Appendix A | Project management

In this appendiz we present the effective schedule and efforts of the Master’s Thesis.

This Master’s Thesis has been developed since January until September 2012.

Figure shows the detailed schedule (calendar) with the different tasks involved.
This Master’s Thesis might be divided in the following tasks:

Literature review. In order to implement a realistic fetch unit, literature and commercial
processors documentation was reviewed during earlier phases of the project. An extensive
review on commercial processors was also done in August to model a realistic 4-SMT
processor.

Simulation environment. The implementation of our designs in the simulation environment
involved three subtasks:

— Training. The simulator implementation was one of the most time consuming parts of
the project. The simulation environment and infrastructure was new, and a training
period was necessary prior to the implementation of any new feature.

— Implementation of conventional instruction cache hierarchies on the simulation envi-
ronment. Previous works assumed that the instruction cache was perfect. Thus, we
needed to add the instruction cache hierarchy and a realistic fetch function for both
single thread and multithread execution.

— Implementation of the iLP-NUCA. Adapting the structure to the instructions hierarchy
was not a straightforward task, as instruction fetches have different characteristics
than data requests that have to be taken into account in the iLP-NUCA structure.
Besides we extended the model with a new transport network that works not only for
instructions, but also for data.

Evaluation. Evaluation of the goodness of a new design implies run simulations and analyze
the outcoming results. In addition to evaluate our designs, we develop a structure to
automatize the creation of simulation files and parsing results, and that could be easily
adapted for others simulation environments.

The realization of this Master’s Thesis makes it possible to deliver a poster presentation in
an international conference, a paper submission and acceptance to a national conference, and a
paper submission to a international conference.

The approximate effort invested in this Master’s Thesis is 980 hours.

39

APPENDIX A. PROJECT MANAGEMENT

ST =deg

C_ 1

UDIIEPISLUNIOP EISSU] & JIEE |y

I |

S3U3ED T [EUIS 40 UIIEN[EAS PUE 3P0k

[FPOLL PUE m31A=] EI055500.d [FI5150UII0D HE-SUF-}0-23F15

| I—
USIJEnEAS PUE SUCIFELLIES [Bpowd ABiaug
 —
[Fsadoud wonn- 471 pREYS
Wil eded
| I—
Bojodo] jiom3eu Hodsueag maty
]
S0 MN-J USSR PUS UoREyIsIE gl eEnils
]
E3IDIE 31 [FUOIUSAUOD (U0 PUE UoEjlaUIs|dul JogEnus
|
2%adIH 133504
| I—
|esodoad malaal 2inje ey PE-3YF-}0-33R15
[]
._mn_Emun_mm_ um:msi_ __A_:_._ mc:_._ __Am._z_ __._n_,a_ r_u._m._z_ __Qm.:._n_mu__ Adenuel
Z10e

Schedule and tasks of the Master’s Thesis.

Figure A.1

40

Appendix B | Simulation environment
and methodology

In this appendiz we will present in a bit more detailed the simulator infrastructure, the methodology
we followed, and our scientific workflow.

B.1 SMTScalar

SMTScalar is a cycle-accurate execution-based simulator based on SimpleScalar 3.0d for Alpha
ISA []. SimpleScalar was heavily extended to support detailed microarchitectural models,
highly configurable memory hierarchies, and simultaneous multi-threading execution for previous
LP-NUCA works [48, [47]. We extended SMTScalar to add instruction cache hierarchies.

(___I-Fetch Policy) T L1I MSHR
[EE— ITLB L1l L2-l “’|:|:|:D_

L2l MSHR L3-0
Instruction Fetch Queue v
L3-1
Decoders
Register Alias 13-2
Table
|
Reorder Buffer & Load/Store Queue
ungdBERRRERREEE L BERRRERENNAN
L2DWB 12D MSHR
v v v v
Issue FP Inte
ger Memory
Windows L2-D
Register File 4 store Buffer
s ﬁ
Functional] . v
Units D-TLB
L1-D
L1D MSHR
Result common bus

Figure B.1: Organization overview of the baseline simulated processor with a conventional three level cache
hierarchy. For the sake of clarity, the L3 MSHR and the memory controller are not shown.

41

APPENDIX B. SIMULATION ENVIRONMENT AND METHODOLOGY

Figure shows the main blocks of the simulated processor. The upper part represents the
fetch unit. Unlike previous works we model a instruction cache hierarchy. It supports two types of
instruction hierarchies: conventional multibanked with 2 or 3 levels, plus ILP-NUCA /LP-NUCA
caches. The structures inside the processor are shared by all threads, but the program counters
and the branch predictor. In ech cycle up to 4 instructions can be fetched, and we can fetch
instructions from two different threads. In order to allow two threads to fetch each cycle, our L1
instruction cache is multiported (2 read/write ports). Fetchs are selected following the icount
policy [51]. Fetched instructions go to the Instruction Fetch Queue (IFQ). The IFQ acts as a
prefetch buffer, it has 16 entries, and it is shared by all the threads. The size of this queue is
critical inside the fetch unit. If the IFQ is too big, we might fetch many instructions from wrong
paths (mispredicted branches) and that would imply to throw away this instructions and access
the L1-I cache again. Also the area and the power dissipation should be taken into account. After
running some experiments we decided that the optimal size for the IFQ was 16.

B.1.1 The microarchitectural model

Modeling in detail the microarchitectural parameters of a system involves two steps. First, we
need to analyze the state-of-the—art regarding commercial systems. This information is often
hard to find, as many vendors do not publish many details of their designs. Second, we need to
evaluate the model. Once the parameters are fixed, we need to evaluate the system to detect
possible errors in the dimensioning. An error in the the dimension of one component might cause
a bottleneck in the system and cause the results to be misleading.

Our system parameters are based in state-of-the—art commercial embedded processors such
as IBM /LSI PowerPC 476FP, NetLogic XLP864, and Freescale QorIQ AMP T2080 [35] [I8], [7].
All of them are high—performance low—power systems oriented to embedded applications.

We run experiments adjusting different parameters such as Instruction Fetch Queue size, Issue
Windows size, number of Functional Units, Reorder Buffer and Load Store Queue number of
entries, among others, in order to come up with a model as realistic as possible and bottleneck
free.

B.2 Simulation methodology

SMTScalar is a simulation environment utilized by several members of the research group. From
early phases of this project one of our objectives was to share a common infrastructure with as
many people as possible. Thus, we developed a simulation methodology or scientific workflow
that could easily be adapted to different simulation environments.

Figure [B:2] shows our scientific workflow. Our key ideas are to decouple the functionality and
to automatize the simulation process. One of the main problems researchers like us suffer is the
repeatability of the experiments/results. In our experiments we guarantee this by 1) defining
experiments to run in ﬁlesﬂ (Figure , and 2) keeping the identifier of the simulator within
the results files. In any given time a experiment can be repeated with the same configuration
parameters and simulator file, in a fast and accurate way.

With the experiments descriptions we generate the scripts to run them depending on the
system where they are going to be simulated, the benchmarks we want to test, and the job queue
system.

Once the experiments are ready, Figure we call the appropiate parser file to extract the
data we are interested. As parsing the results files is not an immediate task (it can take several
minutes depending on the amount of jobs simulated) we cache the relevant information in comma

1'We use JSON, a text-based open standard designed for human-readable data interchange: www.json.org

42

B.2. SIMULATION METHODOLOGY

CONDOR

N
™
son [BENCHMARKS

d
-~
-~
. -~
experiments \ g

description

generate cfgs

|

condor
submit
files

(a) Process to generate execution files.

experiments
description

BENCHMARKS

~
-~
-~
-
-~
s

parse cfgs

results
(dat)

plots

(b) Process to parse the results files.

Figure B.2: Simulation methodology workflow.

separated values files that allow for fast dumping.

The next step in our standardization process is to unify the the relevant information repre-
sentation. We already made some progress and members of the group are able to interchange

different tools just doing little adjustments.

Our future goal is to adopt a standard representation of all the files and programs involved so
that different simulation environments can share the common infrastructure.

43

44

Appendix C | SPEC CPU2006
characterization:
Iinstruction cache
requirements

This chapter presents the characterization of SPEC CPU2006 regarding instruction cache require-
ments.

C.1 Cache size and associativity implications in performance

We present for the 28 benchmarks of SPEC CPU2006 considered the impact of the first level
instruction cache (L1-I) size and associativity.

We modeled the system presented in Chapter [3] with a first level data cache that always hit.
We consider four cache sizes: 32KB, 16KB, 8KB, and 4KB, and three different associativities:
1 (direct-mapped), 2, and 4. We present in the following sections the misses per k-instruction
(mpki) of the first level instruction cache and IPC (instructions per cycle) for the different cache
sizes. In both cases each line corresponds to the evolution of a given associativity.

C.1.1 L1-I misses per k-instruction

Figure shows the L1-I mpki for all the SPEC CPU2006 benchmarks considered for several
sizes. Each line represents the evolution of a given associativity. Please observe that the y axis
are scaled different depending on the figure for a better understanding.

From these graphs we can observe different behaviors. Some of the benchmarks, such as
458.sjeng or 465.tonto, experiment a growing L1-I mpki the very moment we reduce the cache
size. Others, such as 416.gamess, experiment a big increase when the cache size is reduced to
8KB, and some others do when it is reduced to 4KB (for example 410.bwaves). There is a group
of benchmarks whose working sets are small enough to fit in a 4KB direct mapped cache. Thus,
they do not present a significant variation in the L1-I mpki, which is always around 0. In general
associativity does not influence drastically the behavior, but in 447.dealll, where a direct mapped
cache of any size increases the L1-I mpki. 403.gcc and 429.mcf also benefit from higher associative
caches, specially for 16KB cache size.

These results show that, in general, instruction cache requirements of SPEC CPU2006
benchmarks are low, but some exceptions (such as 445.gobmk, 444.namd, 458.sjeng, or 482.sphinx3,
among others), and a 32KB 4-way set associative cache is able to capture in most of the cases
the instruction footprint of the application.

45

APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

400.perlbench

7
60

.- 50
=
[}

@@ 1-way set ass.

2

*—k 2-way set ass.

V-V 4-way set ass.

E4G

-3
-

20
10
0

09'/’//;{/

V

32KB

16KB 8KB
L1-I cache size

4KB

(C.1.1) L1-I mpki, 400.perlbench

410.bwaves
2:
e 1-way set ass.
20| *—* 2-way set ass.
< V-V 4-way set ass. //
Q. 15
- Vi
a1 /
g
o =
32KB 16KB 8KB 4KB

L1-l cache size

(C.1.4) L1-I mpki, 410.bwaves

433.milc
0.20|
@@ 1-way set ass.
d *—k 2-way set ass.
: 0.15 V-V 4-way set ass.
3
Z0.10
4
J
0.05
0 OOJ LV - 1
*7Y32KB 16KB 8KB 4KB

L1-l cache size

(C.1.7) L1-I mpki, 433.milc

436.cactusADM

0.40,
0.35 @@ 1-way set ass.
0.30 *—k 2-way set ass.
Z . V-V 4-way set ass.
£0.25
=0.20
10.15 /./;:
oo e
0.05
0'0032KB 16KB 8KB 4KB

(C.1.10) L1-I mpki, 436.cactusADM

L1-I cache size

445.gobmk

12

100 | g 2-way set ass. /
go |V 4-way set ass.

@@ 1-way set ass.

Pt

7.

LL-1 mpki

* /o/
40

« v

ZOV

0

32KB 16KB 8KB 4KB
L1-l cache size
(C.1.13) L1-I mpki, 445.gobmk

46

1.8 401.bzip2

1.6 @@ 1l-way set ass. +*

1.4+ %% 2-way set ass. /5
g 1.2| ¥V 4-way set ass. /
g1 /
=g /]
Zos //

0.4 i/

0.2 /

0.0: {

¥32kB 16KB 8KB 4KB

L1-I cache size

(C.1.2) L1-1 mpki, 401.bzip2

416.gamess
40
35 @@ 1-way setass. }
30 *—k 2-way set ass.
< V-V 4-way set ass.
o 25
E 20
=15 /
10 @
s =4
*/
G32KB 16KB 8KB 4KB
L1-l cache size
(C.1.5) L1-I mpki, 416.gamess
0.20 434.zeusmp
@@ 1-way set ass.
0.15 *—%k 2-way set ass. ||
.15
7 V-V 4-way set ass.
2
0.10
5
J
0.05
0.0035kg—16KkB BKB 2KB
L1-I cache size
(C.1.8) L1-1 mpki, 434.zeusmp
0.20 437.leslie3d
@@ 1-way set ass.
015 *—k 2-way set ass.
LI 7
; V-V 4-way set ass.
2
20.10
q
Jd
0.05
0.00355 T6KB BKB 2KB

(C.1.11) L1-I mpki, 437.leslie3d

L1-I cache size

447 .dealll

w

I

L1-I mpki
w

N

@@ 1-way set ass.
*—k 2-way set ass.

1
V-V 4-way set ass.
032kB 16kB B KB
L1-I cache size
(C.1.14) L1-I mpki, 447.dealll

403.gcc

70
60,

.- 50
=
[}

@@ 1-way set ass.
4k 2-way set ass. | @ P
V¥ 4-way set ass.

E40

/U

730
-
20
10

0

v

[4
V

32KB

16KB 8KB 4KB

L1-I cache size

(C.1.3) L1-I mpki, 403.gcc

429.mcf

@@ 1-way set ass.

*—k 2-way set ass.

y

V-V 4-way set ass.

)

<)

5
J|

o«

0

32KB

16KB 8KB
L1-I cache size

4KB

(C.1.6) L1-I mpki, 429.mcf

435.gromacs

4.0
3.5
3.0,
2.5

@@ 1-way set ass.
%*—% 2-way set ass. /

mpki

Z20

V-V 4-way set ass. /
/ /

—
1.5

A/

1.
0.5

/

0.0!

32KB

16KB 8KB
L1-I cache size

4KB

(C.1.9) L1-1 mpki, 435.gromacs

444 namd

80 q
70 @@ 1-way set ass. /& |
60 *—k 2-way set ass. /
2 o V-V 4-way set ass././ /
/
= 30 /
20 4/ /
10 .// /
4-4/
032KB 16KB 8KB 4KB

L1-I cache size

(C.1.12) L1-I mpki, 444.namd

450.soplex

1.0

< 0.8
Q

@@ 1-way set ass.
*—k 2-way set ass.

V-V 4-way set ass. /

€06
—
TJo.a4

0.2

&

4

)/

0.0:

(C.

32KB

16KB 8KB 4KB

L1-I cache size

1.15) L1-I mpki, 450.soplex

Figure C.1: L1-I mpki for several cache sizes and associativities, SPEC CPU2006.

C.1. CACHE SIZE AND ASSOCIATIVITY IMPLICATIONS IN PERFORMANCE

. 453.povra
@@ 1-way set ass. .4
60
4—k 2-way set ass. /
5 90| V¥ 4-way set ass.
g40 /
=y %
|
2
10
052k 16KB 8Ke KB
L1-I cache size

(C.1.16) L1-I mpki, 453.povray

458.sjeng

7
60|
- 50

X
Q

€

T
—
—

40

@® 1-way set ass.
*—k 2-way set ass.

/.

454.calculix
60
50 1
< 40
Q
Ezo
= A
=20 @@ 1-way set ass. [
1 ./ *—k 2-way set ass. ||
* V-V 4-way set ass.
032k8 16KB 8KB KB

(C.1.17) L1-I mpki, 454.calculix

L1-I cache size

459.GemsFDTD

40

30

@@ 1-way set ass.
*—k 2-way set ass. o

V-V 4-way set ass.

’ 4

w

V-V 4-way se%r

3
2

7

10
0

o«
v

32KB

16KB 8KB
L1-I cache size

4KB

(C.1.19) L1-I mpki, 458.sjeng

464.h264ref

@@ 1-way set ass.

L1-I mpki
= = NN
o

7

e

32KB

n

o

16KB 8KB
L1-I cache size

4KB

(C.1.20) L1-I mpki, 459.GemsFDTD

456.hmmer
@@ 1-way setass.

0.20 *—%k 2-way set ass. ||
Z V-V 4-way set ass.
£0.15 y 1
1 0.10
J

0.05]

00035k8 16ks BKB KB

[EINTTIVIN]

(C.1.21) L1-I mpki, 462.libquantum

L1-I cache size

(C.1.18) L1-I mpki, 456.hmmer

462.libquantum

0.20
@@ 1-way set ass.
0.15 *—% 2-way set ass. ||
.15
V-V 4-way set ass.
0.10
0.05]
0.0035KkB 16KkB BKB KB

L1-I cache size

*—k 2-way set ass.
V-V 4-way set ass.

/.
P

/

0

(C.1.22) L1-I mpki, 464.h264ref

32KB

16KB
L1-I cache

8KB
Size

4KB

471.omnetpp

15

@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

i

4

L1-I mpki
[

0.20 470.lbm
@@ 1l-way set ass.
0.15 *—% 2-way set ass. ||
LI
z V-V 4-way set ass.
3
Z0.10
;
4
0.05]
0.0035kB 16kB BKB KB

L1-I cache size

(C.1.24) L1-I mpki, 470.1bm

=

0

32KB

16KB 8KB 4KB

L1-I cache size

(C.1.25) L1-I mpki, 471.omnetpp

482.sphinx3

@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

Ly

o=
—

32KB

16KB 8KB 4KB

L1-I cache size

(C.1.28) L1-I mpki, 482.sphinx3

30 465.tonto
@@ 1-way set ass.
257 | k% 2-way set ass. / 1
%20 V-V 4-way set ass.
E15
-
10 / 4
5 V
033k 16KB 8KB 7KB
L1-I cache size
(C.1.23) L1-I mpki, 465.tonto
473.astar
0.20) @@ 1-way set ass. [
*—k 2-way set ass.
; 0.15 V-V 4-way set ass. |
2
7 0.10
i
d
0.05
0.00375 16KB 8KB KB

L1-I cache size

(C.1.26) L1-1 mpki, 473.astar

481.wrf
0.20] @@ 1l-way set ass. |
*—k 2-way set ass.

; 0.15 V-V 4-way set ass. |4
2
7 0.10
g
4

0.05]

0.0037¢8 16KB 8KB KB

L1-I cache size

(C.1.27) L1-1 mpki, 481.wrf

Figure C.1: L1-I mpki for several cache sizes and associativities, SPEC CPU2006.

47

APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

C.1.2 Performance evaluation: IPC

Figure shows the IPC for all the SPEC CPU2006 benchmarks considered for several sizes.
Each line represents the evolution of a given associativity. AH represents a L1-I cache that always
hits. This value gives us an upper bound of how much performance degradation, in comparison
with a ideal cache, each application might suffer.
From the figures we can see that, in general, increases in the L1-I mpki implies performance
degradations. We can also observe that 32KB 4-way set associative caches are in general very

close to the ideal performance.

48

400.perlbench

2.0

IPC

@@ 1-way set ass.
0.5/ %%k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.1) IPC, 400.perlbench

410.bwaves

S

L —9

—~¢

IPC
© o o »
o

N

@@ 1-way set ass.
*—k 2-way set ass.
0.2"w—¥ 4-way set ass.

O0AH 32kB 16KB 8KB 4KB
L1-1 cache size

(C.2.4) IPC, 410.bwaves

433.milc
U L L L g U

@@ 1-way set ass.
*—k 2-way set ass.

V-V 4-way set ass.
0.0

"~ AH 32KB 16KB 8KB 4KB
L1-l cache size

(C.2.7) IPC, 433.milc

401.bzip2
—9 v 99

IPC
=

@@ 1-way setass.
*—k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.2) IPC, 401.bzip2

0.5

0.0

416.gamess
2.5
2.0 K
ELE]

10/e-0 1-way set ass.
0.5 *—%k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.5) IPC, 416.gamess

434.zeusmp
25 @ L 4 . 4 . 4]

10le-@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

00432k 16Kk8 8KB 4K®

L1-I cache size

(C.2.8) IPC, 434.zeusmp

403.gcc

2.0,

IPC

0.5

@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

0.0'

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.3) IPC, 403.gcc

429.mcf

1.6

4

———n

4

5|

—

2]

o
=0.8

0.6|
0.4
0.2

@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.6) IPC, 429.mcf

435.gromacs

1.2
1.

L e — 08—y

008
o
=06

0.4
0.2

@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

0.0

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.9) IPC, 435.gromacs

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.

C.1. CACHE SIZE AND ASSOCIATIVITY IMPLICATIONS IN PERFORMANCE

O
=

436.cactusADM

q
.9

0.6
0.4 @@ 1l-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.10) IPC, 436.cactusADM

0.2

445.gobmk
2.
i S N
O
=58
@@ 1-way set ass.
0.5r | %k 2-way set ass.
V-V 4-way set ass.
O0AH 32KB 16KB 8KB 4KB
L1-I cache size
(C.2.13) IPC, 445.gobmk
453.povray
2.0
1.5
O ke
=1.

IPC

@@ 1-way set ass.
0.5-| %=k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.16) IPC, 453.povray

0.0

458.sjeng

0.6 /@@ 1-way set ass.
0.4r| %=k 2-way set ass.
0.2\ V¥ 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.19) IPC, 458.sjeng

464.h264ref

z.m

@@ 1-way set ass.
0.5/ *=* 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.22) IPC, 464.h264ref

437.leslie3d
‘@ @ v o v

IPC

@@ 1-way set ass.
0.5 %% 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.11) IPC, 437.leslie3d

447 .dealll
2.5 w,
2.0
O 1.5
o
1.0

@@ 1-way set ass.
0.5 *—k 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.14) IPC, 447.dealll

454.calculix

2.0 '\
15 \'

@@ 1-way set ass.
0.5/ *—* 2-way set ass.

V-V 4-way set ass.
0.0

' AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.17) IPC, 454.calculix

IPC

1.

459.GemsFDTD

IPC

@@ 1-way set ass.
0.5/ | %% 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.20) IPC, 459.GemsFDTD

0.0

465.tonto

2.5 g

@@ 1-way set ass.
0.5/ | %% 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.23) IPC, 465.tonto

0.0

444 namd

IS
SRR NN

IPC

@@ 1-way set ass.
0.5/ *—* 2-way set ass.

. N

V-V 4-way set ass.

0.0

AH 32KB)
L1-I cache size

(C.2.12) IPC, 444.namd

16KB 8KB 4KB

450.soplex
1.
b—8 L L]
0.8]
0.6
o
04 o0 1-way set ass.
0.2 *—k 2-way set ass.
V-V 4-way set ass.
O0AH 32KB 16KB 8KB 4KB
L1-I cache size
(C.2.15) IPC, 450.soplex
456.hmmer
—pg v v v}
1.5
£1.
@@ 1-way set ass.
0.5 ek 2-way set ass.
V-V 4-way set ass.
0.0KF—32k8 16KB 8KB 4KB
L1-I cache size
(C.2.18) IPC, 456.hmmer
25 462.libquantum
Ce—u] v U
2.0
ols
o
1.

@@ 1-way set ass.

0.5/ %% 2-way set ass.
V-V 4-way set ass.

AH 32KB
L1-I cache size

16KB 8KB 4KB

(C.2.21) IPC, 462.libquantum

470.lbm
2.0 g o U s |
15
(@]
aq,

@@ 1-way set ass.

0.5[| %—% 2-way set ass.
V-V 4-way set ass.

AH 32KB
L1-I cache size

(C.2.24) IPC, 470.1bm

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.

49

16KB 8KB 4KB

50

APPENDIX C. SPEC CPU2006 CHARACTERIZATION: INSTRUCTION CACHE REQUIREMENTS

471.omnetpp
) 'N‘

@@ 1-way set ass.
0.5/ %k 2-way set ass.
V-V 4-way set ass.

"~ AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.25) IPC, 471.omnetpp

482.sphinx3

2.0 ~ ~ \\‘
13 NN
) \o\
@@ 1-way set ass.

0.5/ | *—* 2-way set ass.
V-V 4-way set ass.

AH 32KB 16KB 8KB 4KB
L1-l cache size

(C.2.28) IPC, 482.sphinx3

IPC

0.0

473.astar
1.0 &
— g] o]
0.8
go 6

0.4 /@@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

' AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.26) IPC, 473.astar

481.wrf
———8—39
2.5
2.0
£1.5

1.0 @@ 1-way set ass.
*—k 2-way set ass.
V-V 4-way set ass.

“~ AH 32KB 16KB 8KB 4KB
L1-I cache size

(C.2.27) IPC, 481.wrf

Figure C.2: IPC for several cache sizes and associativities, SPEC CPU2006.

Appendix D | Shared iLP-NUCA
designs

In this appendiz we will introduce our ongoing work on shared iLP-NUCA designs.

Although dedicated (separated) caches offer higher performance, they have also higher energy
and area requirements, both critical parameters in the embedded systems domain. Thus, last
level caches (LLC) are usually shared for instructions and data caches.

Sharing the iLP-NUCA, however, is not straightforward. iLP-NUCA relies on very specialized
networks-in-cache, naming search, transport, and replacement. One of the main advantages of
the structure is that messages are implicitly routed, as they only have one possible destination
(the root-tile).

The critical path on iLP-NUCA tile consists on a hit in the cache followed by the transport
operation to the neighbor tile. This operation fits in a cycle time because the network operation
can be simplify, among other things, by deleting the routing stage. Adding a second root-tile
to the structure means that in a complete shared design messages need to decide which path to
follow (we need a routing mechanism). Other important issue is the connection wires length,
which might become too long, increasing the delay.

On the other hand iLP-NUCA networks-in-cache offer also advantages. Its structure would
allow for a hybrid design, where some tiles would be private for instructions, some others for data,
and some would be shared. In this way we would be able to restrict the amount of space data
and instructions occupy and guarantee that, for example, data demanding applications pollute
the cache and evict instruction blocks to the next level.

A possible way to implement these ideas is to modify the replacement operation and restrict
the replacement through selected links. Besides we should include a routing mechanism.

Figures [D.T], [D.2], and [D.3] show a possible design for the networks-in-cache topologies that
takes advantage of these ideas.

We want to evaluate this new structure, and right now we are implementing this design in
our simulation environment.

51

52

APPENDIX D. SHARED ILP-NUCA DESIGNS

INST DATA
R-TILE R-TILE

iLP-NUCA

Figure D.1: Search network topology for shared iLP-NUCA.

+= = =|
-
.

“,

...... .
0 s S e . .

W
R-TILE R-TILE

iLP-NUCA
from next
cache processor . .

Figure D.2: Transport network topology for shared iLP-NUCA.

.
~~
<
. \ |] .
. ~ - -
~
<
.
~

to nextA
Acache?

e)
R-TILE R-TILE
iLP-NUCA

Figure D.3: Replacement network topology for shared iLP-NUCA.

4
2 4

Appendix E | ILP-NUCA: Cache de
Instrucciones Teselada
para Procesadores
Empotrados

This appendix includes the paper ILP-NUCA: Cache de Instrucciones Teselada para Procesadores
Empotrados by Alexandra Ferrerén, Marta Ortin, Dario Suérez, Jesis Alastruey, and Victor
Vinals.

This paper was submitted and accepted into the XXIIT Jornadas de Paralelismo. It will be
presented in Elche in September 2012.

93

