normal to the heliostat in absence of elevation or 
azimuthal errors ( ( )0, 0n

  in Fig. 2). To calculate this vector, we have to determine the 

reflected vector that hits the center of the concentrator O . This vector PR


is the one that 
connects the center of the mirror P  to the center of the concentrator O : 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0, , , , , , , , , , , , .P Px Py Pz P P P C C C x y zR R R R O P x y z x y z x y z x y z r r r= = − = − = − −


 (13) 
Equation (13) can be used to calculate the reflection vector for any position P  of the 

center of the heliostat. Now, we can calculate the normal vector of the heliostat that causes 
the reflected ray to impact on the center of the solar concentrator ( )0, 0 Pn n=  using the vector 

reflection law Eq. (11) and PR


: 

 
2

2
.P P

P P

P P

R S n
S n n

R n
λ⋅

− = =
   

 
 (14) 

Since we only need to know the direction of the normal vector 
Pn
 , it is not necessary to 

calculate λ . However, we have to take into account that 
PR


 depends on the vector r
  shown 

in Eq. (13), and the vector r
  is related to the normal vector n

  as shown in Eq. (10). 
Therefore, Eq. (14) becomes: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )2 2 2

, , , ,
, , , , , ,S .

C C C x y z

Px Py Pz x y z x y z

C x C y C z

x y z r r r
n n n r r r S S

r x r y r z r

λλ
+

= = +
+ + + + +



(15) 
This expression is difficult to solve, but can be simplified. Vector r

  in the right side can 
be neglected because it has the same direction as n

  and will only affect the value of the 

scalar λ , and r
  is much smaller than the distance of the heliostat to the concentrator. 

 

( ) ( ) ( )
( ) ( ) ( )2 2 2

, ,
´ , , , ,S C C C

Px Py Pz x y z

C C C

x y z
n n n S S

x y z
λ +

+ +


 (16) 
Although the approximation error is small, it can be further reduced with an iterative 

calculation of the normal vector: 

 

1

1

´
´ ,i i
i Pi Pi

i

R
n r S

r R

λλ −

−

= = −
 


 (17) 
where i  is the number of the iteration, and 

 ( ) ( )0 0 0 0, , z , , z .C C CR x y x y= −


 (18) 
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Given a sun vector S


, a heliostat located at point C  and a target located at the origin of 
coordinates O , Eqs. (16) and (17) approximate the value of 

Pn
 . Successive iterations provide 

a very good approximation to the exact value. 
Using this model, once the ideal normal vector is known, the deviation of the beam at the 

plane of the tower can be calculated as a function of the misalignment of the heliostat. That is, 
we can add an error to the ideal normal vector in either of the two directions (elevation or 
azimuthal) and then calculate the reflected ray with the reflection vector law Eq. (11) and its 
projection on the plane of the tower Eq. (12). 

These misalignments cause the center of the heliostat to travel over a cylindrical surface 
as shown in Figs. 1 and 2. If we calculate the reflection on a cylindrical surface, instead of a 
heliostat, the result will be a conic section on the plane of the solar tower. This curve is an 
useful representation of the effects on the heliostat suffers of geometrical errors like encoder 
reference offset, mirror alignment or heliostat tilt, because each point of the curve will belong 
to the ray reflected with the matching normal vector of the cylinder (Fig. 1). 

4. Results 

4.1 Simulations 

Using the theoretical model in the previous section, we have developed our own simulation 
software to calculate the deviations as a function of misalignment. Figure 4 shows the results 
for six different locations of a heliostat. Figure 4 shows the curves generated by the reflection 
of a collimated beam (sun) on two perpendicular cylindrical surfaces when they are perfectly 
aligned (when both curves pass through the center of the receiver target). The results are 
shown for different times of the day and six different locations of heliostats. 

The plane of the heliostat is replaced by two cylinders perpendicular to each other. The 
reflection on the vertical cylinder (red) projected on the tower is the locus of the rays reaching 
the tower when the heliostat has an elevation misalignment, and the horizontal cylinder (blue) 
is the same for deviations in azimuth. If there is no misalignment, the reflected ray will be at 
the center of the concentrator. Three curves for each cylinder represent the projections at 8, 
12 and 16 hours, showing their evolution over the course of a day. 

These graphs reveal the importance of the heliostat location in the impact of possible 
misalignments. Similar results could be obtained using the calculations of [6] and adding not 
a single but a set of angular deviation angles. However, the effect of cylinder radio is not 
taken into consideration in that work, and the inclusion of two cylindrical surfaces makes 
possible a better understanding of the effect of geometrical errors. 

Moreover, the knowledge of the complete deviation curve could have interesting 
applications. For example, it would be possible to verify the correct alignment of a heliostat 
with a measurement performed out of the concentrator, using this traces to calculate the 
expected location of its reflection given a known misalignment. 

Although Fig. 4 is useful to see how the sun beams would deflect according to the angular 
deviation of the heliostat, it could also be interesting to know the effect of a particular angular 
error during a day. For this purpose, another set of simulations have been performed. Figure 5 
shows the variation of the reflected rays throughout a day for different angular deviations. As 
before in Fig. 4, the heliostat has been replaced by two perpendicular cylinders in order to 
simulate azimuthal and elevation errors. Each graph represents a different location for the 
heliostat. As expected, the effect of the same angle deviation is lower for the heliostats near 
the tower(Figs. 5(a)-5(c)) than the ones far from it (Figs. 5(d)-5(f)). For example, in Fig. 5(a) 
the spots remain inside the area of the concentrator for deviations up to 12mrad, whereas in 
Fig. 5(d), the limit is under 4mrad. 

In addition, using these graphs we can determine the hours in which the beams are inside 
the receiver target. For example, in Fig. 5(b), an azimuthal error of 12mrad means that only at 
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the tower model. A calibrated screen is placed in this model to measure the trace formed by 
the reflection. 

 

Fig. 6. Experimental setup. 

 

Fig. 7. Traces resulting from two different misalignment conditions in our experimental setup. 

Figure 7 shows the traces on the screen for two given positions of the laser (sun) and the 
mirror (heliostat). In Fig. 7(a), the heliostat is located at X = 150cm, Y = −16cm, Z = −143cm 
while the sun-laser is at azimuth = 101° and elevation = 50° (as the scale is 1:100, centimeters 
in the experimental setup correspond to meters at real scale). In Fig. 7(b), the heliostat is 
located at X = 150cm, Y = −45cm, Z = −143cm and the laser is at azimuth = 260° and 
elevation = 48°. The locations of the mirror and the laser define the projections over the 
tower. In Fig. 7(a), the reflected rays trace a hyperbola with its focus at the left. Figure 7(b) is 
also a hyperbola, but the focus is at the other side. 
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Fig. 8. Results of the experimental setup at 1: 100 scale versus the simulation results. 

Figure 8 compares the experimental and simulated projections on a solar tower. There is a 
very good agreement between measurements and simulation, validating the model and 
approximations used in section 3. 

4.3 Discussion 

The use of reflective cylindrical surfaces (or equivalent polygonal surfaces) allows us to 
measure the misalignment of heliostats in positions away from the receiver target. In addition, 
the modulation of the reflected beam makes possible the simultaneous measurement of the 
misalignment of all the heliostats of a tower plant in real time. In heliostats with several 
mirrors, the installation of reflective surfaces for each mirror can be considered, though it 
would increase the cost of the system. 

Using the curves generated in Fig. 4, we are able to know where the signal should cross 
the detector arrays when the heliostat is properly aligned, which gives us the information 
needed for a closed-loop system. In summary, if we know the cross points on the detectors 
arrays (target plane) of the curve generated by the reflector element, we can calculate the 
misalignment of the heliostat because we can calculate the cross points on the detectors arrays 
when the heliostat is perfectly aligned (for any position of heliostat or position of the sun). 

5. Conclusions 

We have developed a new model to evaluate misalignments in the orientation of the heliostats 
in solar tower power plants, using a vector calculation of the beam paths and replacing the 
full range of elevation and azimuthal errors by two perpendicular virtual reflective cylinders. 

This model has been used in a simulation to evaluate the effect of different types of 
misalignments of a heliostat on the position of the reflected beam on the tower. This effect 
can be calculated for different hours, dates and heliostat locations, and for the complete range 
of deviations at the same time. In addition, the measurement system allows an experimental 
measurement of misalignment away from the solar concentrator and the design of a closed-
loop system for heliostat control. 
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