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Appendix A

Acronym list

Below there is a list of the acronyms used in this work sorted alphabetically:

• ANS: Autonomic Nervous System.

• BP: Blood Pressure.

• BPV: Blood Pressure Variability.

• BRS: Baroreflex Sensitivity.

• D: Diabetic subgroup.

• ECG: Electrocardiogram.

• HF: High Frequency band (0.15–0.4 Hz).

• HRV: Heart Rate Variability.

• IPFM: Integral Pulse Frequency Modulation model.

• LF: Low Frequency band (0.04–0.15 Hz).

• ND: Non diabetic subgroup.

• P: Hypotension–prone patient.

• R: Hypotension–resistant patient.

• VLF: Very Low Frequency band (0–0.04 Hz)
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Appendix B

Hemodialysis in Lozano Blesa
Hospital

The practical work for the master consisted on visiting the Hospital Cĺınico Universitario Lozano
Blesa to learn the protocol used during hemodialysis.

The hemodialysis room has about 15 beds for the patients with the respective dialyzer
machine. Next to this room, other facilities allow to purify the water to create the so called
ultrapure water needed in dialysis treatment. The dialysis liquid is a mixture of ultrapure water
and some concentrates, and it needs to be periodically analyzed to keep the recommended levels.

The dialyzer machine can be seen in Figure B.1. It pumps the blood out of the patient’s
body and filtrates it with a membrane. The process last between 2 to 4 hours and it is repeated
3 or 4 times a week. The patient needs to weight before the treatment to check how much weight
must be removed, which regulates the duration of the treatment.

A detail of the main screen of the dialyzer is shown in Figure B.2. It shows the arterial and
vein pressure, as well as the systolic and diastolic pressure, the transmembrane pressure (PTM)
and the volume of blood being filtered.

Another menu shows the blood clearance (K), as it can be seen in Figure B.3. The Kt/V
is a parameter which depends on the patient (size, weight, age, sex...) and the dialyzer, and if
fixed, the machine displays the time needed to reach that value and finish the treatment.

It can also display the blood volume evolution, as in Figure B.4, where an alarm limit can be
established. Another menu shows a table full of these parameters and much more, as Figure B.5
shows. During the hemodialysis session, periodical checking is made by the medical staff.

After the treatment, the machine needs to spend 15 minutes to the cleansing and decontam-
ination before the next session.
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Figure B.1: Dialyzer machine.

Figure B.2: Main menu.
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Figure B.3: Diascan menu.

Figure B.4: Hemoscan menu.
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Figure B.5: Additional parameters.



Appendix C

CASEIB 2012 article

The following is the article which has been presented to the CASEIB 2012 conference, which
will take place in San Sebastián in november 2012.
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Clasificación de pacientes propensos y resistentes a hipotensión 
durante hemodiálisis a partir de la variabilidad del ritmo 

cardiaco y la presión sanguínea 

 

 

 

Resumen 
El objetivo de este trabajo es extraer índices derivados de la 
variabilidad del ritmo cardiaco y de la variabilidad de la 
presión sanguínea para la clasificación de pacientes de 
hemodiálisis en propensos o resistentes a sufrir ataques de 
hipotensiones, uno de los mayores problemas durante estos 
tratamientos. Se propone el uso de un clasificador lineal 
discriminante, y el uso de una búsqueda flotante para 
seleccionar el subgrupo de índices que mejor separen entre 
ambas clases. Se ha conseguido una sensibilidad (Se) de 97.5%, 
una especificidad (Sp) de 72.7% y una precisión (Acc) de 92.3% 
clasificando por separado los pacientes diabéticos y los no 
diabéticos. Este resultado se ha mejorado balanceando las dos 
clases consiguiendo Se=87.8%, Sp=100% y Acc=93.2%.  

1. Introducción 
La hemodiálisis es el principal tratamiento de la uremia 
debida a una insuficiencia renal. La hipotensión es una de 
las principales complicaciones de estos pacientes, no sólo 
por la incomodidad del paciente y la pérdida de eficacia 
del tratamiento, sino que ha sido demostrado que también 
incrementa la mortalidad de los pacientes que las sufren 
[1]. Se busca por tanto desarrollar métodos para poder 
predecir y evitar estos episodios, cuyo origen todavía no 
es totalmente conocido, en especial usando técnicas no 
invasivas que nos permitan además identificar a los 
pacientes con propensión a sufrir hipotensiones. 

Una de las hipótesis respecto al origen de dichas 
hipotensiones es una alteración en la regulación 
cardiovascular del sistema nervioso autónomo. La 
variabilidad del ritmo cardiaco (HRV) es una de las 
principales medidas no invasivas que se usa para medir la 
actividad de dicho sistema. Se establecen tres bandas en 
el espectro de potencia de la HRV [2]: muy baja 
frecuencia (VLF: <0.04 Hz), baja frecuencia (LF: 0.04-
0.15 Hz) y alta frecuencia (HF: 0.15-0.4 Hz). La 
componente HF es una indicadora de la actividad del 
sistema parasimpático y está influenciado por la 
respiración. La componente LF marca la actividad del 
sistema simpático, al menos cuando se mide en unidades 
normalizadas. Por último, la componente VLF se ha 
relacionado con la regulación térmica y con la actividad 
lenta vasomotora. Además la relación entre las potencias 
en las bandas de LF y HF provee información sobre el 
balance simpatovagal. 

La sensibilidad barorrefleja (BRS) mide los cambios 
reflejos del ritmo cardiaco ante cambios en la presión 
arterial, y podría reflejar el deterioro de la regulación del 
sistema nervioso autónomo [3]. 

Siguiendo la hipótesis de que las hipotensiones pueden 
estar relacionadas con el mal funcionamiento del sistema 
nervioso autónomo, se propone estudiar en este trabajo la 
HRV, la variabilidad de la presión sanguínea (BPV) y la 
BRS en dos bases de datos de pacientes que reciben 
tratamiento de hemodiálisis para extraer índices capaces 
de discriminar entre los pacientes propensos o resistentes 
a sufrir hipotensiones utilizando un clasificador lineal. 
Como características se han utilizado las potencias 
asociadas a las bandas frecuenciales tanto de la HRV 
como de la BPV e índices de la BRS. 

2. Materiales y Métodos 
2.1. Base de datos 

En este trabajo se han utilizado dos bases de datos que 
contienen la señal electrocardiográfica (ECG) y la señal 
de presión sanguínea (BP) de pacientes con insuficiencia 
renal que asistieron a sesiones regulares de hemodiálisis, 
de duración variable entre 3 y 5 horas, tres veces a la 
semana: 

- Base de datos registrada en Park Dialys, Lund, Suecia, y 
el hospital Helsingborg, Helsingborg, Suecia: Consiste en 
un total de 28 registros pertenecientes a 15 pacientes. 
Cada paciente se clasificó como propenso (P) o resistente 
(R) a sufrir hipotensión, según su historial clínico previo. 

- Base de datos registrada en el hospital Rigshospital, 
Copenague, Dinamarca: Consiste en 24 registros 
pertenecientes a 9 pacientes. Todos los pacientes fueron 
etiquetados propensos. 

En total, se dispone de una base de datos combinada de 
24 pacientes (52 registros) de los cuales 17 (41) son 
propensos y 7 (11) resistentes. También se dispone de 
información sobre la condición de diabético o no.  

2.2. Variabilidad del ritmo cardiaco 

La HRV se analiza a partir de la detección de los 
complejos QRS del ECG. Este análisis sigue un método 
basado en el modelo de modulación en frecuencia de 
pulsos por integración, que también permite corregir la 
estimación de la señal de ritmo cardiaco ante la presencia 
de latidos ectópicos [4]. Así se obtiene la señal 𝑑𝐻𝑅(𝑛) 
muestreada a 4 Hz, que representa el ritmo cardiaco 
instantáneo. La componente VLF se estima filtrando 
𝑑𝐻𝑅(𝑛) con un filtro paso bajo con frecuencia de corte de 
0.03 Hz y se denota 𝑑𝐻𝑅𝑀(𝑛). Finalmente, la señal HRV 
se obtiene como 𝑑𝐻𝑅𝑉(𝑛) =  𝑑𝐻𝑅(𝑛) −  𝑑𝐻𝑅𝑀(𝑛). 



 

Para cada segmento de 5 minutos se calcula el espectro de 
potencia de 𝑑𝐻𝑅𝑉(𝑛) y 𝑑𝐻𝑅𝑀(𝑛) utilizando el 
periodograma de Welch con una ventana de Hamming de 
120 segundos con solape de 60 segundos. La potencia de 
LF y HF se calcula integrando el espectro de 𝑑𝐻𝑅𝑉(𝑛) en 
sus respectivas bandas frecuenciales, obteniendo 𝑃𝐿𝐹𝐻𝑅 y 
𝑃𝐻𝐹𝐻𝑅, mientras que para calcular 𝑃𝑉𝐿𝐹𝐻𝑅  se recurre al 
espectro de 𝑑𝐻𝑅𝑀(𝑛). Después se calculan los siguientes 

índices: 𝑃𝑉𝐿𝐹𝑛𝐻𝑅  =  𝑃𝑉𝐿𝐹
𝐻𝑅

𝑃𝐿𝐹
𝐻𝑅+ 𝑃𝐻𝐹

𝐻𝑅,  𝑃𝐿𝐹𝑛𝐻𝑅  =  𝑃𝐿𝐹
𝐻𝑅

𝑃𝐿𝐹
𝐻𝑅+ 𝑃𝐻𝐹

𝐻𝑅, 𝑃𝐻𝐹𝑛𝐻𝑅  =

 𝑃𝐻𝐹
𝐻𝑅

𝑃𝐿𝐹
𝐻𝑅+ 𝑃𝐻𝐹

𝐻𝑅 y 𝑅𝐿𝐹𝐻𝐹𝐻𝑅  =  𝑃𝐿𝐹
𝐻𝑅

 𝑃𝐻𝐹
𝐻𝑅 . 

2.3. Variabilidad de la presión sanguínea 

Las medidas de la presión sanguínea sistólica se obtienen 
detectando los máximos de cada onda de pulso, usando un 
método basado en la derivada de la señal BP y un umbral 
variante en el tiempo. A partir del valor y la localización 
de cada máximo, la señal de presión sanguínea sistólica, 
𝑑𝐵𝑃(𝑛), se calcula mediante interpolación con splines 
cúbicos a 4 Hz. Usando el mismo procedimiento que con 
la HRV, se obtienen las señales 𝑑𝐵𝑃𝑀(𝑛) y 𝑑𝐵𝑃𝑉(𝑛). A 
partir de ellas, y en cada segmento de 5 minutos, se 
obtienen los índices 𝑃𝑉𝐿𝐹𝐵𝑃 , 𝑃𝐿𝐹𝐵𝑃 , 𝑃𝐻𝐹𝐵𝑃 , 𝑃𝑉𝐿𝐹𝑛𝐵𝑃 , 𝑃𝐿𝐹𝑛𝐵𝑃 , 𝑃𝐻𝐹𝑛𝐵𝑃  y 
𝑅𝐿𝐹𝐻𝐹𝐵𝑃 . 

2.4. Sensibilidad barorrefleja 

Los índices de la BRS se calculan en cada banda 

frecuencial como se indica en [5]: 𝛼𝑉𝐿𝐹 =  �𝑃𝑉𝐿𝐹
𝐻𝑅

𝑃𝑉𝐿𝐹
𝐵𝑃  , 

𝛼𝐿𝐹 =  �𝑃𝐿𝐹
𝐻𝑅

𝑃𝐿𝐹
𝐵𝑃 y 𝛼𝐻𝐹 =  �𝑃𝐻𝐹

𝐻𝑅

𝑃𝐻𝐹
𝐵𝑃 para las bandas VLF, LF y 

HF respectivamente. 

2.5. Selección de características 

Para tener una medida única por registro, se seleccionan 
los 5 primeros segmentos de cada señal y se calcula la 
mediana de cada índice. Adicionalmente, en el caso de los 
índices 𝑅𝐿𝐹𝐻𝐹𝐻𝑅  y 𝑅𝐿𝐹𝐻𝐹𝐵𝑃  se calcula la varianza en esos 
segmentos para crear dos nuevos índices: 𝑉𝑅𝐵𝑃 y 𝑉𝑅𝐵𝑃. Así 
se tiene, por cada registro, 8 características asociadas a la 
HRV, 8 asociadas a la BPV y 3 asociadas a la BRS, 
dando un total de 19 características. 

Los métodos de búsqueda de características permiten 
encontrar el subconjunto óptimo de características que  
minimizan el error de clasificación, eliminando así las 
características que resultan redundantes o irrelevantes.  

El método usado en este trabajo es la búsqueda flotante 
secuencial hacia adelante (SFFS). En cada iteración del 
algoritmo se da un paso forward, es decir, se busca qué 
característica entre las que todavía no se han elegido 
minimiza el error de clasificación y se introduce en el 
conjunto. A continuación se realiza un paso backward, es 
decir, se escoge de entre las características del conjunto 
aquella cuya exclusión minimice el error de clasificación 
y se elimina del conjunto. Este paso backward se repite 
hasta que no se encuentre ninguna característica en el 
conjunto cuya extracción suponga una disminución 
significativa del error. Por último, se vuelve al paso 
forward y se repite el proceso hasta alcanzar el número de 

características deseado o superar un número máximo de 
iteraciones [6]. 

2.6. Clasificación  

Clasificador lineal discriminante. El clasificador 
utilizado en este trabajo sigue un análisis linear 
discriminante (LDA). Este método busca una 
combinación lineal de las características que sea capaz de 
separar las observaciones en dos o más clases. LDA 
asume que los datos siguen una distribución normal y que 
las covarianzas de las distintas clases son iguales. Dado 
un vector de n nuevas observaciones 𝒙 =  [𝒙𝟏 𝒙𝟐 … 𝒙𝒏]𝑇, 
la función discriminante asociada a la clase k, supuestas 
todas las clases equiprobables, se define como: 

𝛿𝑘(𝒙𝒊) =  𝒙𝒊𝑇𝜮−1𝝁𝒌 −  
1
2
𝝁𝒌𝑇𝜮−1𝝁𝒌 (1) 

donde 𝒙𝒊 es la nueva observación que se quiere clasificar, 
el superíndice T indica transpuesto, 𝝁𝒌 es el vector de 
medias de la clase k, y Σ es la matriz conjunta de 
covarianza. Los parámetros 𝝁𝒌 y Σ se deben obtener 
previamente a partir de un conjunto de entrenamiento. 

La clase k elegida para la observación 𝒙𝒊 será aquella 
cuya función discriminante sea mayor. 

Evaluación del clasificador. Debido a que la base de 
datos no es suficientemente extensa como para dividirla 
en un conjunto de entrenamiento y otro de evaluación, 
para la evaluación del clasificador se decide recurrir a la 
estrategia leave one out, que consiste en entrenar el 
clasificador con todas las observaciones menos una y 
evaluar el clasificador con la observación que se ha 
dejado fuera, repitiendo el proceso hasta que todas las 
observaciones han sido utilizadas para la evaluación [7]. 

También para realizar la búsqueda de características se ha 
utilizado un método similar al leave one out, donde en 
cada iteración se utilizan todas las observaciones menos 
una para realizar la búsqueda. Así, de N observaciones, se 
obtienen N-1 subconjuntos de características, de las que 
se seleccionan las 2 características que aparecen con más 
frecuencia y se establecen como las características a 
utilizar por el LDA. 

El método leave one out trabaja con observaciones, que 
en este trabajo equivale a registros. Un paciente puede 
tener uno, dos, tres o hasta cuatro registros distintos, 
correspondientes a días diferentes. Se considera como una 
segunda alternativa trabajar con pacientes en vez de por 
registros, de modo que tanto la búsqueda de 
características como el entrenamiento del clasificador se 
realiza con los registros de todos los pacientes menos uno, 
siendo los registros de este paciente los que quedan fuera, 
repitiendo el proceso con todos los pacientes. 

El rendimiento del clasificador se medirá en base a la 
sensibilidad (Se), especificidad (Sp), valor predictivo 
positivo (+PV), valor predictivo negativo (-PV) y 
precisión (Acc) definidos: 𝑆𝑒 =  𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝑆𝑝 =  𝑇𝑁

𝑇𝑁+𝐹𝑃
, 

+𝑃𝑉 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

, −𝑃𝑉 =  𝑇𝑁
𝑇𝑁+𝐹𝑁

 y 𝐴𝑐𝑐 =  𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

 , 
donde TP, TN, FP y FN significan verdaderos positivos, 
verdaderos negativos, falsos positivos y falsos negativos, 



 

respectivamente. En este trabajo, los pacientes propensos 
a sufrir hipotensión son considerados positivos, mientras 
que los pacientes resistentes son considerados negativos. 

3. Resultados 
Propensos versus Resistentes. En un primer paso se 
realiza la búsqueda de características siguiendo la idea del 
leave one out por registros como se explica en el apartado 
2.6, obteniendo como características más importantes 
𝑉𝑅𝐻𝑅 y  𝑃𝑉𝐿𝐹𝐵𝑃 . El rendimiento puede verse en la Tabla 1, 
donde se aprecia que tiene una alta sensibilidad pero nula 
especificidad. Esto significa que clasifica a todos los 
registros resistentes como propensos y puede deberse a 
que los grupos de propensos y resistentes están 
fuertemente desbalanceados (41 P y 11 R).  

En cuanto al método por pacientes se observa que mejora 
la especificidad sin perjudicar la sensibilidad. Las 
características obtenidas en la búsqueda son 𝑃𝐻𝐹𝑛𝐻𝑅  y 𝑃𝑉𝐿𝐹𝐵𝑃 . 

 Se  (%) Sp (%) +PV (%) -PV (%) Acc (%) 
Registros 97.5 0 78.4 0 76.9 
Pacientes 97.5 54.5 88.8 85.7 88.4 

Tabla 1. Rendimiento del clasificador por registro y por 
paciente. 

División en diabéticos y no diabéticos. Debido a que la 
literatura clínica muestra una alteración o mal 
funcionamiento del sistema nervioso autónomo en 
pacientes diabéticos, se propone realizar dos 
clasificadores, uno para el subgrupo de pacientes 
diabéticos y otro para el de no diabéticos. En este caso, y 
debido a la limitación del bajo número de pacientes en 
cada grupo, se decide únicamente realizar el estudio por 
registros, no por pacientes. Así, se considera el grupo de 
diabéticos que consiste en 21 registros de los cuales 17 
son propensos, y el grupo de no diabéticos que consiste en 
31 registros de los cuales 24 son propensos. 

En cada subgrupo se vuelve a hacer una búsqueda de las 
mejores características, se entrena el clasificador y se 
evalúa el resultado, tal como se explicó en el apartado 2.6, 
que se puede ver en la Tabla 2. Para el grupo de 
diabéticos, las características escogidas son 𝑃𝐻𝐹𝐻𝑅 y 𝑃𝑉𝐿𝐹𝑛𝐻𝑅 ; 
mientras que para el grupo de no diabéticos las 
características son 𝑃𝑉𝐿𝐹𝑛𝐻𝑅  y 𝛼𝐿𝐹. 

Aunque en realidad se trata de dos clasificadores 
distintos, puede verse como un árbol de decisión donde la 
variable diabetes será la que elija qué rama del árbol 
tomar. Por tanto, se puede considerar como un 
clasificador global cuyo rendimiento puede verse también 
en la Tabla 2. Se observa que separando los pacientes en 
diabéticos y no diabéticos mejora considerablemente los 
resultados. 

 Se  (%) Sp (%) +PV (%) -PV (%) Acc (%) 
Diabéticos 94.1 50.0 88.8 66.6 85.7 

No 
diabéticos 100 85.7 96.0 100 96.7 

Global 97.5 72.7 93.0 88.8 92.3 

Tabla 2. Rendimiento del clasificador de pacientes diabéticos y 
no diabéticos y rendimiento global. 

 

Balanceo de grupos. Como siguiente paso, para intentar 
disminuir el efecto del menor número de pacientes 
resistentes en el diseño del clasificador, se decide 
balancear los grupos P y R, replicando cada registro R dos 
veces, llegando a una nueva base de datos que consiste en 
41 registros P y 33 registros R.  

Se decide repetir la clasificación tanto por registro como 
por paciente, y los resultados se muestran en la Tabla 3. 
En el método por registro, las características elegidas son 
𝑅𝐿𝐹𝐻𝐹𝐻𝑅  y 𝛼𝐻𝐹, y aunque pierde sensibilidad gana en 
especificidad.  

En el método por pacientes, las características escogidas 
son 𝛼𝑉𝐿𝐹 y 𝛼𝐻𝐹. Una vez balanceados los grupos se 
aprecia cómo el rendimiento ha empeorado. 

 Se  (%) Sp (%) +PV (%) -PV (%) Acc (%) 
Registros 87.8 63.6 75.0 80.7 77.0 
Pacientes 90.2 45.4 67.2 78.9 70.2 

Tabla 3. Rendimiento del clasificador por registro y por 
paciente tras balancear grupos. 

También se decide volver a dividir la base de datos en 
diabéticos y no diabéticos. En este caso, el grupo de 
diabéticos consta de 29 registros de los cuales 17 son 
propensos, mientras que el grupo de no diabéticos consta 
de 45 registros de los cuales 24 son propensos. 

Las nuevas características para el grupo de diabéticos son  
𝛼𝑉𝐿𝐹 y 𝑃𝐻𝐹𝐵𝑃 , y para el grupo de no diabéticos 𝑃𝑉𝐿𝐹𝐵𝑃  y 𝑃𝐿𝐹𝑛𝐻𝑅 . 
En la Tabla 4 se pueden observar los resultados de ambos 
clasificadores, así como el global. Se aprecia cómo ha 
empeorado la sensibilidad, ya que el grupo de propensos 
ha dejado de ser el dominante, pero ha mejorado el 
resultado general. 

 Se  (%) Sp (%) +PV (%) -PV (%) Acc (%) 
Diabéticos 76.4 100 100 80.0 87.8 

No 
diabéticos 95.8 100 100 94.4 97.5 

Global 87.8 100 100 86.8 93.2 

Tabla 4. Rendimiento del clasificador de pacientes diabéticos y 
no diabéticos y rendimiento global tras balancear grupos. 

Evolución de las características. Los índices se han 
calculado como la mediana de los 5 primeros segmentos 
de las señales, coincidiendo con el inicio del tratamiento 
de hemodiálisis. El siguiente paso es repetir el análisis 
anterior en segmentos posteriores, para estudiar la 
evolución de las diferencias entre sujetos propensos y 
resistentes a lo largo de la sesión. Las características 
elegidas para entrenar el modelo se han mantenido iguales 
para todos los intervalos. 

Partiendo de la base de datos balanceada se realiza el 
análisis anterior escogiendo las características en los 
intervalos 1-5, 6-10, 11-15, 16-20, 21-25 y 26-30, 
llegando así a las dos horas de tratamiento. Los 
segmentos tienen una longitud de 5 minutos y están 
solapados 1 minuto. 

En la Figura 1 se aprecia la evolución de la sensibilidad, 
especificidad y precisión del clasificador a lo largo de la 
sesión de hemodiálisis cuando se combinan los 
clasificadores para pacientes diabéticos y no diabéticos. 



 

 
Figura 1.  Evolución de la sensibilidad (--), especificidad (-.-) y 

precisión (-) del clasificador global. 

4. Discusión y conclusiones 
La mayor limitación de este trabajo es el escaso tamaño 
de la base de datos. Al intentar dividir la base de datos 
para tener un grupo de entrenamiento y otro de 
evaluación, se hizo evidente la sensibilidad en la elección 
de los registros para entrenar, por lo que se hizo necesario 
recurrir a la técnica de leave one out y usar toda la base de 
datos para la búsqueda de características y el 
entrenamiento. 

El uso de un clasificador lineal que se base en LDA hace 
que no sea el resultado óptimo ya que no cumple con las 
suposiciones descritas en 2.6, ya que las características no 
son independientes y no cumplen la asunción de 
normalidad. Esto significa que LDA resulta sub-óptimo 
para esta clasificación. Sin embargo, la distribución de los 
datos es desconocida, y utilizar algún otro método no 
paramétrico que estime dicha distribución a partir de los 
datos implicaría un riesgo de sobreadaptación que podría 
sesgar los resultados positivamente. En este caso, dicho 
riesgo es elevado debido al reducido número de sujetos.  

Al trabajar con pacientes, en vez de con registros, 
mejoran las prestaciones del clasificador, a pesar de 
reducir el número de casos en cada grupo.  

De especial interés es la división entre pacientes 
diabéticos y no diabéticos. Los resultados mejoran 
notablemente, lo que apoya la hipótesis de que la diabetes 
afecta al funcionamiento del sistema nervioso autónomo. 

A la hora de balancear los grupos, se evita que los 
resultados estén tan sesgados hacia los pacientes 
propensos. Así, se consigue aumentar la especificidad a 
costa de perder sensibilidad, pero la precisión total 
aumenta en todos los casos excepto cuando se trabaja por 
pacientes. El objetivo de aumentar los datos del grupo 
menor es que, al ser el error de clasificación el criterio por 
el cual se rige la búsqueda de características, no se sesgue 
el resultado a favor del grupo más numeroso, si bien el 
hecho de replicar casos no añade información nueva y 
asume que los casos disponibles son suficientemente 
representativos del grupo. 

Estudiando la evolución del rendimiento del clasificador 
se comprueba que durante la sesión de hemodiálisis éste 
es variable. Se puede apreciar cómo a los 25 minutos hay 
una bajada de especificidad y aunque más tarde se 
recupera, acaba bajando lentamente. Esto puede deberse a 
que los pacientes resistentes presentan, conforme avanza 
el tratamiento de hemodiálisis, características más 

parecidas a las de los pacientes propensos debido a la 
propia hemodiálisis. 

En cuanto a las características escogidas, cabe destacar 
que cambian en cada escenario, lo que parece indicar que 
la información de la HRV relevante para la clasificación 
en propensos y resistentes se refleja en diferentes índices. 
Diversos artículos muestran que el ratio entre la potencia 
de baja y alta frecuencia de la HRV es capaz de discernir 
entre sujetos propensos y resistentes [8], como se ve con 
𝑉𝑅𝐻𝑅 y es también compatible con el índice 𝑃𝐿𝐹𝑛𝐻𝑅  y 𝑃𝐻𝐹𝑛𝐻𝑅 , 
que aparecen en varios de los escenarios. Otras 
características, como las relacionadas con la BRS, 
aparecen en varios de los escenarios, lo que indica que el 
barorreflejo de los pacientes propensos no funciona igual 
que los resistentes, pudiendo explicar la mayor incidencia 
a sufrir hipotensiones. Esto es contradictorio a otros 
estudios que afirman que durante episodios de 
hipotensión la BRS funciona correctamente [9]. 
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