
Appendix A | Project management

In this appendix we present the effective schedule and efforts of the Master’s Thesis.

This Master’s Thesis has been developed since January until September 2012.

Figure A.1 shows the detailed schedule (calendar) with the different tasks involved.
This Master’s Thesis might be divided in the following tasks:

• Literature review. In order to implement a realistic fetch unit, literature and commercial
processors documentation was reviewed during earlier phases of the project. An extensive
review on commercial processors was also done in August to model a realistic 4-SMT
processor.

• Simulation environment. The implementation of our designs in the simulation environment
involved three subtasks:

– Training. The simulator implementation was one of the most time consuming parts of
the project. The simulation environment and infrastructure was new, and a training
period was necessary prior to the implementation of any new feature.

– Implementation of conventional instruction cache hierarchies on the simulation envi-
ronment. Previous works assumed that the instruction cache was perfect. Thus, we
needed to add the instruction cache hierarchy and a realistic fetch function for both
single thread and multithread execution.

– Implementation of the iLP-NUCA. Adapting the structure to the instructions hierarchy
was not a straightforward task, as instruction fetches have different characteristics
than data requests that have to be taken into account in the iLP-NUCA structure.
Besides we extended the model with a new transport network that works not only for
instructions, but also for data.

• Evaluation. Evaluation of the goodness of a new design implies run simulations and analyze
the outcoming results. In addition to evaluate our designs, we develop a structure to
automatize the creation of simulation files and parsing results, and that could be easily
adapted for others simulation environments.

The realization of this Master’s Thesis makes it possible to deliver a poster presentation in
an international conference, a paper submission and acceptance to a national conference, and a
paper submission to a international conference.

The approximate effort invested in this Master’s Thesis is 980 hours.

39



APPENDIX A. PROJECT MANAGEMENT

Figure A.1: Schedule and tasks of the Master’s Thesis.

40



Appendix B | Simulation environment
and methodology

In this appendix we will present in a bit more detailed the simulator infrastructure, the methodology
we followed, and our scientific workflow.

B.1 SMTScalar

SMTScalar is a cycle-accurate execution-based simulator based on SimpleScalar 3.0d for Alpha
ISA [4]. SimpleScalar was heavily extended to support detailed microarchitectural models,
highly configurable memory hierarchies, and simultaneous multi-threading execution for previous
LP-NUCA works [48, 47]. We extended SMTScalar to add instruction cache hierarchies.

Load/Store QueueReorder Bu!er

FP Integer MemoryIssue 

Windows

Register File

Functional

Units

L1-D

L1D MSHR

Store Bu!er

D-TLB

L2-D

L2D MSHRL2D WB

Register Alias

Table

Decoders

Instruction Fetch Queue

L1-I

L1I MSHR

L2-I
L2I MSHR

I-TLB

BHT Ret

Stack

Branch Prediction

I-Fetch Policy

PC

Result common bus

L3-0

L3-1

L3-2

L3-3

Figure B.1: Organization overview of the baseline simulated processor with a conventional three level cache
hierarchy. For the sake of clarity, the L3 MSHR and the memory controller are not shown.

41



APPENDIX B. SIMULATION ENVIRONMENT AND METHODOLOGY

Figure B.1 shows the main blocks of the simulated processor. The upper part represents the
fetch unit. Unlike previous works we model a instruction cache hierarchy. It supports two types of
instruction hierarchies: conventional multibanked with 2 or 3 levels, plus ILP-NUCA/LP-NUCA
caches. The structures inside the processor are shared by all threads, but the program counters
and the branch predictor. In ech cycle up to 4 instructions can be fetched, and we can fetch
instructions from two different threads. In order to allow two threads to fetch each cycle, our L1
instruction cache is multiported (2 read/write ports). Fetchs are selected following the icount
policy [51]. Fetched instructions go to the Instruction Fetch Queue (IFQ). The IFQ acts as a
prefetch buffer, it has 16 entries, and it is shared by all the threads. The size of this queue is
critical inside the fetch unit. If the IFQ is too big, we might fetch many instructions from wrong
paths (mispredicted branches) and that would imply to throw away this instructions and access
the L1-I cache again. Also the area and the power dissipation should be taken into account. After
running some experiments we decided that the optimal size for the IFQ was 16.

B.1.1 The microarchitectural model

Modeling in detail the microarchitectural parameters of a system involves two steps. First, we
need to analyze the state–of–the–art regarding commercial systems. This information is often
hard to find, as many vendors do not publish many details of their designs. Second, we need to
evaluate the model. Once the parameters are fixed, we need to evaluate the system to detect
possible errors in the dimensioning. An error in the the dimension of one component might cause
a bottleneck in the system and cause the results to be misleading.

Our system parameters are based in state–of–the–art commercial embedded processors such
as IBM/LSI PowerPC 476FP, NetLogic XLP864, and Freescale QorIQ AMP T2080 [35, 18, 7].
All of them are high–performance low–power systems oriented to embedded applications.

We run experiments adjusting different parameters such as Instruction Fetch Queue size, Issue
Windows size, number of Functional Units, Reorder Buffer and Load Store Queue number of
entries, among others, in order to come up with a model as realistic as possible and bottleneck
free.

B.2 Simulation methodology

SMTScalar is a simulation environment utilized by several members of the research group. From
early phases of this project one of our objectives was to share a common infrastructure with as
many people as possible. Thus, we developed a simulation methodology or scientific workflow
that could easily be adapted to different simulation environments.

Figure B.2 shows our scientific workflow. Our key ideas are to decouple the functionality and
to automatize the simulation process. One of the main problems researchers like us suffer is the
repeatability of the experiments/results. In our experiments we guarantee this by 1) defining
experiments to run in files1 (Figure B.2a), and 2) keeping the identifier of the simulator within
the results files. In any given time a experiment can be repeated with the same configuration
parameters and simulator file, in a fast and accurate way.

With the experiments descriptions we generate the scripts to run them depending on the
system where they are going to be simulated, the benchmarks we want to test, and the job queue
system.

Once the experiments are ready, Figure B.2b, we call the appropiate parser file to extract the
data we are interested. As parsing the results files is not an immediate task (it can take several
minutes depending on the amount of jobs simulated) we cache the relevant information in comma

1We use JSON, a text-based open standard designed for human-readable data interchange: www.json.org

42



B.2. SIMULATION METHODOLOGY

generate cfgs

CONDOR

BENCHMARKS

.json

.json

.json

experiments

description

condor

submit

!les

(a) Process to generate execution files.

parse cfgs

BENCHMARKS

.json

.json

.json

experiments

description

results

(dat)

plots

(b) Process to parse the results files.

Figure B.2: Simulation methodology workflow.

separated values files that allow for fast dumping.

The next step in our standardization process is to unify the the relevant information repre-
sentation. We already made some progress and members of the group are able to interchange
different tools just doing little adjustments.

Our future goal is to adopt a standard representation of all the files and programs involved so
that different simulation environments can share the common infrastructure.

43



44



Appendix C | SPEC CPU2006
characterization:
instruction cache
requirements

This chapter presents the characterization of SPEC CPU2006 regarding instruction cache require-
ments.

C.1 Cache size and associativity implications in performance

We present for the 28 benchmarks of SPEC CPU2006 considered the impact of the first level
instruction cache (L1-I) size and associativity.

We modeled the system presented in Chapter 3 with a first level data cache that always hit.
We consider four cache sizes: 32KB, 16KB, 8KB, and 4KB, and three different associativities:
1 (direct-mapped), 2, and 4. We present in the following sections the misses per k-instruction
(mpki) of the first level instruction cache and IPC (instructions per cycle) for the different cache
sizes. In both cases each line corresponds to the evolution of a given associativity.

C.1.1 L1-I misses per k-instruction

Figure C.1 shows the L1-I mpki for all the SPEC CPU2006 benchmarks considered for several
sizes. Each line represents the evolution of a given associativity. Please observe that the y axis
are scaled different depending on the figure for a better understanding.

From these graphs we can observe different behaviors. Some of the benchmarks, such as
458.sjeng or 465.tonto, experiment a growing L1-I mpki the very moment we reduce the cache
size. Others, such as 416.gamess, experiment a big increase when the cache size is reduced to
8KB, and some others do when it is reduced to 4KB (for example 410.bwaves). There is a group
of benchmarks whose working sets are small enough to fit in a 4KB direct mapped cache. Thus,
they do not present a significant variation in the L1-I mpki, which is always around 0. In general
associativity does not influence drastically the behavior, but in 447.dealII, where a direct mapped
cache of any size increases the L1-I mpki. 403.gcc and 429.mcf also benefit from higher associative
caches, specially for 16KB cache size.

These results show that, in general, instruction cache requirements of SPEC CPU2006
benchmarks are low, but some exceptions (such as 445.gobmk, 444.namd, 458.sjeng, or 482.sphinx3,
among others), and a 32KB 4–way set associative cache is able to capture in most of the cases
the instruction footprint of the application.

45



APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

70

L1
-I

 m
p
ki

400.perlbench

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.1) L1-I mpki, 400.perlbench

32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

L1
-I

 m
p
ki

401.bzip2

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.2) L1-I mpki, 401.bzip2

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

70

L1
-I

 m
p
ki

403.gcc

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.3) L1-I mpki, 403.gcc

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

20

25

L1
-I

 m
p
ki

410.bwaves

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.4) L1-I mpki, 410.bwaves

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

20

25

30

35

40

L1
-I

 m
p
ki

416.gamess

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.5) L1-I mpki, 416.gamess

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

20

25

L1
-I

 m
p
ki

429.mcf

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.6) L1-I mpki, 429.mcf

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

433.milc

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.7) L1-I mpki, 433.milc

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

434.zeusmp

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.8) L1-I mpki, 434.zeusmp

32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L1
-I

 m
p
ki

435.gromacs

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.9) L1-I mpki, 435.gromacs

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

L1
-I

 m
p
ki

436.cactusADM

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.10) L1-I mpki, 436.cactusADM

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

437.leslie3d

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.11) L1-I mpki, 437.leslie3d

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

70

80

L1
-I

 m
p
ki

444.namd

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.12) L1-I mpki, 444.namd

32KB 16KB 8KB 4KB
L1-I cache size

0

20

40

60

80

100

120

L1
-I

 m
p
ki

445.gobmk

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.13) L1-I mpki, 445.gobmk

32KB 16KB 8KB 4KB
L1-I cache size

0

1

2

3

4

5

L1
-I

 m
p
ki

447.dealII

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.14) L1-I mpki, 447.dealII

32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

L1
-I

 m
p
ki

450.soplex

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.15) L1-I mpki, 450.soplex

Figure C.1: L1-I mpki for several cache sizes and associativities, SPEC CPU2006.
46



C.1. CACHE SIZE AND ASSOCIATIVITY IMPLICATIONS IN PERFORMANCE

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

70

L1
-I

 m
p
ki

453.povray

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.16) L1-I mpki, 453.povray

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

L1
-I

 m
p
ki

454.calculix

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.17) L1-I mpki, 454.calculix

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

456.hmmer

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.18) L1-I mpki, 456.hmmer

32KB 16KB 8KB 4KB
L1-I cache size

0

10

20

30

40

50

60

70

L1
-I

 m
p
ki

458.sjeng

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.19) L1-I mpki, 458.sjeng

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

20

25

30

35

40

L1
-I

 m
p
ki

459.GemsFDTD

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.20) L1-I mpki, 459.GemsFDTD

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

462.libquantum

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.21) L1-I mpki, 462.libquantum

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

L1
-I

 m
p
ki

464.h264ref

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.22) L1-I mpki, 464.h264ref

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

20

25

30

L1
-I

 m
p
ki

465.tonto

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.23) L1-I mpki, 465.tonto

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

470.lbm

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.24) L1-I mpki, 470.lbm

32KB 16KB 8KB 4KB
L1-I cache size

0

5

10

15

L1
-I

 m
p
ki

471.omnetpp

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.25) L1-I mpki, 471.omnetpp

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

473.astar

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.26) L1-I mpki, 473.astar

32KB 16KB 8KB 4KB
L1-I cache size

0.00

0.05

0.10

0.15

0.20

L1
-I

 m
p
ki

481.wrf

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.27) L1-I mpki, 481.wrf

32KB 16KB 8KB 4KB
L1-I cache size

0

20

40

60

80

L1
-I

 m
p
ki

482.sphinx3

1-way set ass.

2-way set ass.

4-way set ass.

(C.1.28) L1-I mpki, 482.sphinx3

Figure C.1: L1-I mpki for several cache sizes and associativities, SPEC CPU2006.
47



APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

C.1.2 Performance evaluation: IPC

Figure C.2 shows the IPC for all the SPEC CPU2006 benchmarks considered for several sizes.
Each line represents the evolution of a given associativity. AH represents a L1-I cache that always
hits. This value gives us an upper bound of how much performance degradation, in comparison
with a ideal cache, each application might suffer.

From the figures we can see that, in general, increases in the L1-I mpki implies performance
degradations. We can also observe that 32KB 4–way set associative caches are in general very
close to the ideal performance.

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

400.perlbench

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.1) IPC, 400.perlbench

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

IP
C

401.bzip2

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.2) IPC, 401.bzip2

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

403.gcc

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.3) IPC, 403.gcc

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IP
C

410.bwaves

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.4) IPC, 410.bwaves

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

416.gamess

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.5) IPC, 416.gamess

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

IP
C

429.mcf

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.6) IPC, 429.mcf

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

IP
C

433.milc

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.7) IPC, 433.milc

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

434.zeusmp

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.8) IPC, 434.zeusmp

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

435.gromacs

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.9) IPC, 435.gromacs

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.

48



C.1. CACHE SIZE AND ASSOCIATIVITY IMPLICATIONS IN PERFORMANCE

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

436.cactusADM

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.10) IPC, 436.cactusADM

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

437.leslie3d

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.11) IPC, 437.leslie3d

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

444.namd

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.12) IPC, 444.namd

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

445.gobmk

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.13) IPC, 445.gobmk

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

447.dealII

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.14) IPC, 447.dealII

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

450.soplex

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.15) IPC, 450.soplex

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

453.povray

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.16) IPC, 453.povray

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

454.calculix

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.17) IPC, 454.calculix

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

IP
C

456.hmmer

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.18) IPC, 456.hmmer

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

IP
C

458.sjeng

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.19) IPC, 458.sjeng

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

459.GemsFDTD

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.20) IPC, 459.GemsFDTD

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

462.libquantum

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.21) IPC, 462.libquantum

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

464.h264ref

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.22) IPC, 464.h264ref

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

465.tonto

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.23) IPC, 465.tonto

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

IP
C

470.lbm

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.24) IPC, 470.lbm

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.
49



APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

471.omnetpp

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.25) IPC, 471.omnetpp

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

473.astar

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.26) IPC, 473.astar

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

481.wrf

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.27) IPC, 481.wrf

AH 32KB 16KB 8KB 4KB
L1-I cache size

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

482.sphinx3

1-way set ass.

2-way set ass.

4-way set ass.

(C.2.28) IPC, 482.sphinx3

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.

50



Appendix D | Shared iLP-NUCA
designs

In this appendix we will introduce our ongoing work on shared iLP-NUCA designs.

Although dedicated (separated) caches offer higher performance, they have also higher energy
and area requirements, both critical parameters in the embedded systems domain. Thus, last
level caches (LLC) are usually shared for instructions and data caches.

Sharing the iLP-NUCA, however, is not straightforward. iLP-NUCA relies on very specialized
networks-in-cache, naming search, transport, and replacement. One of the main advantages of
the structure is that messages are implicitly routed, as they only have one possible destination
(the root-tile).

The critical path on iLP-NUCA tile consists on a hit in the cache followed by the transport
operation to the neighbor tile. This operation fits in a cycle time because the network operation
can be simplify, among other things, by deleting the routing stage. Adding a second root-tile
to the structure means that in a complete shared design messages need to decide which path to
follow (we need a routing mechanism). Other important issue is the connection wires length,
which might become too long, increasing the delay.

On the other hand iLP-NUCA networks-in-cache offer also advantages. Its structure would
allow for a hybrid design, where some tiles would be private for instructions, some others for data,
and some would be shared. In this way we would be able to restrict the amount of space data
and instructions occupy and guarantee that, for example, data demanding applications pollute
the cache and evict instruction blocks to the next level.

A possible way to implement these ideas is to modify the replacement operation and restrict
the replacement through selected links. Besides we should include a routing mechanism.

Figures D.1, D.2, and D.3 show a possible design for the networks-in-cache topologies that
takes advantage of these ideas.

We want to evaluate this new structure, and right now we are implementing this design in
our simulation environment.

51



APPENDIX D. SHARED ILP-NUCA DESIGNS

Private-DSharedPrivate-I

iLP-NUCA

INST
R-TILE

processor

DATA
R-TILE

Figure D.1: Search network topology for shared iLP-NUCA.

Private-DSharedPrivate-I

iLP-NUCA

INST

R-TILE

processor

DATA

R-TILE

from next
cache

Figure D.2: Transport network topology for shared iLP-NUCA.

Private-DSharedPrivate-I

iLP-NUCA

INST

R-TILE

processor

DATA

R-TILE

to next
cache

Figure D.3: Replacement network topology for shared iLP-NUCA.

52



Appendix E | ILP-NUCA: Cache de
Instrucciones Teselada
para Procesadores
Empotrados

This appendix includes the paper ILP-NUCA: Cache de Instrucciones Teselada para Procesadores
Empotrados by Alexandra Ferrerón, Marta Ortín, Darío Suárez, Jesús Alastruey, and Víctor
Viñals.

This paper was submitted and accepted into the XXIII Jornadas de Paralelismo. It will be
presented in Elche in September 2012.

53


