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Resumen

La simulacién numérica de flujos de agua en sistemas de drenaje urbano es
uno de los &mbitos en donde se pone de manifiesto la necesidad de combinar flujos
en lamina libre a presion atmosférica con situaciones en las que el conducto se
encuentra presurizado, tanto en régimen estacionario como transitorio.

Las ecuaciones que gobiernan los dos tipos de flujo son diferentes, por lo
tanto, es necesario tener en cuenta el cambio ldmina libre/presiéon a la hora de
programar un modelo numérico completo que sea capaz de resolver transitorios
independientemente de la region de trabajo.

En este trabajo se desarrolla un modelo de simulaciéon numérica capaz de
resolver redes de tuberias cuyo régimen mayoritario de funcionamiento sea el de
lamina libre, pero que se puedan ver presurizadas ante situaciones puntuales. Para
ello, se propone adaptar la formulacion matematica a través del método de la
rendija de Preissmann, mediante en cudl se consigue una estimacion razonable de
la presion del agua en el conducto.

El método numérico empleado se basa en el esquema de Roe de primer
orden, enmarcado dentro de la familia de los métodos de voliimenes finitos. Se
trata de un método adaptado a las situaciones transitorias bruscas, capaz de
trabajar en régimen subcritico, supercritico y mixto. Para su validacién, se han
resuelto varios casos con solucion analitica o datos empiricos correspondientes a
experimentos de laboratorio. Mediante la aplicacién a casos mas complejos, como
confluencias o redes de tuberias, se ha evaluado la sensibilidad del método a los
cambios de régimen en este tipo de situaciones mas realistas.
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Capitulo 1. Introduccion y objetivos

1. Introduccion y objetivos

La simulacion numeérica de flujo de agua en sistemas de drenaje urbano se caracteriza
por la dificultad de necesitar una disposicion en red mallada donde puedan darse tantos
flujos estacionarios como transitorios. Ademads, las conducciones se desarrollan
fundamentalmente en lamina libre pero tienen una capacidad limitada que puede superarse
si el volumen de agua a transportar aumenta radpidamente. En esas circunstancias el régimen
de flujo cambia y el flujo se presuriza. El flujo en ldmina libre es fisicamente diferente del
flujo a presion y, por lo tanto, son distintos tanto los modelos matematicos que se usan para
formularlos como los métodos numéricos que se emplean para su discretizacion. Un modelo
completo de drenaje urbano debe ser capaz de reproducir no so6lo estados estacionarios y
transitorios sino las transiciones de flujo en ldmina libre a flujo a presion, lo cual
denominaremos flujo mixto.

Los problemas con flujo mixto han sido abordados en las ultimas décadas por
numerosos investigadores bajo dos puntos de vista muy diferenciados. La primera forma de
plantear el problema consiste en resolver de forma separada el flujo presurizado y el de
lamina libre (e.g., Guo & Song 1990, Fuamba 2002). Las transiciones entre los dos tipos de
flujo se tratan como condiciones de contorno interiores. Este tipo de modelos resultan mas
complejos aunque permiten simular presiones subatmosféricas en la tuberia.

Por otra parte, numerosos autores como Garcia-Navarro & Priestley 1993, Leon et al.
2009 o Kerger et al. 2010 llevan a cabo simulaciones del flujo presurizado aplicando las
ecuaciones de lamina libre en una rendija hipotética muy estrecha situada en la parte
superior del conducto (método de Preissmann). La altura de agua en la rendija proporciona
una medida de la presién en la tuberia. La gran ventaja de este modelo es el uso de un tinico
sistema de ecuaciones para la resolucién del problema completo. Este modelo ha sido
empleado con éxito para simular transiciones graduales entre los dos regimenes, pero
presenta malos resultados en transiciones bruscas (e.g., Trajkovic et al. 1999, Yen 2001). Esto
se debe principalmente a problemas de estabilidad debido al cambio instantaneo en la
anchura del canal cuando el sistema se presuriza, ya que esto deriva en una diferencia
notable entre las velocidades de propagacion de las ondas (desde ~10 m/s en lamina libre
hasta ~1000 m/s en flujo presurizado). La primera idea logica para solventar estas
inestabilidades es aumentar la anchura de la rendija, perdiendo con ello, parte de la
fiabilidad de los resultados, debido a la no conservacion de masa y cantidad de movimiento,
pero incluso con anchuras del orden del 10% de la de la tuberia no se consigue que
desaparezcan por completo (e.g., Trajkovic et al. 1999).

11



Capitulo 1. Introduccion y objetivos

Este trabajo se centra en el desarrollo de un modelo de simulaciéon pensado para
redes de drenaje que funcionen mayoritariamente en lamina libre pero que, puntualmente,
pueden presurizarse, por lo que esta apoyado en la segunda de las opciones planteadas. Por
lo tanto, se orienta a la generalizacién de las ecuaciones y métodos aceptados para la
simulacion de flujos en ldmina libre. La formulacion del flujo en ldmina libre, en
aproximacion 1D, se basa en leyes dindmicas promediadas en la seccidn transversal mojada.
La presién motriz es uniforme en la vertical, lo que conduce a una distribucion vertical de
presién hidrostatica que hace desaparecer a esta variable de las ecuaciones. Para trabajar con
problemas localmente presurizados, sin modificar las ecuaciones gobernantes de flujo en
lamina libre, se empleara el método de la rendija de Preissmann.

El método numérico empleado para todas las simulaciones esta basado en el esquema
de Roe explicito de primer orden. Dado que los tiempos de simulacién no son excesivamente
largos, no se ha considerado necesario utilizar un método implicito. Al igual que para los
flujos, se ha empleado un esquema descentrado upwind para los términos fuente, ya que
resulta conveniente preservar el equilibrio entre ambos (Garcia-Navarro et al. 2000).

Por lo tanto, los objetivos del trabajo se pueden resumir en los siguientes puntos:

* Desarrollo de un método de simulacion numérica explicito, bien adaptado a
transitorios bruscos, con presencia de flujo subcritico, supercritico y mixto, basado en
el esquema de Roe upwind de primer orden.

* Adaptacion del mismo tanto a problemas de canales en red como a la convivencia de
los regimenes de ldmina libre y presurizado.

* Resolucion de problemas con solucion analitica y de casos de laboratorio con datos
experimentales, a modo de validacion.

* Estudio de la aplicabilidad mediante un andlisis de sensibilidad en problemas mas
complejos, como puede ser una red de tuberias en la que, en algunos puntos, pueda
entrar en juego la presurizacion del fluido, a través de las condiciones de contorno
adecuadas.

El trabajo esta organizado de la siguiente forma: en los capitulos 2, 3 y 4 se presenta el
modelo matematico y el método numérico empleado, asi como distintas consideraciones
sobre las condiciones de contorno. En el capitulo 5 se valida el modelo en diferentes casos
test de roturas de presa y de presurizacion en tuberias. En el capitulo 6 se evaltia el método a
través de problemas mas complejos de flujos transitorios, como son las confluencias o las
redes de tuberias.

12



Capitulo 2. Modelo matemdtico

2. Modelo matematico
2.1. Ecuaciones de conservacion

En este capitulo se deducirdan las ecuaciones diferenciales que gobiernan el
comportamiento tanto de flujos en lamina libre como presurizados. El punto de partida sera
la aplicacion del teorema del transporte de Reynolds al fluido circulante en el interior de un
volumen de control. Para una variable genérica S el teorema del transporte de Reynolds se
puede expresar como:

D d Lo
EfvmSdV—EfV(I)SdV+J'A([)SvR-ndA (1)

donde
Ve=V—Ww 2)

es la velocidad relativa entre el fluido v y la superficie de control w y D/Dt representa la
derivada sustancial, definida por:

D_ 9 (=
E—ﬁ—t+(v V) 3)

2.1.1. Ecuacion de conservacion de la masa

Si particularizamos la ecuacién (1) con S=p podemos deducir de forma sencilla la ecuacién
de continuidad. Por conservacion de la masa:

Dm d o A
Sdv=pdv=dm:Tt=0:Efvmpdv+fA(t)pvR.ndA_o (4)

La ecuacion (4) representa la forma integral conservativa de la ecuacién de
continuidad. El primer término representa la variacién temporal de masa y el segundo el
flujo instantaneo de la misma.
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Capitulo 2. Modelo matemdtico

2.1.2. Ecuacion de conservacion del momento lineal

Anélogamente, sustituyendo en el teorema del transporte de Reynolds S=pv obtenemos la
ecuacion de conservacion de la cantidad de movimiento:

ZI_«::%:%IVMpi}’dV—i—fA(t)pV(VRﬁ)dA:ZI_*: )

La ecuacion (5) representa la forma integral conservativa de la ecuacién de
conservacion del momento lineal. El primer sumando representa la variacion de momento
lineal contenido en el volumen de control y el segundo es el balance de flujo de dicha
magnitud a través de la superficie de control.

2.2. Flujo en lamina libre (shallow water)

Las ecuaciones consideradas son las correspondientes al flujo en lamina libre (shallow
water) o ecuaciones de Saint-Venant, las cudles constituyen una simplificacion de las
ecuaciones generales de conservacion, de forma que su validez queda limitada al rango de
aguas poco profundas. Para su deduccién (Garcia-Navarro et al. 2009) se establecen las
siguientes hipotesis de trabajo:

* El flujo se supone incompresible y homogéneo.

* El fluyjo es unidimensional y la velocidad se supone uniforme en la seccién
transversal, es decir, solamente es funcion de la direccion de propagacion.

* Se aplicard un modelo de friccion para flujo estacionario (Manning) para considerar
las pérdidas energgticas con las paredes del cauce.

* Se asume un modelo de presiones hidrostatico promediado en la vertical, desde el
fondo hasta la superficie libre.

* La pendiente media del fondo O es pequena, por lo que se pueden aplicar las
siguientes aproximaciones: cos6~1, sen6~tg6~6.

La figura 1 muestra la nomenclatura y el sistema de coordenadas empleado en este
apartado. Consideremos un volumen de control contenido entre dos secciones x; y x
separadas una distancia 4x, como el mostrado en la figura 2. Partiremos de la ecuacién
integral de la conservacion de la masa (4):
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Capitulo 2. Modelo matemdtico

d T
Efvpdv—kfspv-ndA—O (6)
b(x)
AV/
o(x,n)
AXY h(x t) \
n h(xt)
Tz(x) 3 z(x) R
Figura 1. Nomenclatura y sistema de coordenadas.
Xy
K

ST

0
Figura 2. Volumen de control con las fuerzas de presidn, friccion y peso.

La conservacion de la masa para el volumen de control sin aportes ni pérdidas de
caudal obliga a que el flujo neto de masa que entra en dicho volumen entre dos tiempos ¢, y
1; sea la integral en el tiempo de la diferencia de los flujos entrantes y salientes:

[ (pau), ~(pau), |dr )

donde u es la componente x de la velocidad del fluido.

Por otro lado, la variacién de la masa contenida en el volumen de control sera la
integral espacial de las variaciones de masa contenida en cada elemento dx a lo largo del
mismo periodo de tiempo:

I [(p4),~(pA), Jdx ®)
Segun la ecuacion de continuidad (6), las cantidades (7) y (8) han de ser idénticas:
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Capitulo 2. Modelo matemdtico

-[: [(pA u),~(pA M)XI]dtJr.[:[(pA)zz_(p A),I]dx:O (9)

Por otro lado, la ecuacion de conservacion del momento lineal (5) aplicada a este volumen de
control es:

> F= [ p7av+ [, ov(v-ilda (10)

La variacién de momento lineal en el volumen de control entre #; y 7, ha de ser igual a
la suma de las fuerzas exteriores mas el flujo neto de cantidad de movimiento que entra en
dicho volumen durante ese intervalo de tiempo.

Tomando la componente paralela a la direcciéon del flujo (x), el momento lineal por
unidad de longitud serd pAu y su flujo a través de una seccién transversal pAu’. Entonces, el

flujo neto de cantidad de movimiento entre #; y 1, es:

L
t|

I [(paw?) ~(pAu?), |dr (1)

Por otro lado, el incremento de momento lineal en el volumen de control sera la suma de los
incrementos infinitesimales en cada elemento diferencial de volumen:

X2
X

I [(pAu), ~(pAu),|dx (12)

Por tltimo, es necesario calcular las fuerzas sobre el fluido, asumiendo que solamente acttian
el peso, la fuerza de presion y la friccion con las paredes del canal.

La componente x del peso se puede expresar en términos del angulo 6. Para ello, recurrimos
a la hipotesis inicial que asume que el angulo de la pendiente del fondo es pequeno:

S,=tg Bz—g—fc:sene (13)

Entonces, la componente del peso paralela a la direccion de la corriente es:

IingAsende:fingASodx (14)
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Capitulo 2. Modelo matemdtico

Por lo tanto, la accion de dicha fuerza en el intervalo temporal dado sera:

[ [ pgAS,dxar (15)

La fuerza de friccién entre el fluido y las paredes del cauce por unidad de longitud se puede
expresar como:

PgAS, (16)

donde S$;es la pendiente de la linea energética. Entonces, la accion de la fuerza de rozamiento
sera:

[ [ pgAs,dedi (17)

Para la fuerza de presion en la direccion del flujo sobre el volumen de control,
distinguiremos entre las fuerzas sobre las paredes liquidas (x; y x2) y las fuerzas sobre las
paredes sdlidas. Estas tltimas solamente estardn presentes en canales no prismaticos.

La fuerza de presion ejercida sobre cualquier seccion transversal sigue una distribucion
hidrostatica:

g1,=[ pg(h-m)dn (18)

donde 4 es el calado (ver figura 1). La accion de la fuerza de presion neta entre #; y 1, es:

[ e[(), (1), ]ar (19)

Por ultimo, evaluaremos la componente de la reaccion en las paredes debida a variaciones en
la anchura del canal sobre un volumen diferencial:

h 0 ,
glzdx=lfopg(h—n)wdn]dx (20)

Integrando a todo el volumen de control:
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| g 1,dx 1)

La accion de esta componente de la fuerza es:

" g, dxdt (22)
N2

Entonces, la ecuacién de conservacién para el momento lineal queda de la siguiente forma:

f:[(pAu)tz—(pAu)tl]dx-i-f:[(pAu2)xz_(pAu2)x|]dt+-..
"'+ﬁg[(Il)xz_(ll)x.]dt_-[: f: glydxdt+--- (23)
+I; fi?pgASf.dxdt—fiT I:pgASdedIZO

Para obtener la forma diferencial de las ecuaciones (9) y (23), supondremos que las variables
son funciones continuas y diferenciables. Entonces, mediante desarrollos en serie de Taylor:

oA
ot

OpAu
ot

(pA),=(pA),+ At+0 (A1)

(24)

(pAu)xzz(pAu)xl+ Ax+0(Ax2)

y despreciando los términos de segundo orden, eliminando la densidad y suponiendo que
Ax—0y At—0:

lim [ (4,4, )av=] [ aa—?dx dt (25)

Procediendo de forma andloga en la ecuacion de conservacion de momento lineal obtenemos
el sistema completo en forma diferencial conservativa.

0A  0Q
1 ox (26)
00, 0 |Q _
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donde Q=Au es el caudal.

El sistema puede formularse en forma vectorial:

oU OF

or ox (28)
donde los vectores U, F y R representan las variables conservadas, los flujos y los términos
fuente, respectivamente:

U=(4,0) (29)

2 T
F= Q,%+gll (30)
R=(0,g1,+gA[S,~5,)| (31)

Ademas, se puede demostrar, mediante la regla de Leibniz, que:

oI, oh
—=I1,+tA— 32
ox " 0ox (32)
Para el término de friccion se utilizard el modelo de Manning, descrito por:
_glolr’
Sf_ AZRY3 (33)

donde n es el numero de Manning y R es el radio hidrdulico, definido en términos del
perimetro mojado P:

A
R=2
5 (34)
La matriz jacobiana del sistema es:
_OoF [ O 1
T=50~ =’ 2u) )

donde c es la velocidad de propagacion de las ondas en el modelo de aguas poco profundas:
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ol
i

Los autovalores y autovectores del sistema son los siguientes:
AMP=uxc , e”=(lLuxc) (37)

Como la matriz jacobiana (35) es cuadrada de orden m=2, posee dos autovalores
reales y es diagonalizable (sus autovectores son linealmente independientes), se dice que el
sistema pertenece a la familia de ecuaciones hiperbolicas.

Para el caso particular de un canal prismatico rectangular:

2 ol
c=\/gé=\/gh =g Sh=t 1,0 (3)

En este tipo de problemas, resulta comtn la caracterizacidon del tipo de flujo a través
del niimero de Froude (andlogo al niimero de Mach en flujo compresible). Se trata de una
magnitud adimensional definida por:

u
Fr=2
r== (39)

El nimero de Froude representa el balance entre la inercia del fluido y las fuerzas
gravitatorias. En funcion de su valor, se pueden dar tres situaciones distintas:

* Flujo subcritico (Fr<I): la velocidad del fluido es menor que la velocidad de las
perturbaciones, por lo que el flujo se encuentra controlado principalmente por la
fuerza gravitatoria.

* Flujo supercritico (Fr>1): la velocidad del fluido es mayor que la velocidad de las
perturbaciones. Se trata de un flujo rapido, donde el fluido no recibe ninguna
informacién proveniente de la regién de aguas abajo. Como se vera mas adelante,
esta transicion puede derivar en la aparicion de fendémenos como el salto hidraulico.

* Flujo critico (Fr=1I): representa la frontera entre las dos situaciones anteriores.
Es importante resaltar la importancia de este balance entre ambas velocidades, ya que

los autovalores de la matriz jacobiana del sistema dependen directamente de ello. En
concreto, el signo de dichos autovalores representa el sentido en el que se puede propagar la
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informacion en el flujo.

2.3. Sistemas transitorios presurizados (water hammer)

En este apartado se presentan las ecuaciones diferenciales que gobiernan el
comportamiento de un sistema presurizado en régimen transitorio (Chaudry et al. 1994). Al
igual que las ecuaciones de lamina libre, es habitual escribirlas como una simplificacién de
las ecuaciones generales de conservacion, bajo una serie de hipdtesis:

* Los flujos radiales de masa y cantidad de movimiento se suponen despreciables
frente a los axiales, por lo tanto, se considerara que el flujo es unidireccional.
*  Se asumira un flujo compresible y una tuberia elastica.

* Se tomara el promedio en la seccién transversal de las variables conservadas, presion
p (o altura piezométrica H) y velocidad v.

* Se aplicard un modelo de fricciéon para flujo estacionario (Darcy-Weissbach) para

considerar las pérdidas energéticas con las paredes del conducto.

Bajo estas condiciones, seguiremos un proceso analogo al de la seccion anterior para escribir
las ecuaciones de conservacidon de masa y momento lineal para un sistema presurizado.

Consideremos un tramo de tuberia elastica a través del cudl circula un fluido
compresible, con un volumen de control asociado representado en la figura 3. Si suponemos
que el fluido siempre estd en contacto con las paredes de la tuberia, se cumple que v=w en
dicha region.

flujo mésico / pAV+ % (PAV) Ax

de entrada

\, \ flujo masico
i — \ de salida
/ / \ superficie fija: W=6
superficie fija: \7\”26 /
AX

Figura 3. Volumen de control.

De la ecuacion (4):
df dV+f Y .AdA—O:d J'Ax Ad +Z v -nA=0 40
E V(’)p A(t)pVR n - E 0 P X PV nA= (40)
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El ultimo sumando solamente es distinto de cero en la entrada y en la salida, como se puede
ver en la figura 3, por lo tanto:

i(pAAx)—F 2. PVRA— D, prgA=0=
aa t salida entrada (4 1 )

(pAA x)+pAv+6—ax(pAv)Ax—pAv=0

=
ot

Simplificando, obtenemos la ecuacién de continuidad en forma diferencial:

0 (o )+ (p Av)=
< lpal+—lpAv)=0 “2)

Si reescribimos la ecuacion anterior en términos del flujo masico:

p=dm

= 43)
Zlpaj=-Llpav)=-S" (44)
ot ox ox

A la vista de la expresion anterior, queda claro que la compresibilidad del fluido (a
través de la densidad) y la elasticidad del conducto (a través de la seccién) pueden afectar al
gradiente de flujo masico en la tuberia.

op
p —— - To
’ - pA+=(PA)Ax
W-send AX N
PA w — % .
flujo de momento pAVﬂ-& (pAVz) Ax
enla entrada \_, pAV2 \ -
ujo de momento
T T T T T T T x T T ‘ X ‘ ‘ ap alasalida

Figura 4. Esquema de fuerzas.

Para la deduccién de la ecuacion de conservacion de la cantidad de movimiento, es
necesario estudiar el balance total de fuerzas sobre el sistema, es decir, las fuerzas de presion
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py el esfuerzo 1 sobre las paredes de la superficie de control y el peso del fluido contenido
en el volumen de control. En la figura 4 se muestra el esquema de fuerzas, asi como los flujos
de entrada y salida de cantidad de movimiento.

Partiendo de la ecuacion general (5) y analizando la componente en la direccién del flujo (x):

> sz% [opvedvef, ovven)das

1 op 0A 0
At~ pr p+ZPA X |28 Ax—pA-L (pA)Ax—---
= pA+5| PPt xlax x—p ax(p A x (45)

---—WsenB—TOPAXZ%fv(t)pvadx+Z pvx(i/'R-ﬁ)A

donde P es el perimetro de la tuberia y W el peso del fluido contenido en el volumen de
control.

Teniendo en cuenta que W=pgAAx y sen0=4z/Ax=0z/0x:

0A 0

— L (A p A~ (pA)Ax—pgAAZ—T, PAx=""
2 Ox 6x( ) Pax=s ﬁx(p JAx=pgAdz=T PAx (46)
--:i(pAv)Ax—i-psz—Fi(psz)Ax—pAv2
ot ox
Por ultimo, dividiendo por 4x y tomando el limite Ax—0:
op 0z 0 0 2
—Al=—+pg— |1, P=="|pAv|+—IpA
Sr s gy | P=glpavit T loar) “7)
Es posible reescribir la ecuacién (47) de la siguiente forma:
1 0p, 0z o(pA) o(pAv) ov . Ov
—pgA|— =E+==|-1,P= + +pA|l —+v—
he (pg ox ox| O Vl o1 ox | PN eV ox “8)

El tercer término de la expresion (48) es idénticamente cero, por la ecuacion de continuidad
(42). Introduciendo la altura piezométrica:

H=L1 (49)
P&
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0H ov, 8
—pgA(E)—TOPsz(a—:+v£) (50)

Si se particulariza la ecuacion (50) para el caso de un conducto circular de didmetro D,
obtenemos la siguiente expresion:

P=nD

D’ 1{ov ov O0H 47,
— T — 11— y—|=———
y A= 4 g(@t Vax) ox pgh Gb

Es habitual encontrar las ecuaciones de conservacion deducidas anteriormente en
términos de las variaciones de presidn. Para poder expresarlas de esta forma, definimos el
modulo de compresibilidad del fluido:

== (52)

Ademas, en una tuberia circular de espesor e en la que se cumpla que p/2<<E/(D/e), el
modulo elastico se puede definir de la siguiente forma:

D dp
E=2_%
e dAIA (53)

Con las definiciones (52), (53) y un pequeno desarrollo matematico, es posible reescribir la
ecuacion de continuidad en funcién de las variaciones de presién:

o(pA) op 0A _Opp op DA
P pyn0A_OpP 4, O0p DA
or ot Par ar kP8 TEe (54)
d(pAv) 0p A dv_p Op DA Op ov
GPAY) _9P gy 1pZA 1oAY P 0P 4y 9P A2y
ot ot VTPEIVTPAGTITK ox Ee ox' P%%x (35)

Sustituyendo (54) y (55) en la ecuacién de continuidad (42):
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6_p.%+ 8pDA+p8pA +pDA op ov

+pA—=
ot K V81 Ee Kox Ee ox P45 707
op DK op DK ov
Frl U Eadeel R +pK=—=0
RFTAS axp( eE) T (56)
6p 6p pK oOv
>p——+pv—_—— —=0
ot 6x 1_|_DK 0x
ek
Simplificando:

op a_p : v _

donde cyy es la velocidad de propagacion de las ondas de presion:

_Klp

Cwr 58
|+ DK (58)
e E

En el caso particular de una tuberia inelastica:
E—ow0=Cy,—VK/p (59)

La ecuacion (59) corresponde a la velocidad maxima de las ondas de presion en la tuberia.

Siguiendo un procedimiento analogo para la ecuacion de cantidad de movimiento, llegamos
a la siguiente expresion:

4t
v, vl 6p+gsen8+p—D0=O (60)

or ox Plox
También es frecuente expresar las ecuaciones de conservacién en términos de la altura
piezométrica, definida en (49):
_D — _ — — —
H="r+z=p=pg(H-z)=dp=dp-g(H-z)+pg(dH ~dz) 61)

Introduciendo el médulo de compresibilidad del fluido (52):
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_pg(dH—dz)
dp b (62)

K

las ecuaciones de continuidad y momento lineal se pueden reescribir de la siguiente forma:

2

OH OH p |Cwn OV

G vy sen0+| 1 -2 |22V g 63

ot V@x vaen K) g Ox ©3)
ov 0v g OH  plK 4T,
v —+ + 0+——2=0
or | ox o\ ox [ _p §3METOD (64)

K K

Para los casos en los que el cociente p/K sea mucho menor que la unidad podemos simplificar
las ecuaciones (63) y (64):

2
a—HJrvﬁ—H+vsenﬁ)+cﬂﬁzo (65)
ot 0Xx g O0x
41
v 0V O T (66)

or  Vox $ox  pD

Normalmente las ecuaciones anteriores se expresan de forma linealizada, lo que
supone realizar algunas simplificaciones adicionales, como despreciar V-senf, asi como los
términos convectivos, ya que se considera que la velocidad del flujo es mucho mas pequefia
que la velocidad de las ondas de presion.

2
OH  ¢wu Ov
ot g Ox (©7)

ov 0H 4T,

or $ox oD (68)
Las expresiones (67) y (68) se conocen como ecuaciones clasicas water-hammer para flujos
unidimensionales.

Cabe destacar que las ecuaciones de flujo a presidon forman un sistema hiperbdlico
completamente andlogo al de las ecuaciones de lamina libre, con las variables conservadas de
presion y velocidad. Por lo tanto, para su resolucion, se podrian emplear métodos numéricos
similares a los aplicados en este trabajo para resolver el sistema shallow water.
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3. Modelo de la rendija de Preissmann

Uno de los objetivos de este trabajo es el estudio de casos transitorios de tuberias en
cuyo interior, el flujo pasa de lamina libre a un estado presurizado. Para abordar este
problema se empleara el método de la rendija de Preissmann, que consiste en modelizar el
problema suponiendo la existencia de una rendjija ficticia muy fina e infinitamente larga en la
parte superior de la tuberia, tal como se muestra en la figura 5:

Figura 5. Esquema de la rendija de Preissmann

Cuando el flujo se presuriza, el agua asciende por la rendija, de forma que la altura de
la superficie libre se corresponde con la altura de presion del agua en la tuberia, tal como se
muestra en la figura 6. La principal ventaja del método es que, al seguir siendo un canal
abierto, podemos continuar utilizando el sistema de ecuaciones shallow water, teniendo en
cuenta el cambio de anchura que se produce:

v‘ "bs —| |,
= h
A
{ A H H

| b | | b |
I | I |
Figura 6. Situacién de lamina libre (izquierda) y presurizacién (derecha).

A A2 \/ ol \/ A
ASb'H h:_ , I = , = —1= —_ 69
— b | c=185 =187, (69)
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A>b-H — h=H—|—A_bﬂ ,
;o _p.g|Azb-H H| (A~b-HP [ a1, [ 4 (70)
! b, 2 2b, > TV8GA\8

La eleccion ideal de la anchura para la rendija se realiza igualando la velocidad de las
ondas superficiales ¢ a la de las ondas de presién en la tuberia cwy, obtenida en (58). De esta
forma garantizamos una correcta conservacion de la masa y de la cantidad de movimiento:

Af
Cypy=C=>b=g—— (71)

Cwh
donde Ay es la seccidn de la tuberia.

Normalmente, esta eleccion resulta en unas anchuras muy pequenas en comparacion
con el canal/tuberia, lo que da lugar a inestabilidades numéricas. Dichas inestabilidades se
pueden atenuar aumentando la anchura de la rendija, a costa de introducir un cierto error de
masa y momento, ya que se pierde la equivalencia entre las ecuaciones de lamina libre y flujo
a presion. A pesar de este hecho, las simulaciones (e.g., Trajkovic et al. 1999) muestran que
modificar la anchura ideal de la rendija dentro de un cierto rango no afecta de manera
significativa a los resultados numéricos en los casos de flujo mixto (transiciones ldmina libre-
presién). Sin embargo, como se observara en los siguientes apartados, dicho parametro cobra
una especial relevancia en los flujos puramente presurizados, por lo que se tendra especial
cuidado en su seleccion.
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4. Discretizacion mediante volumenes finitos
4.1. Esquema de Roe explicito de primer orden

El esquema de Roe estd basado en una linealizacién local tal que represente de forma
discreta los incrementos espaciales de las variables conservadas y sus respectivos flujos
conforme a la siguiente condicién:

SF=J-3U (72)

Es necesario construir una matriz jacobiana aproximada, cuyos autovalores A, y
autovectores €, satisfagan en todos los puntos de la malla las siguientes relaciones:

6Ui+1/2:Ui+1_Ui:kZ(&kék)i+1/2 (73)

6Fi+1/2:Fi+1 _Fi:ji+1/26Ui+1/2:Z (Xkdkék)ﬁlﬂ (74)
k

donde se ha empleado la ecuacién de autovalores de la matriz jacobiana.

Los coeficientes O representan las coordenadas de la variacion de las variables en la base
de autovectores de la matriz J.

Para calcular la variacién de U en cada pared y propagar las diferentes ondas (k) de
acuerdo con el signo de sus autovalores, trabajaremos, por el momento, con la parte
homogénea del sistema de ecuaciones (28):

oU OF
ot 0Ox

Podemos calcular el nuevo valor de las variables en la celda i a través de la contribucidon de
cada pared, teniendo en cuenta los signos de la propagacion de la onda:

U-n-HIUr-l— 6t

i i a 6I;‘;+1/2—i_élr;'tl/Z (75)

Empleando (74), la contribucidn total a la celda i sera:
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U?H:U?_s_;[(xi6‘1él)i+1/2+(}~‘éd252)i+1/2+(X;dlél)i—1/2+(}~‘;6‘252)i—1/2] (76)
donde
K= g (Fr )+ =g (R[] )

En la figura 7 se muestra un esquema grafico de las diferentes ondas que se propagan en las
dos paredes de la celda, asi como la notacion empleada para su descripcion:

—_ o+ —_ il
6Fi-l/z E)Fi-l/z 6F1+1/2 6Fi+l/2
A A

N
Ui-l
N
U;
N
Ui+1
i-1 i-1/2 i i+1/2 i+l

Figura 7. Esquema de la propagacion de la sefial a través de las paredes de una celda.

En ocasiones se emplea una notacion alternativa, a través de una nueva variable,
denominada flujo numérico. Combinando las expresiones (76) y (77):

U7+1:U?_266_tx[zk: (ikdkz’k)iﬂ/z—i_; (Xk &'kék)i—llz_;( M &k‘;k)m/ﬁzk:( b, ék)i—1/2:| (78)
Recordando la expresion (74):
6Fi+1/2:Fi+l_Fi:Z (i"kdkék)iﬂlz
o (5~ - (79)
6Fi—l/2:Fi_Fi—1:Z (kkakek)i,l/z
&
Sustituyendo en (78):
n n Ot P .
Ui+l:Ui_26x Fi+1_Fi+Fi_Fi—1_kZ (|}\‘k Otkek)m,z—; ( A, akek),-_l/z] (80)

Podemos expresar la expresion (80) en funcion del flujo numérico:
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U= =2 (S ) (81)
donde
f:+1/2 %( z+1 ) %Z(}N\’ &‘ e )i+1/2
1 1 i ~ s (82)
fifllzza( ) 5;( Mi|C @ )pl/z

Por lo tanto, comparando las expresiones (75) y (81) queda claro que:

Fiin=Ffi1n=0F; ,+dF; ) (83)

En el apéndice B se muestra el desarrollo completo del método de Roe aplicado al sistema de
ecuaciones de ldmina libre.

4.2. Discretizacion de los términos fuente

Para la discretizacion de los términos fuente de la ecuacién (28), como la pendiente o
el rozamiento, emplearemos un esquema upwind, por consistencia con el desarrollo anterior
(Garcia-Navarro & Vazquez-Cendon, 2000). Partiremos del resultado (76), el cual podemos
reescribir de la siguiente manera:

n 6t ~ ~ ~ ~ o~
U''=u’- S [(Z kkakek) +(Z Xkakek) ] (84)
X i-1/2 i+1/2

k-

donde k+ representa los autovalores positivos y negativos, es decir, las velocidades de onda
promedio en las paredes de las celdas.

El término fuente puede ser discretizado como se detalla a continuacion:

(R(SX)i:;Bkék:(kZ: Bkék)._1,2+(z Bkék)-ﬂ/z %)

k-
donde f juega un papel analogo a los coeficientes ¢ descritos anteriormente.

Ahora podemos afadir la influencia de los términos fuente (85) a la ecuacion (84):
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Ul-nH:U,r-l_%[(z (Xk &k_ﬁk)ék)i—lﬁ-i_(kz- (Xk dk_Bk)ék)i+1/2:| (86)

k+

Al igual que con los flujos, la influencia de los términos fuentes sobre la celda i se divide en
la contribuciones a través de las paredes izquierda (i-1/2) y derecha (i+1/2).

4.3. Condiciones de contorno

4.3.1. Condiciones de contorno fisicas.

Para poder resolver completamente un problema de forma numérica es necesario
establecer una serie de condiciones de contorno en los extremos del dominio de
discretizacion. Para ello, si fuera necesario y en funcién del régimen de flujo, se impondran
condiciones de contorno fisicas en las variables de area y/o caudal a la entrada y salida del
sistema. Dichos valores en la frontera son aquellos que vienen impuestos por las condiciones
reales del problema y que influirdn en gran medida en la soluciéon del mismo. En este trabajo
se han empleado fundamentalmente tres tipos: nivel de agua constante, caudal uniforme e
hidrograma de entrada en funcién del tiempo para representar, por ejemplo, una onda de
avenida.

Extendiendo el cédlculo de las contribuciones disponibles (78) a cada celda hasta los
propios contornos y usando el hecho de que en las paredes exteriores no existe intercambio
de informacidn (ver figuras 8 y 9), es posible calcular todos los puntos del mallado de forma
numérica. Posteriormente, se deben imponer las condiciones de contorno fisicas que
correspondan.

4.3.2. Condiciones de contorno y régimen de flujo.

El niimero de condiciones de contorno fisicas que se deben imponer en los contornos
depende del tipo de régimen (subcritico o supercritico), ya que éste se encuentra
estrechamente relacionado con el sentido en el que se propaga la informaciéon. En concreto,
se pueden dar las cuatro posibilidades que se detallan a continuacion:

* Flujo subcritico a la entrada: se debe imponer solamente una condiciéon de contorno
fisica. La otra variable vendra determinada por el esquema numeérico (figura 8).

* Flujo supercritico a la entrada: se han de fijar las dos variables, ya que es imposible
recibir informacién de la celda adyacente (figura 9).
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*  Flujo subcritico a la salida: al igual que en el caso de flujo subcritico a la entrada, se
impone una condicién de contorno fisica y otra numérica (figura 8).

*  Flujo supercritico a la salida: no es necesario imponer condiciones de contorno fisicas.
Toda la informacién proviene de la pentltima celda (figura 9).

~J -~
J Z
J Z
N Unvaxa Z
N -~
~J -
J — 17 2
J

J U, Upnax Z
N Z
J Z
N -~
~J -~
N 777 ; ; /77 Z
~ -

1 1+1/2 Tyax-1 ™MAXL2 T

Figura 8. Condiciones de contorno a la entrada (izq) y a la salida (dcha) para el caso subcritico.

3 = = 2
J Z
J =
N Upmax ~
N -l
~J L~
N — 17 2
N

N U, Unmax Z
N =
J =
~J -
~ [
N ; ; ; ; ; ; / ; =
~ -

1 1+1/2 M Aax-1 IMAX-1/2 IM AX

Figura 9. Condiciones de contorno a la entrada (izq) y a la salida (dcha) para el caso supercritico.

4.3.3. Confluencias

En los casos en los que se considere la confluencia de tres tuberias necesitamos
establecer tres condiciones de contorno adicionales para poder resolver por completo el
problema. En la figura 10 se muestra un esquema de las celdas que participan en la
confluencia:

@

1 Taiax | @

Figura 10. Esquema de la confluencia.

Por un lado, se exigira que la altura de agua a la entrada de las tuberias 2 y 3 sea igual a la
salida de la tuberia I:
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hz(l):h3(1):hl(1MAX)
En cuanto al caudal, debemos distinguir si el flujo es subcritico o supercritico:

Caso subcritico: Q(1,,,)=0,(1)+0,(1)
Caso supercritico: Q2(1)2Q3(1):%Q1(1MAX)

Para un caso mas general con N tuberias:

hy=hy==hy , > 0,=0 (87)

i=1

Si en la confluencia se considera la existencia de un pozo con una seccién en planta A, la
condicién de contorno para el caudal se ve modificada de la siguiente manera:

dH
h =h,=--=hy=H  , ZQi:Aw w

88
ar (86)

donde H,, representa la altura de agua en el pozo.

4.4. Condicion de estabilidad

En general, un método numérico se considera estable si las perturbaciones de la
solucion se mantienen acotadas. De lo contrario, el error en la solucidon crece de forma
exponencial y la calidad de los resultados numéricos se ve seriamente comprometida. Una de
las principales causas de las inestabilidades numéricas es el hecho de que la regiéon de
influencia numérica sea menor que la region de influencia fisica (ver figura 11). En los
esquemas explicitos, como el empleado en este trabajo, la regién de influencia numérica
viene determinada por el tamafio de celda Ax, ya que el valor de una variable depende de los
valores de las celdas contiguas. Por otro lado, la regién de influencia fisica viene dada por la
distancia a la cual se ha podido propagar la informacion a velocidad ¢, es decir, (lul+c)At. Por
lo tanto, una primera forma de escribir la condicién de estabilidad es:

A x=(|ulxc|At (89)

De la expresion anterior, se puede deducir que el tamafio maximo para el paso temporal es:
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Ax
(90)

At

=1

Atcpra

AtcpL
At

X

X
Figura 11. Ejemplo de un caso estable (izq) con CFL<1 y un caso inestable (dcha) con CFL>1

Definiendo el nimero de Courant-Friedrichs-Lewy (CFL) como

At o1
Atmdx ( )

CFL=

se obtiene que la condicion de estabilidad para un esquema explicito consiste en mantener

este coeficiente por debajo de la unidad.
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5. Validacion del modelo

En este capitulo se aplicara el modelo descrito anteriormente a casos de prueba que, o
bien tienen solucidn exacta o han sido medidos en el laboratorio, con el objetivo de sopesar la
validez del mismo. Para todos los casos de este capitulo se han empleado canales o
conductos prismaticos de seccion rectangular.

5.1. Fondo con obstaculo y flujo estacionario

A continuacion se reproduciran los tres casos test propuestos en Murillo et al. 2012, en los
cuales el fondo del canal presenta una elevacion dada por la siguiente funcion:

7(8<x<12)=0.2-0.05(x—10)’ 92)

La longitud y anchura del canal son 25 m y 1 m, respectivamente, y las condiciones iniciales
son:

h(x,0)=0.5—z(x) , u(x,0)=0 (93)
En funcién de las condiciones de contorno que se impongan a la entrada y a la salida,

se obtendra flujo subcritico o una transicién sub-supercritico, con o sin onda de choque. Los
tres casos test se presentan en la siguiente tabla:

Test Q aguas arriba h aguas abajo
#1.1 (flujo transcritico con onda de choque) 0.18 m’/s 0.33m
#1.2 (flujo transcritico) 4.42 m’/s 20m
#1.3 (flujo transcritico sin onda de choque) 1.53 m’/s 0.66 m (sub)

Tabla 1. Fondo con obstaculo y flujo estacionario.

En ninguno de los tres casos se ha considerado la friccion con el fondo. Los resultados
numéricos obtenidos para el estado estacionario se observan en las figuras 12, 13 y 14:
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Figura 12. Caso test #1.1 - Flujo transcritico con onda de choque. Arriba: nivel de agua
(azul), estado inicial (linea discontinua) y altura del fondo (gris). Abajo: caudal.
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Figura 13. Caso test #1.2 - Flujo subcritico. Arriba: nivel de agua (azul), estado inicial
(linea discontinua) y altura del fondo (gris). Abajo: caudal.
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Figura 14. Caso test #1.3 - Flujo transcritico sin onda de choque. Arriba: nivel de agua
(azul), estado inicial (linea discontinua) y altura del fondo (gris). Abajo: caudal.
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Se puede demostrar matematicamente (y comprobar de forma numérica) que la transicién
sub-supercritico tiene lugar en la parte mas alta del obstaculo.

5.2. Estado estacionario en un canal

Los siguientes casos se realizan en Garcia-Navarro et al. 1993 y consisten en
reproducir los estados estacionarios en un canal prismatico bajo diferentes condiciones de
entrada/salida, asi como rozamiento. Como condiciones iniciales se tomara un caudal de 3
m’/s y un calado de 2 m. En la siguiente tabla se reflejan los pardmetros empleados para cada
uno de los casos:

Test Fondo N¢ de Manning CC aguas arriba  CC aguas abajo
#2.1 z(x)=4.0-0.01 0.03 Q=3.0m’/s h=2.0m
#2.2 z(x)=4.0-0.01 0.009 Q=3.0m’/s h=3.0m

Tabla 2. Estado estacionario en un canal

6
5
4
E
~N 3
¥
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2
1
0
0 50 100 150 200 250 300 350 400
x (m)
5
4
@ 3
[se)
£
o2
1
0
0 50 100 150 200 250 300 350 400
x(m)

Figura 15. Caso test #2.1. Arriba: nivel de agua (azul), estado inicial (linea
discontinua) y altura del fondo (gris). Abajo: caudal.
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Figura 16. Caso test #2.2. Arriba: nivel de agua (azul), estado inicial (linea
discontinua) y altura del fondo (gris). Abajo: caudal.

En el primer caso (figura 15) se observa el perfil de un flujo completamente subcritico,
mientras que en el segundo caso (figura 16) los regimenes subcritico y supercritico se
conectan a través de un salto hidraulico.

5.3. Rotura de presa

El tercer caso test corresponde a la evolucién temporal de una rotura de presa, es
decir, partiremos de un desnivel inicial de agua en reposo situado en la mitad del canal y
estudiaremos la evolucidon de las ondas de choque y rarefaccién. Se trata de un problema
clasico con solucién exacta (Stoker 1957) para la validacién de esquemas en régimen
transitorio sin término de friccidon. A continuacidn, se muestran los resultados obtenidos:

Test Ratio N¢ de Manning
#3.1 1m:0.5m 0

#3.2 10m : Im 0

#3.3 10m : Im 0.03

Tabla 3. Parametros para las diferentes roturas de presa.

40



Capitulo 5. Validacion del modelo

t=0,05 s (numérica)
0,9 t=0,05 s (analitica)
................ t=0s

08

06

i

0,4

Figura 17. Caso test #3.1

En la figura 17, correspondiente al primer caso sin rozamiento se muestra también la
comparacion con la solucién exacta propuesta por Stoker (1957). En las figuras 18 y 19 se
puede apreciar la evolucién temporal de las ondas de choque y rarefaccion:

10 ™

h+z (m)

x (m)

60

50

40

30

Q(m3/s)

20

10

x (m)
Figura 18. Caso test #3.2. Nivel de agua (arriba) y caudal (abajo) en los tiempos t=0.3 s
(rojo), t=1 s (verde) y t=2 s (azul). Estado inicial (linea discontinua).
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Figura 19. Caso test #3.3. Nivel de agua (arriba) y caudal (abajo) en los tiempos t=0.3 s
(rojo), t=1 s (verde) y t=2 s (azul). Estado inicial (linea discontinua).

Si establecemos las condiciones de contorno de forma que las paredes del canal estén
cerradas (Q=0), el sistema tiene que evolucionar hasta un estado estacionario en el que el
agua alcance un nivel uniforme. Para comprobarlo, se repetird el ultimo caso test,
estableciendo las condiciones de frontera mencionadas y se dejara evolucionar el problema
hasta el estado estacionario:
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h+z (m)

0 20 40 60 80 100
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4
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10
0
-10
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Figura 20. Caso test #3.3 - Nivel de agua (arriba) y caudal (abajo) para el estado
estacionario.
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5.4. Test de Wiggert

A continuacion, aplicaremos el modelo de Preissmann a un montaje experimental
disefiado por Wiggert (Wiggert, 1972) y ampliamente reproducido (e.g. Kerger et al. 2010,
Bourdarias et al. 2006). El sistema consiste en una tuberia horizontal de seccion rectangular,
con las dimensiones que se muestran en la figura 21:

10 m

0.51 m

0.148 m

Onda_ [0} ® 0 ® Seccién

— | f—rt | ~—
05m  35m 20m 35m  05m

Figura 21. Montaje experimental de Wiggert.

El coeficiente de rugosidad de Manning es igual a 0,01 m™’s. Tomaremos como
condicion inicial un nivel uniforme de agua igual a 0.128 m y un caudal nulo. Posteriormente,
una onda procedente de la parte izquierda provocara que la tuberia entre en un estado de
presurizacion. En la figura 22 se muestran las condiciones de contorno fisicas impuestas a la
entrada y ala salida:

0. 0.1

0.19 0.165, T

0.16|

0.155
= 0.15]

< 0.145

X 0.14

0.14 / 0.135
0.13 0.13
0.125

0.1 2 7 3 8 10 ¥l 17 16 2 4
t(s)

8
t(s)

Figura 22. Condiciones de contorno aguas arriba (izg) y aguas abajo (dcha).

En la figura 23 se muestran los resultados numéricos obtenidos con un tamafio de
celda de 0.25 m para las cuatro sondas situadas en las posiciones que se indican en la figura
21. Por motivos de disponibilidad de los datos experimentales, solamente se realiza la
comparacion con los mismos en la sonda 2, situada a 3.5 m de la entrada. La anchura de la
rendija empleada ha sido de 2 cm:
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Figura 23. Resultados numéricos obtenidos para las cuatros sondas (CFL=0.9).

Repitiendo la simulacion empleando valores mas pequefios para el numero CFL, vemos que
las oscilaciones se reducen en cierta medida, como se aprecia en la figura 24:
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Figura 24. Resultados numéricos obtenidos para la sonda 2 con CFL=0.6 (izq) y CFL=0.75 (dcha).
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En la figura 25, se muestran los resultados modificando la anchura de la rendija:
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Figura 25. Resultados numéricos obtenidos para la sonda 2 con anchuras de 3 cm (izq) y 1,5 cm (dcha).
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Se puede ver como al aumentar la anchura de la rendija disminuyen las
inestabilidades de la solucion, mientras que al estrecharla se produce el efecto contrario,
como era de esperar. Por ello, es importante encontrar un compromiso entre una solucion
razonablemente estable y un valor para la anchura de la rendija que no comprometa de
forma considerable la conservacion de masa y momento lineal.

Para comprobar la influencia del tamano de celda, se ha repetido la simulacién con varios

mallados diferentes:

h (m)
h(m)

h (m)
h (m)

t(s) t(s)

Figura 26. Resultados numéricos obtenidos para la sonda 2 con Ax=0.5 m (arriba, izq), Ax=0.125 m (arriba, dcha),
Ax=0.05 m (abajo, izq) y Ax=0.025 m (abajo, dcha).

A la vista de los resultados mostrados en la figura 26, las oscilaciones disminuyen a
medida que refinamos la malla. Por otro lado, los valores numéricos se aproximan mas a los
datos experimentales que con la malla gruesa inicial.

5.5. Propagacion de discontinuidades en flujo mixto.

El siguiente caso que se presenta a continuacion tiene como objetivo comprobar la
validez del modelo a la hora de simular fuertes transiciones en escalas mayores que la de un
experimento de laboratorio. En diversos articulos (Ledn 2007, Ledn et al. 2009) es posible
encontrar simulaciones con situaciones similares.

Se considerara un conducto de geometria rectangular (b=10 m, H=9.5 m) con una
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longitud de 10 km y pendiente uniforme del 0.1% conectado a una valvula de cierre aguas
abajo. El coeficiente de rugosidad de Manning se supondra uniforme e igual a 0,015. Se
tomara como condicién inicial una altura de agua de 8.57 m y un caudal uniforme de 240
m/s’. En un instante dado se cierra instantaneamente la vélvula situada aguas abajo, lo cual
crea una discontinuidad brusca que avanzara hacia la region de aguas arriba, presurizando
el conducto. En la figura 27 se muestran los resultados numéricos obtenidos para la altura de
presién, en tres instantes de tiempo, empleando una malla de 500 celdas y CFL=0.5. Se
observa como, a medida que el pulso avanza hacia la izquierda la presion del conducto
aumenta gradualmente.

220

215

Altura de presion (m)

190

0 2000 4000 6000 8000 10000
x (m)
Figura 27. Propagacion de la discontinuidad. Nivel de agua en los tiempos t=100 s
(rojo), t=200 s (verde) y t=300 s (azul). Estado inicial (linea discontinua). Techo y
fondo del conducto (gris).

5.6. Transitorio en flujo completamente presurizado.

Al igual que en el apartado anterior, se considerara una situaciéon de dimensiones
realistas (Ledn 2006, 2009), consistente en una tuberia horizontal sin rozamiento de 10 km de
longitud y seccion rectangular (b=10 m, H=7.853 m), que se encuentra completamente
presurizada y cuya entrada esta en contacto con un reservorio de agua que garantiza un
nivel constante de presion (200 m), mientras que la salida estd conectada a una valvula de
cierre. Se supondra que la velocidad de las ondas de presion es igual a 1000 m/s y que la
velocidad inicial del flujo es de 2.0 m/s. En un instante dado, se cierra la valvula de la salida,
provocando un golpe de ariete que se propaga en sentido opuesto al flujo.

En la figura 28 se muestran los resultados numéricos obtenidos empleando una malla de 500
celdas y una condicién CFL=0.8:
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Figura 28. Simulacion del golpe de ariete. Nivel de agua en los tiempos t=3 s (rojo), t=6 s
(verde) y t=9 s (azul). Estado inicial (linea discontinua). Techo del conducto (gris).

Al tratarse de un flujo puramente presurizado, para garantizar la validez de la
solucion numérica debemos ser cuidadosos a la hora de seleccionar la anchura de la rendija
de Preissmann. Siguiendo el criterio especificado en (71), se obtiene el siguiente valor:

Cyy=c=>b = gz—f=0,77 mm
Cwh

Para comprobar la relevancia de este parametro en flujos transitorios presurizados, se ha
repetido la simulacion aumentando la anchura de la rendija hasta 1 cm:

250
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Altura de presion (m)

50

0 2000 4000 6000 8000 10000
X (m)
Figura 29. Efectos en la solucién al modificar la anchura de la rendija. Nivel de agua en
los tiempos t=3 s (r0jo), t=6 s (verde) y t=9 s (azul). Estado inicial (linea discontinua).
Techo del conducto (gris).
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Como se puede ver en la figura 29, la solucién numeérica es este caso estd muy alejada
de la realidad (tanto la presién como la velocidad de la discontinuidad), debido a que la
velocidad de las ondas superficiales es mucho menor (87,8 m/s) que la velocidad de las ondas
de presion en la tuberia (1000 m/s).
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6. Aplicacion a redes

En este apartado aplicaremos el modelo a distintas conexiones de tuberias que, bajo
ciertas condiciones de contorno aguas arriba, pueden verse sometidas a presurizacion en
algunos puntos. Se analizaran tanto casos estacionarios como transitorios.

6.1. Estado estacionario en una union de conductos

Comenzaremos con un caso estacionario de uniéon en Y (figura 30), propuesto en
Garcia-Navarro et al. 1993, en el que una tuberia principal se bifurca en dos ramas
secundarias iguales.

N

Figura 30. Esquema de la unién.

Las tres tuberias tienen geometria rectangular y comparten longitud (L=400 m),
anchura (b=1 m) y coeficiente de Manning (n=0.009). Las pendientes y las condiciones
iniciales y de contorno se especifican en la tabla 4:

Caso So(1) Se(2) S,(3) Condiciones iniciales CCentrada CCsalida
#6.1 0.001 0.001 0.001

3 _
Qu(i)=3.0 m/s; Q=3.0m’/s h=3.0 m
#62 001 0001 0.001 Q.(1)=Qs(i)=1.5 m’/s; Q=3.0m%s | h=3.0m
#63 001 001 001 hy(@)=ha(i)=hs(()=2.0 m Q=30m’s | h=3.0m

Tabla 4. Estado estacionario en una unién de tuberias.

En las figuras 31, 32 y 33 se presentan los resultados para el nivel de agua en los tres casos
propuestos:
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Figura 31. Caso #6.1. Flujo subcritico. Estado inicial (linea discontinua). Fondo del conducto (gris).
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Figura 32. Caso #6.2. Flujo subcritico en la confluencia. Estado inicial (linea discontinua). Fondo del
conducto (gris).
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Figura 33. Caso #6.3. Flujo supercritico en la confluencia. Estado inicial (linea discontinua). Fondo del
conducto (gris).

En estos dos ultimos casos, aparece un salto hidraulico en el punto donde se produce el
cambio de régimen super-subcritico.

6.2. Flujo transitorio en una union de conductos

A continuacién se desarrollard un caso propuesto en Wixcey 1990, en el cual se
considera una bifurcacion similar a la del apartado anterior. La longitud de las tuberias en
este caso es de 5 km, la anchura es de 1 m, y el nimero de Manning es 0.01 para todos los
tramos. La altura de los conductos también se considerara constante e igual a 1 m. Las
pendientes de las tuberias principal y secundarias son 0.002 y 0.001, respectivamente.
Primero se ha calculado un estado estacionario partiendo de las siguientes condiciones
iniciales y de contorno:

0,(i)=0.1m’ls , Q,(i)=0,(i)=0.05m’ls , h(i)=h,(i)=hy(i)=02m , Q,/(1)=0.1m"ls
Tomando como condicién inicial dicho estado estacionario, se impondrda como

condicion de contorno a la entrada una funciéon de onda triangular para el caudal con las
caracteristicas mostradas en la figura 34:
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Como valor minimo para el caudal tomaremos el mismo que en la simulacién del
estado estacionario, Qun=0.1 m’/s. En cuanto al valor de pico, se realizardn simulaciones con
dos valores distintos. En el primer caso, tomaremos un valor de 2.8 m’/s, de forma que en
ningin momento la altura de agua sea superior al techo de la tuberia y, por lo tanto, el
sistema no entre en condiciones de presurizacion. Posteriormente, se repetira la simulacion
con un valor de 3.2 m’/s, donde entrara en juego el método de la rendija de Preissmann para
estimar el calculo de la presion. En las figuras 35 y 36 se presentan los resultados obtenidos
con CFL=0.9 y una malla de 100 celdas para los dos casos descritos. En las figuras 37 y 38 se
muestran los resultados de la simulacion con una malla de 200 celdas. Vemos que los
resultados son similares, aunque la forma de la onda se captura con mayor precision, debido

Q
QMAX

QMIN

300 600 900 1200 1500 1800 t(S)

Figura 34. Sefal triangular para el caudal de entrada.

al refinamiento de la malla.
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Figura 35. Caso transitorio sin presurizacion (Quix=2.8 m%s). Calado en funcién del tiempo para los

puntos x=500 m (rojo), x=1000 m (verde) y x=5000 m (azul). CFL=0,9. N=100 celdas.
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Figura 36. Caso transitorio con presurizacion (Quix=3.2 m’/s). Calado en funcién del tiempo para los
puntos x=500 m (rojo), x=1000 m (verde) y x=5000 m (azul). CFL=0,9. N=100 celdas.
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Figura 37. Caso transitorio sin presurizacién (Quix=2.8 m%/s). Calado en funcién del tiempo para los puntos
x=500 m (rojo), x=1000 m (verde) y x=5000 m (azul). CFL=0,9. N=200 celdas.
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Figura 38. Caso transitorio con presurizacion (Quax=3.2 m’/s). Calado en funcién del tiempo para los
puntos x=500 m (rojo), x=1000 m (verde) y x=5000 m (azul). CFL=0,9. N=200 celdas.

6.3. Flujo transitorio en una red de tuberias

En este apartado se repetira el experimento anterior en una red de siete tuberias,
dispuestas como se indica en la figura 39. Todos los tramos tienen una longitud de 100 m y
un coeficiente de Manning igual a 0,01. Las pendientes son uniformes para cada tramo y sus
valores son los siguientes:

S01=5,,=0.002

S0y=S0s=S0s=5,=0.001 , S,=0

7 7

Al igual que en el caso anterior, se realizara un primer calculo hasta conseguir un estado
estacionario, partiendo de las siguientes condiciones iniciales y de contorno:

s Ji)=0,(i)=0.05m’1s , Q,(i)=0m’ls
hl(i):hz(i):h3(i):h4(i):hs(i):hﬁ(i):h7(i):0.2m , Ql(l)zo.lmS/s

Las condiciones para las confluencias J; y J, son las mismas que las empleadas en el
apartado 6.1, mientras que en las uniones W, y W, se ha supuesto la existencia de un pozo
con una seccién en planta A,=5 m’ por lo que la condicién de contorno para el caudal se ve
modificada como se especifico en la seccion 4.3.3.
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Figura 39. Vista en planta y en perfil de la red de siete tuberias.

Partiendo del estado estacionario obtenido, se ha modificado la condiciéon de
contorno aguas arriba, imponiendo la funcién triangular descrita en la figura 34. El caudal
maximo se ha establecido en 2.0 m’/s para una primera simulacién en la que no se llega a
presurizar la red en ningin punto. Si se aumenta el caudal de pico hasta 3.0 m’/s se
conseguirad una presurizacion parcial en algunos puntos del sistema.

En las figuras 40, 41, 42, 43 y 44 se presentan los resultados obtenidos para el calado y
el caudal de agua para los estados estacionario, transitorio sin presurizar y transitorio
presurizado, con CFL=0,9. En las figuras correspondientes al caudal de agua en la red, se
puede ver que el caudal en el centro de la tuberia es idénticamente cero, mientras que en los
extremos opuestos es igual y de signo contrario, por lo que se pone de manifiesto la simetria
del problema. Debido a dicha simetria, las tuberias 3 y 6 no son representadas, ya que los
resultados son idénticos a los de los conductos 2 y 5.
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Figura 40. Estado estacionario para la red de siete tuberias.
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Figura 41. Calado en funcién del tiempo en el centro (rojo) y al final (azul) de cada tramo. Caudal méximo = 2.0 m*/s. Ax=10 m. N=10 celdas.
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Figura 42. Caudal en funcién del tiempo en el centro (rojo) y al final (azul) de cada tramo. Caudal maximo = 2.0 m*/s. Ax=10 m. N=10 celdas.
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Figura 43. Calado en funcién del tiempo en el centro (rojo) y al final (azul) de cada tramo. Caudal méaximo = 3.0 m*/s. Ax=10 m. N=10 celdas.
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7. Conclusiones y trabajo futuro

El principal objetivo del trabajo era comprobar la validez de un modelo numérico
basado en un método de volumenes finitos upwind y disefiado para trabajar en régimen de
lamina libre con presurizaciones puntuales. A través del los casos simulados se pueden
obtener las siguientes conclusiones:

* El modelo de la rendija de Preissmann proporciona estimaciones razonables de los
valores de presion en las situaciones transitorias entre los dos tipos de régimen. En
este caso, una desviacion pequena del valor tedrico ideal a la hora de elegir la
anchura de la rendija introduce un pequefio error en el balance de masa y momento
lineal, pero este hecho es contrarrestado por una ganancia notable en la estabilidad
del esquema numeérico.

* En sistemas completamente presurizados, es imprescindible limitar la eleccion de la
anchura de la rendija al valor tedrico que iguala la velocidad de las ondas de
gravedad a las ondas de presién en la tuberia, ya que los resultados se ven
significativamente afectados por este parametro.

* Es posible adaptar el método a sistemas realistas, como redes de tuberias, afiadiendo
las condiciones de contorno internas necesarias tales como pozos o confluencias.

El trabajo futuro se centrara en conseguir una disminucion de las oscilaciones debidas
al cambio brusco en la anchura del conducto cuando el sistema se presuriza. Para ello se
pretende disefiar una rendija con anchura variable, de forma que la transicion se produzca de
forma mas gradual. Esto ha de hacerse de forma que el error introducido en la conservacion
de la masa y el momento lineal sea lo suficientemente pequefio como para que los resultados
numéricos de la presidon sean validos. Por otro lado, queda pendiente la adaptacion del
modelo a otro tipo de geometrias mds complejas, siendo de especial interés el caso de una
tuberia circular, por su amplia utilizacién en los sistemas de drenaje. Esto requiere una
reformulacion de parte del modelo matematico empleado.
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