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Visual SLAM and Scale Estimation from Omnidirectional Wearable Vision

RESUMEN

La resolucién del problema de Localizacion y Mapeado Simultdneos (SLAM) con sistemas de vision
permite reconstruir un mapa del entorno a partir de medidas extraidas de imédgenes y, al mismo tiempo,
estimar la trayectoria u odometria visual de la cdmara. En los tltimo afios el SLAM visual ha sido uno de
los problemas mas tratados en el campo de la visién por computador y ha sido abordado tanto con sistemas
estéreo como monoculares. Los sistemas estéreo tienen la caracteristica de que conocida la distancia entre
las cdmaras se pueden triangular los puntos observados y por lo tanto, es posible obtener una estimacién
tridimensional completa de la posicién de los mismos.

Por el contrario, los sistemas monoculares, al no poderse medir la profundidad a partir de una sola
imagen, permiten solamente una reconstruccién tridimensional con una ambigiiedad en la escala. Ademads,
como es frecuente en la resolucién del problema de SLAM, el uso de filtros probabilisticos que procesan las
imdgenes de forma secuencial, da lugar a otro problema més alla de una ambigiiedad de escala. Se trata de
la existencia de una deriva en la escala que hace que esta no sea constate durante en toda la reconstruccion,
y que da lugar a una deformacion gradual en la reconstruccion final a medida que el mapa crece.

Dado el interés en el uso de dichos sensores por su bajo coste, su universalidad y su facilidad de
calibracién existen varios trabajos que proponen resolver dicho problema; bien utilizando otros sensores de
bajo coste como IMUs, [[17,22] o sensores de odometria disponibles en los vehiculos con ruedas [J5,[7,26];
bien sin necesidad de sensores adicionales a partir de algin tipo de medida conocida a priori como la
distancia de la cdmara al suelo [16]] o al eje de rotacién del vehiculo [25].

De entre los trabajos mencionados, la mayoria se centran en cdmaras acopladas a vehiculos con ruedas.
Las técnicas descritas en los mismos son dificilmente aplicables a una cdmara llevada por una persona,
debido en primer lugar a la imposibilidad de obtener medidas de odometria, y en segundo lugar, por el
modelo mas complejo de movimiento.

En este TFM se recoge y se amplia el trabajo presentado en el articulo “Full Scaled 3D Visual Odometry
From a Single Wearable Omnidirectional Camera” enviado y aceptado para su publicacién en el préximo
“IEEE International Conference on Intelligent Robots and Sytems (IROS)”. En éI se presenta un algoritmo
para estimar la escala real de la odometria visual de una persona a partir de la estimacién SLAM obtenida
con una camara omnidireccional catadidptrica portable y sin necesidad de usar sensores adicionales.

La informacidn a priori para la estimacidn en la escala viene dada por una ley empirica que relaciona
directamente la velocidad al caminar con la frecuencia de paso o, dicho de otra forma equivalente, define
la longitud de zancada como una funcién de la frecuencia de paso [11]]. Dicha ley estd justificada en una
tendencia de la persona a elegir una frecuencia de paso que minimiza el coste metabdlico para una velocidad
dada [29]], [15].

La trayectoria obtenida por SLAM se divide en secciones, calculdndose un factor de escala en cada
seccion. Para estimar dicho factor de escala, en primer lugar se estima la frecuencia de paso mediante
analisis espectral de la sefial correspondiente a la componente z de los estados de la cdmara de la
seccién actual. En segundo lugar se calcula la velocidad de paso mediante la relaciéon empirica descrita
anteriormente. Esta medida de velocidad real, asi como el promedio de la velocidad absoluta de los estados
contenidos en la seccidn, se incluyen dentro de un filtro de particulas para el cdlculo final del factor de
escala. Dicho factor de escala se aplica a la correspondiente secciéon mediante una férmula recursiva que
asegura la continuidad en posicién y velocidad.

Sobre este algoritmo basico se han introducido mejoras para disminuir el retraso entre la actualizacién
de secciones de la trayectoria, asi como para ser capaces de descartar medidas erréneas de la frecuencia de
paso y detectar zonas o situaciones, como la presencia de escaleras, donde el modelo empirico utilizado para
estimar la velocidad de paso no seria aplicable. Ademas, dado que inicialmente se implement6 el algoritmo
en MATLAB, aplicdndose offline a la estimacion de trayectoria completa desde la aplicacion SLAM, se ha
realizado también su implementacién en C++ como un mddulo dentro de esta aplicacidon para trabajar en
tiempo real conjuntamente con el algoritmo de SLAM principal.

Los experimentos se han llevado a cabo con secuencias tomadas tanto en exteriores como en interiores
dentro del Campus Rio Ebro de la Universida dde Zaragoza. En ellos se compara la estimacion de la
trayectoria a escala real obtenida mediante nuestro método con el Ground Truth obtenido de las imdgenes
por satélite de Google Maps. Los resultados de los experimentos muestran que se llega a alcanzar un error
medio de hasta menos de 2 metros a lo largo de recorridos de 232 metros. Ademds se aprecia como es capaz
de corregir una deriva de escala considerable en la estimacidn inicial de la trayectoria sin escalar.

El trabajo realizado en el presente TFM utiliza el realizado durante mi Proyecto de Fin de Carrera [13]



con una beca de Iniciacion a la Investigacion del I3A y defendido en septiembre de 2011. En dicho proyecto
se adapté una completa aplicaciéon C++ de SLAM en tiempo real con cdmaras convencionales, para ser
usada con camaras omnidireccionales de tipo catadidptrico. Para ello se realizaron modificaciones sobre
dos aspectos basicos: el modelo de proyeccién y las transformaciones aplicadas a los descriptores de los
puntos caracteristicos. Fruto de ese trabajo se realiz6 una publicacién [12]] en el “11* OMNIVIS” celebrado
dentro del ICCV 2011.
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Chapter 1

Introduction

The resolution of the problem of Simultaneous Localisation and Mapping (SLAM) with one camera allows
to reconstruct a map of the environment from the measurements taken from the images and, at the same time,
estimate the visual odometry of the sensor. This problem can be addressed using either global optimization
techniques or probabilistic filters like the extended Kalman filter or the particle fitler. Focusing on visual
SLAM, with global optimization, the map and the position of the cameras are estimated by minimizing
the reprojection error of the points in the given images. When using probabilistic filters, odometry and
map estimations are updated by processing the images sequentially. As a result, probabilistic filters are
frequently used in real time SLAM applications where images are processed as they are delivered. However,
they have the drawback of a decrease in the accuracy in the long term since the images are forgotten as they
are processed and used to update the estimation.

In the last years, visual SLAM has become one of the most trending research fields in computer vision
and has been addressed both by using stereo and monocular systems. The main feature of stereo systems
is that, knowing the baseline of the cameras, detected landmarks of the scene can be triangulated and the
visual odometry and landmark positions can be completely estimated. SLAM approaches using stereo
systems have been presented in [[19,211[23]].

On the other hand, due to the impossibility to extract the depth of a landmark just from one single image,
monocular systems only allow the camera motion and scene to be estimated up to an unknown scale. With
this in mind, stereo systems may seem more appropriate than monocular ones to perform visual SLAM.
However the use of single cameras for visual SLAM is still appealing since they are cheaper, more compact
and easier to calibrate than stereo systems.

One of the most important and succesful works on monocular SLAM is the one developed by Davison
et al. [6], which is based on the extended Kalman filter. As landmark depths cannot be estimated only from
the first image, this approach uses a pattern of known size to initialise some feature locations allowing the
SLAM to start. Thus the scale of the map is fixed by the size of this initial pattern. In a later work by Civera
et al. [2], the inverse depth parametrization for the map points allowed the SLAM to start automatically
without the need of using an initialisation pattern. In this case the scale is arbitrarily fixed by a depth prior
of the map landmarks and an acceleration noise setup parameter.

Altough the scale can be initialised by a pattern of known size or some kind of prior, it is likely that
scale drift arises between different portions of the scene as the size of the map gets larger. The reason why
this drift occurs is the continuous lost and initialization of tracked landmarks, which act as anchor for the
scale, due to the sequential processing of the images. This drift acts as a source of incremental error in
the SLAM estimation, which leads to a deformation of the final map even after applying conventional loop
closing techniques by identifying revisited parts of the map. In [27]], Strasdat et al. propose a loop closing
method which corrects the map deformation due to scale drift.

Visual SLAM using omnidirectional cameras has been proposed in [4}/18.[28]]. Due to the 360° field of
view (FoV) of omnidirectional cameras, features last longer on the image than in the case of conventional
cameras, specially during big camera rotations. The increased lifespan of the features on the image
translates in a better estimation of the position of the features on the map, a lower need to initialise new
features and an increased robustness [24]].

In this work we extend the SLAM approach for catadioptric cameras developed in our previous work
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[12]] which was presented as final degree project and submitted for the 11th OMNIVIS Workshop in 2011.
This approach derived from state of the art real time EKF monocular SLAM for conventional cameras
and is used in this work to compute the visual SLAM estimation from sequences of images acquired with a
catadioptric camera mounted on a helmet which is carried by an operator (Fig. [I.T).

(@)

Figure 1.1: (a) Hemlet-camera device used in our experiments. (b) Omnidirectional image captured with our device.

An induced effect of human walking is a head vertical oscillation whose frequency matches up with
the step frequency [14]. Under the premise that the 6 d.o.f. visual SLAM is accurate enough, this vertical
oscillatory motion of the head should be visible. Fig. [[.2h depicts an example of this behaviour, where the
camera trajectory was obtained by performing a visual SLAM algorithm. Hence the step frequency of the
camera carrier can be measured by estimating the power spectra of the vertical component of the camera

trajectory (Fig. [[.2b).
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Figure 1.2: (a) Trajectory estimation of Visual SLAM from a head-mounted catadioptric camera. (b) Power spectra of
the vertical component

Walking speed is strictly calculated as the product of step frequency and stride length. However, there
exist biomedical studies like the one lead by Grieve [11]], which show an empirical relation between step
frequency and the walking speed with no dependence on the stride length (or equivalently, a dependence
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CHAPTER 1. INTRODUCTION

of the stride length on the step frequency). Further studies explain this relation as the result of a human
tendence to choose a step frequency that minimizes metabolic cost of locomotion at a given walking
speed [15}29].

Based on this, we propose an approach to calculate the scale of the visual odometry from a single
omnidirectional camera carried on the head of a person. This is done by first performing spectral analysis
on short sections of the trajectory to extract the step frequency. Then we compute the estimated walking
speed using the relation between step frequency and walking speed, and finally this estimation is integrated
into a particle filter which recursively computes the scale factor.

This work gave rise to a research article which has been recently accepted for the International
Conference on Intelligent Robots and Systems, to be held between 7-12 October in Vilamoura(Portugal). In
addition to the presentation of the work developed in this publication, in this Final Master Project we also
improve the initial algorithm. Firstly, since this algorithm has been initially programmed in MATLAB and
performed offline on the final SLAM reconstruction, we have implemented it in a module inside the C++
monoSLAM real time application and thus being able to obtain a real time scaled estimation. In the line of
real time performance we also introduce changes in the algorithm to reduce the delay in the update of the
scaled trajectory. Besides this, we have also included a condition to check the truth of the estimated step
frequency and thus, being able to detect situations or zones, like stairs, where the used walking empirical
model is not correct.

This memory is structured as follows. In Section 2 we discuss the Related Work on the determination of
the scale of the visual odometry with monocular vision. In Section 3 we detail the visual SLAM algorithm
for catadioptric cameras. In Section 4 we introduce our scaling algorithm. The experimental evaluation of
our algorithm is presented in Section 5. Finally, in Section 6 we extract the conclusions and discuss the
future work.






Chapter 2

Related Work

The problem of scale estimation in monocular SLAM has been adressed either by using additional sensors
which provide any measurement with length dimensions or by taking some prior of an spatial dimension.

Regarding the literature on scale estimation with additional sensors, in [3]], Civera et al. use GPS
information to align and scale the SLAM estimation by a rigid transformation which minimizes the distance
between corresponding trajectory points. However this approach was designed for a benchmarking purpose
and its practical utility is very limited for two reasons. Firstly, because in outdoor environments GPS
itself provides a very precise estimation of the location without need of additional sensors. And secondly
because one of the features which makes visual SLAM appealing is the ability to operate in GPS denied
environments (indoors).

Lupton et al. [[17] and Niitzi et al. [22] propose the use of an IMU to resolve the scale. The former
aims to make the true map scale observable by integrating the visual data and the IMU data within an
information filter. This allows the computation of the true map and trajectory estimations with no bias
due to acceleration noise and feature depth priors. The latter fuses the SLAM estimation and IMU data
in an EKF framework to compute the scale factor. Nevertheless both IMU based approaches present the
drawback of the need of the numerical integration of the acceleration measurements and thus also making
an initial assumption on the velocity.

In the works by Cumani ef al. [5]] and Eudes et al. [7] it is suggested the combination of the wheel
odometry and the visual information to obtain the scaled map. In [5] odometry is used to provide a
prior estimation of the true scaled motion between two consecutive frames which is refined by the update
from camera measurements. In [7]], the measurement of distance between two camera poses from the
odometry is used to compute an scale factor, which is applied to the displacement estimated from the camera
measurements. In a similar way Scaramuzza et al. [26] use the vehicle speed measurement to compute the
distance between the last two frames and recover the 3D structure by triangulation of the common image
points.

In other works the scale of the scene is estimated without additional sensors using a prior of any spatial
dimension. As mentioned in the Introduction, in the initial work by Davison et al. [6] scale was fixed
with the size of the pattern used to initialise the landmarks needed to start the SLAM. However it does not
avoid scale drift as the map gets larger, since initial landmarks which anchor the true scale are eventually
lost sooner or later. Thus, to overcome scale drift the scale factor must be updated periodically. Loethe
et al. [16] use the prior knowledge of the distance from the camera to the ground plane to compute the
scale factor of the scene, which is well suited for camera mounted on vehicles. The main challenge of this
approach is to locate and identify the points on the ground, which are needed to compute the ground plane.
This is a difficult task due to the flatness of the road and the presence of other dominant planes in the scene.
Under the assumption of planar motion, Scaramuzza et al. [25]] exploit non-holonomic motion constraints
of wheeled vehicles to resolve the absolute scale. Taking the offset distance between the camera location
and the rear-axis of the vehicle they develop and expression which allows to compute the true distance
between two camera poses given that the vehicle is turning.

In this work we present a method to compute the scale in visual SLAM performed with a head-mounted
omnidirectional camera and without need of additional sensors. One of the appeals of our method is that,
although there exist plenty of methods to estimate the scale in visual SLAM with on-road vehicles, to
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the best of our knowledge there do not exist works on scale estimation in monocular SLAM with human
mounted cameras. Moreover, since it is not possible to obtain odometry measurements of human motion,
we believe that our method may suppose one practical and reliable solution to estimate the scale in such
cases. Also, although we evaluate our approach in the specific case of a head-mounted omnidirectional
camera, it could be generalized to any case when the walking oscillatory motion can be observed in the
visual odometry.
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Chapter 3

Visual SLAM with catadioptric systems

The V-SLAM approach used in this work is based on the Extended Kalman Filter (EKF) which is divided
in two parts. In the first part, Prediction, the new state of the system is estimated from the previous time
step state through the motion model. The second part of the algorithm, Update, uses the measurements of
the environment to improve the new state prediction. The full state vector, composed of both the map and
last camera location, is modelled as a multidimensional Gaussian distribution coded by its mean vector and
covariance matrix. For a detailed explanation of the prediction and update equations of the EKF, refer to
Appendix [A]
The state of the system is given by the state vector x

X:(I', q, V) w7xi7yiazi79i7¢i7pia“') (31)
Camera state 3D points (IDP)

where r(351) is the camera pose, g4« 1) is the quaternion of its orientation and V (3, 1) and w3 1) are its
linear and angular velocities, respectively.

Landmarks are characterised by a descriptor and their 3D location. The descriptor of the landmark is
taken as the image patch around its projection when it is initialised. The 3D locations are parameterised in
inverse depth parametrisation (IDP) [2]. As the depth of the landmarks cannot be measured from one single
image, landmarks observed by first time are initialised with an arbitrary inverse depth prior pg; with large
uncertainty. This prior is gradually refined in succesive observations.

The inability to measure the initial depth of the features involves the unobservability of the absolute
scale of the scene. Thus, the scale of the SLAM reconstruction is biased due to the difference between the
arbitrary depth prior and the true depth of the first measured landmarks. Moreover, scale is liable to drift
due to the gradual lost of old landmarks and the initialisation of new ones.

To update the state estimation, the position of the tracked landmarks on the image has to be measured
by a matching process. This is done by an active search algorithm. Firstly, an elliptical search region is
defined for each visible landmark around its predicted image projection by the projection model. The size
of the search region depends both on the motion and the uncertainty of the corresponding landmark 3D
position. For each search region, the pixel scoring the highest correlation with the landmark descriptor is
selected as a putative match. Secondly, outliers are rejected by checking the scene joint rigidity of every
putative matches with a 1-point-RANSAC algorithm [3]]. Matches which are compatible with the most
voted hypothesis are taken as the measurements to be used in the update step of the EKF.

Due to the distinct characteristics of the catadioptric projection, the visual SLAM approach for
conventional cameras must undergo a series of modifications for its use with catadioptric cameras. One
of these modifications is related with the projection model encapsulated by the measurement function of
the EKF. The conventional pin-hole camera model must be substituted by a more complex projection model
which is able to model the projection of a point reflected on a parabolic or an hyperbolic mirror. One of the
most used is the Spherical Camera Model proposed by Geyer and Danillidis [9] and extended by Barreto
and Araujo [1]]. The definition and equations of the Sphere Projection Model as well as its integration in an
EKF-SLAM scheme [24] are explained in detail in the Appendix B}
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Figure 3.1: A landmark is first detected in a position with polar angle 6;,;, initialized and the patch around it saved
as its descriptor. Lets suposse that in a future frame, this landmark is predicted to be in the position with polar angle
Opreq. Thus, to improve the search in the region around this position, the descriptor must be rotated by the difference
of the polar angle Af.

Omnidirectional images not only involve a more complex projection model, but also an important image
deformation, distortion, and variable scale in the image. Generally, during the active search of a landmarks
in the image the true matching point must resemble as much as posible to the descriptor patch associated
with that landmark. Since the appearance of one landmark in the image changes as the view point varies
with the camera movement, it is desirable to predict this change. This is achieved by applying 2D affine
transformations to the patches.

The patches to which these transformations are applied are not the own descriptor patches used during
the matching process, but bigger patches extracted when the feature is initialised. Prior to the matching
process, the big patches are warped by the propper 2D transformation and then, the descriptor patches for
correlation are extracted from the center of the warped patches.

In the case of omnidirectional cameras these transformations must encapsulate on the one hand, the
deformation due to the rotation of the camera around the vertical axis, and on the other hand the change
on the scale of the landmark in the image. This change of scale has two distinct components. The first
one, which is common to every vision system, is related with the change of the true depth of the landmark
(i.e., objects near to the camera look bigger and objects too far away look smaller). The second component,
however, is due to the projective properties of the catadioptric cameras which make the size of a projected
object vary with the radial distance of the projection from the principal point of the image.

To prevent the deformation associated to the rotation of the camera, the descriptor patch of the landmark
must be rotated by the variation of its polar angle in the image respect to the initialization instant (Fig. [3.1).

For the deformation due to the change in scale we use an expression for the scale factor developed
in 12]]. This expression is achieved as follows (Fig. [3.2):

1) Let us take an sphere on radius r at a distance D >> r from the camera and parameterise it by the
quadric form Q.

I 0
Qaxa) = [OT —7"2] (3.2)
2) Being 6 the elevation angle and taking an azimuth angle of ¢ = 0 without loss of generality, the 3D

position of the center of sphere is given by Xo = (D cosf, 0, Dsin 6, 1)T which, according to the sphere

~ cos 6
E+sin?

projection model, is projected in the point pg = ( 0, 1)T in the image plane. The distance from the
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CHAPTER 3. VISUAL SLAM WITH CATADIOPTRIC SYSTEMS

Figure 3.2: Projection of a sphere from the scene to the image plane by the jacobian computed on its centre Xo.

principal point is then:

~ cos 6

&+ sinf (3-3)

Rim = |[pol| =

3) The projection function is linearized by computing its jacobian J at the center of the sphere and from
this Jacobian we build the affine projection matrix P}.

X=X ™ D(e+ Sp)2 0 €+ So 0 ‘
Jx= 0
Piaxa) = { XOTXO 1] (3.5)
4) By this projection matrix the sphere Q is projected into a ellipse defined by the conic C:
72 (14+£56)?
a1 D2(£+s:)4 0 0
C=(P,Q Py = 0 sy O (3.6)
0 0 =
+

5) The resulting ellipse has two semiaxis 7, (radial direction) and r;,, (polar direction) As we want
to apply a uniform scale we choose one of the semiaxis to compute the scale factor. We choose the minor
semiaxis, which corresponds to the polar direction and thus it is less afected by the radial distortion induced

by the lens, which has not been considered in this derivation:

r 1
P P — 7
Tim ’YDf—i—sinG 3.7)
where, from (3.3)), sin # can be substituted by:
R \J1H (52201 —€) —g(fm)?
So = f(&, =) = — . (3.8)
5 1+ (Bim)2

~
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Given the resulting expression we can conclude that the size of an object in a catadioptric image depends
on the real size of the object 7, its distance from the camera D, the camera-mirror parameters £ and v and
the distance R;,, of the projection from the principal point. The change in scale of one patch between two
frames can be computed as the quotient of its sizes in the two frames:

L T _ D1 61 S ) 59)
rom D2 €4 (g, F2)
kl k?2

where we can note that the dependence on the real size is removed. Also, note that the quotient &, is
the contribution of the change of true depth (which common to every cameras), and the quotient ks is the
contribution of the mirror, which is a particular characteristic of catadioptric cameras.

At this point it has been shown how the change on rotation and scale of the patches are predicted. The
computed values are included as the parameters of an affine tranformation Hg to be applied to the patches
prior to the active search:

kcos(Af) —ksin(Af) 0
Hs = [ ksin(Af) kcos(Af) 0 (3.10)
0 0 1

Concerning the implementation details it must be noted that the patch to be warped by the affine
transformation has to be bigger than the patch used as descriptor, being the later extracted from the middle
of the bigger one. To ensure that the extraction is not done beyond the limits of the warped patch, the scale
factor is down limited by the following expression:

kiim = \@h—P cos(E — mod(A#, E)) (3.11)
h BP 4 2
where hpp is the size of the big patch and & p the size of the descriptor patch.

In Fig. [3.3] we show an example of the performance of the described SLAM approach for
omnidirectional cameras from our previous work in [I2]. This trajectory was obtained from a sequence
of omnidirectional images along a path of 340 m taken from the database of the Rawseeds Projectﬂ The
trajectory was uniformly scaled and compared with the synchronized GPS Ground Truth following the
benchmarking method of [3], yielding a mean error of 3.44 m (1% mean error over the trajectory).

Figure 3.3: GPS trajectory (red) and SLAM trajectory (green) superposed on the satellite image of the Campus of
Bovisa (Milan) where the sequences were adquired.

Thttp://www.rawseeds.org/home/

14



Chapter 4

Scaling of the visual odometry

Up to here we have introduced and explained the basic visual SLAM algorithm for omnidirectional cameras.
However, one problem of using a monocular system is that it is only able to provide an estimation of the
scene reconstruction up to a scale factor. Moreover, this drawback is linked to a more critical one. Since
in every Visual SLAM approach all the tracked points are lost sooner or later, the scale of the scene is not
anchored and shifts along time as old points are lost and new points are initialised. This phenomena, known
as scale drift, makes the scale problem go beyond a simple scale ambiguity which can be solved by applying
a uniform scale factor. Indeed, variation of the scale involves a great deformation of the final reconstruction
in larger scenes. For this reason it is neccesary to provide a method to compute the scale factor periodically
along the motion estimation.

To solve the scale problem, in this work we propose a method which is performed iteratively on sections
of the trajectory estimated by the EKF visual SLAM approach. The final output of our method is a full
scaled estimation of the visual odometry.

The main assumption and the core of our method is that the SLAM estimation of the visual odometry
must register the oscillatory motion of the head during human walking. Thus, although our experiments are
focused in SLAM with omnidirectional cameras, its use can be extended to any kind of camera or sensor
as long as the unscaled visual odometry estimation registers any oscillatory motion of a part of the human
body linked to the step frequency.

Despite this is only applicable on humans, we claim its wide utility, since internal odometry
measurements, which are very reliable to provide scale information in SLAM with vehicles, are not
available in the case of human walking.

4.1 Description of the basic scaling algorithm

The basic algorithm of our method to determine the scale can be divided in four steps, which will be treated
in detail in next subsections:

e Spectral analysis on the SLAM visual odometry for the estimation of the step frequency.
e Empirical estimation of the walking speed from the step frequency.
o Integration of the walking speed in a particle filter for a recursive estimation of the scale factor.

e Scaling of the final visual odometry.

4.1.1 Spectral analysis on SLAM visual odometry

In the case of our omnidirectonal camera, the camera frame is oriented with its z-axis pointing
approximately to the direction of the normal to the ground plane, so the head vertical oscillation is given
by the z-component of the camera position vector. If we split the visual odometry in sections of N camera
poses, spectral analysis is carried on the data sequence (2,1, 2k 2, - .., 2k, N ), Where zy, ,, is the z-component
of the n-th camera pose in the section k.
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4.1. DESCRIPTION OF THE BASIC SCALING ALGORITHM

The power spectral density I'y is calculated by applying the Discrete Fourier Transform (DFT) to the
data sequence as follows:

N
27 fm(n—1)\ 5
Pak(fm) = |3 2 mexp (—y) H @1
PN F,
mF, N N
= — 1,01, 42
f N " 2 0 2 42

where Fj is the sampling frequency, which in our case is the number of frames per second (fps) of the
camera, and f;,, are the frequencies for which the spectrogram is sampled.

The computation of the DFT of discrete signals involves a series of issues which have to be adressed.
The most inmediate one is related to the sampling frequency F of the camera. As we are interested in
extracting an step frequency, F has to be large enough to avoid aliasing in the case when the highest
admisible step frequency occurs. In the acquired sequences, the sampling frequency of the camera was set
to 15 frames per second (i.e., F, = 15 Hz), which is greater enough than the f; = 3 Hz taken as the upper
limit for a feasible human step frequency.

The choice of the number of samples NN is also important for the computation of the spectrogram. From
de definition of the DFT in 4.1 and £.2] one can see that the spectrogram is discretized in N frequency
bins ranging from —% to %, so a higher N involves an increased resolution. Also, in any case, /N has a
lower limit given by the minimum number of samples needed to observe at least one oscillation in the less
favourable case of the minimum admissible step frequency (taken as f, = 1 Hz):

N™in — i_ =15 4.3)
f st

Note that although for DFT computation purposes IV has to be as highest as possible, from the global
point of view of trajectory scaling, a high N involve a less frequent update of the scale factor and a reduced
ability to detect changes in the step frequency. This can result in a decreasing accuracy in the computation of
the scale factor. Moreover, if interested in real time operation, the time delay to update the scaled trajectory
grows linearly with N, since before scaling one section we need to get the new N unscaled camera poses
from the SLAM algorithm. Thus, in summary, for the choice of N we must reach a compromise between
the resolution of the DFT and the frequency with which the scale factor is updated.

Another problem of computing the DFT which may not seem very evident is the creation of new low
frequency components which did not exist in the original signal. This phenomena is known as spectral
leakage and arises when we work with finite signals. When applying the DFT, the input signal is considered
to be one period of an infinite signal. Thus, discontinuties are likely to occur and these discontinuities end
up by producing non-sinusoidal components with a low frequency and a high amplitude (Fig. d.1). The
harmonics in which these components are decomposed are spreaded along all the spectrogram and might
end up by masking the searched step frequency (Fig. .Tk). To solve this problem we preproccess the data
sequence (zj 1, 2k 2, ---, 2k,N) Dy substracting the first element zj, 1 from all the elements and filtering with
a second order digital filter with a cutoff frequency of f. = 0.3 Hz (Fig. 4.Ip). This way, the power peak at
the real step frequency becomes clearly visible in the spectrogram (Fig. [4.1[).

Once the spectrogram of the signal is computed, we extract the maximum peak in the interval of feasible
human step frequencies, which are assumed to fall in the range between f.; = 1 Hz and f.;, = 3 Hz. Given
the spectrogram Iy ;. (f,, ), the estimated step frequency fs; , is computed as:

fst,k: arg max Fd,k(fm) (44)
Fm€[f5: 1)

4.1.2 Walking speed estimation

To estimate the walking speed, we consider the biomedical work by Grieve et al. [11]] where a relation
between the step frequency (fq,r) and the walking speed (Viaix,r ) normalized with height (H) is
presented:

Vwalk,k = afft_’kH 4.5)
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Figure 4.1: Z-component signal segment (top) and corresponding power spectra in logarithmic scale (bottom) of two
instances from the same visual odometry section: (a,c) without preprocessing the input signal and (b,d) with offset
elimination and filtering of the input signal. Note how in (b) the power peak at the step frequency (2 Hz) is observable
and the highest in the interval of feasible step frequencies. Signal segments have been copied three times to make
visible the difference in the discontinuty between the two instances.

where Vi,qi 1 is in m/s, fg 1 in Hz, H in m, and o and [ are characteristic parameters which differ from
one individual to another.

Further studies have proved that this direct relationship between walking speed and step frequency
responds to a tendence to minimize the metabolic cost of walking [|15/29].

In the work by Grieve et al., values of o and /3 parameters are presented as dependent on the
characteristics of each individual and they provide a group equation with the means of the values obtained
for the subjects participating in their experiments. For higher accuracy, in this work we have computed our
own « and (3 parameters for the camera operator. We measured the time ¢; it took the operator to walk a
distance s = 100 m at the times per step AT} given by a metronome ranging from 0.45 to 0.80 seconds in
intervals of 0.05 seconds (see Table[.1)). The height of the operator is H = 1.88 m.

Normalized walking speeds V;' and step frequencies f; were computed from the raw experimental data.
Then a power fitting was applied to obtain the values of o = 0.329 and 3 = 1.534 (Fig. 4.2).

4.1.3 Particle Filter for scale factor tracking

Having the walking speed estimate, the scale factor for section k£ could be straighforwardly computed by
dy — Vwaik,k

k= Ty

However, given the empirical method for the walking speed estimation and the possible high variability

of the SLAM velocity along N frames, we decide to use a probabilistic filter for the computation of the

scale factor. This allows us to introduce an uncertainty to the scale factor and at the same time decrease the

where (v, is the average adimensional speed of the camera poses in section k.
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4.1. DESCRIPTION OF THE BASIC SCALING ALGORITHM

Table 4.1: Experimental data used to compute the empirical Step frequency-Walking speed relationship for the camera

operator.

Normalized walking speed (1/s)

e
2

o o - - -
O O = N & O

)

° Experimental data

AT s [ tils] [ fi= 7 HA Vi =7 [3]
0.45 48.18 2.22 2.08
0.50 55.60 2 1.80
0.55 61.63 1.82 1.62
0.60 74.54 1.67 1.34
0.65 84.42 1.54 1.19
0.70 94.63 1.43 1.06
0.75 104.42 1.33 0.96
0.80 116.06 1.25 0.86
= Fitting

= 0.3291

1.534
step

_N

1.5

Step frequency (Hz)

Figure 4.2: Power fitting of the experimental data to compute the relation between walking speed and step frequency
(terr = 0.018, maxerr = 0.04).

effect of spurious estimations of the walking speed in the computation of the scale factor.
For the design of the probabilistic filter we consider a dynamic system whose state xj is composed
by the magnitude of the SLAM velocity Vsraar,r and the decimal logarithm of the scale factor A\, =

IOglo(dk)~

(L) _

X

A

(L)
VSLAM,k

|

(4.6)

As it will be detailed in further reasoning in this section, there exist a variety of good reasons to take the

logarithm instead of the scale factor directly:

o It allows to restrict the scale factor to positive values by using simply a gaussian distribution to model
the uncertainty.

e Uncertainty is encoded in orders of magnitude, which is more realistic than taking an interval in d
with the same upper and lower limits. For example, with no prior knowledge of the scale factor, the
chances of it falling between 0.1 and 1 should be equal to the chances of falling between 1 and 10.

e Every uncertainties in the model can be modeled by additive gaussian noise.

e All the non-linearities of the model are encapsulated in the measurement function.

To track the scale factor, a particle filter with Sampling Importance Resampling is designed [10]. We
use a particle filter rather than an extended Kalman filter (EKF) so that it can deal with high uncertainty
priors of the scale factor which would involve a large linearization error in an EKF approach.

Hence the state of the system in each section k is approximated by a set of particles:

Sy = {(x@),w,(f)) |L=1,2, ...,P}
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CHAPTER 4. SCALING OF THE VISUAL ODOMETRY

where P is the number of particles and x,(CL) and w,iL) are respectively the state vector and the resampling

weight of particle L.

The particles are initialised such that the initial values of )\(()L) are drawn from a Gaussian distribution
Ao ~ N (0, 09), where o is a parameter related to the orders of magnitude being scoped out.

In the first step of the particle filter, particles are sampled down by a proposal distribution p(xy|xx—1):

X~ pxilx)) 4.8)

In our system the sampling of the proposal distribution includes both the update of the SLAM velocity,
which is taken as a control input coming from the visual odometry, and the possible drift in the scale. This
is encoded in the following equations:

Vs(ézaxM,k = pvk + b (4.9)
A =AM 4+ a® (4.10)

with v(5) ~ N(0, 0y ) and o) ~ N(0, oarift), and where py, and oy, are the averaged speed and the
corresponding standard deviation of the last set of N SLAM camera poses used for spectral analysis, and
Oarift 18 the standard deviation prior of the scale drift between two consecutive sections, which is modelled
as Gaussian noise.

This initial sampling by the proposal distribution responds to an initial prediction of the state in the step
k. After this prediction, the uncertainty of the estimation is reduced by integrating the measurement of the
real walking speed V4,1 from the spectral analysis routine. To do this, firstly the particles are weighted
as follows:

w = p(Viark x|x ) (4.11)

where p(Vipaik, i |x,(€L)) is the probability density function defined by the measurement model h(xy) and the
statistics of the sensor noise. Intuitivelly, this expression means that particles for which the measurement
function yields a walking speed consistent with the walking speed measurement will get higher weights.
Assuming that the speed estimation is affected by Gaussian noise of zero mean and standard deviation
Ovwalk to be set up empirically, weights are computed as:

w,ﬁ” = p(Vivaik, k| X;(f)) =¢ (

Vwalk,k - h(xch))> 4.12)

OVwalk

where ¢(z) is the probability density function of the standard normal distribution and the measurement

function h(x,iL)) is given by:

AT = Vi 100 (4.13)
Then weights have to be normalized as follows:
(L)
ol = e (4.14)
3 W)
M2 "

Finally, the set of particles Sy is resampled by drawing P particles from a multinomial distribution
Mult(P, &™), ...,&)) where the probability of drawing a particle (L) is given by its corresponding weight

o),

4.1.4 Scaling of the trajectory

The scale factor to be applied to the camera poses of each section k is obtained by averaging the logarithmic
scale values of the particle set Sy, and undoing the logarithmic change as follows:

A

e = 1P (4.15)
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4.2. IMPLEMENTATION WITHIN A REAL TIME MONOSLAM FRAMEWORK

di, = 10™ (4.16)

This scale factor must be applied to the position and velocity of the N camera states of section k. To
simplify the notation we define a vector Cy(n) which encapsulates all the variables to be scaled:
Cr(n) = (ry, vy, 25 vy, vy, v) n=12,..,N (4.17)
To ensure the continuity in position and velocity, the offset in the initial unscaled pose of the section
is eliminated by substracting the last unscaled pose of the previous section from each vector Cy(n). Then
the scale factor is applied and the offset is recovered by adding the last scaled point of the previous section.
This is encoded by the following recursive equation:

Cr(n) = Cr_1(N) 4+ di[Cr(n) — Cr_1(N)] k=2,3,... (4.18)

Ci(n) = diCi(n) (4.19)

where C}, (n) is the vector which includes the scaled position and velocity of the camera poses contained in
section k.

4.2 Implementation within a real time monoSLAM framework

The original state of the art monoSLAM C++ application used in this work uses two threads. The main
thread executes the monoSLAM algorithm iteratively from the incoming frames. The second thread is
devoted to update the two graphical outputs: the real display, where the original image with the tracked
landmarks is shown, and the virfual display, where the estimated map and the camera trajectory are
displayed. Drawing functions executed by the second thread are triggered from the main monoSLAM
thread. To avoid simultaneous use of shared variables (SLAM state variables are needed also by the drawer
to update the displays) a mutual exclusion variable is used.

The implementation of our scaling algorithm has been done in a new thread. This way monoSLAM can
go on working while the last section of camera poses is being scaled. After each iteration, the main thread
stores the last state variables of the camera in a shared buffer. When this buffer is filled (i.e., it contains
the states corresponding to the N camera poses needed for the espectral analysis), the main thread sends
a signal which triggers the scaling thread, which loads the buffer into a variable exclusive for this thread.
After executing the scaling algorithm described in the previous sections of this chapter, the scaled trajectory
is updated by adding the recently scaled camera poses. To avoid conflicts between the new thread and
the original ones, two new mutual exclusion variables have been added: one for the buffer containing the
camera state variables, shared by the monoSLAM and the scaling threads, and another one for the scaled
trajectory which is shared by the scaling and the drawing threads.

As it was breafly introuced in Sec. one drawback of the described approach is that, although it is
able to operate in real time, there will always exist a delay in the update of the scaled estimation. This delay
is linked to the time it takes to fill the buffer with the NV states needed to perform the DFT. For example,
given the camera frame rate of 15 fps and assuming N = 200 as the minimum number of camera poses
needed to get an accurate estimation of the step frequency, the minimum delay in the update of the scaled
visual odometry would be:

min N 100 f

tdelay = FS = 15 f/S
We propose to decrease this delay by updating only one fraction of the buffer instead of renewing it
completely for each iteration of the scaling algorithm. Thus, the number of poses of each scaled section
(except for the first section which has to be N compulsorily) will be:

=13.33s (4.20)

Ny = ceil (aN) 4.21)

with 0 < o < 1. The only restriction in the choice of « is the time to scale the /Ny camera states to be lower
than the time taken to acquire Ny frames.

This way the number of camera poses used for the spectral analysis will remain N (by reusing poses
from previous sections), while the amount of scaled camera states per section is reduced to Ny.
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CHAPTER 4. SCALING OF THE VISUAL ODOMETRY

4.3 Check of the spectral power consistency

One issue of the estimation of the step frequency by spectral analysis is the possibility of getting false
estimations due to the presence of other dominant frequencies in the spectrogram.

To try to reject these false estimations we propose improving the basic algorithm by checking that the
spectral power of the frequency taken as step frequency is consistent with the typical range of amplitudes
of the head oscillation during walking. To do this, first we develop the following general formulation:

Let us take a continuous sinusoidal signal:

z(t) = A, sin (27 fpt) (4.22)

The power of this signal is computed as:

_ 1 (" I 2t [ A?
P = —/ 2 (t) dt = —/ A? sin? (W) dt = — A%sin® x de = =2 (4.23)
Ty Jo Tp Jo Ty 21 Jo 2

Now let us sample the continuos signal z(¢) into a finite time series z, = z ( Fﬂ) withl <n <N =

%. Then, by applying and we obtain the power spectra I" (f,,,) of the signal, which will be zero for
every fn, except for f,, = £f,.

The power spectra is related to the power of the original signal through the Parseval’s theorem, which
states that the energy of a signal is preserved in the frequency domain:

Theorem (Parseval): Let I' (f) be the power spectral density function of one signal z (¢). Then we have:

o) 1 T
/ F(f)df:—/ Z(t)dt (4.24)
—00 T 0
For discrete time signals the Parseval’s theorem becomes:
N
L Z Ty(f ):iif (4.25)
N . d\Jm N ‘ n .
m=—- n=

where [ is the sampling frequency and N, the number of samples. Applying this theorem to our signal
and substituting the right term by the result of [.23| we obtain:
F o

25 Talf) =P =7 (4.26)

which encodes a relation between the power of one sinusoidal signal and its spectral power density.

Now lets move back to our real problem of the estimation of the step frequency. After estimating
the step frequency fs; ; with the power of the component associated with the head oscillation can be
approximated as:

_ F,
P (fst) = 25T (fst.k) (4.27)

However, since the signal is not perfect and due to discretization error the power of the head oscillation
may be spreaded along the near frequencies. Thus we propose to reformulate the previous equation as:

— fst+Af p »Ps o 498
( t,k> /St A f (f) f N i d (fﬂhk) ( )

with m~ = round (N%) and m* = round (N%)

To validate f, ) as a feasible step frequency we have to check that P (fst,r) is consistent with the
typical range of amplitudes of the head oscillation movement during walking. Thus, first we need some
knowledge about the maximum A} and a minimum A reachable values for A,. Basing on [14], one
conservative estimation of such values would be A} = 40 mm and A7 = 7.5 mm.
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4.3. CHECK OF THE SPECTRAL POWER CONSISTENCY

Also note that, since the power spectral density is computed for the unscaled z-component of the visual
odometry, the computed power must be scaled by multiplying it by the square of the current scale factor dj.
Thus the condition for the spectral power consistency of the step frequency remains:

1 f |
A" S AP (fux) < 5 AT (4.29)

If this condition is not filled the strategy would be to keep the current scale factor dy and skip the
weighting and resampling steps.

Finally, the complete scaling algorithm presented in this section is sumarized in Algorithm [I]at the end
of the chapter.

Algorithm 1 Complete Visual Odometry Scaling algorithm
Require: Ci1..n, Sk—1
Ensure: Ck,luNf, Sk
//Notation
Cr.n = n'" unscaled camera state
Ck,n = nt" scaled camera state
N = # input camera states
Ny = # output/new camera states
Sk = Set of particles for the particle filter
i
//Algorithm
k=0
[So] = Initialize particles ()
while Not end of sequence do
k=k+1
Wait for new Cg,1..n from monoSLAM
[2k,1..N, HV,k, Ov,k] = Extract z-component and mean speed (C,1..n)
[2k,1..n] = High Pass Filter (zx,1..n7)
[fm, Ta,x] = Spectrogram (z,1..n)
[
[

h

fst.k, Tai (fst,e)] = Estimate Step Frequency (fm, Ta k)
Sk] = Sample Proposal Distribution (Sx—1, pv,k, ov,k)
if Step frequency power is consistent (Sk, I'q (fs¢)) then

[Viwaik,x] = Walking speed model ( fs¢,x)

[Sk] = Weighting and Resampling (Sk, Viaik,k)

[dk] = Compute mean scale factor (Sk)

else
di = di—1

end if
if k=1 then

61,1.41\7 = Scale Trajectory Section (di, Ci,1..N)
else

Ck,1..Nf] = Scale Trajectory Section (dk, Ck,<N,Nf+1)‘,N)
end if

end while
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Chapter 5

Experiments

We use a catadioptric omnidirectional camera with a resolution of 1024x768 and a frame rate of 15 fps.
This camera is mounted on a helmet carried by a human operator. The dataset used for the experiments
contains,firstly, 3 outdoor image sequences along the same path of 232 m and taken at three different
step frequencies. The Ground Truth step frequency was fixed by a metronome with with 0.01 seconds of
resolution. It was set up to 0.70, 0.60 and 0.50 seconds per beat for each sequence, which translates in
step frequencies of 1.43 Hz, 1.67 Hz and 2 Hz, respectively. Secondly, we acquired an indoor sequence
whithout metronome to evaluate the scaling of the trajectory under a normal gait condition.

The experiments are divided in two parts. In the first part we focus only in the analysis of the accuracy
in the estimation of the step frequency and select an optimal length of the data sequence with which the
DFT is feeded. In the second part we evaluate the global scaling algorithm and compare the performance
with different setups of the tunning variables.

5.1 Spectral analysis for step frequency estimation

First, we evaluate the feasability of using spectral analysis to measure the step frequency. As stated in Sec.
M.1.1] visual odometry is divided in sections of /N camera poses and the DFT is carried out on each section.

To compute the DFT we use the FFTW (Fast Fourier Transform West) C library [8]. We compare
different section dimensions of N = 100 and N = 200. As the routines of this library perform faster when
the length of the data sequence is a power of 2, data sequences are padded with zeros to a length of N, to
fill this condition. A greater padding involves an increased resolution of the spectrogram, but it should not
provide any improvement in the accuracy of the estimation since no new information is added. Thus, to
check this fact, we also compare two zero-padding instances ZP1 and ZP2. ZP1 corresponds to a padding
being NN, the power of 2 closest to N. ZP2 corresponds to a padding with N, = 1024.

In Fig. [5.1)we show the results of the measured step frequency of the three trajectories with four different
DFT setups resulting from the combination of the possible choices of N and N,,.

It can be observed that taking N = 200 provides more accurate estimations. This is done at the expense
of increasing the interval between two consecutive estimations. As expected, it is also shown that a greater
zero-padding does not provide any improvement in accuracy. Thus we select a setup of N = 200 data
points and the ZP1 padding instance to compute the DFT for spectral analysis.

5.2 Scaling of the Visual Odometry

5.2.1 The Ground Truth

First of all, to evaluate the performance of our algorithm, we need a Ground Truth with which we can
compare the results. We have obtained it from the Google Maps satellite view in the following steps:

o Build the walked path in Google Maps with the distance Measurement Tool, saving an image capture
of the built path and taking note of the total distance dgpsqps in m.
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5.2. SCALING OF THE VISUAL ODOMETRY

e Load the captured image in MATLAB and build a N,,; X 2 matrix t [pz] = [t,, t,] of 2D points by
consecutively clicking on key points of the trajectory.

e Points of this trajectory are expressed in pixel coordinates. To convert them to meters and obtain the
final Ground Truth we apply:

] dGMaps
N,
Sito V(e — tei1)? 4 (fyi — tyi1)?

To be able to numerically compare the Ground Truth with the visual odometry estimations provided by our
algorithm, we need to establish a pointwise mapping between each point in the estimated trajectory and
the Ground Truth. However, in our case this is a difficult task since our Ground Truth points lack from
synchronized timestamps to relate them with point of the trajectory. To solve this issue we propose the
following method:

ter [m] = t[px 5.1)

e Since Ground Truth has been defined by segments, first we split these segments in points to obtain a
fine discretization.
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Figure 5.1: Spectral analysis along the same path at the three step frequencies of 1.43 (top), 1.67 (center) and 2 Hz
(bottom) with different setups for the computation of the DFT.
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e We define a parameter o which is computed for every point of the trajectory as the quotient between
the accumulated covered distance and the total distance, ranging from 0 (start) to 1 (end). The same
process is applied to the scaled estimations from our algorithm.

e Thus, to compute the estimation error for each point tg)o of the scaled visual odometry estimation

we do:
alih = a(tl),) (5.2)
ten = arg min [l — a(ter)|| (5.3)
ter
error® = d(typ, &) (54)

5.2.2 Setup of the parameters

The scaling algorithm has a series of parameters which have to be adjusted. To this setup we will only
consider one of the 3 outdoor sequences (concretely the one taken at 0.70 seconds per beat). The number
of particles used in the particle filter is fixed to P = 5000, which is considered to be enough to fill
the probability distribution of the 2-dimensional state vector. The standard deviation of the distribution
modelling the initial logarithmic scale factor is set to o9 = 1 for all the experiments. This setup allows us to
consider an initial uncertainty interval for the scale factor between 10~2 and 10% with a 95% of confidence.
The number of input states from the SLAM algorithm is set to N = 200 from Sec. [5.1] and the number of
new states to be scaled at each iteration is initially set to the maximum value of Ny = N = 200.

The setup of the standard deviations of the distributions modelling the scale drift o4,y and the
measurement noise oy 41 Of the walking speed estimation is done empirically by testing different values.
We have taken 2 posible values both for o4.;¢; and ov e and we have considered the four posible
combinations of these values. Fig. shows that high o4.;7; and low oy qik values produce sharper
variations of the scale factor, which means that the system is more confident on the estimations of Vi,qi
from the spectral analysis. On the contrary, a low ¢4, ¢¢ and a high oy, imply that the estimation of
Viwaik, k 18 less reliable and thus the new scale factor is more dependent on the previus estimation yielding a
moderate curve.

Table 5.1: Estimation error for different configurations of o4r; s+ and ovyaik -

Configuration Mean error[m] | Maximum error[m] | Relative mean error
ogrift = 0.0, ovywar = 0.1 2.82 6.68 1.22%
ogrift = 0.05, oy yair = 0.2 1.68 4.33 0.72%
Udrift = 0.1, OVwalk — 01 366 675 157%
odarift = 0.1, ovyair = 0.2 1.63 5.10 0.70%

Table[5.T]and visual inspection of Fig. [5.2b show that the configuration og,;y; = 0.1 and oy yaix = 0.2
m/s provides an slightly better scaled visual odometry estimation than the others. So, we select these values
to set up the particle filter.

To prove the usefulness of including a particle filter in the estimation of the scale factor, we compare
the results obtained using the particle filter with the ones obtained by simply computing the scale factor
as di = % Note that this last approach is equivalent to taking a particle filter where both the
walking speedwaal &,k and the mean speed from SLAM iy, are considered as perfect measurements (i.e.,
ovwalk = 0 and oy, = 0). Table and Fig. show that the softening of the scale factor curve induced
by the particle filter, gives raise to a great improvement on the scaled visual odometry estimation.

One proposed improvement on the basic algorithm to reduce the delay between visual odometry updates
during real time operation, was to modify the number of states to be scaled at each iteration while
maintaining an optimal number N of input states for an accurate computation of the DFT. This is done

by implementing FIFO (First In, First Out) routine, taking at each iteration the N; more recent unscaled
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5.3. ANALYSIS OF THE COMPUTATIONAL COST

Table 5.2: Estimation error with and without particle filter.

Particle filter

Mean error[m]

Maximum error[m]

Yes
No

1.70
4.35

5.12
6.53

0.73%
1.88%

Relative mean error

camera states and eliminating the Ny oldest ones from the input list of states. As it is shown in Table @]
and Fig. [5.4] we have tested our approach with different values of N;. We finally choose Ny = 50 since it
involves a great reduction of the time between updates while producing a rather accurate estimation.

Table 5.3: Estimation error for different values of N.

Ny | Mean error[m] | Maximum error[m] | Relative mean error
200 1.77 5.33 0.76%
100 1.45 4.34 0.62%
50 1.66 3.85 0.711%
20 2.52 6.19 1.09%

5.2.3 Scaling of the trajectories

Having set up the parameters of the scaling algorithm, now we apply it to the acquired trajectories to check
the overall accuracy. To recap the used parameters are: P = 5000, 09 = 1, 04rift = 0.1, ovypar = 0.2
m/s, N = 200 and Ny = 50.

Firstly, we tested our approach on the three outdoor sequences with different fixed step frequencies.
Fig. [5.5] shows the final reconstruction of the trajectory compared to the Ground Truth over a satellite
view from Google Maps. It can be observed the great improvement respect to the raw visual odometry
estimation from the SLAM algorithm. Notice also that our approach provides a better estimation than
applying a uniform scale factor. The reason is that the dynamic estimation of the scale factor every Ny
frames allows the correction the scale drift of the raw visual odometry. Nevertheless, note also that the
accuracy slightly decreases for the sequences taken at the step frequencies of 1.67 Hz and 2 Hz, which have
not been considered during the tunning of the algorithm. Thus optimal set up parameters may somewhat
vary on each particular case.

Table 5.4: Estimation error for the three different step frequencies considered.

Step frequency [Hz]

Mean error[m]

Maximum error[m]

Relative mean error

1.43
1.67
2

1.72
3.61
5.47

3.63
6.27
10.35

0.74%
1.56%
2.36%

We have also tested our approach in an indoor environment with normal gait not set by a metronome
[20]. In Fig. we note that trajectory greatly deviates from the Ground Truth, due to the inaccurate
estimation of the camera rotation. The reason of this error is the lack of points located at the infinity in
indoor environments. As can be noted in the previous experiments and the example in Sec. [3] in outdoor
environments, the presence of points at infinity greatly improve the estimation of turns since they only
change their position in the image with the rotation of the camera.

Given the great deviation from the Ground Truth, a numerical evaluation of our approach by analysing
the error is not possible. However, qualitatively, it can be observed that the raw visual odometry contains a
great amount of scale drift which has been corrected in the scaled estimation.

5.3 Analysis of the computational cost

Prior to its real-time implementation we analyzed the computational cost of the batch algorithm
implemented in MATLAB. In Fig. we show the computation time to perform the whole algorithm
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to scale each section of the visual odometry. After a cost of almost 0.2 second, probably due to the memory
allocation of the new variables, the computational cost stabilizes around 0.01 seconds. Direct sequential
implementation in the monoSLAM application could suppose a problem, since our algorithm would take
a significant fraction of the time between frames (A; = % = 0.067 seconds). However, a parallelized
implementation allows the visual SLAM algorithm to make use of all the available time between frames,

while our approach runs within the time window that takes to renew the list of IV states for the next iteration.

5.4 Analysis of the power consistency condition

The evaluate the performance of the algorithm with the check of the power consistency we take the
indoor sequence, where there exists a part of the trajectory which includes stairs. This part corresponds
aproximately to the frames between 3500 and 4000. If we observe the estimation of the step frequency along
time in Fig. for the frames within this interval, the estimated step frequency suddenly decreases while
its spectral power increases. Though it does not reach the top limit proposed in Sec. an inconsistency is
likely to have ocured since normally, a lower step frequency implies a lower amplitude of the head vertical
oscillation [[14]. Thus to make the consistency test fail in this part we have empirically set up a new top
limit. Fig. [5.9]shows the results of our algorithm including the consistency test. It can be observed that
the fail of the consistency test makes the previous scale factor to be mantained instead of updating it with
a value obtained from a walking speed model which is not proved to be valid in the case going up/down
stairs.
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Figure 5.5: Visual odometry estimations using different approaches on the three trajectories walked at different step
frequencies of about 1.43 Hz (a), 1.67 Hz (b) and 2 Hz (c).
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Chapter 6

Conclusions and Future Work

In this work we have presented a novel approach to estimate the true scaled visual odometry of a head-
mounted omnidirectional camera without need of additional sensors. The general idea behind our method
is to take advantage of the head vertical movement registered in the unscaled visual odometry from the
SLAM algorithm to obtain the step frequency. Given the step frequency and assuming a human walking
model we can compute a real estimation of the walking speed, from which finally we get an scale factor. To
improve the accuracy and correct the scale drift of the raw visual odometry, the scale factor is computed for
sections of camera states using a particle filter to reliably update it.

The algorithm has been validated experimentally obtaining very satisfactory results. The improvement
respect to the raw estimation is clearly noticeable and it has proved to be able to correct a large amount
of scale drift present in the visual odometry estimation from an indoor environment. Also its low
computational cost and its capability to be executed concurrently without interfering with the main SLAM
algorithm made it possible its implementation in the framework of a real-time monoSLAM application.

From our point of view the main contribution of this approach is that, while there exist methods which
can accurately determine the scale for cameras mounted on wheeled vehicles, to the best of our knowledge
there does not exist any method which does so with wearable cameras.

As future work we will explore the open possibility of making more use of the information provided
by the power spectrum of the head oscillation to detect special situations such as stopping, sudden speed
variation, stairs and develop strategies to cope with them. For that purpose we will acquire new sequences
of images where these situations arise.
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Appendix A

The Extended Kalman Filter

The Extended Kalman Filter is a recursive estimator based on dynamic systems discretized in the time
domain. The EKF aims to estimate the internal state of a system or process given only a sequence of noisy
observations and, optionally, control inputs. To perform this estimation we have to define a state transition
model and a measurement model.

The state transition model describes the evolution of the system from time k£ — 1 to time k, and it is
defined by the following equation:

xp = f(Xp—1, ur) + Wi (A.1)

where f(-) is the state transition function , x;_1 is the past state of the system, uy, is the control input
and wy, is the process noise modeled as zero mean uncorrelated gaussian noise with covariance Q.
The measurement model is defined as follows:

Zr = h(Xk) —+ Vi (A.2)

where h(-) is the measurement function, xy, is the state of the system and vy, is the additive observation
error modeled as zero mean uncorrelated gaussian noise with covariance Ry,

In an Extended Kalman Filter the state of the system is represented by a mean vector X, and a covariance
matrix Py.

At each iteration the next state estimate is performed in two steps: Prediction and Update. In the
prediction, a state estimate in the current timestep is produced from the state estimate in the previous time
step and a control input by using the state transition model. This is encoded in the following equations:

k-1 = f(Xp—1jk—1, k) (A.3)

Pije—t = Feo1Pr_1je—1Fro1’ + Qi (A4)

where f is the state transition function, X1 and Py;_; are the state mean and covariance estimates at
timestep k£ from measurements until timestep £ — 1 and F;_ is the jacobian of the state transition function:

_ af(x,u)

9x ‘xk—l\k—l

Fr—1

In the update step the initial prediction is refined by including the measurements zj, taken in the current
timestep. To do that, first it is computed the innovation of the measurement as the difference between the real
measurements z provided by the sensors and the prediction of the measurements h(x;,—1) given by the
measurement model. This innovation has an associated covariance Sy which encodes both the propagation
of the state uncertainty through the measurement model and the possible measurement errors.

vk = 2k — h(Xgjk-1) (A.5)
Sk = HiPppe—1Hi' + R (A.6)
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where Hy is the jacobian of the measurement function:

Oh(x)

Hy = W ‘xk|k—1

Next it is computed the Kalman gain Wy, which intutivelly speaking points how much we can trust in
the new measurements to update the initial state prediction. This gain is used to weight the innovation when
computing the final state mean and covariance in timestep k.

Wi = Py 1Hi"Se ™! (A7)
Xk = Xplk—1 + Wi (A.8)
Prje = Prjr1 — WiSeW, " (A.9)
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Appendix B

The Sphere Camera Model

The Sphere Camera Model is a unified projection model valid for every central catadioptric system, i.e. a
system with a unique projection center. This model was developed by Geyer et al. [9] and extended by
Barreto et al. [1]].

The model takes as the origin of the reference system O, the origin of the central system which is
modeled (one focus of the hyperbola/parabola in the case of hiper/para-catadioptric systems or the optical
center of the camera in the case of a perspective conventional camera). Then they define a unit sphere .S
centered on the origin of the reference system and a point Cp = (0, 0, —¢ )T known as virtual projection
center.

The information about the mirror is encapsulated in the characteristic parameters £ and . The
parameter £ is defined as the distance between O and Cp and it encodes the kind of system being modeled
and its geometry. So, £ = 0 for perspective cameras, £ = 1 for para-catadioptric systems and 0 < £ < 1 for
hiper-catadioptric systems. Table[B.T|shows the values of £ and ¢ for every kind of system as a function of
the the distance between the focus d and the latus rectum 4p.

Taking a 3D point expressed in homogeneus coordinates Xy, = [z,¥, 2, 1], its projection on the image
is divided in the following steps (Fig. and Fig. [B.2):

1) Point X, is mapped into a projective ray x in the camera reference frame. This is done by P, a
conventional projection matrix x = PXy,.

2) The ray x is projected onto the unit sphere centered in the origin O. The intersection point is projected
to a virtual projection plane 7 through the virtual projection center Cp yielding the point x’ . This step is
coded by the non-linear function /:

x
x' = h(x) = Y (B.1)
2+ &2+ 92 + 22

3) The virtual plane 7 is transformed in the image plane 7, through a homographic transformation Hc

x" = Hx' (B.2)
H. = Kc.RM. (B.3)
f= 0 ug
Ke=1]0 f, wo (B.4)
0 0 1
=& 0 0 -7 0 0
Mc = 0 E—yv 0l=(0 n O (B.5)
0 0 1 0 0 1
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PP d d—2p
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Céamara perspectiva 0 1

Table B.1: Characteristic parameters of the spherical camera Model [[1]]

Figure B.1: Projection of a 3D X, point onto the image plane with the spherical camera model

where K¢ includes the camera intrinsic parameters, M¢ includes the mirror parameters [9] and R is
the rotation matrix between camera and mirror. By assuming a pin-hole camera model and R = |, the
transformation Hc¢ yields:

nf 0 wug v 0
Hc=10 nf wv|=1|0 v v (B.6)
0 0 1 0 0 1

where v = 1 f is the generalized focal lenght of the camera-mirror system with 7 a mirror parameter and f
the focal length of the camera.
4) Finally image coordinates are calculated by dividing x”’ by its 2” coordinate:

‘ 8

(%
p=| v | =)=

“d\l\z\

(B.7)

\N\

—_
‘ IS

P

With this model it is also possible to estimate the 3D ray from where the image point comes. That
projection is named the inverse projection model. It starts with the point in image coordinates p = (u, U)T,
being x” = (u, v, 1)T. The equations of the inverse projection model are:

x' = H,1x" (B.8)
l,l
x=htx)= Yy ‘ (B.9)
Z/ _ 5(I12+y/2+2/2)
£2"2+x

where x = /(1 — £2)(22 + y2 + 22)
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Figure B.2: Steps of spherical camera model projection

B.1 The Spherical Camera Model for the EKF

The EKF algorithm requires the jacobian Hj of the measurement function h(xy). In the case of a
catadioptric camera, the measurement function h(xy,) corresponds to the projection function of the spherical

camera model, and thus Hy, corresponds to the jacobian of this function, which is computed as follows [[24]:

Hi = Jsc = JuHcJn (B.10)
1 m//
2 O T2
Joy = [0 . —372] (B.11)
1 0 0
=10 1 0 (B.12)
P P P

where p = /22 + y2 + 22

To initialize new features, the inverse jacobian of the model is also required:

Jsct=JpHe ! (B.13)
1 0 0
=10 1 / th o (B.14)
_& e o §E )
X X X

where xy = \/(1 — )%+ y? + 27?)
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