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Desarrollo y evaluación de una herramienta de
registro difeomór�co por landmarks 3D de
estructuras cerebrales en imágenes MRI

RESUMEN

En la disciplina de Anatomía Computacional se requiere una herramienta de registro o
normalización espacial de imágenes que sea capaz de modelar grandes deformaciones (ya que
existe gran variabilidad anatómica entre los cerebros humanos, especialmente en la corteza)
garantizando suavidad en las transformaciones espaciales. Con este �n, recientemente se ha
propuesto el paradigma de los difeomor�smos, tanto en imágenes volumétricas como en registro
de puntos anatómicos o landmarks.

Este proyecto versa sobre el registro difeomór�co de estructuras cerebrales mediante
landmarks 3D a partir de imágenes de resonancia magnética. El objetivo �nal consiste en
desarrollar y evaluar las prestaciones de una herramienta que proporcione una transformación
espacial que consiga una correspondencia entre los surcos y giros más importantes de la corteza
cerebral.

En concreto, se trata de un problema de registro no rígido basado en una transformación
difeomór�ca entre los puntos de un atlas cerebral (imagen y sus correspondientes etiquetas de
segmentación) y los puntos de unas imágenes objetivo. Dicha transformación se ha utilizado
además como inicialización de una herramienta ya existente de registro volumétrico de todo el
cerebro, con el objetivo de dotarla de mayor robustez.

La evaluación de prestaciones se ha realizado sobre un conjunto de imágenes MRI provenientes
del estudio Alzheimer's Disease Neuroimaging Initiative (ADNI). Los puntos anatómicos se
han obtenido mediante la herramienta BrainVisa. Aunque estos landmarks son realmente
tridimensionales, a lo largo de esta memoria y por simplicidad en la visualización de los resultados,
se presentan en dos dimensiones para un corte axial representativo.

Los créditos prácticos se han realizado en el Servicio de Radiodiagnóstico del Grupo
Hospitalario Quirón, Zaragoza, bajo la tutela del Jefe de Servicio, el Dr. Nicolás Fayed Miguel.
El objetivo fue conocer el equipamiento de radiología (resonancia magnética nuclear, tomografía
computerizada, ecografías, rayos X, etc.) así como el sistema PACS de transferencia, gestión y
almacenamiento de imágenes médicas.
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Capítulo 1

Introducción

1.1. Interés del proyecto

El registro de imágenes es el proceso de poner en correspondencia espacial dos o más imágenes
de un mismo objeto, tomadas en diferentes momentos, desde diferentes puntos de vista o mediante
distintos sensores, de manera que queden correctamente alineadas geométricamente. Consiste
principalmente en establecer una correspondencia biunívoca entre los puntos de las diferentes
imágenes, donde esta correspondencia puede considerarse como una transformación entre una
imagen fuente y otra objetivo. Para calcular dicha transformación, normalmente se plantea un
problema de optimización, en el que se busca, dentro de un espacio de transformaciones posibles,
aquella que minimice una métrica establecida.

En imagen médica, el registro se utiliza normalmente para alinear imágenes del mismo sujeto
adquiridas con diferentes técnicas (MRI, PET, etc.), alinear imágenes del mismo tipo pero
tomadas en diferentes instantes temporales (detección de cambios o el control de un tumor),
o bien imágenes de diferentes sujetos que se desean comparar. A menudo, implican un registro
no rígido para hacer frente a la deformación (debido a la respiración, a los cambios anatómicos,
etc.) o a la variabilidad anatómica entre distintos sujetos.

En el caso de neuroimagen, el interés del registro de imagen viene dado por su aplicación en
la comparación de una misma estructura cerebral entre individuos diferentes, y en el desarrollo
de una teoría estadística que permita estudiar la forma de dichas estructuras en diferentes
poblaciones. Esta rama de la investigación médica, que se conoce como Anatomía Computacional,
tiene su base en las diferencias que existen entre las estructuras cerebrales de diferentes grupos
naturales, o bien entre una población control y otra afectada por enfermedad, fármaco, etc.
En este sentido, se puede aprender mucho de una enfermedad estudiando las estructuras a las
que afecta, y en último término, diagnosticar o caracterizar el estado de una enfermedad por
la forma de una estructura anatómica en particular. Por ejemplo, en las fases tempranas de la
enfermedad de Alzheimer ya se pueden apreciar atro�as signi�cativas en la corteza entorrinal
y en el giro hipocámpico [Braak and Braak, 1995], mientras que la disminución progresiva
del estado cognitivo está relacionada con atro�a de regiones del hipocampo y la amígdala
[Bossa et al., 2010].

El registro de imagen también se utiliza en el análisis funcional de la corteza cerebral.
La hipótesis de que el patrón de pliegues de la corteza está relacionado con la arquitectura
neuronal subyacente y con la organización funcional ha sido rea�rmada por una serie de estudios
recientes [Regis et al., 2005, Fischl et al., 2008]. En este caso, resulta crucial alinear los pliegues
anatómicamente homólogos, tarea nada sencilla debido a la alta variabilidad de forma y topología
entre los valles y surcos de la corteza de diferentes individuos.

Así pues, el registro de imagen se considera una herramienta vital en el análisis de imágenes
médicas cerebrales, ya que permite registrar las estructuras internas y alinear correctamente
los pliegues corticales homólogos, asegurando así la consistencia y la sensibilidad de todas las
medidas anatómicas y funcionales posteriores.
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2 1.2. Estado del arte

1.2. Estado del arte

Los algoritmos de registro o de alineación de imágenes se clasi�can normalmente en:

Métodos basados en intensidad: Comparan los campos de intensidad en las imágenes
a través de métricas de similaridad de imagen. Transforman geométricamente la imagen
fuente de manera que la diferencia de intensidad (vóxel a vóxel) entre ésta y la imagen
objetivo sea mínima.

Métodos basados en características: Se basan en características de las imágenes,
tales como puntos, líneas o contornos. Determinan una transformación que mapea las
características de la imagen fuente a las de la imagen objetivo. Dentro de este tipo de
métodos existen dos variantes: las técnicas que tras el proceso de registro establecen
una correspondencia entre las características de las imágenes y aquellas que conociendo
previamente la correspondencia entre las características, determinan la transformación de
la imagen de referencia en la imagen objetivo.

Basándose en estos métodos, la Anatomía Computacional ha ido desarrollando varias técnicas
para analizar las estructuras cerebrales. La técnica más simple, conocida como región de interés
(ROI) consiste en medir diferentes datos simples (longitud, volumen, etc.) de una estructura
cerebral especí�ca. Está basada en la delimitación, manual o automática, de las regiones de
interés. Es una técnica muy potente e intuitiva, pero tiene múltiples inconvenientes. Requiere
conocer a priori que órganos son los afectados, y su análisis se suele limitar a una o dos estructuras
de interés [Pennanen et al., 2004]. Además, este método es operador-dependiente y consume
mucho tiempo.

Regiones concretas como el hipocampo han sido analizadas también en términos de análisis
estadístico. Para ello se han utilizado características como landmarks [Csernansky et al., 2004],
mapas de atro�a radial [Qiu et al., 2009] o representaciones mediales [Styner et al., 2003]. Sin
embargo, estos métodos comparten las limitaciones del ROI, ya que, por un lado, parten de una
hipótesis sobre la estructura que se ve afectada, y por otro requieren una delineación precisa de
ésta.

Una opción alternativa es realizar un análisis estadístico de la información anatómica a
nivel de vóxel para el total del volumen cerebral. Estas técnicas devuelven transformaciones
espaciales de�nidas en todo el espacio obtenidas de la optimización de una función de similaridad
entre individuos, principalmente en términos de intensidad de vóxel [Collins et al., 1994,
Rueckert et al., 2003, Beg et al., 2005]. En este caso, el registro puede encontrarse con la
di�cultad de intentar de�nir correspondencias entre estructuras a partir de únicamente los
términos de intensidad. Los métodos más típicos no tienen generalmente un buen ajuste
anatómico geométrico a nivel de corteza cerebral. Por ello, estas técnicas basadas en volumen han
ido evolucionando desde el mero alineamiento de mapas de intensidad, hacia la integración de
características corticales adicionales como las líneas de cresta [Subsol et al., 1997], las super�cies
convexas [Downs et al., 1999], o las propiedades geométricas locales [Shen and Davatzikos, 2002].

Si sólo se desea alinear la corteza cerebral, existen técnicas basadas en super�cie que trasladan
el problema del alineamiento a una geometría equivalente, pero más controlada, como la super�cie
esférica o el plano 2D, que permiten la parametrización de la super�cie cortical. Así, las
proyecciones pueden ser realizadas bajo ciertas condiciones anatómicas de�nidas en términos
de profundidad de surco o curvatura ([Van Essen and Dierker, 2007, Lyttelton et al., 2007,
Tosun and Prince, 2008]). Sin embargo, estas técnicas tienen el inconveniente de restringir, por
construcción, el campo de deformaciones a una super�cie 2D, y su extensión a otras estructuras
cerebrales en 3D representa todo un reto.

Recientemente se han propuesto técnicas híbridas que combinan técnicas de volumen y
de super�cie ([Liu et al., 2004, Postelnicu et al., 2009, Joshi et al., 2007]). Aunque han sido
diseñadas especí�camente para alinear correctamente valles y crestas de la corteza cerebral, estas
técnicas siguen sin ofrecer garantías de emparejar características anatómicamente homólogas.
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1.3. Objetivo del proyecto

El objetivo de este proyecto es dotar de robustez al sistema actual de registro volumétrico
de imagen médica, basado en el paradigma de los difeomor�smos ([Hernandez et al., 2009,
Bossa et al., 2008, Bossa et al., 2010]), introduciendo restricciones explícitas sobre la posición
de landmarks anatómicos.

Concretamente, el objetivo �nal es que esta herramienta proporcione una transformación
espacial que consiga una correspondencia entre los surcos y giros más importantes de la corteza
cerebral, y sirva como una buena inicialización para una etapa posterior de registro volumétrico
de todo el cerebro.

El trabajo principal será diseñar una herramienta de registro de landmarks basada en
difeomor�smos. Posteriormente será necesario concatenar las dos etapas (registro de landmarks
y registro volumétrico), para en última instancia, evaluar sus prestaciones sobre un escenario
controlado de simulación, y sobre un conjunto de imágenes cerebrales de sujetos reales.

1.4. Contenidos de la memoria

La presente memoria se ha estructurado en los siguientes capítulos:

Capítulo 1: Introducción

El presente capítulo describe el interés del proyecto, así como sus objetivos y la organización
de la memoria.

Capítulo 2: Registro difeomór�co de landmarks

Se plantea el problema y se establecen las bases teóricas del registro de landmarks basado
en difeomor�smos.

Capítulo 3: Resultados

En este capítulo se presentan los detalles de la implementación y los resultados obtenidos al
aplicar la herramienta de registro desarrollada en este proyecto a un conjunto de imágenes
médicas reales.

Capítulo 4: Conclusiones y líneas futuras

Se destacan aquí las principales conclusiones obtenidas del desarrollo del trabajo y se
avanzan líneas futuras de investigación.

Anexo A: Cálculo de la derivada de un campo vectorial respecto a una
perturbación

Anexo B: Fórmula Baker-Campbell-Haussdorf (BCH)

Anexo C: Parte práctica del TFM
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Capítulo 2

Registro difeomór�co de landmarks

2.1. Planteamiento del problema

El registro de landmarks parte de dos conjuntos de puntos {pi ∈ Ω | i = 1, 2, . . . , n} y
{qi ∈ Ω | i = 1, 2, . . . , n} con correspondencia entre ellos conocida, donde Ω ⊆ Rd con d = 2
o d = 3. El problema reside en encontrar una transformación f : Ω → Ω tal que
f (pi) = qi ∀i = 1, 2, . . . , n.

Las transformaciones geométricas se dividen en paramétricas y no paramétricas. Una
transformación paramétrica es aquella que se puede describir en función de un número
�nito y contable de parámetros. Dentro de este tipo se pueden encontrar transformaciones
lineales (traslación, rotación, sólido rígido, similaridad, y afín) y transformaciones no lineales
(perspectivas, polinómicas, B-splines y thin plate splines entre otras ). Cada una de ellas tiene
un número diferente de grados de libertad, lo que determina el número de pares de landmarks
que puede relacionar exactamente. Por ejemplo, en el espacio bidimensional (d = 2), una
transformación rígida que preserva la distancia euclídea, tiene 3 grados de libertad y solo puede
relacionar parejas de landmarks con la misma distancia euclídea; en cambio, una transformación
afín tiene 6 grados de libertad y puede proyectar cualquier conjunto no degenerado de 3 puntos
en otro conjunto de 3 puntos cualquiera.

Las transformaciones no paramétricas, por el contrario, tienen in�nitos grados de libertad, y
por tanto, pueden proyectar potencialmente cualquier número �nito de puntos en otro conjunto de
la misma dimensión. De todas las transformaciones no paramétricas posibles, las que determinan
un registro de imagen deben cumplir una serie de propiedades:

Conservación de la orientación local en el entorno de cada punto. Una
transformación que conserva esta orientación se denomina homeomor�smo, cuya de�nición
formal es:

Una transformación f es un homeomor�smo si f es una biyección continua con

inversa también continua.

Si f no es una biyección, puede que varios puntos sean proyectados sobre el mismo
punto imagen. Es lo que se denomina pliegue, o más comúnmente folding. Si f es una
biyección pero no es continua, puede producir rupturas en el entorno de los puntos.

Suavidad. Se dice que una transformación f es suave si todas las derivadas parciales de
f hasta cierto orden, existen y son continuas.

Es necesario imponer esta segunda condición ya que de acuerdo a su de�nición, un
homeomor�smo sólo requiere continuidad en f y en su inversa, pero no diferenciabilidad.
Y una transformación no diferenciable puede dar lugar a puntos singulares en el espacio
transformado.

5



6 2.2. Registro difeomór�co

El objetivo, por tanto, es encontrar una transformación f que sea suave y preserve la topología.
Esta transformación se denomina difeomor�smo.

Un difeomor�smo f se de�ne como una biyección suave con inversa también suave.

Para el problema de registro de landmarks, se propone entonces construir un difeomor�smo
φ : Rd → Rd tal que φ (pi) = qi. Pero dado que el problema está subcondicionado y no tiene
solución única, será necesario imponer ciertas condiciones adicionales para poder hallar dicho
difeomor�smo.

2.2. Registro difeomór�co

Los primeros registros difeomór�cos estaban basados en el método del ��uido viscoso�
[Christensen et al., 1996], donde la imagen deformable era tratada como si estuviese alojada
en un �uido viscoso y compresible gobernado por la ecuación de conservación de momentos
simpli�cada. Dicha ecuación se resolvía mediante métodos de diferencias �nitas y se obtenía el
��ujo� desde la forma original hasta la imagen objetivo.

Los métodos más actuales, como el algoritmo LDDMM (large deformation di�eomorphic

metric mapping) de [Beg et al., 2005, Wang et al., 2007], o los di�eomorphic demons

([Vercauteren et al., 2009]) parten de la misma representación, pero utilizan un gradiente
descendente para minimizar una determinada distancia geodésica.

En general, todos estos métodos modelan la transformación de una imagen como un campo
φ (x, t) de deformaciones (�gura 2.1a), donde φ (x, t) indica la posición del punto x en el instante t.

(a) Deformación desde t=0 (azul) hasta
t=1(gris)

(b) Campo de velocidades

Figura 2.1: Modelado de un difeomor�smo.

Esta representación tiene el inconveniente de que requiere añadir explícitamente las
restricciones necesarias para que la transformación asociada cumpla con las condiciones de un
difeomor�smo. Suelen ser condiciones no lineales que elevan considerablemente la complejidad del
problema. Por este motivo, lo que se hace realmente es modelar la transformación geométrica con
un campo vectorial de velocidades v (x, t) (�gura 2.1b). Esta representación evita implícitamente
la existencia de foldings y además, de�ne un espacio lineal en el que se pueden sumar elementos
y de�nir operaciones más complejas como la derivada.
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El campo de velocidades v (x, t), determina φ (x, t) a lo largo de una unidad de tiempo:{
dφ(x,t)
dt = v (φ (x, t) , t)

φ (x, 0) = x
(2.1)

φ (x, 1) = x+

1ˆ

0

v (φ (x, t) , t) dt

La parametrización y resolución de las ecuaciones diferenciales implicadas en este método
requieren un gran gasto computacional, por lo que se decide utilizar un único campo de
velocidades que permanezca constante a lo largo de la unidad de tiempo. Este tipo de registro
es conocido como SVF (stationary velocity �eld) [Hernandez et al., 2009, Ashburner, 2007].{

dφv
t (x)
dt = v (φvt (x))

φv0 (x) = x
(2.2)

ϕv (x) = φv1 (x) = φv0 (x) +

1ˆ

0

v (φvt (x)) dt

Las trayectorias de�nidas por este campo de velocidades se identi�can con subgrupos de un
único parámetro, y por tanto, con el grupo con proyección exponencial:

exp (v) ≡ φv1 (x) = ϕv (x) (2.3)

Nótese que, al ser un subgrupo uniparamétrico, entonces φvt1+t2 (x) =
(
φvt2 ◦ φ

v
t1

)
(x) =

φvt2
(
φvt1 (x)

)
y por tanto exp (tv) = φvt = ϕtv. Con esta caracterización simpli�cada, la

integración del campo de velocidades (2.2) puede ser calculada usando métodos más rápidos
[Arsigny et al., 2006, Bossa et al., 2008], y consumiendo mucha menos memoria que el LDDMM.

Sin embargo, usar un campo de velocidades estacionario puede forzar al difeomor�smo a crear
trayectorias muy sinuosas para poder lograr un buen ajuste entre los puntos deformados y los
puntos objetivo. Por ello, este tipo de registro implicará minimizar simultáneamente la distancia
entre los landmarks iniciales deformados y los landmarks objetivo, y una medida de la energía
de la deformación.

2.3. Función de energía y gradiente

Llegados a este punto, el registro de imágenes basado en landmarks puede ser formulado como
un problema de minimización, donde la función de coste contiene un término de ajuste E1 entre
los landmarks p de una imagen deformable y los landmarks q una imagen objetivo, y un término
de regularización E2 para garantizar la suavidad de la transformación:

E (ϕv, p, q) = λE1 (ϕv, p, q) + E2 (ϕv) (2.4)

donde el parámetro λ equilibra la importancia relativa entre el ajuste y la suavidad.
Como criterio de ajuste E1 se eligió la suma de cuadrados de diferencias y como término

de regularización E2 (ϕv) =
´

Ω

∥∥L exp−1 (ϕv(x))
∥∥2
dx =

´
Ω
‖Lv(x)‖2 dx donde L es un operador

diferencial linear e invertible que penaliza las variaciones bruscas del campo de velocidades v (x) .
Teniendo todo en cuenta, la función de coste queda de la forma:

E (ϕv, p, q) = λ

n∑
i=1

‖qi − ϕv (pi)‖2 +

ˆ
Ω

‖Lv‖ ²dt (2.5)
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Para reducir el valor de esta energía, se sigue un proceso de optimización basado en un
método de descenso. Este tipo de métodos están basados en algoritmos iterativos que suelen
utilizar información sobre el gradiente de la función, que en este caso se calcula como:

∂vE (ϕv, p, q) = λ∂v (E1 (ϕv, p, q)) + ∂v (E2 (ϕv)) (2.6)

Desarrollando el gradiente del término de ajuste:

∂v (E1 (ϕv, p, q)) = −2

n∑
i=1

(qi − ϕv (pi))
∂ϕv (pi)

∂v
(2.7)

Para poder resolver este gradiente primero es necesario calcular como varía ϕv al perturbar el
campo de velocidades v en la dirección h. De acuerdo con [Beg et al., 2005] esta variación viene
dada por:

∂hϕ
v = ĺım

ε→0

ϕv+εh − ϕv

ε
= Dϕv

ˆ 1

0

(Dϕuv)
−1
h (ϕuv) du (2.8)

donde Dϕ es la matriz jacobiana del difeomor�smo. Tanto la demostración de la expresión (2.8)
como el cálculo de Dϕ pueden verse en el Apéndice A.

De esta manera, conocida la variación de ϕv ante una perturbación cualquiera, se puede
calcular ∂ϕv(pi)

∂v aplicando (2.8) respecto a las perturbaciones h que afectan a ϕv (pi) (es decir,
las perturbaciones h que afectan a la trayectoria impuesta por el campo de velocidades v en el
punto pi)

∂ϕv (pi)

∂v
=
∂ϕv (pi)

∂h

∣∣∣∣
h(ϕv(pi))

= Dϕv (pi)

ˆ 1

0

(Dϕuv (pi))
−1
hu (ϕuv (pi)) du (2.9)

y sustituyendo en la expresión (2.7):

∂v (E1 (ϕv, p, q)) = −2

n∑
i=1

(qi − ϕv (pi))Dϕ
v (pi)

ˆ 1

0

(Dϕuv (pi))
−1
hu (ϕuv (pi)) du (2.10)

Por otro lado, el gradiente del término de suavidad es :

∂v (E2 (ϕv)) = ∂v (〈Lv, Lv〉) = ∂v
(〈
L†Lv, v

〉)
= 2L†Lv (2.11)

donde L† el operador adjunto de L.

Juntando las dos partes del gradiente se obtiene:

∂vE (ϕv, p, q) =−2λ

n∑
i=1

(qi − ϕv (pi))Dϕ
v (pi)

ˆ 1

0

(Dϕuv (pi))
−1
h (ϕuv (pi)) du+ 2L†Lv (2.12)

Este gradiente tiene componentes de alta frecuencia, por lo que resulta recomendable �ltrarlo
por ejemplo con K =

(
L†L

)−1
, resultando un gradiente �nal:

∂vE (ϕv, p, q) = −2Kλ

n∑
i=1

(qi − ϕv (pi))Dϕ
v (pi)

ˆ 1

0

(Dϕuv (pi))
−1
h (ϕuv (pi)) du+ 2v (2.13)



Capítulo 3

Resultados

3.1. Implementación numérica

3.1.1. Campo de velocidades

Aunque la herramienta de registro se ha desarrollado y evaluado para un conjunto de
landmarks 3D, por simplicidad en las expresiones y en la visualización de las �guras, se presentan
aquí los resultados obtenidos para un problema 2D. Así pues, nuestro problema de registro parte
de dos conjuntos de landmarks {pi ∈ Ω | i = 1, 2, . . . , n} y {qi ∈ Ω | i = 1, 2, . . . , n} , con Ω ⊆ R2

y un campo de velocidades v de�nido sobre una rejilla estructurada {xi}ai=1 × {yj}bj=1, donde
para cada uno de los puntos (xi, yj) ∈ Ω se conoce el valor de las componentes vx y vy.

Es necesario que el dominio de de�nición Ω sea lo su�cientemente amplio para que, además
de englobar a los puntos origen y objetivo, el campo de velocidades sea capaz de decaer hasta
valores su�cientemente pequeños en los extremos del dominio. Sin embargo, hay que tener en
cuenta que un dominio demasiado grande conlleva medir la energía de suavizado E2 (ϕv) en un
número elevado de puntos, lo que genera un gasto computacional adicional.

En cuanto a la discretización del campo de velocidades, cuanto más pequeños sean los pasos de
discretización (xi+1 − xi) y (yi+1 − yi) , mayor número de velocidades guiarán al difeomor�smo.
Al aumentar los grados de libertad, el registro es capaz de alcanzar soluciones con mejor
con�guración energética, pero a cambio, se eleva considerablemente el tiempo de optimización.

3.1.2. Condiciones de contorno

Para calcular el valor de v en cualquier otro punto del dominio distinto de la rejilla sobre la
que está de�nido, se de�ne una regla de interpolación, que por simplicidad se considera lineal.
Si se desea calcular el valor del campo en un punto que no pertenece a Ω, entonces es necesario
establecer unas condiciones de frontera, que pueden ser:

Valor �jo: El valor del campo en el exterior de Ω es igual a un valor arbitrario vout.

Simétrico: Fuera del dominio, el valor del campo se considera simétrico al del interior .

Más cercano: El valor del campo en un punto pf en el exterior de Ω toma el valor del
campo en el punto pi del interior más cercano a pf .

Circular: El campo de velocidades es periódico en la extensión de su dominio.

Decaimiento: El valor del campo decae linealmente desde el valor en los extremos de Ω
hasta cero, en función de un parámetro que regula la pendiente del decaimiento.

En la �gura 3.1 puede verse el efecto de las condiciones de contorno en el per�l de un campo
unidimensional con Ω = {x ∈ R |0 ≤ x ≤ 30}.

9
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(f) Decaimiento

Figura 3.1: Efecto de las condiciones de contorno.

Para garantizar la invertibilidad del difeomor�smo, el campo de deformaciones ϕv (x) debe ser
suave, lo que implica también la suavidad del campo de velocidades v(x). Si se utiliza la condición
de frontera circular se asegura además un contorno periódico, lo que unido a la suavidad de v (x)
permite poder calcular correctamente la derivada del campo vectorial en cualquier punto del
dominio.

En la �gura 3.2 se puede ver el efecto que tiene el dominio del campo de velocidades en un
ejemplo sintético de registro de landmarks con condiciones de contorno periódicas. Dados cuatro
puntos origen {pi ∈ Ω | i = 1, 2, 3, 4} y destino {qi ∈ Ω | i = 1, 2, 3, 4} , ambos con Ω ⊆ R2, la
�gura muestra la deformación que sufre el espacio por la acción del campo de velocidades. Como
se puede observar, para dominios demasiado ajustados a los datos, las velocidades en un extremo
del dominio afectan a las velocidades del extremo contrario.

Figura 3.2: Efecto del dominio de de�nición.
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Del mismo modo, se puede observar como afecta la discretización del campo en el valor
mínimo de la energía (�gura 3.3a) y en el tiempo del proceso de optimización (�gura 3.3b).
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Figura 3.3: Efecto de la discretización del campo de velocidades. (a) Valor mínimo normalizado
de la energía en función del paso de discretización. (b) Tiempo de ejecución en función del paso
de discretización.

3.1.3. Integración del campo de velocidades

Dado un campo de velocidades y unos puntos iniciales pi, es necesario calcular las posiciones
ϕtv (pi) que de�nen la trayectoria del punto pi a lo largo del tiempo, las cuales están determinadas
por el difeomor�smo solución a la ecuación (2.2).

Siguiendo el esquema de integración explícito de Euler, las nuevas posiciones se calculan como:

ϕ(t+k)v (pi) = ϕtv (pi) + k · v
(
ϕtv (pi)

)
(3.1)

Este método de integración tiene la ventaja de ser muy simple de implementar, aunque es
necesario ajustar empíricamente el paso k elegido para la integración.

3.1.4. Operador L y parámetro de suavizado (α)

El operador L fue elegido como L = Id − α∆, donde ∆ es el operador Laplaciano
4 = ∂2

∂x² + ∂2

∂y² + ∂2

∂z² y el parámetro α penaliza las derivadas de segundo orden del campo de
velocidades ([Beg et al., 2005]). Concretamente se utiliza un operador Laplaciano con esquema de
diferencias centradas que, asumiendo condiciones de contorno periódicas, es autoadjunto (L† = L)
y tanto Lv como L†Lv pueden ser calculados en el dominio de Fourier.

Para pequeños valores de α, L se asemeja a la identidad, y la energía de regularización penaliza
simplemente valores altos del campo de velocidades E2 (ϕv) =

´
Ω
‖Lv(x)‖2 dx '

´
Ω
‖v(x)‖2 dx.

Esto conduce a que el campo óptimo tiene la mayoría de velocidades nulas, pero permite variar
abruptamente sus valores para poder ajustar los puntos. En cambio, si α es grande, en el operador
L predomina el laplaciano, la energía de regularización penaliza las derivadas de segundo orden
del campo de velocidades, y el campo de velocidades resultante es suave.

En la �gura 3.4 se puede ver este efecto para diferentes valores del parámetro de suavizado
α, además de la trayectoria que siguen los puntos p en su deformación hasta registrarse con los
puntos q.
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(a) α = 0,1 (b) α = 1

(c) α = 5 (d) α = 20

Figura 3.4: Efecto del parámetro de regularización en el registro por landmarks. Para cada valor
de α se muestra ϕv y el entorno de deformación asociado.

Estos resultados pueden interpretarse también desde otro punto de vista. De acuerdo con
[Marsland and Twining, 2004], para minimizar la energía de regularización la mejor forma de
mover un punto diferencialmente, es deformar un entorno de dicho punto. El tamaño de este
entorno depende del operador L escogido. Como se puede observar en la �gura 3.4, para valores
pequeños de α, el tamaño del entorno que se deforma es pequeño; para valores mayores de α, se
deforma un entorno mayor, que puede llegar a englobar varios landmarks.

3.1.5. Parámetro de equilibrio (λ)

En la función de energía, el parámetro de equilibrio λ pondera la importancia relativa entre el
ajuste de los landmarks y la suavidad del campo de velocidades (expresión (2.4)). Un valor alto
de λ da mayor importancia al término de ajuste sobre el de suavizado y conduce a con�guraciones
en las que los landmarks origen son deformados hasta coincidir perfectamente con los landmarks
objetivo, aunque el campo de velocidades resultante puede no ser suave. Por el contrario, valores
pequeños de λ preponderan el término de regularización y llevan a campos de velocidades suaves,
pero que no logran ajustar completamente los landmarks.

Hay que destacar que los valores de λ que logran un ajuste de landmarks aceptable
dependen de cada problema concreto (número de landmarks, dominio y discretización del campo
de velocidades). Como criterio, se elige el menor λ que devuelva un ajuste de landmarks
prácticamente exacto. Por ejemplo, para el caso de la �gura 3.5, el valor escogido para el
parámetro de equilibrio sería λ = 10000.
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Figura 3.5: Efecto del parámetro de equilibrio λ en el registro por landmarks. Los números junto
a la grá�ca indican el valor de λ. Los valores de los términos de ajuste y de regularización han
sido normalizados al intervalo [0,1].

3.1.6. Elección del campo inicial v0 (x)

El proceso de optimización necesita un valor inicial a partir del cual iniciar el descenso. A
continuación se muestran diferentes estrategias para establecer el campo de velocidades inicial
v0 (x).

1. Campo nulo
Consiste sencillamente en establecer v0 (x) = 0. La con�guración energética inicial es fácil

de determinar en esta situación. Si v = 0 en todo el dominio, entonces el término de energía
de regularización o suavizado E2 (ϕv) =

´
Ω
‖Lv(x)‖2 dx es también nulo. Por otro lado,

ϕv (pi) |v=0= pi, y el término de ajuste E1 (ϕv, p, q) =
∑n
i=1 ‖qi − ϕv (pi)‖2 =

∑n
i=1 ‖qi − pi‖

2

es simplemente la suma de la norma al cuadrado de las distancias entre los puntos iniciales y los
puntos �nales.

Esta con�guración se corresponde con un punto singular de la función de energía, y
dependiendo del valor del parámetro de equilibrio λ, el proceso de optimización puede detenerse
desde el inicio en un mínimo local. Por otro lado, y aun cuando esto no ocurriese, iniciar la
optimización desde v0 (x) = 0 conlleva una convergencia lenta, ya que la optimización parte de
una con�guración inicial carente de información.

Así pues, aunque el campo inicial nulo es el más sencillo de todos, su con�guración energética
asociada no es la más apropiada, lo que hace necesario el diseño de otras con�guraciones de
campos iniciales.
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2. Campo afín

Sean p =

px1 px2 . . . pxn
py1 py2 . . . pxn
1 1 . . . 1

 y q =

qx1 qx2 . . . qxn
qy1 qy2 . . . qxn
1 1 . . . 1

 las coordenadas homogéneas en 2D

de los puntos origen y destino respectivamente. Se puede calcular la matriz de la transformación
afín T que minimiza ‖q − T ·p‖2 .

‖q − T ·p‖2 = tr
(

(q − T ·p)
T

(q − T ·p)
)

= tr
(
qT q

)
− 2tr

(
T
(
pqT

))
+ tr

(
T
(
ppT

)
TT
)

(3.2)

Derivando esta expresión respecto a T e igualando a cero se obtiene:

T =
(
qpT

) (
ppT

)+
(3.3)

donde (·)
+ denota pseudoinversa. Esta transformación existe para cualquier p y q , y siempre que

exista su logaritmo, se podrá utilizar el campo vectorial asociado a dicha transformación como
campo inicial para nuestra optimización.

Figura 3.6: Campo vectorial asociado a una transformación afín. La orientación y el tamaño de
las �echas representan la dirección y el módulo del campo. Puntos p (aspas), T ·p (cuadrados) y
q (círculos).

Sea vT un campo vectorial estacionario que se pueda expresar de forma lineal como

vaf (x) = A ·x ∀x ∈ Ω, (3.4)

donde v y x están expresadas en coordenadas homogéneas. Entonces la solución a la ecuación (2.2)
se demuestra fácilmente que es ϕtv (x) = eAt·ϕ0 (x) = eAt·x donde eAt es la exponencial de
matrices y ϕtv (x) está expresado también en coordenadas homogéneas.

Particularmente, para t = 1 se obtiene

ϕv (x) = eA·x (3.5)

A partir de esta expresión, y teniendo en cuenta que los puntos T · p son la transformación
de los puntos p, identi�cando términos se obtiene que eA = T , y por tanto A = logmT .

Sustituyendo el valor de A en la ecuación (3.4), el campo vectorial asociado a la transformación
afín queda de la forma:

vaf (x) = (logmT ) ·x (3.6)
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En la �gura 3.6 se puede observar que el campo afín obtenido mediante la expresión 3.6 no
cumple la condición de continuidad y periodicidad en los bordes establecida en la subsección 3.1.2,
por lo que el campo no se podría derivar correctamente en todo su dominio. Para solucionarlo,
lo que se hace a continuación es �ltrar dicho campo. Para ello, se aprovecha la medida de
regularización de�nida en la expresión (2.5). Preservando el valor de las velocidades que afectan
directamente a la trayectoria de los puntos (�gura 3.7a), se completa el resto del dominio con
velocidades que minimizan dicho término de regularización (�gura 3.6).

(a) (b)

Figura 3.7: (a) Velocidades que afectan a la trayectoria. (b) Campo completado minimizando la
energía de regularización. Nótese la continuidad en los bordes a diferencia de la �gura 3.6.

3. BCH de campos
Como se puede comprobar en la �gura 3.7b, la transformación afín no asegura que los puntos

T · p coincidan con los puntos q. Una transformación afín implica conservar las líneas paralelas,
y por tanto es insu�ciente para poder proyectar cualquier conjunto de n puntos en otro. Sería
interesante por tanto, poder deformar a continuación los puntos ya transformados (que estarán
muy próximos a los puntos objetivo) de manera que se aproximen todavía más a los puntos
objetivo.

Una posible solución es establecer una trayectoria lineal desde T ·p hasta q y calcular el campo
vlin en los puntos asociados a dicha trayectoria:

vlin = (q − T · p)
Es necesario entonces componer el campo vaf asociado a la transformación afín y el campo

vlin asociado a la trayectoria lineal. Es decir, hay que determinar un campo de velocidades
v = Z (vlin, vaf ) tal que

exp (v) ≈ exp (vlin) ◦ exp (vaf ) (3.7)

ϕv (x) ≈ (ϕvlin ◦ ϕvaf ) (x) = ϕvlin (ϕvaf (x))

Esta composición de campos no es trivial. Para resolverla se utiliza la fórmula de
Baker�Campbell�Hausdor� (BCH). Para más detalles, ver el Apéndice B.

Como puede apreciarse en la �gura 3.8, al combinar el campo afín inicial, con uno lineal, se
produce una mejora apreciable en el ajuste de los landmarks. Sin embargo, este ajuste sigue sin
ser del todo exacto, ya que la solución de una BCH de campos implica una sucesión de in�nitos
términos, que se debe truncar en algún momento. En cualquier caso, estos pequeños desajustes
se verán reducidos posteriormente durante el proceso de optimización.



16 3.1. Implementación numérica

(a) Campo vectorial afín (�ltrado) (b) Campo vectorial lineal (detalle) (c) Combinación de (a) y (b)

Figura 3.8: BCH de campos.

3.1.7. Estrategia de optimización

El proceso de optimización se lleva a cabo mediante un método de gradiente conjugado para
funciones no lineales ([Hager and Zhang, 2005, Nocedal and Wright, 1999]). Este método genera
una secuencia vk, k ≥ 1 a partir del campo inicial v0, utilizando la ley de recurrencia:

vk = vk−1 + γkdk

donde el paso positivo γk se obtiene mediante line search. La dirección de búsqueda es una
actualización de la dirección de descenso anterior con la dirección del gradiente negativo (la
dirección opuesta al gradiente calculado según la expresión (2.13)) que depende de un parámetro
de actualización βk.

dk = βkdk−1 − ∂vE (p, q, ϕv)

En la �gura 3.9 se muestra la optimización del campo de la imagen 3.8c.

(a) (b)

Figura 3.9: (a) Campo �nal optimizado. (b) Proceso de optimización. En rojo, energía. En azul,
tiempo.
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3.2. Resultados en imagen médica

3.2.1. Material y procedimientos

La herramienta de registro basado en landmarks se ha evaluado en un conjunto de imágenes
MRI obtenidas de sujetos reales. Para ello, se seleccionaron aleatoriamente 120 sujetos (40 sanos,
40 enfermos de Alzheimer y 40 con deterioro cognitivo leve) de la base de datos de ADNI
(Alzheimer's Disease Neuroimaging Initiative). La imagen referencia fue una imagen MRI de un
sujeto sano diferente a los anteriores.

El primer paso fue el establecimiento de landmarks en todas las imágenes. Con la herramienta
BrainVisa (http://brainvisa.info) se segmentaron y etiquetaron un total de 22 estructuras de
la corteza cerebral. Para establecer los landmarks se calculó el punto anatómico centroide de
cada estructura. Posteriormente estas posiciones fueron veri�cadas y corregidas manualmente
(�guras 3.10a y 3.10b).

(a) (b)

(c)

  1. Ínsula Izquierda
  2. Occipital Izquierdo
  3. Surco Cerebral Lateral (posterior) Izquierdo
  4. Surco Cerebral Lateral (anterior) Izquierdo
  5. Surco Cerebral Lateral (ascendente) Izquierdo
  6. Surco Calcarino (anterior) Izquierdo
  7. Giro Frontal Inferior (anterior) Izquierdo
  8. Giro Frontal Interno Izquierdo
  9. Giro Temporal Inferior (posterior) Izquierdo
10. Giro Temporal Superior Izquierdo
11. Ínsula Derecha
12. Occipital Derecho
13. Surco Cerebral Lateral (posterior) Derecho
14. Surco Cerebral Lateral (ascendente) Derecho
15. Surco Calloso−Marginal (anterior) Derecho
16. Surco Calcarino (anterior) Derecho
17. Giro Frontal Inferior (anterior) Derecho
18. Giro Frontal Intermedio Derecho
19. Giro Frontal Marginal Derecho
20. Giro Intralingual (posterior) Derecho
21. Giro Temporal Inferior (posterior) Derecho
22. Giro Temporal Superior Derecho

(d)

Figure 3.10: (a),(b): Imagen fuente y objetivo, respectivamente. Los contornos en blanco
delimitan las estructuras. Cada círculo numerado representa un landmark. (c) Difeomor�smo de
landmarks. Puntos origen (aspas) y destino (círculos). (d) Relación de las estructuras cerebrales
asociadas a los landmarks.
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Para realizar el estudio, se comparó el registro basado en landmarks (LAND) con el
registro afín (AFIN) y con el método SVF. Asimismo, se utilizó el registro de landmarks
como inicialización del registro basado en SVF, creando un método combinado de registro
(LAND+SVF).

Para el caso concreto de registro difeomór�co (LAND y SVF+LAND) se estableció un
campo de velocidades de tamaño 600x600 con condiciones de contorno periódicas, campo inicial
calculado mediante BCH, α = 200 y λ = 105.

Las prestaciones de las diferentes técnicas fueron evaluadas mediante:

1. Distancia entre landmarks homólogos después del registro.

2. Solapamiento de las estructuras cerebrales registradas, cuanti�cado mediante el coe�ciente
de similaridad de Jaccard ([Jaccard, 1901]).

3. Regularidad de la transformación, evaluada con el logaritmo del jacobiano de la deformación
(expresión (A.27)).

3.2.2. Resultados

La �gura 3.11 muestra el valor medio en sujetos de la distancia entre los landmarks de
cada estructura cerebral tras aplicar los diferentes métodos de registro. Se puede observar que
los métodos basados en difeomor�smos reducen esta distancia con respecto a la transformación
AFIN. El registro LAND marca el límite de mínima distancia posible, ya que está enfocado
precisamente a minimizar dichas distancias. Exceptuando este, la máxima reducción se obtiene
para LAND+SVF.

En la �gura 3.12a se puede observar la distribución en la población del promedio espacial
de la distancia entre landmarks. Las diferencias entre las distancias medias obtenidas por cada
método de registro son signi�cativas (Student t-test, p = 0,003 entre SVF y LAND+SVF).
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Occipital Izquierdo 

Surco Cerebral Lateral (posterior) Izquierdo 
Surco Cerebral Lateral (anterior) Izquierdo 
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Surco Calcarino (anterior) Izquierdo 

Giro Frontal Inferior (anterior) Izquierdo 
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Giro Temporal Inferior (posterior) Izquierdo 
Giro Temporal Superior Izquierdo 

Ínsula Derecha 
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Surco Calcarino (anterior) Derecho 
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Giro Temporal Superior Derecho 

Distancia (mm)

 

 

AFIN SVF LAND+SVF LAND

Figura 3.11: Distancia media entre landmarks calculada sobre los 120 sujetos.
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Por otro lado, la �gura 3.12b muestra el solapamiento medio de cada método. Hay que
destacar que SVF proporciona mejores medidas de solapamiento que LAND, ya que este último
está guiado solamente por los landmarks (no utiliza información de intensidad) y por tanto
no está orientado al registro de estructuras. Los mejores resultados se dan combinando dichos
métodos (LAND+SVF), aumentando signi�cativamente (Student t-test, p = 8,4190 · 10−6) el
solapamiento obtenido con SVF.
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Figura 3.12: (a) Distribución del promedio espacial de la distancia entre landmarks.
(b) Distribución del solapamiento de regiones corticales.

La mejora en el alineamiento de la materia gris puede verse también en la �gura 3.13, donde
el algoritmo LAND+SVF mejora de manera apreciable la intersección de los los surcos y giros
de la corteza cerebral.

(a) AFIN (b) SVF (c) LAND+SVF (d) LAND

Figura 3.13: Mapa de intersección en las regiones corticales (valores desde 1, no hay intersección,
hasta 120, intersección de todos los sujetos).
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Finalmente, la distribución del logaritmo del jacobiano (�gura 3.14) revela que las
deformaciones obtenidas con LAND+SVF fueron similares a las obtenidas con SVF simple
(valores en [-5.2290 5.4745] con LAND+SVF frente a [-5.3520, 5.8351] con SVF). Todos los
valores del logaritmo fueron reales (los valores del jacobiano fueron positivos, una condición
necesaria en las transformaciones difeomór�cas).
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Figura 3.14: Distribución del logaritmo del jacobiano.

3.2.3. Discusión

En el registro de imágenes médicas reales, el método desarrollado en este trabajo (LAND)
ha proporcionado los mejores resultados en términos de distancias entre pliegues corticales
homólogos (�gura 3.12a). Además, y aunque dicho método no tiene en cuenta la información
de intensidad, ha logrado mejorar el solapamiento de estructuras con respecto al método AFIN
(�gura 3.12b), ya que dispone de muchos más grados de libertad.

Por otro lado, al utilizar este registro por landmarks como inicialización de una etapa de
registro por imagen (LAND+SVF) se ha logrado reducir la distancia entre pliegues homólogos
obtenida con el registro SVF simple (�gura 3.12a). Este método combinado ha proporcionado los
mejores resultados de todos los métodos evaluados en términos de solapamiento (�gura 3.12b).
La mejora se ha producido además sin empeorar la regularidad de la transformación del método
original (�gura 3.14).

De entre todos los métodos evaluados, el método LAND+SVF es, por tanto, la opción más
recomendable para registrar imágenes cerebrales MRI, pudiendo ser utilizada además en otros
problemas de registro de imágenes médicas.



Capítulo 4

Conclusiones y líneas futuras

4.1. Resumen del proyecto y conclusiones

En este proyecto se ha implementado y evaluado un método de registro difeomór�co por
landmarks. En primer lugar se ha diseñado la herramienta de registro a partir de la bibliografía
existente. Tras establecer correctamente las condiciones iniciales y analizar el efecto de los
diferentes parámetros de la herramienta, el nuevo método de registro ha sido probado en un
escenario controlado.

Posteriormente se han evaluado las prestaciones de los diferentes métodos de registro de
imagen sobre un conjunto de imágenes médicas de sujetos reales. Con los métodos de registro
basados sólo en intensidad han surgido errores en el alineamiento de las estructuras corticales. En
cambio, al utilizar el registro por landmarks como inicialización se han introducido restricciones
explícitas sobre la posición de varios puntos anatómicos, lo cual ha generado una mejora notable
en las correspondencias. Al introducir información anatómica previa, se ha reducido la distancia
entre los pliegues corticales homólogos. Esto ha permitido a su vez una mejora en términos
de solapamiento de estructuras corticales, manteniendo además el nivel de regularidad de la
transformación.

En conjunto, el registro mediante landmarks ha dotado de robustez a la herramienta de
registro existente. Esta mejora es vital en el análisis de imágenes médicas cerebrales, ya que
permitirá un registro más correcto de las estructuras y pliegues corticales, asegurando así la
consistencia y la sensibilidad de todas las medidas posteriores.

4.2. Líneas futuras

A pesar de haber alcanzado plenamente los objetivos inicialmente previstos, se plantean
algunas futuras líneas:

Diseñar una herramienta de registro híbrido de intensidad y landmarks. Basándose en una
métrica de energía combinación de ajuste de intensidad, regularización y distancia entre
landmarks, la etapa de inicialización podría ser integrada en el proceso global, evitando así
uno de los procesos de optimización.

Otra línea de investigación consiste en el desarrollo de una herramienta de registro de
estructuras. Se conseguiría con ella un registro más exacto, ya que no sería necesario
representar cada estructura con uno o varios landmarks, sino que el registro se realizaría
entre estructuras completas. Asimismo podría combinarse posteriormente con la línea de
investigación anterior.
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Apéndice A

Cálculo de la derivada de un campo
vectorial respecto a una
perturbación

La variación de ϕtv cuando v es perturbada con h, es de la forma:

∂hϕ
tv = ĺım

ε→0

ϕt(v+εh) − ϕtv

ε
= Dϕtv

ˆ t

0

(Dϕuv)
−1
h (ϕuv) du (A.1)

Demostración:
Asumiendo que en (A.1) la derivada con respecto a ε existe (la prueba de existencia puede

realizarse mediante ecuaciones diferenciales ordinarias), se procede a su identi�cación.
Partiendo de

dϕt(v+εh)

dt
= (v + εh)

(
ϕt(v+εh)

)
= v ◦ ϕt(v+εh) + εh ◦ ϕt(v+εh) (A.2)

se calcula su derivada respecto a ε:

∂ε
(
d
dt

(
ϕt(v+εh)

))
= d

dt

(
∂ε
(
ϕt(v+εh)

))
= ∂ε

(
v
(
ϕt(v+εh)

))
+ ∂ε

(
εh
(
ϕt(v+εh)

))
= Dv

(
ϕt(v+εh)

)
·∂ε
(
ϕt(v+εh)

)
+h
(
ϕt(v+εh)

)
+ε·Dh

(
ϕt(v+εh)

)
·∂ε
(
ϕt(v+εh)

)
(A.3)

siendo

∂εϕ
t(v+εh) = lim

δ→0

ϕt(v+(ε+δ)h) − ϕt(v+εh)

δ
(A.4)

Si se sustituye ε = 0 en (A.3) y (A.4)

d

dt

(
∂ε

(
ϕt(v+εh)

))
= Dv

(
ϕtv
)
· ∂ε
(
ϕtv
)

+ h
(
ϕtv
)

(A.5)

∂εϕ
tv
∣∣
ε=0

= ĺım
δ→0

ϕt(v+hδ) − ϕtv

δ
= ∂hϕ

tv (A.6)

y por lo tanto

d

dt

(
∂hϕ

tv
)

= Dv
(
ϕtv
)
· ∂hϕtv + h

(
ϕtv
)

(A.7)
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Esta ecuación tiene la forma de una ecuación diferencial no homogénea:

ẇ (t) = Dv
(
ϕtv
)
· w (t) + g (A.8)

Una forma de obtener la solución de este tipo de ecuaciones diferenciales es encontrando
primero una solución w(t) de la ecuación homogénea asociada

ẇ (t) = Dv
(
ϕtv
)
· w (t) (A.9)

.
En este caso, partiendo de la de�nición de la velocidad

˙ϕtv = v
(
ϕtv
)

(A.10)

se calcula el jacobiano de ambos miembros

˙Dϕtv = Dv
(
ϕtv
)
·Dϕtv (A.11)

y al compararlo con la expresión (A.9) se obtiene w(t) = Dϕtv como solución de la ecuación
diferencial homogénea.

Para calcular una solución particular por variación de parámetros, se necesita una base del
espacio de soluciones de la ecuación homogénea. En este caso, dado que al ser ϕtv una deformación
guiada por velocidades (|D (ϕtv)| > 0 ), las �las de D (ϕtv) son linealmente independientes y
forman una base del espacio de soluciones. A continuación, se ensaya como solución de la ecuación
inhomogénea una combinación lineal de los elementos de la base w (t) c (t), determinando c(t) a
a partir de las condiciones iniciales. De esta forma:

(w (t) c (t))
′

= Dv
(
ϕtv
)
· w (t) c (t) + h

(
ϕtv
)

(A.12)

que comparado con la derivada de (w (t) c (t))

(w (t) c (t))
′

= ˙w (t)c (t) + w (t) ˙c (t) (A.13)

resulta

w (t) ˙c (t) = h
(
ϕtv
)

(A.14)

˙c (t) = w−1 (t)h
(
ϕtv
)

(A.15)

con solución

c (t) = c (0) +

ˆ t

0

w−1 (u)h (ϕuv) du

= c (0) +

ˆ t

0

(Dϕuv)
−1
h (ϕuv) du (A.16)

donde aplicando la condición inicial para calcular el valor de c(0):

∂hϕ
tv |t=0= w (t) c (t) |t=0= 0 (A.17)

Id ·

(
c (0) +

ˆ 0

0

(Dϕuv)
−1
h (ϕuv) du

)
= 0 (A.18)

c (0) = 0 (A.19)



Apéndice A. Cálculo de la derivada de un campo vectorial respecto a una perturbación 29

Finalmente

c (t) =

ˆ t

0

(Dϕuv)
−1
h (ϕuv) du (A.20)

∂hϕ
tv = Dϕtv

ˆ t

0

Dv (ϕuv)
−1
h (ϕuv) du (A.21)

quedando así demostrado (A.1).

Sustituyendo t = 1 se obtiene el caso particular de la expresión (2.8)

∂hϕ
v = Dϕv

ˆ 1

0

(Dϕuv)
−1
h (ϕuv) du (A.22)

�

La expresión anterior depende de la matriz jacobiana del campo de deformaciones Dϕv.
Esta matriz tiene tamaño d x d y determinante positivo. Expresa, dado un punto determinado
del dominio, cómo se deforma su entorno al aplicarle el difeomor�smo. Partiendo de las
ecuaciones A.10 y A.11, renombrando Jt = Dϕtv e introduciendo la condición inicial se obtiene{

J̇t = Dv (ϕtv) · Jt
J0 = Id

(A.23)

ecuación diferencial que puede resolverse mediante el esquema de integración de Euler.

Jt+k = Jt + k ·Dv
(
ϕtv
)
Jt (A.24)

Pero siguiendo este método, puede darse el caso de que al pasar del instante t al instante t+k
y avanzar un paso k ·Dv (ϕtv) Jt, el jacobiano resultante deje de tener determinante positivo. Es
recomendable por tanto encontrar un esquema diferente de resolución.

Partiendo de la suposición de que en el intervalo(t , t+ k) el valor de Dv (ϕtv) es constante,
entonces

J̇t = C · Jt (A.25)

que, de acuerdo a [I. and Havel, 1994] tiene como solución

Jt+k = ekCJt (A.26)

Sustituyendo por el valor de C

Jt+k = ekDv(ϕ
tv)Jt =

(
1 + kDv

(
ϕtv
)

+ . . .
)
Jt (A.27)

se recupera el esquema de Euler y se obtiene �nalmente una expresión que permite calcular la
matriz jacobiana del difeomor�smo al mismo tiempo que se va calculando la propia deformación.
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Apéndice B

Fórmula Baker�Campbell�Hausdor�
(BCH)

En matemáticas, la fórmula Baker�Campbell�Hausdor� es la solución a

Z = log
(
eXeY

)
(B.1)

para X e Y elementos no conmutativos de un espacio de dimensión �nita.
Esta ecuación debe su nombre a Henry Frederick Baker, John Edward Campbell, y Felix

Hausdor�. Fue descrita inicialmente por Campbell; elaborada por Henri Poincaré y Baker; y
sistematizada geométricamente por Hausdor�.

Concretamente, si G es un grupo de Lie simple, con g el Álgebra de Lie asociada X,Y, Z ∈ g,
exp : g → G la función exponencial, y exp : G → g la función logaritmo (inversa de la
exponencial), entonces:

Z = log(eXeY ) =
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(
∑n
i=1(ri + si))

−1

r1!s1! · · · rn!sn!
[Xr1Y s1Xr2Y s2 . . . XrnY sn ] (B.2)

donde sn y rn son enteros no negativos según la siguiente notación:

[Xr1Y s1 . . . XrnY sn ] = [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]] (B.3)

De acuerdo con [Casas and Murua, 2008], los primeros términos de esta fórmula general
combinatoria son:

Z(X,Y ) = log(eXeY )

= X + Y +
1

2
[X,Y ]

+
1

12
[[X,Y ], Y ]− 1

12
[X, [X,Y ]] +

1

24
[X, [[X,Y ], Y ]]

+
1

720
[[[[X,Y ], Y ], Y ], Y ] +

1

360
[[X, [X,Y ], [X,Y ], Y ]]

+
1

120
[[X,Y ], [[X,Y ], Y ]] +

1

180
[X, [[[X,Y ], Y ], Y ]]

+
1

180
[X, [X, [[X,Y ], Y ]]]− 1

720
[X, [X, [X, [X,Y ]]]]

+ . . . (B.4)
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Esta fórmula es válida para espacios dimensionalmente �nitos, pero se ha demostrado
([Bossa et al., 2007]) que puede ser utilizada con éxito en la composición de difeomor�smos.
Así pues, dada una transformación gobernada por un campo de velocidades w y a continuación
otra deformación de campo v la fórmula BCH permite calcular el campo z = BCH (v, w) tal que

exp (z) ≈ exp (v) ◦ exp (w) (B.5)

ϕz (x) ≈ (ϕv ◦ ϕw) (x) = ϕv (ϕw (x))

El operador [v, w] se de�ne como

[v, w] = wDv − vDw (B.6)

donde D · signi�ca matriz jacobiana del campo de velocidades y wDv se calcula como:

(wDv)j =
∑
i

wi∂ivj (B.7)

siendo wi la componente i-ésima de w y ∂i la derivada con respecto a dicha coordenada. El
término vDw se calcula análogamente.

Concretando para un espacio bidimensional:{
[v, w]1 = (w1∂1v1 + w2∂2v1)− (v1∂1w1 + v2∂2w1)

[v, w]2 = (w1∂1v2 + w2∂2v2)− (v1∂1w2 + v2∂2w2)
(B.8)



Apéndice C

Parte práctica del TFM

Los créditos prácticos de este proyecto se han llevado a cabo en el Servicio de Radiodiagnóstico
del Grupo Hospitalario Quirón, Zaragoza, bajo la tutela del Jefe de Servicio, el Dr. Nicolás Fayed
Miguel.

Uno de los objetivo de esta parte práctica ha sido conocer el equipamiento de radiología
(resonancia magnética nuclear, tomografía computerizada, ecografías, rayos X, etc.) así como
el sistema PACS (Picture Archiving and Communication System) de transferencia, gestión y
almacenamiento de imágenes médicas. Cada equipo de radiología está conectado con una consola
desde la que se controlan el proceso de adquisición de imagen (posición del paciente, secuencias
en el caso de MRI,...) y las imágenes resultantes se almacenan en un servidor, que se encuentra
situado en la clínica de La Floresta, al que tienen acceso los workstation de ambas clínicas
mediante el software desarrollado por General Electrics.

Figura C.1: Workstation.

Además de este programa, se utiliza Cosmosalud para las labores administrativas (establecer
sesiones para el uso del equipamiento del servicio de radiología) y Klinic para manejar el
historial y los datos de hospitalización del (consultas externas, urgencias, quirófano, etc.), así
como otros programas más especí�cos como por ejemplo LCModel6.2, que se utiliza para realizar
espectrografías detalladas.
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Otro aspecto fundamental que se trató durante la realización de las prácticas fue la utilización
de imágenes médicas en el estudio de lesiones isquémicas recientes, así como en la caracterización
de otras patologías cerebrovasculares. Para ello, se utilizan las diferentes modalidades de imagen
MRI que proporciona la herramienta desarrollada por General Electrics:

MRI Estructural
El uso clínico de las imágenes de Resonancia Magnética Estructural permite obtener

información sobre la anatomía del cuerpo del paciente. En este tipo de imágenes, el líquido
cefalorraquídeo se visualiza hiperintenso, con alta señal (brillante o blanco), y el parénquima
cerebral, en cambio tiende a verse hipointenso (oscuro o negro). Se utiliza principalmente
para descartar alteraciones morfológicas, como atro�as e hipertro�as, así como para identi�car
tumores, edemas, infecciones y enfermedades desmielinizantes, ya que las zonas afectadas por
estas enfermedades tienen mayor contenido de agua que el parénquima normal, y por tanto van
a brillar en comparación con el tejido sano.

Figura C.2: Adquisición de Imagen de Resonancia Magnética (MRI).

Difusión
La imagen de difusión se basa en la cuanti�cación del movimiento de moléculas de agua. En un

medio tridimensional homogéneo, el movimiento de las moléculas tiende a formar una esfera. La
escala de tonos de grises representa el desplazamiento de las moléculas de agua. Las zonas en que
las moléculas se desplazan fácilmente se ven de baja señal (hipointensas), como por ejemplo el
líquido cefalorraquídeo de los ventrículos. En el caso del parénquima las moléculas no se desplazan
tan fácilmente, ya que existen membranas y orgánulos que enlentecen su desplazamiento, por lo
que se representa en tonos grises. Este movimiento puede estar restringido en determinadas
condiciones patológicas, como los quistes epidermoides. En las imágenes convencionales estos
tumores tienen un comportamiento muy similar al líquido cefalorraquídeo, sin embargo debido
a que tienen múltiples tabiques en su espesor que di�cultan el desplazamiento de las moléculas
de agua, brillan intensamente en las imágenes de difusión en comparación al contenido de los
ventrículos. En el caso de un tumor, si la imagen por difusión presenta hiperintensidad, es señal
de un aumento del número de mitosis celulares, y por tanto de una mayor probabilidad de
malignidad.
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Coe�ciente de Difusión Aparente (CDA)
El Coe�ciente de Difusión Aparente es la cuanti�cación de la difusión, es decir, una medida

del desplazamiento neto de las moléculas de agua. Junto a la imagen por difusión, se utiliza para
el diagnóstico del accidente cerebrovascular (ictus) isquémico.

Mientras que en la fase aguda del ictus la imagen de difusión muestra una región hiperintensa
y el CDA está disminuido, en el infarto crónico (que se inicia seis horas después y alcanza su
mayor magnitud entre dos y cuatro días después del ictus), el CDA aumenta y la imagen de
difusión muestra regiones hipointensas.

Anisotropía Fraccional
El parénquima cerebral normal dista mucho de ser un medio isótropo para la difusión de

las moléculas de agua. La presencia de múltiples tractos nerviosos y sus vainas producen que
las moléculas de agua tiendan a moverse en forma anisotrópica. Las moléculas se mueven más
fácilmente en el sentido de las vías nerviosas. En este caso, la difusión ya no tiene morfología
de esfera, sino más bien en forma de elipsoide, que sigue el eje principal de las vías neuronales.
Esta asimetría se representa en las imágenes de anisotropía fraccional, en las cuales las áreas con
mayor anisotropía se ven hiperintensas (blancas), como los haces mielinizados (cuerpo calloso) y
las áreas de baja anisotropía se ven hipointensas (oscuras), como la corteza cerebral por ausencia
de �bras. Este tipo de imágenes tiene utilidad en el estudio de enfermedades desmielinizantes y
degenerativas. Además permite observar las distorsiones de las �bras neuronales causadas por
lesiones tumorales.

Gracias a esta técnica, un estudio de la clínica Quirón ha demostrado que aunque en sujetos
normales el proceso de formación de vías mielinizadas alcanza su máximo entre los 25 a 30 años
de edad, estas �bras se siguen desarrollando hasta más allá de los 32 años en sujetos que han
practicado meditación de forma continuada.

Figura C.3: Equipo conectado al PACS desde el que el Dr. Fayed realiza las labores de diagnóstico
por imagen.
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Perfusión
En su de�nición más clásica, la perfusión se re�ere a la entrega de oxigeno y nutrientes a

través de los capilares. Este examen se realiza tras la administración de un medio de contraste
por vía intravenosa. Al gra�car la intensidad de señal en el tiempo, permite evaluar el estatus
hemodinámico cerebral, calculando el tiempo de tránsito medio, el volumen sanguíneo y el �ujo
sanguíneo cerebral.

Algunas patologías presentan alteraciones de la perfusión cerebral. Los tumores, por ejemplo,
se caracterizan por presentar un aumento del volumen sanguíneo y del �ujo cerebral, ya que
debido al proceso de angiogénesis se produce un aumento del número de vasos sanguíneos al
interior del tumor. Combinada con la imagen de difusión, la perfusión permite también identi�car
las regiones de un foco isquémico: una región central de infarto, donde la reducción del �ujo
sanguíneo es mayor, y una región periférica de penumbra.

Espectroscopia
Permite el estudio metabólico de los tejidos cerebrales normales y de las alteraciones que

se presentan en algunas de las enfermedades. Existen patrones de metabolitos normales en el
tejido cerebral, permite comparar distintas funciones metabólicas a través de marcadores del
metabolismo energético (creatina), replicación celular (colina) y metabolismo anaerobio (lactato).
Esta técnica es ideal en caso de lesiones difusas, algunas veces antes que se observe alteraciones
en las imágenes convencionales. Por ejemplo, en tumores malignos es característico que aparezcan
picos en el lactato y los lípidos, y suba la ratio de colina-creatinina.

La clínica Quirón está utilizando actualmente la espectrografía en un estudio longitudinal
multicéntrico sobre pacientes con episodios psicóticos.

Funcional BOLD
Proporciona imágenes funcionales del cerebro. Basándose en las diferentes propiedades

magnéticas de la oxihemoglobina y la deoxihemoglobina en sangre, la señal BOLD (Blood
Oxygenation Level Dependant) permite determinar en qué zonas del cerebro aumenta la actividad
neuronal tras un estímulo.




