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Chapter 1

Introduction

The work presented in this thesis belongs to the topic of mobile computing, and par-
ticularly data management in vehicular networks. In these networks, large amounts of
data are constantly generated, but their management (creation, transmission, query-
ing, etc.) is a challenging task due to the high number of limitations and drawbacks
typical of this type of scenarios. To overcome these obstacles, we propose a series of
novel techniques that make the efficient management of data in vehicular networks
possible, and that can lead to the development of new applications and services in
this area.

1.1 Context of the Thesis

In this thesis, we explore different possibilities related to the management of data
within the scope of a vehicular network, and more specifically regarding the problem
of how to effectively and efficiently access and transmit those data. In such a scenario,
the vehicles that travel through an area (such as a city, a highway, or a small town)
can communicate among them using radio-like devices that allow them to exchange
information wirelessly with other nearby vehicles. These vehicles are constantly re-
ceiving data from different sources. Key data sources are the sensors that are present
in modern vehicles, that provide information such as the speed, the fuel level of the
vehicle, the currently engaged gear, the oil temperature, or the geographic position
of the vehicle (using a GPS receiver). Other data sources are other vehicles present
in the surroundings, as well as roadside units (RSUs) that can transmit data of dif-
ferent nature, such as information of interest for the drivers (e.g., about traffic jams
or accidents ahead in the route), or of any other type of data (e.g., data collected
to perform cooperative surveillance or environment monitoring) as long as it can be
digitized and transferred using a network connection.

All these data that are originated in the vehicular network can be very hetero-
geneous in their nature: they can have different magnitudes and measurement units
(e.g., liters for the amount of fuel, kilometers per hour for the speed, longitude and
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latitude in sexagesimal degrees for the geographic position, “present” or “not present”
for the occupancy of a seat, etc.) and also exhibit different variability (e.g., the ge-
ographic position varies constantly, but not the occupancy of seats in a vehicle) as
well as wutility along time (e.g., the presence of a traffic congestion in the route will be
more useful if it is received as soon as possible, rather than with a significant delay,
when it will likely be outdated).

Due to this variety of data types, as well as the distribution of the data sources
and the use of wireless communications, a management system with a high level of
flexibility is needed. It should be able to handle not only the current existing data, but
also future new types that may appear without the need of developing a completely
new system. With this purpose, we have created a number of algorithms and defined
an architecture (which consists of both software and hardware components) that,
when working together distributively, allows the data present in a vehicular network
to be properly managed during all their lifetime.

1.2 Motivation

The high number of vehicles traveling along the streets of the cities all over the world
has led to a number of problems, such as an increase in the number of deaths in
traffic accidents [Adm16] and pollution due to exhaust gases, which in turn leads to a
higher number of diseases [HNO6] and decreases the quality of life in big cities. This
has caused the implementation of drastic palliative measures such as the limitation of
speed and traffic circulation in urban centers when the pollution reaches high levels,
with examples in Madrid and London [PPMI7, IKAAT11]. One possible solution
might be the generalization in the use of electric vehicles [HMMY16], which are more
efficient and have much lower levels of pollution, but they currently have a number
of problems that will limit their implantation for some years [HMSI4]: they have a
higher economic acquisition cost, they can travel a shorter distance, and they need
an extensive network of charging stations which is slowly being built.

Nevertheless, and despite the eventual implantation of electric vehicles, a number
of challenges may persist, such as the problem of traffic congestion during rush hours,
the scarce availability of parking spaces in certain high-demand areas (which leads
to the waste of time of drivers and also has an economic and environmental impact
due to unproductive driving), or traffic accidents due to human errors and technical
failures.

To alleviate these problems, Intelligent Transportation Systems (ITS) [DD10] have
been proposed as a means to increase the efficiency and sustainability of the trans-
portation while increasing its safety and reducing the emissions of pollution gases.
This also means that the roads and streets could increase the amount of traffic that
can be accommodated without causing congestion, the travel times could be pre-
dicted more accurately and reduced, and the number of traffic accidents decreased.
To try to accomplish all this, these systems make use of computing and communi-
cation technologies to coordinate the different elements of a transportation system
(such as vehicles, roads, traffic signs, etc.) and make these elements intelligent, so
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that they can be programmed to be capable of performing their tasks in a flexible
and autonomous way, adapting their operation to the changes that may occur in their
operating environment or conditions.

Such is their importance, that the European Community adopted on July 7th,
2010, a new legal framework, the Directive 2010/40/EU [Eurl0], to accelerate the
deployment of these innovative transport technologies. The objective of this directive
is to coordinate the implementation of ITS in Europe, allowing the interoperability,
compatibility and continuity of different solutions across the European Union. An-
other sign of the importance of this issue is that, previously to that directive, on
August 5th, 2008, the Commission adopted the Decision 2008/671/EC [Eur08] to re-
serve the 5.9 GHz band for safety-related ITS applications, which require a spectrum
for short-range, low-latency communications.

Regarding the vehicles that belong to these systems, in the last years the auto-
motive industry has enhanced them with the latest advances in communication and
information technologies, to the extent that modern cars could be easily defined as
computers on wheels. It even exists a term, wntelligent vehicle, to name a car with
not only the capability to improve the driving experience and the security of their
occupants thanks to computers, but also the capability to communicate with other
similar cars. This idea of a connected vehicle allows to expand traditional techniques
to provide comfort and safety to a wider extent.

The vehicles that communicate among them in this way can then build a vehic-
ular ad hoc network (or VANET) [OW09], that can be used for the development of
many interesting applications. The use of wireless ad hoc communications supports
the quick exchange of useful information among nearby vehicles, for example, the ex-
change of useful information among the vehicles about accidents, traffic congestions
ahead and possible detours to avoid them, hazardous roads and weather conditions,
the location of certain facilities (e.g., gas stations, hotels), the activation of an emer-
gency brake by a nearby vehicle which may not be visible to the driver, etc. Another
application that would take advantage of the wide area covered by the vehicles when
they travel is to use them as moving sensor platforms. In such an application, the ve-
hicles would carry different types of sensors, that would obtain data from the vehicles’
surroundings as they move.

However, and despite the potential utility that vehicular networks could have,
there exist a number of difficulties that have limited their growth and popularity:
the information exchange can be performed only by vehicles within a relatively short
range, which in addition is limited by the presence of obstacles that can block the
wireless signals (see Figure , and by the short time interval during which the
devices are in range, due to the vehicles’ movement especially when they are traveling
in opposite directions at high speed, for example in a highway. Another difficulty is
how to send the data to the vehicles that might be interested in them, taking into
account that the possible receivers may be located in different and unknown places
along the area covered by the VANET. Moreover, some vehicles can be interested
in obtaining certain information, but they may not know how or from where such
information can be retrieved.
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Figure 1.1: Ad hoc communications in VANETSs and potential obstacles

So, the main motivation of this work is the possibility to exploit data in a VANET
as a first step to provide data services for drivers and passengers (in order to increase
their safety and convenience) as well as for third parties (e.g., to perform environment
monitoring by using conventional vehicles). For that purpose, we aim at the creation
of a system that allows:

e To transfer data in a VANET in an efficient and fast way, using short-range
network connections that are free to use, i.e., without implying an economic
cost and without needing a previously-existing infrastructure.

e To route data to any destination (a vehicle or place) in the network in an easy
and transparent way, with independence of where that destination is located,
and if it is moving or in a fixed place.

e To query the data stored by the vehicles within any spatial area, to retrieve
information according to the interests or needs of the users of the system.

e To support an easy update of the data management strategies applied and their
efficient use in a distributed environment. For this purpose, we will study the
use of mobile agents to solve some existing data management challenges in
the context of vehicular networks, since it is a promising but quite unexplored
technology for this type of scenario.

The creation of this system could have, as an additional benefit, the possibility of
developing new tools and services on top of it, and in this way it would give value to
such an amount of data that at the present time remains unexploited and hidden in
the vehicles that run through our cities. Moreover, the development of that system
will also imply efforts in other related areas, such as the definition of an evaluation
methodology and appropriate simulation strategies.



1.3. Overview of the Work 5

1.3 Overview of the Work

The main contribution of this work is a system that allows the management of the
data present in a vehicular network based on the use of mobile agents to perform
that task. The data are scattered among the vehicles that belong to the network,
and some portions of those data can be transferred from one vehicle to another using
their short-range wireless communication devices. These exchanges of data are made
in a peer-to-peer (or P2P) way, so their scope is very limited and it is necessary to
perform further actions to transport the data to other places that are out of the range
of those devices.

One way to achieve this is by using the technology of mobile agents, which consists
of software programs with the ability to moving themselves (both their code and
data) from the computer/device where they are being executed to another one after
being transferred using a network link, resuming its execution at the same point once
they are in the new computer/device. Thus, a mobile agent can benefit from the
vehicles’ short-range communication capabilities to move from one to another in its
vicinity and, by repeating this process many times, eventually reach distant areas (see

Figure .

ireless communication range

Figure 1.2: Reaching a target area by jumping among vehicles

Another objective is to allow the users to query the data that are stored by the
vehicles to extract useful information and obtain the required result within a reason-
able time. These queries can refer to any parameter read by the sensors aboard the
vehicles, at any time period, and in any geographic place where the vehicles of the
network can travel.

Thus, we propose a mechanism to use mobile agents’ features to address two key
challenges. Firstly, to retrieve data from specific spatial areas by using the vehicles
as intermediate communication nodes: a mobile agent will need to take decisions
autonomously and intelligently regarding the choice of a vehicle within its commu-
nication range where it should jump to (or, alternatively, to conclude that, for the
moment, it should remain in its current vehicle), in order to reach its final spatial
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destination as soon as possible. Secondly, to solve queries defined by the users by
processing the data locally at the vehicles (instead of sending all the data to a central
server, which is problematic in a VANET); in this way, it is possible to discard data
that are irrelevant to the query and keep only the relevant data, aggregating them to
form a complete query answer.

Furthermore, motivated by the lack of simulation software capable of simulating,
at the same time, the movements of vehicles in a road network, the actions performed
by mobile agents, and the communications involved, we have also developed a simu-
lator, called MAVSIM. This software allows the simulation of VANETS in a realistic
way, using maps from real cities and roads, considering the limitations of wireless
communications (such as their short range and the potential blocking of communica-~
tion signals by buildings), and also supporting the simulation of mobile agents that
can transfer themselves among the simulated vehicles. These agents can follow the
algorithms developed by the user who wants to use the simulator to evaluate data
management strategies using mobile agents. The simulator has been programmed in
a modular way so that it can be easily used for the simulation of any scenario needed,
and it can also be enhanced with new functions if necessary.

Finally, we have performed extensive tests and simulations to evaluate the different
approaches developed to use mobile agents for data management in VANETS, under
many circumstances and with different purposes. The results show the interest and
feasibility of using mobile agents in such a dynamic and uncertain scenario for locating,
processing and transporting data to/from different places in the VANET. Due to the
difficulty of evaluating the different approaches that use mobile agents moving in
a VANET in the real world, we have used the MAVSIM simulator to test those
approaches in different scenarios and conditions. For example, a typical simulation
scenario consists of a real city where a mobile agent must perform some task using the
tested algorithm, which involves its movement to a certain area placed a few kilometers
from the starting point of the agent. The simulation can be repeated as many times
as necessary, varying the initial conditions (such as the distance to the target area, the
number of vehicles moving in the VANET, the range of communications, etc.) and,
once each simulation ends, it provides different data as a result, that are analyzed to
evaluate the performance of the approach being tested.

In the following, we describe the main contributions of our work with more detail.
Firstly, we introduce the problem of data management in vehicular networks. Sec-
ondly, we provide some explanations about mobile agents and the benefits of using
them in vehicular networks. Thirdly, we describe the simulator that was developed
to help in the evaluation of our proposal. Finally, we explain the experiments that
were performed to evaluate our approach.

1.3.1 Data Management in Vehicular Networks

Our data management approach is capable of overcoming a number of problems caused
by the limitations of vehicular networks. Its main features are:

1. It can exploit the data that are scattered among the vehicles. The vehicles in the
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VANET are constantly obtaining data from their sensors and from other vehicles
as they move, and these data are stored locally in their onboard computers, along
with information about the geographic position and the time when they were
obtained. The users of the system can search a subset of those data satisfying
a number of conditions previously defined, that can refer to spatio-temporal
constraints and/or to the values of the data themselves, and can be specified in
the form of queries. Then, the data that meet the conditions are located and
returned, no matter the number of vehicles involved.

. It uses P2P connections for communications. The proposed data management

approach does not need the existence of a previously-installed communication
infrastructure, using instead Wi-Fi type wireless communication devices. A
drawback of these devices is that they have a short range, which allows them
to establish connections only with other similar devices within a range of a few
hundred meters, but on the other hand they also have important advantages
that make them ideal for this scenario. Among these advantages we can high-
light that they are inexpensive, standard and widely adopted, and there exist
many options to choose from (e.g., IEEE 802.11, UWB, WiMax, Bluetooth,
Zigbee, etc.), so it is highly likely that any two random vehicles will be able
to communicate with each other by using some of these technologies. Another
important advantage is that the vehicles can initiate or end communications at
any time with any other peer in range, without needing to register previously
to, or needing the approval or intervention of, any other control entity.

. It operates in a decentralized and distributed way. The data are obtained, stored

and processed locally by the vehicles, instead of being transferred or submitted
to a centralized location or entity to perform these tasks which, on the other
hand, would be problematic using P2P short-range communications, and would
also require a lot of computing power if the amount of data to process is high.
Instead, the data are stored and processed using the computer aboard every
vehicle, which has benefits such as the distribution of the computing power, the
enhancement of the privacy (the data owner is who controls their use), and the
fact that the existence of central servers is not necessary (since all the vehicles
act as equal peers).

. It supports the transfer of data from any vehicle to anywhere in the VANET.

In a vehicular network with P2P short-range connections whose nodes (i.e., the
vehicles) are constantly moving, it can be difficult to transfer data from one place
to another distant one. However, we can achieve this by using algorithms that
use intermediate vehicles as relays that store temporarily the transferred data
until they can be retransmitted to another vehicle. So, the data are moved along
the VANET both wirelessly (when one vehicle transfers them to another) and
physically (when the vehicle transporting the data moves to another geographic
area). Our approach is able to determine the best option dynamically at any
time, so that the data will eventually arrive to the destination.
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As a summary, the proposed approach takes advantage of the features of vehicular
networks (e.g., their high mobility, which allows the vehicles to cover wide areas
and potentially obtain large amounts of data from the environment) and tries to
overcome their difficulties (e.g., the instability of the network connections). The data
management techniques developed are functional, flexible and robust enough to allow
the development of new applications.

1.3.2 Mobile Agents in Vehicular Networks

In order to make it possible that the data in the VANET can be queried and trans-
ported using the vehicles as network/processing nodes, we have decided to explore the
use of mobile agent technology, whose concept has existed since some years. A mobile
agent is a program (code and data) that, while it is being executed in a computer,
can suspend its execution at any time and transfer itself to another computer using
a network connection, then resuming its execution in the new computer.

The reason for choosing mobile agents is that they have a number of interesting
properties that make them the ideal election to deal with such a changing and un-
predictable scenario as a vehicular network. The main features of mobile agents are
that they can potentially be intelligent (as long as they are programmed to embed an
intelligent behavior), autonomous (they are not tied to a single execution environment
and can be programmed to take decisions autonomously), communicative (they can
exchange data with other agents or with the computer where they are currently being
executed), and mobile (they can move to other execution environments as long as a
network connection exists).

The use of mobile agents in our approach has important benefits, since they allow
to implement, in a suitable way, the following aspects of the proposed data manage-
ment approach for vehicular networks:

e The mobile agents can be executed in any computer aboard vehicles and in-
teract with the sensors to retrieve the data read by them, only requiring the
installation of a lightweight software framework, called a mobile agent platform.
This platform provides, among others, a mobility service needed by the mo-
bile agents to move from one execution environment to another, as well as a
communication service that allows them to interact with each other.

e By means of the mobile agent platform, they can transfer themselves from one
vehicle to another using the wireless communications, despite their limitations
(short range, brief availability of links due to the movements of vehicles, etc.).
The action of transferring the mobile agent from one execution environment to
another is efficient and does not take more than a few seconds at most, so the
mobile agents can move freely among the vehicles in a VANET.

e Due to their intelligence and mobility features, they can travel to any place of the
VANET by hopping from one car to another until they reach their destination.
Since the vehicles are constantly moving, every time an agent reaches a new
one, it evaluates the properties of other vehicles in range (such as their position,
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speed, heading, etc.) constantly, in order to decide which one will be the next
to hop to in order to reach the destination in a shorter time. It is also possible
that the agent decides to stay in the same vehicle, if hopping to another does
not bring any benefit.

e By using this way of moving from one location of the VANET to any other,
mobile agents can be used to transport the data of interest for the users of the
system. In other words, they can provide the necessary intelligence for the data
to be transferred anywhere in the VANET using the always-changing network
connections available.

e Additionally, mobile agents can be used not only to transport data through the
vehicular network, but also to fetch them directly from the vehicles present in
a delimited area, by processing the data stored in their computer devices in a
decentralized way. In this case, the mobile agent will transfer itself from one
vehicle to another within the specified area, and at every interesting vehicle, it
will process or query the locally-stored data to obtain the required data. The
process will be repeated until the mobile agent finds the data being searched.

e In order to increase the efficiency of these processes, some enhancements are
possible. One is to use many simultaneous copies (or clones) of the mobile
agent to search for the data and, in this way, increase the probability of finding
them and/or enlarge the amount of data recovered, taking into account that
some data will probably be duplicated and the process will need more resources.
Another improvement is helping the mobile agent to find or reach the searched
data by asking the vehicles’ drivers to collaborate with the agents by carrying
them to the area where the data are located, using a spatial crowdsourcing
scheme to exchange physical transportation with some type of compensation.

An example of the usage of mobile agents in a vehicular network can be seen in
Figure where the agent hops from one vehicle to another until it reaches a target
area, dealing with unexpected situations such as vehicles that change their route in
directions that are not favorable for the agent.

Given all these features of mobile agents, as well as the way they can be applied
to build our approach, we believe that using this technology is an appropriate choice.
We hope that it will help to contribute to increase the current knowledge of the use
of mobile agents for data management in vehicular networks (and mobile networks in
general), and also in other scenarios.

1.3.3 MAVSIM: A Simulator of VANETSs to Evaluate Data
Management Approaches Using Mobile Agents
The proposed data management approach has been extensively tested and analyzed

using simulation software, since performing the necessary tests in a real VANET would
have been extremely complex and expensive, if not impossible.
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Figure 1.3: Mobile agents hopping in a VANET in the city of Valenciennes (France)

Due to the novelty of this approach, there is no simulation software available with
the capability to simulate a VANET and mobile agents at the same time, which is
needed to evaluate our data management solution properly. In fact, there are many
simulation tools for networks, and also for transportation and traffic, but they are not
useful for the simulation of environments where our data management approach can
be directly tested. The main reason is that they cannot simulate mobile agents, which
are necessary for the implementation of our proposal, and they cannot simulate either
that the transmitted data may have an influence on the behavior or movements of
the vehicles. For example, the notification of a traffic jam in an area makes the users
of the application to take a detour in order to avoid the traffic congestion (altering
the original vehicle’s route). As another example, existing tools would not support
testing spatial crowdsourcing techniques, that compensate drivers for altering their
routes to travel physically to a certain location of interest.

Due to these reasons, and motivated by the lack of simulators with the ability to
simulate programmable mobile agents in a flexible way, we developed an entirely-new
simulation software, called MAVSIM (Mobile Agent Vanet SIMulator), that allows
us to test the algorithms used in our data management proposal, as well as any
other similar algorithm, in a realistic way and using real city maps. Among the most
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interesting features of the simulator, we could cite:

Simulation of traffic using roads and streets from maps of real cities.
Simulation of both moving and static wireless communication devices.

Simulation of constraining factors that are typical of mobile networks, such
as: limited communication range, signal blocking by buildings, latency and
transmission errors, etc.

Simulation of a mobile agent platform that allows the programming and execu-
tion of arbitrarily-complex mobile agents.

Support for mobile agents to obtain information and/or properties from any
simulated device where they are executed (e.g., the position of a vehicle, its
speed and heading, etc.) and also to move freely to any other device using
the simulated communication devices, with the only limitation of the mobile
communication constraints.

Simulation of fixed roadside units that allow the mobile agents to move quickly
among distant places using a wired link that inter-connects all these units.

Generation of trajectories using different mobility models and support to use
them along with trajectories from real traffic traces or from third-party traffic
simulators.

Simulation of public transportation lines involving vehicles, stops, and fixed and
cyclic routes.

Execution in batch mode for the simulation of large or complex scenarios in
high-capacity servers.

Recording of entire simulations for their later analysis using a graphical replay-
ing tool.

Modular development, to ease its extension.

Summing up, the simulation tool developed allows the definition and testing of
different data management approaches for a VANET. The mobile agents programmed
can be simulated in different scenarios in order to test their behavior under different
conditions and with the typical limitations and difficulties of mobile and wireless
communications, and the results can be analyzed to enhance the algorithms or detect
adverse conditions. In Chapter [5] we explain the features of MAVSIM in more detail.

1.3.4 Experimental Evaluation

The data management approach that we have developed involves a number of variables
that define its behavior. In addition, the scenario where it is used (i.e., a VANET)
may become quite complex due to its unpredictable nature. That is, the high number
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of vehicles moving at the same time towards unknown destinations, and the instability
of wireless communications, can make the task of our mobile-agent based approach
really challenging. Therefore, in order to validate the feasibility of our proposal, it
is essential to test it in different scenarios under different conditions and varying the
values of the parameters that define its behavior.

We evaluated the different features of our approach by performing several ex-
periments, where the data obtained as a result were analyzed to draw conclusions.
These conclusions were used later to enhance and refine the tested approach or to
perform further experiments if the results obtained initially were unclear or yielded
new questions. Among the most relevant experiments performed, we can cite the
following:

e Measurement of the average transmission time of mobile agents when they move
wirelessly from one mobile device to another.

e Testing of different hop strategies used by mobile agents to approach an area by
moving (hopping) among the vehicles in a city.

e Determination of the best hop strategy by taking into account the total time
needed, the number of movements performed by the mobile agent, etc.

e Comparison of the performance of mobile-agent based algorithms according to
the features of the street layout of different cities.

e Measurement of the reliability of the algorithms and the influence of commu-
nication errors, the occurrence of unexpected events, the existing uncertainty
regarding the position of a target vehicle, etc.

e Analysis of the influence of the presence of obstacles (such as buildings), that
block the wireless signal propagation, on the performance and reliability of the
different approaches.

e Testing of the use of multiple instances of a mobile agent (clones) and assessment
of the advantages and drawbacks of their use in terms of query processing time,
performance, bandwidth usage, reliability, etc.

e Testing of the use of spatial crowdsourcing techniques and their advantages and
drawbacks in terms of query processing time, compensation costs, reliability,
etc., comparing them with other solutions that do not use such techniques.

Among these experiments, the first one was performed using real mobile devices
and, for the rest of them, the MAVSIM simulator was used, completing more than
2500 hours of simulations. In Chapter [5] we explain the methodology followed for the
experimental evaluation, and in Chapter [6] we detail the experiments performed.
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1.4 Structure of the Thesis

This thesis is composed of nine chapters, including this one. In Chapter 2] we first
review the technological context of this work, where we explain some topics related
to mobile computing and mobile devices, peer-to-peer and vehicular networks, mobile
agents and mobile agent platforms, and some existing data management approaches
that have been proposed for VANETS.

In Chapter we describe in detail our proposed approach to the problem of
distributed processing of queries in a vehicular network. Different algorithms are
presented and fully explained, depicting each phase into which the query solving
process with mobile agents is divided.

In Chapter ] we discuss several techniques that can be used by the mobile agent
to reach its destination by moving (or hopping) from one vehicle to another. These
methods use the geographic position of both the mobile agent and its destination to
estimate the best way of reaching the latter, and can be enhanced if more detailed
geo-spatial information or collaborating vehicles are available.

In Chapter [B] we describe the evaluation methodology used in the experiments
performed along this thesis. We also describe MAVSIM, the simulator that we have
developed to represent scenarios with mobile agents and vehicular networks. Our
software has been extensively used to test and analyze the algorithms and methods
designed in this thesis.

In Chapter [6] we evaluate our proposed approach by performing a wide variety of
experiments where we measure a series of metrics, significant to quantify the perfor-
mance and scalability of the proposed techniques.

In Chapter [7} we present a use case example, where a driver uses the proposed
approach to find available parking places in a mixed urban/interurban scenario. Ex-
isting proposals to obtain information about available parking spaces are push-based
and cannot be applied in the scenario described in that chapter. Besides, the use of
mobile agents to search available on-street parking spaces is also new.

In Chapter [8) we review previous existing works related to ours, and we provide
comprehensive comparisons among them.

Finally, in Chapter [0} we present our conclusions and main contributions, and we
finish the document by outlining some topics for future research.
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Chapter 2

Technological Context

In this chapter, we introduce some technologies upon which our data management
approach has been built. Firstly, we describe the particularities of mobile computing
and, especially, the topics related to wireless communications as well as the main
advantages and drawbacks of such technology. Secondly, we focus on peer-to-peer
mobile networks, which have a great importance in our proposed approach. Thirdly,
we present some aspects of Intelligent Transportation Systems. Fourthly, we turn our
attention to vehicular networks, which are the basis on which our data management
approach has been built. Fifthly, we focus on software agents, and especially on mobile
agents, which play a crucial role in the design and implementation of our system.
Finally, we discuss some existing data query approaches for vehicular networks, that
have some limitations that inspired the development of our approach.

2.1 Mobile Computing

In the last years, the demand of mobile applications has grown considerably [AFJT06]
thanks to the miniaturization of devices (which are more and more powerful and
cheaper) and the deployment of global wireless communication networks. It is now
possible to access an increasing number of Internet-based services and applications,
anywhere and anytime, in a fast and easy way. However, the development of more
complex and efficient services can be a challenging issue in such a mobile environment
due to the existence of a high number of users, a variety of devices (in terms of features
and computational capabilities), and mobile communication limitations.

2.1.1 Mobile Devices

Mobile devices are small computers that have many of the properties of conventional
computers: they can be programmed, their users can execute different applications
and software by means of a user interface, they can store data, and they can exchange
data using communication devices with other computers connected to a network.

15
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However, mobile devices have a number of special features that make them differ-
ent from conventional computers: the most important one is, precisely, their mobility
or portability, that allows their usage at any place and at any moment thanks to
their small size and light weight. Another feature is their wireless connectivity, that
makes it possible to access a high variety of services anywhere, as long as a wireless
network is available. Since they are portable, they must be powered by batteries with
a limited lifetime, so different energy-saving strategies must be applied in order to
extend their autonomy (e.g., shutting down some components —such as the screen or
the communication interfaces— when they are not used for a certain period of time).

Due to the energy and size constraints, their features in terms of processor perfor-
mance, memory and storage size, are usually more limited than those of their fixed
counterpart, although, thanks to the technological evolution [FIi09], today’s mobile
devices are more powerful than the conventional computers of a few years ago. An-
other reason for this is their economic cost, since building a mobile device with the
same performance as a fixed device (but maintaining its small size and weight) is very
expensive and commercially limited.

There exist different types of mobile devices that have several form factors and
features (as shown in Figure , that are suitable for different uses. The most
wide-spread ones are the following:

Figure 2.1: Different types of mobile devices

o Smartphones, whose main initial purpose was making and receiving voice phone
calls, but that evolved into platforms capable of executing a high variety of appli-
cations. These devices are small-sized, they have user interfaces based on tactile
screens, and they can communicate using cellular telephony technology (such as
3G/4G [DPS13]), as well as others such as Wi-Fi [OR03] or Bluetooth [Mor02].
They also have a geographic positioning system (such as the GPS [PS96]) that
allows their users to know their current position with a high level of accuracy.
Moreover, it is usual that these devices include a number of built-in sensors not
related to processing or communication tasks, such as magnetic field sensors (to
act as a compass), accelerometers (to read the movements of the device), micro-
phones, video/photographic cameras, or even barometers for the atmospheric
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pressure and other types of sensors. Their features in terms of CPU power
and memory size are modest, and the most popular operating system they use
(according to a survey from Gartner Group [Garl8]) are Android [Has09] and
iOS [Sad12).

e Tublets, whose main feature is their large tactile screens, that allow their users to
execute interactive applications more comfortably than in smartphones. Tablets
usually do not have mobile phone-based communication (although they also can
use them by installing a SIM card, if that feature is available in the device);
instead, they use Wi-Fi as a main communication technology, and usually also
include the same types of sensors as mobile phones. Their CPU and memory
features are similar to those of smartphones, and they also have a GPS system.
They use the same operating systems as smartphones, with minor modifications
to take advantage of the big-sized screen.

e Laptops, that are the portable version of personal computers (i.e., desktop com-
puters). Their CPU and memory characteristics are better than in mobile
phones or tablets, but not as high as in conventional computers. They usu-
ally use Wi-Fi as their main communication technology, but they also can use
wired high-speed connections (e.g., gigabit Ethernet [Eth16]) for their use as
fixed computers. Their screens are not usually of the tactile type, and to inter-
act with them it is necessary to use their built-in keyboard and mouse. Laptops
usually do not have integrated GPS or 3G/4G communications, but these and
others technologies can be easily added to the device thank to its hardware
extensibility using, for example, USB ports [Axel5]. Their most widely-used
operating systems are the same as in fixed/conventional computers, such as
Microsoft Windows [Mic], Apple macOS [Appa], and GNU/Linux [Theb].

e Others. There exist other types of mobile devices, that we are not considering
for this thesis due to different reasons. For example, some devices belong to the
category of wearable computers [Barlh] such as smartwatches or smartglasses,
that have promising features but their hardware is too limited and they are
not very widespread yet. As another example, the personal digital assistants
(PDAs [JT03]) were the predecessors of the current smartphones and had their
golden age in the first decade of the 2000s, but their use declined in favor of
smartphones and tablets and are no longer in the market.

Despite their lower performance, their relatively low economic cost makes them

very affordable and, as a consequence, their spread has grown dramatically in the
last years, being a technology that has become practically ubiquitous. According
to some statistics [Stal7al, the number of mobile phone users worldwide in 2017 is
about 4.77 billion and is estimated to increase to 5.07 billion in 2019. Similarly, the
number of smartphone users worldwide is about 2.32 billion in 2017, and is expected
to increase to 2.71 billion in 2019 [Stal7b]. By the year 2023, 95% of all mobile data
traffic will come from smartphones [Eril7], and in 2021 there will be more people
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with smartphones (5.5 billion) than people with access to clean drinking water (5.3
billion) [Cis17].

2.1.2 Mobile Communications

Given the mobile nature of mobile devices, the use of wireless radio communications
is a logical consequence, since using fixed wired network connections would have little
sense, except for certain periods of time when the mobile device can stay in the same
place for a relatively long time (e.g., when their batteries are being recharged, etc.).
For this reason, there is a wide range of communication technologies that mobile
devices can use, although all of them have some drawbacks.

One type of mobile communication technologies are those based on cellular tele-
phony, such as GPRS [LT03], 3G/4G [DPS13] or the future 5G [HHI5], that belong to
the category of Wide Area Networks (WAN) since they cover large geographic areas.
In these technologies, the devices (i.e., mobile phones) establish a link with one of
the base stations located in their vicinity to make phone calls or send/receive data.
These base stations are connected to each other with high-speed wired connections
and, in this way, they can transfer data or make phone calls from one user to any
other in a distant place or access the Internet (see Figure . The base stations have
an antenna and are usually located at high places, in order to communicate with the
user terminals with the least amount of possible obstacles.

Figure 2.2: Example of a cellular network

The antennas cover their surrounding area and have a range of about 0.8 to 8 km,
although there can be certain places where the radio signal is strongly attenuated
(e.g., underground places or tunnels) and therefore the communication between the
terminal and the antenna becomes impossible. Due to the limited range of a single
antenna, it is necessary to place many of them at different places, each one covering
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its surrounding area, which is called a cell. In each cell, the antenna covering it uses
different ranges of frequencies, in such a way that two adjacent cells do not use the
same frequencies in order to avoid interferences and collisions. When a user terminal
moves from one cell to another, it may establish a connection simultaneously with
each cell’s antennas so that if a communication or phone call is in course, it will not
get interrupted when the terminal leaves one cell and loses the connection with the
base station that belonged to the previous cell (this is called a “soft handoff”).

Cellular telephony networks usually offer a good coverage to their users, espe-
cially in urban areas, which allows to use them almost anywhere and at any time.
The drawbacks are that they require the deployment of a costly infrastructure to op-
erate (e.g., the installation of a large amount of base stations), and their bandwidth
and latency to transfer data are modest, although they are improving as technology
advances. Another drawback is that, due to their high installation costs, their users
are required to have a contract with a mobile telephony operator and pay a fee in
exchange of their services.

Another type of wireless communication is based on the IEEE 802.11 [TEE16] stan-
dards (in the last years especially the 802.11g, 802.11n and 802.11ac specifications),
also known as Wireless-Fidelity or Wi-Fi, that belong to the category of Wireless Lo-
cal Area Network (WLAN), since their typical use takes place at home, universities,
office buildings, etc. These standards are the most widespread today and they are
present as the communication interface by default in mobile phones, tablets, laptop
computers, electronic books, surveillance cameras, wearable computers, and many
other devices and gadgets.

This type of wireless network has higher data transmission rates than cellular
telephony-based networks (as shown in Table , but they are constrained by a
limited communication range, of about 200 to 300 meters with no obstacles. In
their usual usage scenario, the individual devices connect to each other through one
or more intermediate devices called access points, that act in a way similar to the
base stations of cellular networks, extending the coverage of the radio signal and
allowing different devices to exchange data. However, unlike in cellular networks, the
users of Wi-Fi technology do not have to pay a fee to a telecommunication operator
and can install and create their own wireless networks, without needing any further
authorization, and at an affordable cost. Moreover, since the introduction of Wi-Fi
Direct [CMGSS13], it is possible to establish direct device-to-device communications
without needing the use of an access point. However, the communications performed
in this way are limited to the range of the involved devices, and it is not possible to
extend it wider.

We must also mention another variant of these standards, the 802.11p or Wireless
Access in Vehicular Environment (WAVE) [IEE10], that was created for its specific
use in vehicular networks. It is designed to operate in scenarios where network con-
nections must be established as soon as possible, as it happens between high-speed
moving vehicles. To accomplish this, it operates in a dedicated frequency range and
some of its synchronization and negotiation protocols are simplified so that they
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take less time to complete, which allows more efficient communications of the types
vehicle-to-vehicle (V2V) [HPY 14| and vehicle-to-infrastructure (V2I) [UJ16]. This
technology is currently not present in consumer mobile devices, and only some car-
related manufacturers offer solutions based on this standard [Aral, Red].

Finally, we will also refer to mobile communications based on the Bluetooth stan-
dard [BS], that belong to the category of wireless Personal Area Networks (PAN).
This technology provides low bandwidth communications with a very short range
(usually about 10 meters), and consequently, its energy consumption is also very low,
which is a good feature to extend the batteries’ autonomy in mobile devices. This
technology does not need the use of intermediate access points and operates using
direct connections from one device to another. Before establishing a connection, the
devices must pair to each other by exchanging a key and, after that, they can con-
tinue with the data exchange. It is present in many mobile devices (mobile phones,
tablets, laptops) and its primary use is for the direct transference of small files from
one device to another, or for the wireless connection of these devices with other small
accessories such as keyboards, mice, headsets, speakers, etc.

A summary of the different features of some of the most widespread wireless
communication technologies are shown in Table 2:1]

Technology Category | Max. bandwidth | Max. range | Spectrum type
Down/Up (Mbit/s) (meters)

GPRS WAN 0.0856/0.0428 Global Licensed

3G WAN 14.4/5.76 Global Licensed

4G WAN 150/75 Global Licensed
802.11g (Wi-Fi) WLAN 54/54 250 Unlicensed
802.11n (Wi-Fi) WLAN 600/600 300 Unlicensed
802.11ac (Wi-Fi) WLAN 1300/1300 500 Unlicensed
802.11p (WAVE) WLAN 54/54 1000 Unlicensed
Bluetooth PAN 24/24 10 Unlicensed

Table 2.1: Summary of wireless communication technologies

2.1.3 Mobile Applications

Mobile environments have a number of limitations (e.g., the limited bandwidth and
connectivity) and unstable conditions (e.g., the presence or absence of communi-
cations, the changing position of the user) that make the development of mobile
applications a process more complex than with conventional applications.

An important aspect that we must highlight is the heterogeneity and limited ca-
pabilities of mobile devices. Thus, there exist different types of devices (smartphones,
tablets or laptops), which run applications in varied environments and operating sys-
tems. These devices have different processing, storage, and user interface capabilities,
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and due to this heterogeneity in hardware configurations, architectures, and operating
systems, the development of software and applications may become a difficult task:
one program or application developed specifically for a certain device will likely not
work in another different device, unless it is properly adapted, which can be a costly
process. Thus, to overcome this issue, there exist some approaches. One option is
to develop different versions of the applications, and maintain one version for each
type of device. This is the best option in terms of performance, since each version
can be optimized for the specific hardware where it will execute, but maintaining
a high number of different versions can have an excessive cost. As an alternative,
applications can be developed using some programming framework, such as Apache
Cordova [Theal or React Native [Facb|, that perform automatically the required mod-
ifications so that the application can execute in any supported device. In this way, the
underlying platform is abstracted and the programmer only needs to code one single
version of its application. The drawback is that the software developed in this way
has less performance than if it had been developed natively, since the generated code
will probably not be optimized for any specific hardware where it will execute; in-
stead, it will use generic code in order to be functional in as many devices as possible.
Finally, there also exist hybrid applications that, as an intermediate alternative, use
both native components provided by the device’s operating system as well as code
generated in some standard interpreted language (such as JavaScript or HTML5),
that balance the best features of both options.

Despite these difficulties, the use of mobile applications has increased in the
last years, and the two biggest mobile application stores (Google Play and Apple
App Store) contained, respectively, 2.8 and 2.2 millions of applications as of March
2017 [Stal8]. These figures have been reached thanks to a number of factors, such
as: the lightweight and small size of the mobile devices, that allows carrying them
everywhere; the increase of computer power and storage in mobile devices, that allow
the creation of more complex applications; the wide adoption of tactile interfaces that
eases the use of applications by their users; the immediacy in access to information,
thanks to the advances in mobile communications that have increased their speed
and are present almost anywhere; and the relatively low cost of mobile devices, that
has led to their massive adoption by non-technical users, and thus the creation of a
software industry around them.

These features have made possible the creation of entirely new types of applications
that take advantage of features not present in the traditional fixed computers, such
as the location of the user, or the status of some of the different types of sensors that
mobile devices may have.

One type of these applications are context-aware applications [YS00, EFYNO04,
MVTIl, THTLACRH15], where the context of the users are taken into account for
providing them different services or information. The context can be given by the
status of many parameters from the user himself/herself, from his/her surroundings
or his/her environment, etc. For example, some parameters that can be used to de-
termine the context of a user are the current time and day, the geographic position,
the temperature, the noise level, the traveling speed (if the user is aboard a vehicle),
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the heading, the battery level of his/her mobile phone, the presence or absence of
certain Wi-Fi network, etc. Many of these parameters can be obtained by sensors in-
tegrated in mobile devices (e.g., mobile phones). Alternatively, some sensors can also
be standalone devices that work autonomously and can be queried by other devices
using, for example, wireless communications using Wi-Fi or Bluetooth. An example
of these applications is Automate [Llal, where the user can program his/her mobile
device to perform some actions when one or more conditions are met. For example,
if it is Sunday morning and the device is recharging its batteries, put the ring volume
to the minimum and send an SMS message with the text “do not disturb” to the
phone number from any incoming call. Another example is IFTTT (If This Then
That) [Ovaldl TFT], that is a web service to perform automatic actions according to
the user’s actions in other on-line services (e.g., if I save a picture in my Dropbox
folder, then publish it in my Instagram account). As another example, we can cite
virtual assistants, like Siri [Appb] or Google Assistant [Goo] that take voice com-
mands or requests from their users and provide them an answer by performing some
actions or giving useful information. The user’s request can be not entirely precise,
and the application must deduce the missing information according to the context.
For example, the user could say “I want information about the weather”, and the
assistant will have to infer that the information requested by the user is about the
weather in his/her current location for the next hours or days.

When the context refers specifically to the geographic location of a user, we can
talk about Location-Based Services (LBS) [Kup05, [DHILDI0, IMS™11]. The location
of the device, that can be known using the mobile device’s built-in GPS receiver,
or the triangulation of Wi-Fi stations or cell towers positions, is used to provide a
service or relevant information according to both the position of the owner as well
as possibly of other users or services that are located in the vicinity. One obvious
example is navigation software, that allows its users to find the shortest path from
their current location to any other place, and guides them through the computed
path, according to the updated position of their users, and that have the ability to
computing alternate paths if, for example, its users make a mistake and take a wrong
direction. As another example, some social networking applications [Facal] allow their
users to know the updated position of their friends (as long as they agree to share
their positions with a certain precision), or display a notification if some of them are
nearby. Similarly, the aforementioned virtual assistants can use their position to give
a location-dependent answer to some types of requests related to spatial locations.
For example, if the user says “I would like to eat sushi”, the application will return a
list of Japanese restaurants near the current position of the user.

As a summary, we can conclude that mobile applications have grown thanks to the
great utility they have to their users, that can obtain different information and services
in a fast an easy way. This immediacy is possible thanks to a number of factors, such
as the mobile communication features in terms of bandwidth and coverage, and the
use of sensors integrated in mobile devices, that help to determine more easily the
user context and, in this way, develop smarter applications.
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2.2 Mobile P2P Networks

P2P networks have a number of advantages over traditional centralized solutions for
their use as a means to exchange data or other resources, and the same principles
can also be used to establish network communications among many devices. In this
section, we explain the principles of P2P networks and we explain how the can be
applied to mobile networks.

2.2.1 Generic P2P Networks

A peer-to-peer (or P2P) network [Ora0l] is the connection of many computers or
devices by means of networks connections in such a way that, when it comes to the
exchange of data or other resources, all the members of this network have the same
category and they do not follow a hierarchical structure.

For example, in the traditional client/server paradigm, one computer acts as a
server, while many other computers or devices are the clients, that request some
resource to the server, using a network channel to reach it, as shown in Figure |2.3
In this case, the server has a higher hierarchical level: the different clients depend on
its presence to access or exchange data, and the server could decide if such data are
served or not to certain clients.

Server

,:/lg\:
=f =f =§

Client Client Client

Figure 2.3: A client/server data exchange approach

On the other hand, in a P2P network, there is no hierarchical structure and all
its participants have the same category. In these networks, every member, or peer,
can have at any moment the role of a client, a server, or both, and send or receive
data or other resources indistinctly, as shown in Figure 2.4 In this case, the absence
of a hierarchy means that one member does not depend on a single one to access or
exchange data but, instead, it can obtain those data directly from any other member.

This type of decentralized organization has a number of advantages [HAYT05]
that makes it an adequate option for building distributed systems: the bandwidth and
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Peer

Figure 2.4: A P2P data exchange approach

other computation resources are used more efficiently, since they are not concentrated
in a single node, as it occurs with the client-server approach; the reliability is higher,
since if one or more peers fall or get disconnected, the remaining peers can keep
exchanging data or resources; and the scalability of the whole system is better, since
if it were necessary to increase its resources, it would only be necessary to add new
peers to participate in the network. However, P2P networks also have a number
of problems such as those related to security and trust (since there does not exist a
central authority), the discovery of other nodes when there does not exist a centralized
list of them, or the difficulty to find specific data and route them through the nodes,
which requires complex algorithms that are not necessary in simpler client-server
approaches.

There exist different types of P2P networks, according to their degree of decen-
tralization [PBV05]:

e (Centralized. There exists a central node with an index of the data resources
of the network. When a user searches some resource, the search is performed
in the central node using that index, that also contains information about the
nodes that have the resource. Then, the client user can obtain the resource
directly from any of those nodes.

e Purely decentralized. There does not exist any central node, and every peer
maintains an index of its own shared resources. When a user searches a resource,
the search is broadcasted to the other peers, that search into their own indexes
and resend again the search if it is necessary.

e Hybrid. In these networks, a relatively small number of nodes become supern-
odes, and they maintain the index of the shared resources, synchronizing them
periodically in case some of them fail. When a user searches a resource, the
search is performed in any of those supernodes, and the resource can be ob-
tained from any node.
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Due to the aforementioned advantages, P2P networks are currently used in several
applications. One of the most popular applications is the exchange of files, where users
can share files (e.g., music, videos, images) with others, and in the same way they
can also download them. Some examples of these applications are BitTorrent [Bit]
and eMule [eMu]. Another example of P2P use is for streaming multimedia content,
such as Peer5 [Pee] and Play2Live [Gaml8|, where the bandwidth usage is shared
among their users. The I2P project [I2P] is an anonymous overlay network (a network
within a network), that is intended to protect communications from surveillance and
monitoring by third parties such as Internet Server Providers (ISPs). 12P is intended
to be used by many people who care about their privacy: activists, oppressed people,
journalists and whistleblowers, as well as the average person. Another example of
P2P application corresponds to the existence of web search engines that perform
their task in a decentralized way, such as FAROO [FAR] or MINERVA [BMT"05].
As a last example of P2P applications, Bitcoin [Nak08] and other alternatives such
as Ethereum [Wool4] or Peercoin [KN12] are P2P-based and decentralized digital
cryptocurrencies.

2.2.2 Mobile Ad hoc Networks

When it comes to the way of connecting several mobile devices among them to ex-
change data, some difficulties may appear. If all the users are using 3G/4G based
communications, they must pay a fee to their mobile phone operators, and they also
must be under the coverage of one or more cellphone towers, which can be problematic
in certain places such as underground areas, tunnels, inside buildings built massively
with concrete and/or metallic materials [MDS™14], desert or rural areas with a very
low density of cell towers or, on the contrary, areas that are suddenly crowded with
hundreds or thousands of people who can saturate the maximum service capacity (for
example, in sport events or concerts). If, on the other hand, the users are using their
Wi-Fi devices instead, it is still necessary to be under the coverage of some access
point or wireless router, that must be installed and managed by a third party, not to
mention other security issues that may arise if they are using an unencrypted channel
or if the owner of the infrastructure is not trustful [KOBT08§].

Additionally, in the case of mobile networks, there are some other issues that
make the usage of communications even more difficult. For example, while in wired
connections the established links can be quite stable (i.e., once they are started they
will not be interrupted unless one of the peers stops it), this may not occur in a
mobile network, where the wireless communications can end unexpectedly if one or
more peers are moving and get out of the communication range of the wireless router
or access point.

One way to solve several of these problems is by the use of Mobile Ad Hoc Net-
works, or MANETSs [CCLO03, [(OHY13|, [CG14]. In this type of wireless networks, their
nodes can move across a certain geographic area and, in order to exchange data, they
create ad hoc links. These connections are established directly between two or more
nodes (in a peer-to-peer way) that must be within each other’s communication range.
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Thus, they do not need any additional infrastructure such as access points or cell
towers, and can freely establish a link at any moment to any other nearby device.

One issue to consider in this type of networks is that the data can only be directly
transmitted from one node to another if both of them are within their communication
range, or at a distance of one hop. However, it is also possible to send data to other
nodes whose location is at more than one hop of distance by using other nodes as
intermediate relays (through multi-hop routing). These nodes, once they receive a
packet of data, immediately forward it to the next node and, by repeating this process
the required number of times, the data can reach their destination node. Routing data
in MANETS is a problem that has attracted the attention of researches and many
routing algorithms and protocols have been proposed and evaluated [CM99, [TNCS02]
GSBO02, [DPHO05, RN15, BMW17].

In order to take advantage of the properties of MANETS, and to ease the develop-
ment of applications that use this type of networks, some frameworks have appeared,
such as Peer2Me [WBS07] and Proem [Kor02]. As another example, the platform
iTrust [LMMSC14] is a P2P retrieval system over Wi-Fi direct, and there also exist
proposals for streaming audio/video [IBHD16], and content /file sharing [SAQM17] in
MANETS.

One special type of MANET are the Vehicular Ad hoc Networks, or VANETS,
which is the focus of this thesis. In these networks, the nodes are the vehicles that
travel along the roads or streets of a city or a wider area. The special properties
that characterize VANETS are that their nodes (the vehicles) usually move at a high
speed, they follow constrained paths (i.e., the roads or streets) that they usually
cannot leave, and therefore they cannot change abruptly the direction they are fol-
lowing. The communications in a VANET can be interrupted more frequently than in
a generic MANET, due to the high mobility of its nodes and the changing conditions
of the road. For example, the number of vehicles to which a link could be established
would increase when approaching a city, and decrease when moving away. The com-
munication links can be established not only among its vehicles, but also with other
types of nodes, such as roadside units (e.g. traffic lights, or surveillance cameras)
that are located along the roads at fixed places. Another characteristic is that, in ur-
ban environments, the wireless communication signal can also be constrained to the
street layout, since it likely cannot propagate through buildings or other obstacles
that separate the streets.

Due to these special features, some of the issues present in a generic MANET
require another approach in order to tackle them [SKRM11, [RA11l [SK14]. For exam-
ple, for the problem of routing data, a number of algorithms similar (but not equal)
to those of MANETS have also been proposed [LW07, [FRSS13|, [VCML13].

2.3 Intelligent Transportation Systems
Since the motor vehicles became popular thanks to their serial manufacturing in the

1920s, by Henry Ford, the innovations applied to them have led to vehicles more and
more efficient in terms of reliability, efficiency, security and, more lately, respect for



2.3. Intelligent Transportation Systems 27

the environment [TC14]. However, despite the progressive introduction of electronic
and computer technologies in the vehicles, their operation and interaction with other
elements of the driving environment (such as traffic signals, traffic lights, other vehicles
and drivers, etc.) are still performed by humans.

Only very recently, autonomous vehicles [FK15| [Lit17], that are able to drive with-
out the intervention of humans, have started to take center stage, since the computer
power needed to analyze in real time a such a changing environment has not been
possible in vehicles until recent years.

However, the autonomous vehicle is only one of the many achievements in the
process of automatizing all the tasks related to driving, with the objective of mak-
ing this process unattended for humans, as well as more efficient in terms of travel
time, comfort, security and energy usage. This goal has not been fully achieved yet,
and a number of intermediate steps are being taken, evolving towards the aforemen-
tioned final goal, and whose increasing innovations belong to the field of Intelligent
Transportation Systems (ITS) [DDI0, ZWW 11, [KGM14, [AFF16l [SP16].

2.3.1 Intelligent Transportation Technologies

Intelligent transportation systems use different information and communication tech-
nologies, so that their different actors (i.e., the drivers, the vehicles, the roads and
their signals, etc.), can exchange information among them regarding their status.
Once the received information is processed, it may lead to perform some action that,
as a result, will improve some aspect of the driving process (e.g., its security, comfort,
or energy usage). Some of these technologies are the following:

o Computational technologies. Thanks to the advances in the miniaturization
of electronics and their lower costs, computers are being introduced in all the
scopes. In the case of ITS, they are present as on-board units in the vehicles
and also in the roadside infrastructure, among other things to process data
from a high number of sensors and to take decisions accordingly. Moreover, the
application of artificial intelligence techniques to ITS will have a big impact in
the next years [DLBB™ 15, [GBDI5, ILDK™15].

o Wireless communications, to allow the data exchange between vehicles, or be-
tween vehicles and roadside units (e.g. traffic lights, or surveillance cameras).
For short-range communications, protocols such as 802.11p [IEE10] or the Ded-
icated Short Range Communications standard (DSRC) [JTMT06] have been
proposed, and their use is oriented to communicate with nearby vehicles and
the infrastructure (e.g., the toll stations in highways). On the other hand, for
long-range communications the proposed protocols are WiMax [AGMO07] and
also those based in cellular telephony, such as 3G/4G [DPS13]. Their intended
use is for vehicle safety and information, and to provide entertainment to the
passengers.

e Floating car data, that is a method to know the speed of the traffic flow in
a road or street by using different procedures. One of these methods is by
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using the cellular signals from the mobile phones of the drivers or passengers
traveling in the vehicles. A similar method uses the Bluetooth [BS] identifi-
cation broadcasted, for example, by hands-free devices used by drivers. These
methods have the advantage of being passive and not needing the installation
of extra devices in the vehicles. On the other hand, there are other systems
that require the active collaboration of the drivers, for example, by carrying a
GPS [PS96] transponder in the vehicle, or by installing a tracking application
in their smartphones [VVV™12].

Sensors. These devices are necessary to obtain information from the road or the
vehicle’s condition, and therefore they can be installed in any of those places.
The information that they acquire is transmitted to a computer in order to
make proper decisions. There exist many types of sensors (to measure different
parameters) [STYWO04, [TZQS09], such as: Inductive loop detectors, that are
placed under the pavement and are activated by the presence of big amounts
of ferromagnetic materials, such as vehicles; pressure pads, that are activated
by the weight of vehicles or pedestrians; radars, that use the Doppler effect of
electromagnetic waves to measure the speed of vehicles; video vehicle detectors,
that use video cameras and artificial vision techniques to read the vehicles’
plates.

The joint operation of all of these elements make Intelligent Transportation Sys-

tems a reality. These technologies have been operating for some years, and researchers
are developing several more [CYSI5, HYY 15, [GIZCCT5| that will bring new possi-
bilities to ITS in the future.

2.3.2 Intelligent Transportation Applications

There exist a number of applications for Intelligent Transportation Systems that are
currently being used, both by drivers and by traffic authorities. These applications use
the technological elements described before, and they can benefit from the exchange
of data between the traveling vehicles, or between the vehicles and the roadside in-
frastructure. Some of the most popular and important applications are the following:

e The accounting of the traffic that traverse a certain street or road, using dif-

ferent devices such as magnetic sensors or inductive-loop detectors. Some of
these devices, when used in conjunction with video cameras and artificial vision
techniques can even discriminate the type of vehicles (cars, trucks, buses, etc.)
that are moving through the road, which can be interesting for the management
of traffic by local authorities.

The automatic regulation of traffic lights in a city, adjusting the times of every
color depending on the traffic conditions, which can be obtained by using sensors
or devices such as the ones mentioned above. Thanks to this information, the
regulation can be optimized to allow a maximum traffic flow speed with the
minimal waiting time for the drivers and minimum probability of traffic jams.
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e The notification of interesting information to drivers, by means of variable-
message signs located in frequently-traveled roads. These electronic banners
can offer information of interest that can be obtained both automatically (for
example, related to the weather or the density of traffic) or manually by the
traffic operators of the system (e.g., the presence of works or accidents in some
point of the road).

e The automatic allocation of bidirectional lanes in motorways to be used in one
direction or the other, according to the traffic density in certain hours and the
need to increase the maximum capacity of the path from the city center to the
suburbs or vice-versa.

e FElectronic toll collection, in high-ways and other toll roads such as tunnels or
bridges. The vehicles carry a transponder that is activated by an antenna lo-
cated on a toll lane. The antenna identifies the transponder, which is associated
to the user’s bank account, and the toll fee is deducted automatically every time
the vehicle traverses the toll lane without the need to stop. Some examples of
this service are the E-ZPass [E-Z] in the United States and the VIA-T [Aso] in
Spain.

o Emergency vehicle notification systems, that calls the emergency services when
an accident occurs. The call can be activated automatically by sensors aboard
the vehicle, or manually by any of its occupants. When the emergency service is
contacted, a voice communication is established with an operator while, at the
same time, a minimal amount of relevant data (e.g., the vehicle position) is also
sent. In the European Union this service is known as eCall, and it was made
mandatory in all new cars sold in that region after March 31st 2018 [Eurl5l
Theld].

e Applications based on VANETs, that use data exchanged by vehicles in a P2P
way for different types of applications, such as those related to security, enter-
tainment, communication, social aspects, etc. These applications and several
more are explained in Section

The development of Intelligent Transportation Systems has innumerable benefits,
such as time savings for drivers and passengers, better emergency response times
and services, the reduction of crashes and fatalities, decreasing the probability of
traffic congestions, more energy efficiency, environmental benefits, etc. Moreover,
its development has become a serious topic and the academia, the industry and the
political authorities, are devoting a lot of effort and money in its promotion, by
researching new ways and systems for improving the ITS, launching new products
that implement those improvements, and by elaborating laws to enforce them.
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2.4 Vehicular Networks

A wehicular ad hoc network (VANET) [BEH04, [HLOS, [OW09, [KAET11] is a highly
mobile network whose nodes are vehicles traveling along roads or highways. They can
establish connections with other nearby vehicles and, in this way, they can exchange
different types of information. This makes the development of new applications in-
teresting for drivers (as well as for their passengers) possible, such as applications
related to security, monitoring, entertainment, or data sharing. It also enables the
participation of VANETS and their vehicles in Intelligent Transportation Systems (see
Section and, in this way, a more efficient, secure and environmentally-friendly
transportation can be achieved.

2.4.1 Features of a VANET

One of the main features of a VANET is that its nodes are vehicles that are constantly
moving while they perform the typical activity of a network node (i.e., sending and re-
ceiving data to/from other nodes by using a communication channel). The vehicles are
equipped with short-range wireless communication devices (such as WAVE [USAMOQ9],
Wi-Fi [IEE16] or UWB [OHI05]) and can establish connections with other nearby ve-
hicles (V2V) or with road-side infrastructure (V2I) in a peer-to-peer way.

However, such communications usually have a short duration (a few seconds), due
to the potentially-high speed of the vehicles and the short range of these communica-
tion devices, that in practice is approximately around 100 to 250 meters. Moreover, if
two vehicles are approaching at high speed in opposite directions (e.g., in a highway)
the time window available for communication can be reduced considerably.

Another problem, that comes from the short-range communications, is that it is
not possible for a vehicle to directly send data to another one that is located farther
than such range, and therefore it is necessary to use multi-hop algorithms, that can
be quite complex. The reason is that the network topology is constantly changing due
to the vehicles’ movements, and therefore, in this scenario, locating the destination
vehicle and routing the data through the network can be challenging.

Since a VANET is a type of MANET (see Section , many of its routing and
multi-hop algorithms could be considered for those purposes. However, this may not
be always efficient or even possible, since VANETSs have a number of singular features
that makes them different from generic MANETS:

e High mobility. In a VANET, the vehicles are constantly moving (usually at high
speeds) when they travel through roads or streets.

e Unstable connectivity. Due to the high mobility of the vehicles and the short-
range wireless communications, once a link between two or more vehicles is
established, it will likely last only for a brief lapse of time. When one of the
participating vehicles moves out of the communication range, the link will break
and any communication operation in progress will fail.
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e Variable density of vehicles. The ad-hoc connections need the presence of other
vehicles in the surroundings. The higher the number of vehicles present, the
more likely an ad-hoc connection can be established. Therefore, with higher
traffic densities these connections will occur more frequently than with lower
densities. However, the density of vehicles can change depending on many
factors, such as the type of area (e.g., rural or urban), the time of the day (e.g.,
peak or off-peak periods), or other events that may affect traffic (e.g., concerts
or sport matches).

e Restricted mobility. The vehicles can only move through defined paths (such
as urban roads and highways), whose layout is known and does not change
very frequently along time. Besides, they have additional restrictions, due to
the existing speed limit regulations and other traffic rules (e.g., the number of
lanes, or whether a road is bidirectional or one-way).

e No energy constraints. Since the vehicle’s engine can provide electricity as it
works, the communication and computer devices can obtain power without de-
pending on batteries with a limited lifetime.

e Better computing capabilities. Thanks to the energy supplied by the vehicle, and
to its size and load capacity, the devices carried in a vehicle do not need to be too
much lighter or smaller, as it occurs with mobile devices such as smartphones.
Therefore, the vehicles can use conventional electronic components, which can
be cheaper and more powerful than those used in mobile devices.

Some of these features, that are not present in generic MANETS, should be con-
sidered in the development of applications or other types of algorithms for VANETS.
For example, the restricted mobility of the vehicles can help to predict their future
positions, and this could be exploited by routing algorithms, such as [ZC0S].

2.4.2 Vehicles in VANETSs

Besides the communication equipment, vehicles that participate in a VANET have
an additional number of devices that enable them not only to send and receive data,
but also to acquire, store and process them to a certain extent. Some of these devices
are the following;:

e A computer or a device with similar capabilities. It processes all the data
received from the other devices present in the vehicle, and it also executes the
algorithms or programs that, according to those data, can take actions if it
is necessary (e.g., warn the driver about a road event or send certain data to
another vehicle). This computer can also have a storage system (e.g., a hard
disk) to save all those data. In this thesis, we abstract ourselves from the
specific technology used in the vehicles to store data (e.g., relational or NOSQL
databases, plain files, etc.).
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o Communication devices. They allow the vehicle to establish communications
and exchange data with other entities (i.e., other vehicles, roadside units, or
people) using wireless signals, either based on a centralized infrastructure (e.g.,
a mobile telephony network) or a decentralized solution using direct ad hoc P2P
communications. Both options have a number of advantages and drawbacks and
are discussed in Section 2.4.3l

o A geographic positioning system. This device allows the vehicle to obtain its ge-
ographical position with a high level of accuracy by using a network of satellites.
The most used is the Global Positioning System (GPS) [PS96], but there are
other systems such as GLONASS [Revi2] or GALILEO [BDGT00,INLS™15]. All
of them provide an accuracy of a few meters (typically around five meters), or
even less, if several of these systems are used combined at the same time. There
also exist other complementary methods to enhance the location precision, such
as the differential GPS [MEQG] or the assisted GPS [VD09].

e Digital sensors. These devices measure a physical phenomenon, and those mea-
sures are converted to a digital format, so they can be processed by computers.
Regarding vehicles, we can distinguish two types of sensors. On the one hand,
embedded sensors that measure parameters related to the operation of the ve-
hicle itself and its mechanical components (e.g., the engine’s temperature, the
level of fuel, the pressure of tires), which can be very numerous (more than 100
in luxury cars [Flel3]). On the other hand, there may also be additional sensors
that measure parameters that are external to the vehicle operation. For ex-
ample, emerging autonomous vehicles [BMS00, [FK15] have ultrasonic [PUV95)],
LIDAR |[LAB'11] and even RADAR [CDW98] sensors to obtain precise infor-
mation about nearby obstacles in their surroundings.

e User interface. This element allows the human driver and the vehicle to com-
municate with each other by using an interface that, ideally, does not distract
the driver from paying attention to the road [Cel01]. Therefore, as an input
method (from the human user to the vehicle computer), the typical interfaces
are based on tactile screens, simple buttons near the steering wheel, or voice
commands. On the other side, the communication methods from the vehicle’s
computer to the human driver can use different sound signals or color lights,
large screens where easy-to-read texts or icons are displayed, or synthetic voice
locutions. A typical example of the latest are navigation systems, that guide
the driver with voice instructions about the next turn that he/she must take.

The exchange of data among vehicles participating in a VANET can enable the
development of several interesting applications for drivers (and even passengers). The
most important element is a computing device that, while it processes the data and
executes applications, also acts as a coordinator of all the rest of devices in the vehicle,
as shown in Figure
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Figure 2.5: Different elements of a vehicle in a VANET

2.4.3 Communications in VANETSs

Communications in a VANET are performed using direct ad-hoc connections from
vehicle to vehicle (or from vehicle to roadside units), using short-range wireless com-
munication devices. Using this type of network has a number of advantages, such
as [[IDTL15) [ZJ18]:

1.

The users do not need to pay for the use of these networks, since they operate
in an unlicensed frequency spectrum.

. There is no need of a dedicated centralized support infrastructure (expensive

to deploy and maintain), such as it occurs with mobile telephony networks or
WLANS (e.g., enterprise networks), that also need an infrastructure installed by
a third party, with access points, routers, authentication services, etc. Instead,
the users can establish direct connections from one device to another at any
moment, provided that they are within their communication range.

It allows a very quick and direct (i.e., without intermediate proxies or routers)
exchange of information between two vehicles that are within range of each
other, which may be critical for safety applications for vehicular networks.

Many application scenarios do not need to communicate with a specific target
vehicle but with all the vehicles within a certain area, and therefore broadcast
(the typical communication mechanism in VANETS) is a suitable choice.

. They are naturally distributed and scalable, due to their decentralized structure.

The processing power and the bandwidth are divided among all the nodes,
instead of being centralized in a single node. In a centralized solution, the
network could only grow to a certain extent, since the resources of that single
node would be finite.

It favors privacy, since there are no central entities that may know the position
of all the vehicles in the network over time. Instead, every vehicle can only know
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the position of its neighbors, and only while they are within its communication
range. The only concern could be that, when the nodes (i.e., vehicles) forward
data received from other nodes, they could inspect their content unless those
data are encrypted.

Other communication schemes can also be considered, based on a fixed infras-
tructure or mobile telephony networks (e.g., 3G/4G[DPS13]). Thus, even if it may
be unrealistic to assume the availability of a generalized wide-area fixed infrastruc-
ture in the next years, mobile telephony networks already offer new perspectives for
the development of applications to assist drivers. Anyway, such solutions, based on
a centralization of the data and decision processes, still suffer from issues such as
poor scalability or low reaction time available when dealing with some events like
an emergency braking. So, although it is important not to rely on a fixed network
infrastructure, which can be difficult and expensive to deploy at a large scale and
with global availability, some roads could also offer some static relaying devices which
provide Internet access to nearby vehicles by using a fixed network (enabling V21 com-
munications [UJ16]). According to [CMSM™18|, combining V2V communications and
communications based on the use of a cellular network may be important to reduce
the communication costs and to improve the timeliness of ITS data.

2.4.4 Applications of VANETSs

According to ABI Research, more than 500 million connected cars will have shipped
by 2022 [AII17]. Therefore, VANETS open up a wide range of opportunities to de-
velop interesting systems for drivers. Although safety applications are usually empha-
sized, there are also interesting applications related to comfort, entertainment, and
travel efficiency [IDTL15, [ECVL15]. For example, traffic information systems [SB11],
congestion assistance |[SYEK™10|, vehicular platoons [JLW™16] (where a group of ve-
hicles follow and replicate the movements of a leader vehicle, by queuing after it
at a short distance, thus reducing the road congestion), post-collision assistance in
the case of accidents [FGM™14], location-based message boards [WER™05], vehicular
social networks [MDNBI14], content distribution/sharing [MCCF14], drive-thru In-
ternet access |CLZ™14] (opportunistic content-delivery from Wi-Fi access points),
file sharing [SDKMT4], transmission of multimedia data [FCM™14] (e.g., to pro-
vide live videos of traffic jams or emergency situations, to enable intervehicle video
conversations, video-on-demand), monitoring and surveillance [UIDMO09], advertis-
ing [LLCI3|, virtual flea markets [LLPG10a], or even games played by occupants of
different vehicles [PRF10]. Several of these applications would benefit from a platform
that enables the exchange of information about vehicles; as an example, the VESPA
project [DITT] [DI13] is a system for vehicles to share information: they can process
and disseminate any type of event (e.g., information about available parking spaces,
accidents, an emergency braking, information relative to the coordination of vehicles
in emergency situations, etc.) to potentially interested vehicles and they can evaluate
the relevance of the event data received in order to determine, for instance, whether
the driver should be warned or not.
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Another interesting application for VANETS is their use in mobile sensor networks.
In a classic sensor network [ASSC02, [YMGAOS], there exist many sensing devices lo-
cated at fixed places to measure some parameter (e.g., the temperature or polluting
gases in a city), and the acquired data are sent to a monitoring center (e.g., a research
facility or a city council) for their analysis or exploitation. However, these types of
sensing networks have some drawbacks. Firstly, they can obtain data only from the
place where the sensors were deployed in the first place; if it is necessary to obtain
data from a different place, they would have to be re-deployed. Secondly, they can
only measure a limited type of parameters, according to the type of sensors installed.
Finally, they can have high costs of maintenance if some sensors have a malfunction or
they run out of battery, and reaching remote or inaccessible places may be necessary
in order to replace them.

To overcome these problems, the vehicles in a VANET can be used as moving sen-
sors [LMZ™'06l, [HBZ"06, [UIDMO09], since they can move to any place to measure the
designated parameter, and they can transport any other sensor type if it is necessary
to measure some new parameter. Moreover, this sensing activity can be performed in
either an explicit or an opportunistic way, depending on whether conventional vehi-
cles are used and whether the drivers are willing to deviate or not from their original
routes. Thus, performing the sensing activity in any of these ways can enable collab-
orating sensing [[IWD14] for the monitoring of city areas and others. Thanks to the
VANET, the acquired data could be immediately sent to the monitoring center by
forwarding them through the vehicles using a multi-hop protocol in a quick way and
without any additional economic cost.

2.5 Agent Technology

An agent [MDW99] could be defined as an entity whose goal is to perform some action
on behalf of somebody. When these agents belong to the context of information
technologies, they are called software agents, since these entities are usually programs
that follow a certain behavior on behalf of a user in an autonomous way. As they
were defined by Wooldridge [Woo009], a software agent is an “encapsulated computer
system, situated in some environment, and capable of flexible autonomous action in
that environment in order to meet its design objectives”. Agents have a number of
interesting features [Nwa96], that makes them a suitable election for the development
of distributed systems.

In the rest of this section, we first discuss the properties of agents. Then, we focus
on the specific case of mobile agents, which is a key technology in this thesis. Finally,
we describe some existing agent platforms.

2.5.1 Software Agents

Software agents, which we will refer to in the rest of the thesis simply as agents, are
programs that execute in a certain environment, and they act on behalf of another
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program or user to accomplish a specific goal. They have a number of special fea-
tures that makes them different from other types of software [FG96]. Some popular
properties are described in the following:

o Autonomy. Once their goal is set, they can perform the necessary actions to
achieve them without needing any further intervention from the user or program
that launched them. Instead, the agents take their own decisions according to
their status, their environment and the way they were programmed.

o Communication. Agents can communicate with other agents or entities (for
example, with programs or users) in order to obtain information, or coordinate
their actions. The communication can be performed by using an Agent Com-
munication Language (ACL) [GK94] if they communicate with other agents, an
application interface (to communicate with other programs, such as databases),
or a user interface (e.g., a GUI or text interface) if they communicate with a
human user.

e (Cooperation. They can cooperate with other agents in order to achieve their
goals. This cooperation can be very simple (e.g., a client/server interaction) or
very complex if they require to follow a specific protocol or negotiate with other
agents according to a number of rules or constraints.

e Reactivity. They can receive stimuli from their environment and react according
to them. These stimuli can be, for example, actions performed by other agents,
changes in the execution environment, an input from the user interface, or even
a combination of several of these.

e Proactivity. They are goal-oriented and they keep executing and performing the
required actions until the goal is reached.

e Rationality. The actions performed by the agents must lead them towards their
goal. Therefore, the decisions must be taken following a logic that does not
harm the achievement of the goal.

o Intelligence. The agents should be able to learn from past situations (i.e., from
their environment or from other agents) and, in this way, change their behavior
to improve their performance. For this reason, the term intelligent agents is
used sometimes to refer to software agents.

e Persistence. This property represents the ability to keep executing over long
periods, avoiding situations such as their termination or blocking when some
undesired condition occurs (e.g., the scarcity of some resource, the absence of a
network connection, or the unavailability of some specific computer or device).

o Mobility. Some kinds of agents can move to other execution environments
(through a network connection) and execute in other remote sites in order to
achieve their goals. Agents with this property are called mobile agents (see
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section [2.5.2)). From the point of view of data management in distributed envi-
ronments, this is a very relevant property.

These are the most common properties for a program to be considered an agent,
although it is not necessary to have all of them (e.g., the mobility), with the exception
of the autonomy [JenO1]. In a multiagent system [VAHWOS8, [Woo09], a number of
agents execute simultaneously in order to solve a common problem that, otherwise,
could not be solved. A summary of all of these agent’s properties is shown in Table[2.2]
that also specifies if that property denotes a weak or a strong notion of the concept
of agent [WJ95]. The properties whose type of notion is weak are the ones that have
been considered as more essential (i.e., more inherent to agents), according to what
most scientists have agreed.

Property Type of notion | Explanation

of agent
Autonomy ‘Weak notion They can act without needing intervention
Communication | Weak notion They can exchange information with other agents
Cooperation Strong notion They can coordinate their actions with other agents
Reactivity Weak notion They can respond to changes in the environment
Proactivity Weak notion They have a goal-directed behavior
Rationality Strong notion They perform logical actions to achieve their goals
Intelligence Strong notion They can adapt to the environment and learn from it
Persistence Weak notion They can keep executing over long periods of time
Mobility Strong notion They can move to other execution environments

Table 2.2: Summary of properties of software agents

These systems can be formed by a single execution environment or they may
be distributed along several places linked by a network connection. Either way, in a
multiagent system the cooperation and sociability of its agents are the most important
properties, since they are needed to coordinate their actions and perform the tasks
needed to accomplish their goal more efficiently.

Software agents need a suitable environment to execute, that is provided by a
middleware known as the agent platform [RD00]. This software must be executed
in all the computers/devices where the agents are hosted, and makes it possible to
grant them many of their aforementioned features, such as their autonomy, reactivity,
communication abilities, persistence, or mobility. Thus, the agent platform provides
agents with a number of services that the agents can directly use and do not need to
implement; for example, sending a message to another agent or group of agents (that
can be located in the same computer/device or in a remote one), obtaining information
about the status of the current platform (e.g., its load, memory occupancy, presence
or not of other agents), obtaining a list of other execution environments that may also
be executing agents, saving the current agent’s state to the platform’s local storage
in case it is shut down, or (in the case of mobile agents) perform a movement from
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one execution environment to another. More details about agent platforms and an
overview of some popular platforms can be found in Section [2.5.3

2.5.2 Mobile Agents

A mobile agent is a special type of software agent that runs on an execution envi-
ronment (traditionally called place) and can autonomously travel from place to place
(within the same computer or between different computers) and resume its execution
at the target [MDW99]. Thus, mobile agents are not bound to the computer/device
where they are initially created and they can move freely among computers/devices.
To be able to use mobile agents, it is necessary that the agent platform provides the
mobility feature, that takes care of the process of sending both the code and data of
the agent from one place to another.

Thanks to the mobility capability of mobile agents, it is easy to build complex
distributed applications that are at the same time flexible [LO99, [UTTLMI2]. Thus,
a mobile agent can carry a required task wherever it is needed. If the task executed
by an agent must be changed in the future, a new version of the agent (a new agent
implementation) can be delivered. Thus, there is no need to keep specialized software
installed on the computers/devices composing the distributed system: only the generic
mobile agent platform software is needed to be available on the nodes and an agent
implementing the required behavior can move there at any time.

Mobile agents can be designed and programmed to provide interesting benefits
(e.g., autonomy, flexibility, and effective usage of the network) that make them very
attractive for distributed computing. Particularly, and motivated by the increasing
popularity of mobile devices, mobile agents have been found useful for the develop-
ment of applications in mobile environments [SSPE04, [UT13] [UITLMI15] [UT17a]. A
mobile environment has a number of special properties, such as the need to rely on
wireless communications due to the mobility of the mobile devices, which creates a
scenario completely different from that of a traditional distributed environment with
fixed networks. Such an environment has a number of advantages (e.g., the pro-
cessing is not tied to a fixed location) but also some drawbacks, such as the limited
computational power of mobile devices and the communication constraints imposed
by the use of wireless communications (that usually either offer a low bandwidth, a
high latency, and intermittent/unreliable connectivity, or they are expensive or not
available everywhere).

The autonomy, intelligence, and movement capabilities of mobile agents render
them a powerful and flexible tool to build distributed systems, especially in mobile
environments [UIM09] [UITLMO09]. For example, a mobile agent could be programmed
to visit certain devices in a topologically-complex network whose nodes are mobile de-
vices (for example, a vehicular network [UIDM10]) and, once it reaches devices storing
relevant data, to process those local data in order to collect interesting information,
and return it to the origin. So, mobile agents can move the processing to the data
source instead of bringing all the data to the node that will perform the processing
(thus reducing the amount of data communicated and benefiting from local interac-
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tions as much as possible). Other interesting advantages of mobile agents include the
following [LO99]:

o Ability to support disconnected operations. An agent can live outside its home
device, which can be turned off while the agent is performing its tasks elsewhere,
to exploit the most suitable resources available (e.g., using powerful fixed com-
puters instead of the limited resources of a mobile device, when appropriate).

e Minimize the use of network connections. Instead of the traditional client/server
approach, that requires a connection open and alive while the request is being
performed, an equivalent request processing would only require the connection
to be active during the movements of the mobile agents.

e Resilience to frequent and/or long network outages. If the network is not avail-
able, they can perform other tasks while they monitor the network status and,
when it becomes available again, retry their transmission to reach another place.

o They can encapsulate protocols. Since they can move to any other execution
environment, they can carry with them the necessary algorithms to achieve their
goals, and therefore, the installation of additional software in the computers or
devices visited by the mobile agent is not necessary.

For all of these reasons, mobile agents are a serious option to consider when de-
signing a distributed system that needs to be flexible, fault-tolerant, and efficient in
terms of network bandwidth usage. These features can be applied to fixed environ-
ments (e.g., an enterprise network), mobile environments (e.g., a float of taxis using
cellular communications), or a mixture of both types of environment.

For example, mobile agents can play an important role in recent related technolo-
gies, such as cyberforaging [BFST02, [SKKT12], where mobile devices with low comput-
ing resources can offload resource-demanding tasks to other nearby computers with
higher resources to execute those tasks and return their results. In hardware archi-
tectures, there is also emphasis on performing Near-data processing (NDP) [GAK15,
BGI6], which implies placing the processing near the data, instead of transmitting
the data to the processor; this is, to some extent, similar to the idea of mobile agents
carrying the processing to remote data sources to filter the data locally and so save re-
mote communications. Other related technologies that can take advantage of mobile
agents properties are the so-called edge computing [BWFES14, [Sat17] and fog comput-
ing [BMZA12l [VRM14], where data generated by a number of devices are processed
before sending them to the cloud, in order to discriminate which of them should be
stored nearby (for efficiency reasons) and which ones could be sent to the cloud. As
another example, mobile agents have also been used to support the development of
location-based services, such as in the case of the system SHERLOCK [YMII14]. In
this system, the users request information and they receive up-to-date answers in
heterogeneous and dynamic contexts. Ontologies and semantic techniques are used
to share knowledge among devices, which enables the system to guide the user in the
selection of the service that best fits his/her needs in the given context. The system
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uses mobile agent technology to carry out the processing tasks wherever necessary in
the dynamic underlying networks at any time.

In Figure 2.6] an example that summarizes the basics of a mobile-agent based
architecture is shown. There are two computers that can communicate by means
of a network connection. Computer 1 executes a mobile agent platform with two
places or execution environments, Place 1 and Place 2. Similarly, in Computer 2
there are two other places called Place 3 and Place 4. An agent executing in Place 1
(Agent a) establishes a communication with another agent (Agent ¢) that is executing
in a different place inside the same platform (intra-platform communication), and also
communicates with Agent d, that is placed in a different computer (Computer 2) using
the network. Another agent (Agent b) is mobile and decides to change its execution
environment, so it moves (by means of a network connection) to Place 4, which is
hosted in a different computer (Computer 2), and then establishes a connection to
a local database (which might be not accessible from a remote computer) to query
data. Similarly, Agent e is also mobile and performs a migration to another place
inside the same computer (Place 3).

Computer 2
Computer 1 Agent Platform
Agent Platform ~Place 3™
" Place 3 ",

[—

Legend:

= m =  Network connection (wired or wireless)
. Mobile agent

-4+—» Agent communication

----- = Mobile agent migration

Figure 2.6: Different elements in a mobile agent architecture

2.5.3 Agent Platforms

Software agents must execute in an environment that provides a number of services
they need to perform their tasks, with independence of the underlying operating
system or hardware. The use of bytecode-based languages like Java eases the im-
plementation of agent platforms and its portability between different hardware ar-
chitectures. Every device can execute one or more instances of these environments
(usually known as places, containers, or contexts, depending on the specific mobile
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agent platform considered), where several agents can be running simultaneously.

There are many agent platforms available, which differ in several aspects (such as
their general architecture, communication style, etc.) and behave differently in terms
of performance, reliability, security, or scalability [TLIMOT7, BHI17]. It even exists a
standard promoted by the Foundation for Intelligent Physical Agents (FIPA) [ON9S|
FTIP], which aims to the development of specifications of generic agent technologies
that maximize interoperability within and across agent-based applications. However,
all of them are very similar concerning the basic services offered to the agents execut-
ing on them:

o Communication service. One of the strongest points of agents is their commu-
nication capability, so the existence of this service is very important. When an
agent starts a communication, it needs to determine the message to be trans-
mitted and the destination where it must be sent (i.e., the target agent/s).
The message must contain the information to transmit and must be intelligible
for both the sender and the receiver. To achieve such mutual comprehension,
there exist different agent communication languages (ACLs), that make the
communication between different agents possible [KSNOO, [CLF01, [LFP99]. The
destination of the message can be a single agent or multiple agents, which can
be located in the same execution environment as the sender or in a remote
location. The goal of the communication service is to provide agents with a
common mechanism to build and deliver the messages to their destination, in-
dependently of where the target agents are located. Some platforms also allow
the communication between agents by using remote calls [ITLMO6], [TLIMOT].

o Mobility service. This service allows agents to move to other execution envi-
ronments. We can distinguish two types of mobility [BDNOIL [CLZ00]: weak
mobility and strong mobility. With weak mobility the agents do not resume
their execution from the instruction following the migration action, and instead
they are always restarted from a given point. On the other hand, with strong
mobility the agents resume their execution in the next instruction they were
when the movement started. With independence of the type of mobility, the
process involves three steps. First, the agent determines the destination place
and invokes the mobility service in order to be transferred to another place.
Then, its code and data are transferred across a network connection to the des-
tination, where another running platform receives them. Once the transmission
has finished without errors, the copy of the agent in the origin is destroyed and
a new one is created in the destination from the code and data that compose
the agent. This process is fail-proof: if there is any problem with the trip of the
agent, the agent that attempted to travel will get the control back and decide
what to do next.

e Object tracking. The object tracking service keeps a record of the locations of all
the objects present in a multiagent system [RP01], such as the agents themselves
or the execution places available in the distributed system. Whenever a new
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object is created, destroyed, or moved, the service must be aware of such an
action and update its location. It is very important for the programmer that
this service provides a true location transparency, so that once a reference to an
object is obtained, it will be kept up-to-date by the system as long as necessary
(the programmer will not need to refresh/update the reference).

e Directory service. Agents can be programmed to offer different services to other
agents or software components. Conversely, agents may also need to use a
number of services, offered by other agents, to achieve their goals. The directory
service allows the agents to register a description of the services they provide,
as well as a common way to query, locate, and access the services included in
the registry.

Thanks to all these services, agents can live in a generic distributed environment
and perform their tasks effectively. As examples of existing agent platforms (all of
which include the mobility feature and can also be executed in mobile devices), we
can name: JADE [BPROI. [Tel], that has become one of the most popular FIPA-
compliant agent platforms and needs a plugin called LEAP to allow its execution in
mobile devices; SPRINGS [ITLMO0G, [UIMOS], that was developed in the University
of Zaragoza, is very robust and scalable, and has a location-aware implementation
called GeoSPRINGS [IRTLIS|; and VoyagerEdge [Rec|, developed by a commercial
company (Recursion Software), which includes a very complete API to develop agent-
based applications in an easy way.

2.6 Mobile Query Processing in Vehicular Networks

In this section, we describe some possible approaches to the problem of query pro-
cessing in vehicular networks, along with their limitations. We explain two types of
approaches: pull-based approaches and push-based approaches.

2.6.1 Pull-Based Approaches: Query Dissemination

The classical approach to process queries in such a distributed context, used in tradi-
tional Peer-to-Peer (P2P) systems, consists of diffusing the queries to different data
sources either directly or using multi-hop relaying techniques such as the one proposed
in [BMO05]. With this pull-based model (on-demand model, query-to-data model, or
reactive model), the query transmitted represents an explicit request of data relevant
to such a query. Therefore, as opposed to other solutions that, even in the absence
of queries, disseminate data based on their popularity or expected interest for the
vehicles, a pull-based approach can potentially retrieve any specific data available in
the vehicular network by diffusing queries to retrieve the required remote data. For
this solution to work, each target node must be able to understand and process the
different types of queries. With this capability, each node can compute a partial query
result based on its local data and then deliver it to the destination node. However,
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since no fixed data server or any kind of infrastructure is available in vehicular ad hoc
networks, new techniques to access data are needed.

In a vehicular network, the mobility of nodes makes the management of an indexing
structure, used in traditional P2P systems to decide how to route queries, impossible.
An alternative could be to try to disseminate queries towards neighboring vehicles
through the vehicular network until these queries reach the target vehicles. However,
this implies that the vehicles must be able to understand, route, and process those
queries. An additional challenging problem is that of routing the results back to the
query originator [IDTL15]. In general, it is not possible to guarantee that the query
results computed on these neighbors can be delivered to the node that initiated the
query. Indeed, once the query is processed, it may be difficult to know where the
query originator is currently located, if it is a moving vehicle. Furthermore, since the
vehicles keep moving, it is not even possible to ensure that there is at that moment
a communication path to the originator node. Even if the difficulty to route queries
and results could be overcome, the specific solutions should be embedded in every
participating vehicle, and would be quite inflexible and difficult to change or adapt
dynamically.

An example of this process is shown in Figure 2.7] There exist several vehicles
in a VANET that have different data stored locally in their computing devices, and
one vehicle issues a query (e.g., about the location of gas stations in the city). The
query is disseminated by broadcasting it to nearby vehicles, that may also forward
it to other farther vehicles. When any of these vehicles receives the query, it tries
to solve it by processing the data that it stores locally and, if it finds an answer, it
transfers it through the VANET so that it reaches the vehicle which issued the query
in the first place. Since the query can be received by several vehicles, they may return
different answers at different moments, that they will send to the query originator.
As commented before, an important difficulty arises due to the movements of the
vehicles: while the query is disseminated and processed, the originator vehicle may
keep moving, and therefore its location when the answer is obtained will be different
from the one it had when the query was initially issued. Thus, the answers will need
to find the query originator in its new location, and the answers will probably need to
be transmitted using a multi-hop protocol until they reach their destinations. On the
other hand, the query originator vehicle may receive asynchronously (i.e., at different
moments) several answers from any vehicle in its vicinity, and therefore it is possible
that some of those answers are duplicated, or that they arrive when enough answers
have been already obtained.

2.6.2 Push-Based Approaches: Data Dissemination

A push model (data-to-query model or proactive model) is a common approach for
query processing in such highly-dynamic ad hoc networks. With this approach, each
vehicle receives data from its neighbors and decides whether they are relevant enough
(e.g., based on spatio-temporal criteria, the interests of the driver, etc.) to be stored in
a local database, data cache, or knowledge base. Then, the data may be used locally
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Figure 2.7: Example of query dissemination in a VANET

by a query processor in charge of retrieving data relevant to the driver. The query
processing performed with this approach is opportunistic, as data become available
only through encounters with other vehicles that transmit them. Some queries may be
running locally in a continuous way (predefined implicit queries or continuous queries),
such as in the case of queries asking about emergency events that may disturb the
driving experience (e.g., accidents), which are relevant all the time (even if the driver
does not explicitly ask that information). Other explicit queries can be submitted by
the driver at specific moments, according to his/her information needs (e.g., queries
asking about available parking spaces). Some examples of push-based approaches can
be found in [DCI10, [CDI11l XOW04, [AYC1S)].

The major difficulty here is to disseminate data in the vehicular network so that
vehicles receive the relevant information efficiently (timely and without unneeded
overheads such as duplicate packets or irrelevant data). Nevertheless, with such a
push model, only data about events that are potentially interesting for a large set of
vehicles are diffused among the vehicles, because of bandwidth consumption reasons.
Moreover, the dissemination of certain information is usually restricted to a spatio-
temporal area where it is estimated to be relevant. So, a push-based approach also
presents some challenges, such as the difficulty to disseminate the events efficiently,
and it is also quite inflexible due to the limited spatio-temporal scope supported and
the need to disseminate only data which are expected to be relevant to many vehicles.
Due to these limitations, in this thesis we focus on a pull-based approach. Specifically,
we use mobile agent technology to proactively disseminate queries in the vehicular
network, as needed.

An example is shown in Figure [2.8] There exist several vehicles in a VANET that
are disseminating data to their neighbors, and one car receives those data oppor-
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tunistically when there is an encounter with any of those disseminating vehicles. The
data, or a portion of them in which the driver can be interested (e.g., data regarding
certain topics, or that belong to an area surrounding the current position) are stored
locally in the computing device. Later, the driver can issue a query (e.g., a list of gas
stations in the city) but, instead of disseminating it through the VANET, the data
stored locally in the vehicle are processed to solve the query. Thus, the query solving
process is faster, but on the other hand the amount of local data regarding the topic
of the query may be insufficient, and therefore the query answer may return a small
amount of results (or even no results at all).
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Figure 2.8: Example of data dissemination in a VANET

2.7 Summary of the Chapter

In this chapter, we explained the technological context related to this thesis, which
includes the features of mobile computing, the basics of mobile P2P networks, in-
telligent transportations systems and VANETS, mobile agents, and the processing of
queries in vehicular networks.

Thus, we started describing the particularities and limitations of mobile comput-
ing, such as the reduced computation capabilities of mobile devices, the necessity of
batteries as a source of energy, with a capacity that is limited to a few hours at most,
and the need of using wireless communications, which in turn have also limitations
in terms of range and bandwidth. However, mobile devices have the key advantage
of, precisely, their mobility, so they can be carried to any place and can transfer data
without needing any wire, and are can be operated as any moment, since they usually
can be started without a long setup time.

Concerning mobile P2P networks, they were created to directly connect two or
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more devices without the need of a central common point, as it happens with con-
ventional wireless communications that need the presence of hubs or access points.
This has the advantage of enabling the communication among devices in a decen-
tralized and independent form, but it has also some drawbacks, such as the ability
to establish communications only with other directly-connected devices, that makes
using relatively-complex algorithms to send data to farther devices necessary.

Intelligent Transportation Systems involve a number of components, such as de-
vices with computing capabilities aboard vehicles and wireless devices that enable
the communications among the vehicles, and also roadside units, to exchange data in
order to ease and make driving more efficient for people and at the same time increase
their safety. Closely related to these systems are the vehicular networks, in which the
different vehicles traveling along the roads and streets of an area establish network
connections among them to exchange data.

Regarding mobile agents, they are software entities that have the ability to moving
from one execution environment to another after being transferred by means of a
network connection. They are highly flexible and independent, which makes them a
very adequate solution for performing some complex task in mobile and distributed
scenarios.

Finally, we concluded the chapter by describing the problem of querying data
present in a vehicular network, which can be a very challenging task due to, among
other factors, the constant movement of the vehicles, the spread of data, and the
difficulty of locating and obtaining them.



Chapter 3

Query Processing Approach

In this chapter, we describe the problem considered regarding data management in
vehicular networks. Then, we present our proposed approach to tackle the problem,
which uses mobile agents, and we discuss our main motivations to use them. After
that, we detail how our proposal works by means of a number of algorithms that are
extensively explained. These explanations are later expanded with the addition of
Petri Nets, that help to understand in a graphical way the behavior of the proposed
approach.

3.1 Overall Goal

Our final goal is the development of a system to process queries distributively in a
vehicular ad hoc network [UITLI7al], where a variety of queries can be considered.
We will use the term mobile query to refer to any query that, in order to be solved,
implies collecting data that are not stored in a single and well-known source but in
distributed nodes that can be mobile. Some important difficulties to process such a
mobile query are the following: the number of relevant data sources may be high or
unknown, the data sources may not be accessible directly through a static network
connection, and the locations of the data sources (and their connectivity) can change
over time.

Mobile queries can be classified based on different parameters. For example, ac-
cording to their purpose we could identify range queries [WCY06] (which retrieve
objects within a certain range/region), nearest-neighbor queries [TPS02] (which re-
trieve a specified number of objects of a certain class which are the closest to a certain
object or location), etc. In general, all these queries are location-dependent queries
(i.e., queries whose answer depend on the locations of certain objects), which are
studied extensively in [IMIT0] (although not in the context of vehicular networks). In
this thesis we focus on range queries, as nearest-neighbor queries could be processed
based on range queries, as suggested in [IMI0G].

In range queries and in other types of queries, such as in constrained nearest-
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neighbor queries [FSAAQT], the scope of interest of the query is constrained to a
certain area, that we call the area of interest. Besides, in order to bound the amount
of data to process and speed up the query processing, the search of data relevant to the
query is usually constrained to data sources located within a certain geographic area,
that we call the relevant area, which is at least as large as the area of interest. Thus,
it is assumed that only the vehicles within the relevant area may store relevant data
(i.e., data about the area of interest), even though it is possible that other vehicles
outside that area could also hold data relevant to the query. The area of interest
could be defined in different ways:

e As a fized area, defined by static absolute coordinates, such as the vertices of a
predefined rectangle or the center and radius of a static circle. As an example,
consider retrieving the list of affordable restaurants at no more than five kilo-
meters from the work place, or the gas stations located within the municipal
boundaries.

e As a moving area of a fized size, whose location is given by the location of a
certain vehicle. In this case, the queries are usually called moving queries [GL04,
IMIO6], as the locations of their associated geographic areas change with the
current locations of the objects referenced by such queries. As an example, a
driver may want to know available parking spaces in a radius of five kilometers
around his/her location. It may also be possible to submit queries relative to
the location of another vehicle, such as public buses and their proximity to their
next stop. In other words, the reference vehicle for the query may be the query
originator vehicle or a different one. In some cases, there may be some extra
information about the trajectory of the reference vehicle, in which case it is
possible to estimate its location (and so the area of interest) at a specific future
time instant.

e As a moving area with dynamic shape. In this case, both the location of the area
of interest and its boundaries/geometry may change along time. As an example,
we may want to monitor the number of vehicles within a densely traffic area or
the concentration of atmospheric gases in the vicinity of a storm. Depending
on the specific situation, in some cases the trajectory of the moving area may
be known in advance or be predictable to a certain extent.

Obviously, the most challenging cases occur when the area of interest is moving
and its shape changes along time. In these cases, a vehicle may become relevant or
irrelevant to the query not only due to its own movement but also due to changes
in the area of interest. When the area of interest is not fixed, there should be some
mechanism to keep track of the area of interest efficiently during the query processing.
In this thesis, we consider the case of a fixed area, as our focus is on the development
of strategies to keep track of data within a geographic area rather than on defining
mechanisms for the dynamic definition of the interest area.
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3.2 Motivation for the Use of Mobile Agents

Mobile agents can be very useful in wireless environments [SSPE04], but the ap-
plication of this technology in the specific case of vehicular networks has not been
extensively explored yet. Therefore, in this thesis, we explore the possibility of using
mobile agents for processing queries in a VANET. The queries could be used as a
building block to develop applications that provide the drivers or other interested
parties with useful information, such as applications that retrieve information about
available parking spaces, applications that monitor environment factors (e.g., the
amount of COa, pollution, or the level of noise in an area), or in general applications
that retrieve data captured in a certain geographic area (e.g., photos of an area).
However, processing queries in vehicular networks involves a number of difficulties,
such as the problem of routing the query to a certain area using only short-range
wireless communications, searching the data that will be relevant to solve the query
distributively among the vehicles present in the network, and finally returning the
query results to the query originator once the query has been processed.

The use of mobile agents in vehicular networks can offer key advantages, thanks
to their adaptability and mobility features:

e They can bring a processing task wherever it is needed, and the algorithm
implemented by the agent can be changed at any time by simply deploying an
updated version of the agent’s code. This flexibility is extremely interesting in
a vehicular network. A mobile agent-based application for a vehicular network
can be updated by just releasing new versions of the involved agents, without
the need to upgrade the software system of all the vehicles.

e They can move to wherever the data are located, in order to process and col-
lect only the relevant data (filtering out data which may be unnecessary). For
example, if we want to obtain some information from vehicles located within a
certain geographic area, a mobile agent could move there and process the data
locally. Once the most interesting data are obtained, they will be carried along
with the mobile agent, keeping the size of the relevant data collected smaller,
and making it easier to transmit them in a scenario where communications could
be constrained.

e They can also be very useful for data dissemination, since they can adapt their
behavior to the changing environment of a vehicular network, improving in
this way the data dissemination. For example, simple flooding dissemination
protocols will not be efficient when the traffic density is low and the number
of vehicles is not enough to route the data towards the destination (besides
other problems such as implosion, overlap, and resource blindness [HKB99]). In
such situations, other protocols can be used, such as carry-and-forward [ZCO08],
where the data are stored in the vehicle while waiting for the moment when
they can be transferred to other vehicles. Given the variety of protocols that
can be developed, mobile agent technology could be used as a basis for building
such protocols and making them as flexible and complex as needed. In this
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way, an agent can carry data and decide where and when to move, whether
it should wait in the current vehicle before jumping to another one, whether
it could be beneficial to clone itself, etc. Using this approach, the intelligence
of performing an appropriate routing is attached to the data themselves (via
the mobile agents), and different dissemination protocols can be embedded to
dynamically adapt the route followed to the conditions of the network at any
moment.

One advantage of using mobile agents is that, instead of sending only data, they
can carry along with them the logics or the algorithms needed to transfer and process
those data. Since the vehicles are constantly moving, it is not possible to use routing
tables to reach the destination. Therefore, it is necessary to evaluate continuously
the appropriate next hop according to the traffic conditions and other factors. Once
the needed data are reached, it may be processed differently according to their nature
(e.g., pollution gases concentrations, gas prices, etc.). The ability of mobile agents to
carry such algorithms (that can additionally be changed or enhanced at any moment)
make them a very flexible and functional option.

We believe that this is an interesting application for VANETS, that makes it pos-
sible to extract valuable information using the vehicles as moving sensing platforms,
which is more efficient and dynamic than the traditional solution based on measure-
ment stations deployed at fixed locations. Besides, mobile agents are very adequate
since their flexibility and autonomy provide advantages in a fast-changing scenario
such as a VANET.

3.3 Proposed Approach Based on Mobile Agents

Thanks to their mobility and autonomy, mobile agents can bring a processing task
wherever it is needed, and they can adapt dynamically to the current conditions,
which makes mobile agents a valuable means to process distributed data in a VANET.
Their mobility allows them to hop from one vehicle to another carrying a query
and/or its results, and their intelligence and autonomy (when properly designed and
programmed) help them to reach suitable vehicles for data processing.

Regarding our approach, we recall that the vehicles traveling along the roads or
streets of a certain area are constantly reading data from their surroundings (e.g.,
using their sensors or obtaining them from other vehicles) and those data are stored
locally in each vehicle’s on-board computer, since transferring them to a central lo-
cation would be costly or impractical. Then, those data, that are distributed and
scattered among the moving vehicles of the area, could be queried in order to obtain
information. The whole query processing would consist of the following four steps:

1. First, the user creates a query about some information of his/her interest related
to an area (e.g., the pollution levels in the city center), which we call the target
area or interest area, and immediately a mobile agent starts its execution with
the defined query parameters.
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2. In the second step, the mobile agent travels towards the interest area using the
vehicles in the VANET to hop from one vehicle to another, until it reaches the
destination. Every time the mobile agent arrives at a vehicle, the next hop may
not occur immediately, since the number of potential vehicles to hop to might
be insufficient. In such cases, the mobile agent will stay in the same vehicle
waiting for another one that is more suitable, or even use it as a taxzi that will
physically carry the mobile agent closer to its destination area.

3. Once in the target area, the agent hops among the vehicles within the area and,
upon its arrival at each of them, processes the locally-stored data in that vehicle
to try to find an answer (total or partial) to the query initially created.

4. Finally, in the last step, the mobile agent returns the result of the query to its
originator using the same procedure of hopping among vehicles.

In this way, a great amount of data that are scattered, unindexed, and may not be
relevant to the user’s interests, can be exploited to obtain useful information thanks
to the ability of the mobile agents to locate the relevant data in run time and obtain
them, while minimizing the wireless communications.

In the following, we explain in detail this process by means of a number of algo-
rithms that are followed to accomplish this task. Algorithm [I]summarizes the process
performed by a mobile agent to process a query. In the algorithms that follow, we
assume for simplicity that strong mobility is supported by the mobile agent platform
(i.e., the instruction following a hopTo/moveTo operation is executed at the target
computer, instead of resuming the execution from a predefined point). Although this
is not usually the case (most platforms are implemented by using standard Java,
which does not support capturing/restoring a given execution stack trace), it is easy
to achieve the same effects with weak mobility by performing some syntactic transla-
tions in the code [BN02]. After describing the four steps, in Section we summarize
the process by indicating the algorithm executed by the mobile device embedded on
a vehicle when a user is going to submit a query, and we highlight the key aspects of
the proposal.

Step 1: Query Definition

In the first step, the query itself must be defined by setting some basic parameters
that are the input to Algorithm

e The dataNeed parameter indicates what the user is asking about (e.g., hotels,
petrol stations, parking slots, etc.).

e The deadline indicates a maximum time interval by which the user expects to
get back the results. For simplicity, we will assume in our description that it is
expressed as an absolute deadline (e.g., “the results must be ready by 15:30”).
However, as this would require the synchronization of the internal clocks of
all the computers involved, it is actually converted to a relative deadline (e.g.,
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Algorithm 1 queryProcessingAgent(dataNeed, relevantArea, deadline, amountOf-
DataToCollect, minPercentData)

Require: dataNeed is an expression of the information needs, deadline is the time instant
by which an answer to the query must be obtained, relevantArea is the area that
contains the vehicles (data sources) of interest, amountO fDataToCollect represents
the total amount of data that should ideally be collected, and minPercentData is the
minimum acceptable percentage of data that must be retrieved.

Ensure: The query is solved before the deadline, or otherwise the query processing termi-
nates silently.

1: travelTo(relevantArea, deadline); {See Algorithm [2}}

2: processQuery(dataNeed, relevantArea, deadline, amountOfDataToCollect, minPercent-
Data); {See Algorithm [4] }

3: returnToQueryOriginator(deadline); {See Algorithm [5}

“the results must be ready in 10 minutes”) by using the techniques proposed
in [IMIO8]. It should also be noticed that if the deadline is exceeded the query
processing finishes silently; the reason is that communicating the failure to the
query originator could be difficult and the absence of answer by the deadline
can be interpreted as a failure anyway.

e The relevantArea defines where the vehicles that can provide relevant data for
the query are located (e.g., in the city center, within five kilometers around
the current location of the vehicle, near specific GPS coordinates, etc.). As
explained in Section 3.1} it can be larger than the area of interest. For simplicity,
we assume that the area of interest is fixed and the corresponding relevant area
is also fixed (i.e., they do not move or change their shape).

e The amountOfDataToCollect specifies the amount of results that the user would
like to retrieve.

Although, for simplicity, we consider this as a parameter of the query, the idea
is to determine it automatically (without user intervention), if possible. For
example, if a driver is searching for information about available parking spaces,
the number of parkings retrieved could be dynamically adapted, automatically,
depending on the level of parking competition at that moment (e.g., if there are
many vehicles searching for parking, the query processing could try to find a
higher number of parking spaces, to maximize the probability that at least one
of them will be available when the driver gets there).

In other cases there may be no limit on the amount of interesting data that can
be retrieved, and so the amountOfDataToCollect can be set to oc.

e Finally, minPercentData represents the minimum percentage of data that must
be retrieved to consider that the query has been solved. The use of this last
parameter is motivated by the fact that in a highly-dynamic environment (such
as a vehicular network) it could be really difficult to guarantee that all the
interesting data have been retrieved. Indeed, as indicated in [BCOS0S], in P2P
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environments the query results are usually assumed to be incomplete. So, this
parameter can be used to set a minimum quality for an answer to be acceptable.
If amountOfDataToCollect is 0o, then minPercentData is set to 0 and the query
processing will retrieve as much relevant data as possible within the allocated
time limit.

The definition of the query parameters can be performed by a person by using
an appropriate graphical user interface (see Figure . With this interface, the user
selects the target area by drawing a rectangle on a map, and sets values for the different
query parameters described above. Default values are also considered to minimize the
effort required by the user to submit a query. When the query definition is completed,
a mobile agent will be launched, that will be in charge of the query processing by
executing Algorithm

Figure 3.1: Graphical user interface to launch a query

Step 2: Relevant Area Tracking

Once the query is defined, the mobile agent must travel towards the relevant area,
hopping from one vehicle to another by using the short-range wireless devices aboard
the vehicles (see Algorithm . The mobile agent can identify the nearby vehicles by
using a service of the underlying middleware (the agent execution platform), which
in turn can obtain this information by listening to the mobile network identifier that
wireless devices broadcast constantly to announce their presence (e.g., in Wi-Fi de-
vices, this information is the service set identifier or SSID).

The mobile agent hops to other vehicles (call hopAmongVehiclesToReach, which
invokes Algorithm [3] shown later) only if the agent estimates another vehicle as a
more promising transportation mode towards the relevant area (if no other vehicle is
estimated as promising, then the agent stays in the current vehicle). This assessment
can be more or less difficult depending on the knowledge that the agent has about the
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Algorithm 2 travelTo(destination, deadline)

Require: destination is a target area defined by the geographic coordinates of its boundary,
and deadline indicates the maximum time interval allowed for the agent to arrive in the
destination.

Ensure: The mobile agent reaches the destination by hopping from one vehicle to another,

or finishes its execution if the specified deadline is reached.

while (- inside(destination)) & (currentTime() < deadline) do

hopAmongVehiclesToReach(destination); {See Algorithm }
sleep(MILLISECONDS_BETWEEN_POSSIBLE_TRIPS); {Sleep a while (e.g., 5 s).}
end while

if currentTime() > deadline then

end(); {The mobile agent execution ends.}
end if

surrounding area and about the trajectories of the vehicles. For example, if a digital
road map is available to the agent and the destination/trajectory of the potential
target vehicle is known in advance (e.g., as in the case of a bus route), then the
mobile agent will be able to determine with a high accuracy if the vehicle will reach
the relevant area or not. Otherwise, it could estimate the probability that the vehicle
reaches the relevant area. In this case, when the agent is traveling aboard a vehicle
and another vehicle is within communication range, it is possible to consider a number
of hop strategies that the agent can follow to decide if is better to move to the other
vehicle or stay in the current one. Thus, the agent can travel from one place to another
by using two complementary mechanisms: by hopping among vehicles (transportation
using wireless communications) and by staying in a moving vehicle (transportation
via locomotion, using the cars “as taxis”).

The process of hopping from one vehicle to another is used multiple times by the
mobile agent during the traveling process, and so it has been written as a separate
algorithm (Algorithm [3). The specific hop strategy must be encoded within the
isBetter(...) function shown in that algorithm (line [2)).

Algorithm 3 hopAmongVehiclesToReach(destination)

Require: destination is the target geographic area, defined by the geographic coordinates
of its boundaries.
Ensure: The mobile agent hops to another vehicle if it is estimated to follow a more promis-
ing path towards the destination.
1: for all newVehicle such that withinCommunicationRange(currentVehicle, newVehicle)
do
if isBetter(newVehicle, currentVehicle, destination) then
hopTo(newVehicle);
break; {Exit the loop.}
end if
end for

S TN

It should be noted that, without loss of generality, in the previous description we
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have assumed that only direct communications between vehicles are possible. How-
ever, the possible existence of fixed relay devices with Internet connection along the
roads (such as the roadside units mentioned in Section would enormously facili-
tate this step of the query processing, as the mobile agent could hop to one of these
devices and move between them by using a fixed network connection. This would
enable the ability to perform long jumps.

Step 3: Data Collection

When the mobile agent reaches the area of interest, it starts gathering information
from the vehicles in the area, hopping from one to another in search of new data
(see Algorithm . Depending on the nature of the data requested by the user, the
mobile agent may need to visit the vehicles located at certain specific places within
the relevant area, for example, if some environmental parameter must be monitored.
In such a case, the agent considers that spatial area as divided into a certain number
of spatial cells (of the same size), and we assume that the agent needs to visit at
least minPercentData cells, and obtain the required data there, in order to finish its
task. Notice that, by increasing or decreasing the number of cells, we could achieve
a more fine-grained or coarse-grained monitoring. Alternatively, instead of dividing
the relevant area in cells, we could require the mobile agent to visit a number of
vehicles searching the requested data, without needing these vehicles to be located at
specific places, as long as they are within the relevant area. For example, the first
data collection approach could be used for environment monitoring by using sensors
available in the vehicles, for example to measure the level of COs or the amount of
noise in an area; in this case, the goal would be to cover the spatial area to perform
the required measurements by using the required sensors aboard vehicles. The second
data collection approach could be the most suitable one for querying local databases
in a number of vehicles, for example to collect information about available parking
spaces, received by the vehicles from their neighbor vehicles; in this case, the goal is
to visit several vehicles within the area, to query their local databases.

In each vehicle, the mobile agent processes the data stored locally, filtering out the
irrelevant data. The relevant data are integrated into the mobile agent’s knowledge
base and carried to another vehicle, where a local processing starts again to integrate
new data into the local knowledge base. This process continues while the query re-
mains unsolved/incomplete, and as long as a time limit established for data collection
(based on the deadline set for the whole query processing) has not been exceeded.
Additionally, if during the process the mobile agent leaves the area due to the con-
tinuous movement of the vehicles, the agent will need to temporarily interrupt the
data collecting process, and it will try to return to the area again by hopping from
one vehicle to another, by using the same techniques applied in the previous step. In
the following, we explain some aspects of the data collection step in more detail.
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Algorithm 4 processQuery(dataNeed, relevantArea, deadline, amountOfDataToCol-
lect, minPercentData)

Require: The mobile agent has reached the relevantArea. The input parameters are de-
fined as in Algorithm

Ensure: Either the mobile agent tries to return the query solution to its origin, or it dies if

it has not been able to solve the query.

: dataCollectionStartingTime <— currentTime();

: numClones + 0;

: collectedData <+ 0;

: localData <« 0;

: repeat

deadlineForDataCollection < deadline - travelToOriginDelayEstimation() - SECU-

RITY_MARGIN;

:  localData < collectLocalData(dataNeed);

8:  collectedData < collectedData U localData;

9:  if (size(collectedData) < amountOfDataToCollect) & (currentTime() < deadlineFor-

DataCollection) then

ST W =

10: if inside(currentVehicle, relevantArea) then
11: if withinCommunicationRange(currentVehicle, newVehicle) & needToHopToAn-
otherVehicle() & inside(newVehicle, relevantArea) then
12: hopTo(newVehicle); {The mobile agent will continue collecting data in another
vehicle. }
13: end if
14: else
15: travelTo(relevantArea, deadlineForDataCollection); {The mobile agent has left
the relevant area and must return there.}
16: end if
17: if thisIsNotAClone() & badDataCollectionRate(dataCollectionStartingTime, dead-
lineForDataCollection) & (numClones < MAX_CLONES) then
18: numClones < numClones + 1;
19: cloneAgent();
20: end if
21:  end if
22: until (size(collectedData) > amountOfDataToCollect) | (currentTime() > deadlineFor-
DataCollection)
23: if (answeredRatio(dataNeed) < minPercentData) then
24: die();
25: else
26:  returnToQueryOriginator(deadline);
27: end if

Hopping from Vehicle to Vehicle for Data Collection: Deadline

As there is a deadline established for the whole query processing, the deadline for
data collection can be obtained by subtracting an estimation of the time that the
agent may need to return to the query originator (carrying with it the query results)
plus a security margin to diminish the effects of a possible too-optimistic estimation
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(see line 6 in Algorithm. As the query originator may be moving, the estimation of
the time needed to reach the query originator should be reevaluated periodically by
calling travelToOriginDelayEstimation() and taking into account statistics about
the trips performed by the agent along its life cycle and the distance traversed by the
agent when performing those trips (i.e., the effective travel speed of the agent). After
setting the deadline for data collection, the agent tries to solve the query by collecting
data stored on the local vehicle. In case not enough data have been collected, then
the agent evaluates whether it is convenient to hop to another vehicle to continue
the data collection or not; to do so, it calls needToHopToAnotherVehicle(), which
returns false if the current vehicle can still be used for data collection (e.g., if the
query requires collecting measures of environmental data by using sensors available
at the vehicle) and true otherwise (i.e., the current vehicle cannot provide more data
relevant to the query).

The data collection task ends when the mobile agent has collected the requested
amount of data, or when the deadline expires. The amount of data collected may
not have reached the minimum ratio established by the parameter minPercentData,
which is computed by calling answeredRatio() (see line [23|in Algorithm . If this
ratio does not reach the minimum established, then the monitoring task is considered
to have failed and, as a consequence, the mobile agent interrupts immediately its
execution. If, on the other hand, the ratio equals or exceeds the minimum, the mobile
agent will start the process of returning the results to the query originator.

Use of Clones

In order to increase the reliability or performance of the query processing and the
amount of data collected, the mobile agent could also create copies of itself (clones).
We indicate in the following a strategy that can be applied when the data collection
does not progress with enough speed. For simplicity, only the original agent is allowed
to create clones of itself (i.e., a clone cannot create another clone). Moreover, a
maximum number of clones is considered (M AX_CLONES) in order not to overload
the network with many clones of the same agent; a value of 0 implies that clones are not
used. Finally, it should be noticed that a clone performing exactly the same actions
than the original agent would be of little use. Therefore, in order to desynchronize
the behavior of clones, once a clone is created it hops immediately to another vehicle
(selected randomly from those within the communication range), if possible, and
starts its execution in the new vehicle. Clones act independently of each other, as
trying to coordinate the different clones to collaborate among themselves in an ad
hoc network would be really challenging.

To decide whether a clone should be created, the algorithm makes use of the
function badDataCollectionRate(), that simply returns a boolean that indicates if
the percentage of data collected so far, considering the minimum amount of data that
must be collected, is smaller than the percentage of time spent. In case it is (i.e., if
true is returned), then it is convenient to clone the agent to try to increase the data
collection rate; otherwise, it might not be possible to collect the minimum amount
of data required by the deadline. A poor data collection rate could mean that only
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a small fraction of vehicles store relevant information or that it is difficult for the
agent to jump from one vehicle to another (e.g., due to a weak network connectivity
or sparse traffic density). Thus, the use of clones could maximize the probability of
obtaining an answer.

Another alternative strategy for the use of clones would be that the mobile agent
creates copies of itself already in the first step of the process (all at once), when the
query is launched. These clones hop then randomly among the nearby vehicles for a
certain interval of time. Afterwards, each one follows the remaining query processing
steps. The purpose of this behavior is to make the multiple copies of the mobile
agent to spread from the initial point in different directions so that they can reach
the target area following different paths, in this way maximizing the probability to
increase the data collection rate. When compared to the previous cloning strategy,
this one has the advantage that if the mobile agent finds it difficult to reach the target
area following a particular route (e.g., due to low traffic density), the other copies of
the agent might follow other alternative routes that could reach the destination more
quickly. In Section[6.2.6] both cloning strategy are evaluated and compared by means
of experiments.

Step 4: Return of Results

When the data gathering ends, the agent travels back to the vehicle from which the
query was launched, along with the results of the query (see Algorithm . Given
that the query originator might be a moving vehicle, a problem arises for the agent to
reach it. If a direct connection with the query originator could be established (e.g.,
by using 4G), which is not expected to be the usual case, then the solution would
be easy since the agent could move there immediately regardless the location of the
query originator.

Otherwise, unless the agent has some knowledge about the expected route of the
query originator, it can be difficult to locate it. A potential solution is to diffuse its
expected trajectory along with the query, both embedded within the mobile agent.
Another possibility is that the query originator disseminates periodically information
about its current location, but it may be difficult to guarantee that these updates
will reach the intended agent. Although choosing the best strategy for routing the
results to the query originator could be considered an open problem [IDTLI5|, in our
prototype we assume for simplicity that the agent has a suitable estimation of the
trajectory of the query originator; in Section we evaluate the impact of potential
errors in this estimation. In any case, the use of mobile agents will help to track the
query originator; for example, a mobile agent can more flexibly deal with situations
where a communication route to the query originator is temporarily unavailable.

In Algorithm [5] the estimation of the location of the query originator is abstracted
in the function estimateQueryOriginatorLocation(). The function travelTo(...), de-
scribed in Algorithm [2] is used by the mobile agent to travel to its destination by
hopping from one vehicle to another.
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Algorithm 5 returnToQueryOriginator(deadline)

1: sucessfulReturn < false;

2: repeat
3:  queryOriginatorLocation + estimateQueryOriginatorLocation();
4:  areaOfTheQueryOriginatorLocation — createSquare(queryOriginatorLocation,

COMMUNICATION_RANGE); {A squared area centered in the estimated location
for the query originator and with side twice the communication range (e.g., 200
meters) is considered.}
travelTo(areaOf TheQueryOriginatorLocation, deadline); {See Algorithm [2} }
if withinCommunicationRange(currentVehicle, queryOriginator) then
hopTo(queryOriginator);
sucessfulReturn <+ true;
9: end if
10: until sucessfulReturn | (currentTime() > deadline)

Summary of the Process

Algorithm [6]shows the program that runs on the mobile device aboard a vehicle when
a query is going to be launched. As described along this section, the query is first
defined by specifying the different query parameters. Then, a mobile agent is created
to perform the query processing.

In case the query is solved and the mobile agent reaches the query originator,
it will return its result to the user. However, if multiple copies of the mobile agent
(clones) were created, then it is possible that other different results (carried by the
different clones of the mobile agent) will reach the user after the first one arrives. In
this case, two approaches could be considered. The most simple one is to discard any
data arriving after the first valid result is received. The other option is to aggregate
the results when several answers (from different clones) are obtained. Finally, we
could also provide the user with new integrated results as they are available. In
Algorithm [6] we illustrate this latter option. So, the program waits for the arrival
of one or more agents (clones) with their solutions. All the solutions received are
accepted, integrated, and shown to the user as they arrive. So, the last solution
shown to the user is the most complete one.

The key points to highlight regarding the suggested query processing strategy are
the following:

1. It is a novel and flexible approach that uses mobile agents for query processing
in vehicular networks.

2. Tt tackles pull-based query processing (more challenging than push-based query
processing and more generic in terms of the queries that can be processed, as
queries can be transmitted to retrieve any required remote data).

3. Mobile agents autonomously make hopping decisions based on the information
they have about their surroundings, to reach the target geographic areas.
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Algorithm 6 launchAndWaitQueryAgent()

Require: The user must provide the parameters of the query (some parameters, such as
amountO f DataToCollect may be determined automatically for some queries, as ex-
plained in Section |3.3).

Ensure: If some result is obtained before the deadline specified by the user, it is shown to
the user. Otherwise, a NO_SOLUTION is notified. In case some solution is obtained,
it may be incrementally enhanced (if clones are used) until the deadline is exceeded or
the user cancels the query.

1: setParameters(dataNeed, relevantArea, deadline, amountOfDataToCollect, minPercent-
Data);

2: agent < create a mobile agent to execute the algorithm queryProcessingAgent(dataNeed,

relevantArea, deadline, amountOfDataToCollect, minPercentData)); {See Algorithm}

: solution + @;

: totalNumberOfAgentResultsToReceive < oco; {Default initial value.}

: numberOfResultsReceived <+ 0;

: while (currentTime() < deadline) & (- isQueryCanceled()) & (numberOfResultsRe-

ceived < totalNumberOfAgentResultsToReceive) do

agentArriving <+ waitForAgentArrival(deadline); {Maximum waiting limited by the
deadline. If this time is exceeded, the waiting is interrupted and agentArriving will
be equal to null.}

8  if (agentArriving # null) then

S Ut W

=

9: partialSolution <— getAgentSolution(agentArriving);

10: solution < solution U partialSolution;

11: numberOfResultsReceived <+ numberOfResultsReceived + 1;

12: notify User (solution);

13: if agentArriving.isOriginalAgent() then

14: totalNumberOfAgentResultsToReceive = agentArriving.numClonesCreated();
15: end if

16: end if

17: end while

18: if (solution = @) then

19:  notifyUser(NO_SOLUTION);
20: end if

4. The agents continuously re-evaluate the situation in order to adapt their behav-
ior, which leads to a good reliability.

5. Clones of agents can be used to further increase the reliability or performance
of the query processing and the amount of data collected in a given time frame.

The current proposal is focused towards the development of applications and ser-
vices that provide the users with useful information (drivers or other people that need
to retrieve data from an area). These correspond to the so-called General Information
Services according to the classification presented in [WTMO09]. Safety information ser-
vices and motion control applications usually have very strict latency requirements,
and so they are out of the scope of this work, where mobile agents perform their tasks
in a pure vehicular ad hoc network using only short-range ad hoc communications; we
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believe that specialized and prioritized data traffic schemes would be needed for these
kinds of services, but it might also be possible to analyze their potential support by
combining mobile agent technology with other wide-area communication mechanisms
(e.g., 3G/4G) and prioritized messaging, when available.

3.4 Modeling with Petri Nets

The proposed data management approach involves a number of elements whose ac-
tions can occur asynchronously and at the same time. For example, the movement of
the vehicles, the execution of the mobile agents in their on-board computers and their
hops from one vehicle to another, etc. Additionally, many of these actions are inde-
pendent (i.e., they have no influence on each other’s behavior), such as the movement
of any two distant vehicles, but others are indeed dependent (i.e., one action cannot
occur unless some condition is met), such as the hop of a mobile agent from one
vehicle to another, since it will not be possible unless there are two vehicles within
the range of their wireless communication devices. Moreover, these conditions are
not fixed and stable but, on the contrary, are constantly changing and evolving along
time.

We have used Petri nets [Mur89] for modeling the different phases of the proposed
data management approach and clarifying their behavior [UI17D], since their graphic
representation complements the previously presented algorithms and helps to improve
their understanding.

In the following diagrams, the execution flow of the mobile agent is represented by
a mark in the Petri net, which traverses many states or situations (e.g., waiting for
a vehicle to get in range, reaching or not the interest area, etc.) that are represented
by places. The mark can stay in a place until certain condition is met, and then the
corresponding transition is activated and the execution flow continues as the mark
travels to the following state. In order to ease its legibility, we present one separated
Petri net for every phase or step into which the whole process can be divided (see
Section . To obtain the whole Petri net, it would only be necessary to join the
places with common names from the different diagrams into a single one.

Traveling to the Interest Area

Figure shows a Petri net that models this stage of the process. The mobile
agent is initially created in a given vehicle, as represented by the initial mark in the
place “In_Vehicle”. Whereas the agent has not succeeded in its attempt to reach the
interest area (condition “IA_not_Reached”), it evaluates if there is another vehicle
within the communication range that could be a better candidate to transport it to
the area. If a better candidate is found (condition “Better_Found”), the agent jumps
there, and otherwise it stays in the same vehicle. The process continues until the
agent reaches the target area (“IA_Reached”). Notice that there is a transition (“Ve-
hicle_approaching”) injecting marks into the place “Vehicles_in_.Range” and another
transition removing marks from that place (“Vehicle_leaving”), representing the fact
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that, at any time, new vehicles can start being within (and out of, respectively) the
communication range of the vehicle currently transporting the agent. It should be
noted that the agent could apply a variety of strategies to decide if a vehicle is a bet-
ter candidate or not; for example, a simple greedy approach could select as a better
candidate any vehicle which is closer to the target area than the current vehicle.

Monitoring the Interest Area

As explained in Section there are two possible approaches for the data collection
step: visit a number of spatial cells or visit several cars. Without loss of generality,
to model the Petri net of the data collection step, here we assume that the agent
needs to visit at least N cells to finish its task (alternatively, we could require vis-
iting a minimum number of cars, which would lead to minor modifications to the
corresponding Petri net). Figure shows a Petri net that models the process of
visiting the required spatial cells within the area. Each time that there is an oppor-
tunity to visit a cell that has not been previously visited, the agent tries to visit it
and, if it succeeds, a mark is injected into the place “Cells_Visited”; if not (transition
“Another_Cell_not_Reached”), it will try to reach the cell by traveling to other vehi-
cles if necessary. Once the cell has been visited (transition “Cell_Already_Visited”),
the agent will try to visit a different cell (the mark representing the agent returns
to “In_Vehicle TA” and the agent will consider a different cell). When there are no
marks left in the place “Cells_to_Visit”, which means that there are N marks in the
place “Cells_Visited”, the transition “All_Cells_Visited” is fired and the agent fin-
ishes this stage of the process (a mark representing the agent is put in the place
“Begin_Return_Origin”) to start the last stage (step 4).

Returning to the Target Area, if needed

Notice that, as shown in Figure[3.2(b)} the mobile agent can leave the target area if
the vehicle that carries it leaves the area (transition “Left_TA”). Figure shows the
process followed by the mobile agent when the car that carries it leaves the interest
area.

Returning to the Origin

Figure shows the process of the agent returning to the originator device. Whereas
the origin is not reached (transition “Origin_not_Reached”), the agent tries to find
alternative vehicles to travel there. Once the origin is found by the agent (transition
“Origin_Reached”), the process finishes. As can be observed in the figure, the model
is quite similar to the one used to represent the trip of the agent to the target area

(shown in Figure [3.2(a))).



3.5. Summary of the Chapter 63

In_Vehicle

(M
In_Vehicle
N
Vehicle_approaching IA_Reached
TA_Reached L)Tj“ Cells to Visit
s
Eval_Vehicles In Vehicle IA @

Inside_IA
New_Cell_Visited

S

Vehicle Inside IA

All_Cells_Visited

Cell_Already_Visited Cells_Visited

- J

Hop_Fail Begin_Hop Hop_Success

Begin Return_Origin
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Figure 3.2: Petri net of a mobile agent traveling to a target area and visiting the cells
inside it

3.5 Summary of the Chapter

In this chapter, we explained the data management approach proposed for the pro-
cessing of queries in a VANET. It is based on the use of mobile agents, since they have
a number of remarkable features (such as their autonomy, intelligence, and mobility)
that make them an ideal choice for such a changing scenario as a VANET.

Firstly, the query is defined by the user, and a mobile agent travels to a desig-
nated target area, by hopping from one vehicle to another, using short-range wireless
communications, or by being physically carried if there are not suitable vehicles to
hop to. When the mobile agent reaches the interest area, it looks for the data needed
to solve the query: it visits the vehicles that are within that area (by moving to
them using the wireless connection), processing in situ the local data stored in those
vehicles and collecting the pieces of relevant information. Once the agent finds all the
necessary data to solve the query, or when a predefined timeout is reached, it returns
to the query originator with the results. For a better understanding, we explained
the process followed by the mobile agents by means of algorithms, and also by their
graphical representation using Petri nets.
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Chapter 4

Traveling to a Target Area

One of the particularities of VANETS is the communication among the different ve-
hicles, that is achieved by using wireless devices with a relatively short range (a few
hundred meters, at most, in the best conditions). Therefore, data can only be di-
rectly transmitted to other vehicles that are in the vicinity, within the range of the
communication signal. On the other hand, if the data must be transferred to a loca-
tion farther than the range of the wireless devices, then a multi-hop approach can be
used. To do so, the data are relayed (that is, received and resent to other nodes) by
a variable number of vehicles that can communicate with each other (i.e., they are
within the wireless communication range) and are located between the source and the
destination of the data.

The difficulty with these kinds of approaches is that the intermediate nodes (the
relays) of a VANET are its forming vehicles, that are constantly moving and changing
their positions, which leads to the rapid creation and destruction of network links.
In fact, these links could last only a few seconds if the connecting nodes are two
vehicles approaching each other at high speeds in opposite directions. Due to the
high dynamism of this scenario, the use of static routing tables, that are used in other
more traditional networks, is totally discarded and another approach must be taken.

In this thesis, we advocate providing intelligence to the data to be transferred,
by attaching them to mobile agents. So, instead of being passively forwarded by the
intermediate nodes/vehicles, the data become smart and have the ability to actively
decide the next step to follow after they have been transferred to one of the inter-
mediate vehicles. This process of being transferred from one vehicle to another will
be repeated (possibly, many times) until the data eventually reach their destination,
which can be a predefined geographic location or a certain vehicle.

Thus, in order to carry the data where they are needed, one of the main tasks of
the agent is to decide the next action to take once it arrives to a new vehicle after
being transferred wirelessly from a previous one. These actions are basically two: to
stay in the vehicle or to move (or hop) to another one. Obviously, if there are no
other vehicles nearby, the only option will be to stay in the same vehicle and wait

65
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until some alternative vehicles appear within range. On the contrary, if there are
other vehicles where the mobile agent could potentially move, the question is how to
choose the best candidate among them to try to reach the destination earlier. The
mobile agent will evaluate the current situation by taking into account a number of
factors (such as its current location, the position of the other vehicles, the distance to
the destination, etc.) and decide to which of them it should travel, after estimating
it as the most promising one.

We call hop strategy to this evaluation, since there can be many ways to estimate
the suitability of a vehicle to lead the agent towards its destination, and therefore
different approaches to decide the next hop to make. The election of an adequate
hop strategy is very important, since it may have a number of implications for the
performance and behavior of the agent, as well as for the whole data management
process.

Another type of strategy that a mobile agent can follow is not based on selecting
the most suitable vehicle to hop to, but instead on asking for help directly to the
drivers to ease the travel of the agent to its destination. In these strategies, some
drivers can collaborate with the mobile agent to provide it with the spatial mobility
that it may need to reach its destination sooner. Thus, the term spatial crowdsourcing
is used to designate the collaboration of users who share their ability to physically
moving by driving their cars to certain designated locations, in order to achieve a
global goal by helping the mobile agent. This collaboration, however, will surely
have a cost for the drivers in terms of time, fuel, etc., so in order to motivate their
participation, they can receive some compensation in exchange for their tasks. This
compensation can come in many forms (e.g., discount points for gas stations or other
shops, money, cryptocurrency, etc.) according to the amount of effort invested by the
collaborator to help the mobile agent.

In this chapter, we explain several strategies that can be used by a mobile agent.
In Section [A.1] we detail how different hop strategies work. Then, in Section the
spatial crowdsourcing approach is explained, as well as its advantages and drawbacks
when compared to the other hop strategies.

4.1 Hop Strategies

In an ad hoc network, whose nodes establish temporary links to communicate with
each other, it is necessary to use a multi relay method to transfer data to other
locations that are more distant than the directly-connected nodes. Thus, the data
are resent from one node to the next many times until the destination is reached.

In the case of a VANET, the ad hoc connections are established among the vehi-
cles within the communication range of their wireless devices, which are constantly
changing due to the vehicles’ movements and the presence (possibly intermittent) of
obstacles that block the propagation of the communication signals, such as buildings,
other vehicles, tunnels, etc. In this scenario, when a vehicle sends data using a multi
relay protocol, their final destination can be another vehicle or a geographic location.
In the latter case, the data can be routed by the intermediate nodes (i.e., the vehi-
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cles), since they know their current geographic position thanks to their geographic
positioning system, and they can transfer the data towards the position where the
destination is located.

In our approach, this task of routing the data through the VANET nodes is per-
formed by mobile agents, that carry with them the data to transfer. By encoding
the routing task in mobile agents, important advantages are obtained. There can
be many different suitable routing algorithms, depending on the nature of the data
to transfer. For example, it is not the same sending a warning about an accident
at a certain location in the road to the potential interested drivers, as sending an
informational message about gas prices in the city. In the first case, the data would
have a high priority and they should be routed to the vehicles traveling towards the
accident point in the same lane. In the second case, the data would not be critical
at all and they could be sent to any vehicle in the area near the gas stations. The
implementation of all the possible (present and future) routing algorithms in every
node (i.e., vehicle) would be inefficient in terms of computing resources, as well as
prone to errors. By using mobile agents, instead, only a generic execution platform
is necessary, since the mobile agents can bring with them the necessary algorithms.

Another reason, closely related to the previous one, is flexibility. If the routing
algorithms were updated, or new algorithms introduced, it would be problematic to
update them in all the nodes (i.e., vehicles) in a short time, due to the limited network
connectivity. However, by using mobile agents, instead of updating all the nodes, it
would only be necessary to deploy the agents with the new version of the algorithms,
and they would be used from the first moment.

Regarding the use of mobile agents in VANETS, the way they travel to a destina-
tion located at a certain geographic location is by using the wireless ad hoc connections
established among the vehicles, to transfer themselves from one vehicle to another that
is directly connected. Every time the mobile agent completes successfully one of these
movements (that we call hops), one of the first tasks they execute upon arriving to
the new vehicle is to decide which will be the next vehicle where it will hop to. To
take this decision, the mobile agent will need to consider the available information
from their surroundings, such as the position of its current vehicle and the others,
their speed and heading, the remaining distance to the destination, etc. These and
other data can be evaluated by the agent in different ways to decide to which vehicle
hop, following what we call different hop strategies, and in this way, get closer to its
destination. Actually, it is also possible that, as a result of the evaluation, the agent
decides to stay in its current vehicle if the other options are worst.

The election of the hop strategy is a very important issue, since it can have a
severe impact on the behavior of the mobile agent, as well as on the performance
of the whole data management process. Depending on the hop strategy, it can have
implications in the following aspects:

e The time needed by the mobile agent to reach its destination. If the election of
the next vehicle to hop is not a good choice, then it will unnecessarily travel a
longer distance and take more time.
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e The bandwidth used by the agent when it moves (along with the data) from one

vehicle to another. In a scenario such a VANET, where network connections
are constrained by many factors, an excessive usage of communications might
be problematic. An ideal strategy would require a minimum number of hops in
order to use as little bandwidth as possible.

The reliability to accomplish its task. The hop strategy should perform logical
actions and not act in unexpected ways that may hinder the efficiency of the
process or even prevent its successful completion.

The hop strategies that can be programmed in the mobile agent can be as simple

or as complicated as required, but they always should take into account these impli-
cations. However, it may not be an easy task, since the ideal goal of programming
the perfect hop strategy is subject to a number of difficulties and limitations:

e The mobile agent may have a limited amount of information of its surrounding

environment to make a decision, and its efficiency will likely depend on that.
For example, the hop strategy can be very different depending on whether there
is a digital map of the area available to the mobile agent or not.

Even if the mobile agent has good sources of information to help it to decide
the best candidate to hop to, this information will comprise only the status
or situation of nearby places or actors. That is, only local information will be
available, since obtaining information from more distant elements would need
a global view that it is difficult to achieve in the environment of a VANET.
Therefore, a hop strategy cannot guarantee a globally optimal sequence of agent
hops, since the hop strategies can be, at most, optimal locally.

The high number of vehicles moving in an area, and the fact that their trajec-
tories are not previously known, introduce a factor of randomness that makes
establishing a priori the performance of the hop strategy for a given initial situ-
ation nearly impossible. So, hop strategies are non-deterministic and in certain
situations their performance could be suboptimal.

As a conclusion, it is necessary to evaluate and analyze carefully any hop strategy,

in order to know in which circumstances it behaves better, and at which cost.

In the following, we explain in detail different hop strategies that can be used by

a mobile agent when it evaluates the convenience to hop to another vehicle in order
to reach its destination. The global schema works by following these steps:

1. The mobile agent receives an updated list of vehicles that can be reached directly

from the current vehicle using the ad hoc connection. For every vehicle, the
agent receives at least its identification, current geographic position, speed and
heading. These data are supposed to be exchanged automatically among the
vehicles by their execution platforms whenever they are within their wireless
communication range. It is also possible that this list is empty, if there are not
vehicles nearby.
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2. The mobile agent assigns a score to every candidate vehicle from the list, ac-
cording to the hop strategy followed. A score is also assigned to the vehicle
where the agent is traveling on at the moment.

3. If the score of any of the vehicles is better than the score of the current vehicle,
then the mobile agent will try to hop to the one with the best score and, if
the hop is completed successfully, once it arrives to the new vehicle it will start
again this process at the Step 1.

4. If the score of all the other vehicles is worse than the score of the current vehicle,
or there are no other vehicles nearby, then the mobile agent will stay in the same
vehicle and, after waiting a short lapse (e.g., a few seconds), it will start again
this process at the Step 1.

Whatever the hop strategy is, the mobile agent will always follow this general
process for evaluating the suitability of a vehicle to carry it nearer the destination.
Some minor variations can, however, be introduced to avoid some undesired glitches.
For example, in order to avoid loops where the mobile agent hops once and again
to the same vehicle or place, additional constraints can be added to the evaluation
process. One variation could be not considering as a candidate the last vehicle visited
by the mobile agent. Another one could be discarding the chosen candidate if its
position is extremely close to where the agent was recently, etc.

In the following, we will describe in detail some hop strategies that have been used
in this thesis, although many more could be considered.

Euclidean Distance Strategy

The Euclidean distance strategy (designated with the acronym EUC, for short) is a
fairly simple strategy. The mobile agent hops to another vehicle within the wireless
coverage area if that vehicle is closest to the target area than the current one. To
compute the distance, the classic Euclidean distance is used.

An explanation can be seen in Figure[4.1] The mobile agent is traveling in vehicle
A towards the destination D, and A is considering the vehicles B and C to hop. The
distance d! from B to D is computed, as well as the distance d2 from C to D. Since
dl < d2, the agent will hop to vehicle B, which seems more promising to reach sooner
the destination, since it is closer to it.

Frontal Angle Strategy

In this strategy (abbreviated as ANG), the angle of direction of the target vehicle
regarding the destination is considered. The agent hops to the target vehicle if this
angle is less than 90° and the current vehicle where the agent is traveling does not
satisfy this condition.

An explanation can be seen in Figure [£.2] The mobile agent travels in vehicle A
towards the destination marked in the map as D, and it is considering the possibility
to jump to vehicles B or C. Vehicle A itself is discarded (and that is the reason why
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Figure 4.1: The Euclidean Distance hop strategy

the agent is considering the other vehicles) because it is traveling following a direction
(the dotted line) in which the destination D does not lies within the frontal angle of
90° that forms the vehicle’s direction and the destination.

Figure 4.2: The Frontal Angle hop strategy

The same happens with vehicle C, that travels in another direction in which D
does not lies within the front angle. However, vehicle B, although it does not follow
a direction going directly to D, forms an angle smaller than 90° with the destination,
that lies within its frontal angle, so it is the chosen candidate where the mobile agent
will hop, since it seems more promising to reach the destination (or at least travel
close enough) than the other vehicles.
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Encounter Probability Strategy

This strategy (with acronym FP) is measured using the Encounter Probability as

defined in [DCI10], and it estimates the probability that a vehicle will meet an event

on a road (e.g., an accident) using the position of both the vehicle and the place of

the event, as well as their direction and velocity. In our application scenario, the

destination does the role of a static event as designated in the original calculation.
The formula for the encounter probability is the following:

1
CaxAd+BXAt+yxAg+(Cxe+1
where every term has the following meaning:

(4.1)

e Ad is the minimal geographical distance between the vehicle and the event over
time.

e At is the difference between the current time and the time when the vehicle will
be closest to the event.

e Ag is the difference between the event’s generation time and the moment when
the vehicle will be closest to it, or the expected age of the event.

e cis a collinearity coeflicient that denotes the angle between the direction vectors
of the vehicle and the event.

e «, 3,7 and ( are penalty coefficients with values > 0. They are used to balance
the relative importance of the Ad, At, Ag, and ¢ values.

Some of these terms will take simple values if the destination of the mobile agent
is a fixed and static location, as in this case. For example, Ag will be a constant
(e.g., zero), since the event (i.e., the destination) does not have a generation time
and its age when the vehicle will be closest to it is irrelevant. In the same way, the
collinearity coefficient ¢ will take the value of 0 since the direction from where the
destination is reached is not important. So, the basic factors for this hop strategy are
the first two ones.

In Figure we can see an example of the geometrical representation of Ad and
At and the computation of the encounter probability for the hop strategy. The mo-
bile agent in the vehicle A travels towards its destination in D, and it must decide
whether it hops to vehicle B or C (for the sake of clarity, we assume that vehicle A
has a worse EP value). So, the encounter probability for all the vehicles is calculated
using Equation[f.1] In the figure, vehicle B’s Atp represents the time interval between
the current time and the time where the vehicle will be nearest the destination point,
and Adp the minimum geographical distance between the vehicle and the destination.
Regarding vehicle C, Atc and Ade have the same meanings, respectively. Graphi-
cally, the size of Atc and Adg are greater than the size of Atg and Adg. Therefore,
after applying Equation [£.1] the result will be that vehicle B has a higher EP than
vehicle C, and thus the mobile agent will hop to B, since it seems more promising to
reach the destination sooner.
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Figure 4.3: The Encounter Probability hop strategy

Street Map Distance Strategy

The street map distance strategy (with acronym MAP) assumes that the involved
vehicles have digital road maps of their surroundings. The route to the destination
is computed following the street layout and the total distance is obtained as the sum
of the lengths of all the street segments of the route. The agent hops when another
vehicle within the communication range has a route whose length is shorter than the
current one.

Figure 4.4: The Street Map Distance hop strategy
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In Figure we can see an example. The mobile agent in vehicle A travels
towards its destination in D, and it must decide whether it hops to vehicle B or C.
Both vehicles have a similar straight (i.e., Euclidean) distance to D, but if the routes
are computed following the streets, the distance df from B to D is longer than the
distance d2 from C to D. Therefore, the mobile agent will choose the vehicle C, since
it is the one with the shorter route to the destination.

As stated before, this hop strategy requires that the mobile agent has access to a
digital map of the area, in order to be able to compute the route following the streets
and taking also into account their directions and lengths. Although nowadays is quite
easy to have such maps (e.g., thanks to initiatives such as OpenStreetMap [Ope]),
the performance of this strategy could decrease if the maps are not entirely accurate
because they are outdated or belong to a region not entirely mapped.

Another consideration is that the computed routes are only a measure of the dis-
tance, and in no way it means that the evaluated vehicles will follow that route. This is
only an evaluation of how promising the vehicles seem to be, using a distance measure
more sophisticated (and hopefully more accurate) than the Euclidean distance.

Trajectories Using Maps Strategy

In the trajectories using maps hop strategy (with acronym MapTraj), the vehicles
have digital road maps of the area (like the MAP strategy) and their drivers follow
a pre-computed route, as they would do with a GPS navigator. The mobile agent
will hop only when another vehicle follows a shorter route that will travel to the
destination. So, as opposed to MAP, this strategy assumes knowledge about the
routes of the vehicles.

Figure 4.5: The Trajectories Using Maps hop strategy

We can see an example in Figure [I.5] The mobile agent travels in vehicle A
towards the destination D and it must decide whether hopping to vehicle B or vehicle
C. Vehicle B is located at a longer distance (both in straight line and following the
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streets) than vehicle C, which is nearer. However, the route that is following the
driver of vehicle C travels more distance (d2) than the route followed by the driver
of vehicle B, with distance dI. Since d1 < d2, the mobile agent will hop to vehicle B,
as it will follow a shorter route to the destination.

This strategy requires not only access to a digital road map by the agent, but also
that the vehicle’s driver uses his/her navigation system to program a route and that
he/she follows it faithfully. This may seem a bit unrealistic, but it is not entirely
unlikely and therefore it is also a hop strategy to consider.

Another variation of this strategy would be considering the time to reach the
destination, instead of the distance, if the speed limit of the different street segments
is known. This could be another equally-valid alternative, although in such a case
there exist a number of external factors that may decrease its accuracy, such as the
presence of traffic lights or unexpected traffic jams in the route, that will alter the
time calculations.

The Optimal Route Strategy

The optimal route hop strategy (with acronym Optimal) is an unrealistic strategy
where, given the positions of the vehicles along time, the most optimal trajectory to be
followed by the agent is computed by searching in the tree of all possible states, using
as a weight function the number of hops. This information is only available if we are
going to simulate the behavior of the vehicles. When a simulation is performed, this
strategy will find the shortest sequence of hops (as a list of vehicles and timestamps
of when to hop) that the mobile agent will need to reach the destination.

Figure 4.6: The Optimal Route hop strategy
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We can see an example in Figure [f.6l The mobile agent starts at vehicle A and
its destination is the location at D. The positions of other vehicles designated as B,
C, E and F are simulated at different times. Then, the search begins to consider all
the possible hops that the mobile agent could make. For example, from A it could
hop to B or C at ¢t + 1. If it hops to vehicle B, then it could stay in B or hop to E at
t + 2, and the process would continue until the mobile agents reaches D and the rest
of possibilities of the state tree are explored.

For this simple example, the following sequence of vehicles and hops’ timestamps
will be obtained:

(A,t) > (B,t+1) = (E,t+2) = (E,t+3) = (D,t +4)

Note that it is perfectly normal that at some moments (for example from ¢ + 2
to t + 3) the mobile agent may not perform any hop, but instead stay in the same
vehicle if the other options (e.g., hopping to vehicle F at ¢ 4+ 3) are worst. Also note
that the rest of the vehicles, despite participating in the simulation, does not appear
in the optimal sequence of hops obtained if they are not relevant to the solution.

The purpose of having this impossible strategy is to use it in simulations as an
unreachable baseline to compare how efficient the other strategies are.

Summary of Hop Strategies

In the hop strategies presented above, a mobile agent uses different types of informa-
tion, available from the vehicles and from the environment, to estimate which of the
different vehicles within the agent’s hop range is the most promising one to reach the
interest area sooner. In these strategies, the mobile agent has a passive role regarding
the behavior of the vehicles. That is to say, the mobile agent adapts its actions to the
movements or trajectories followed by the vehicles, and does not have any influence
on them. Table shows a summary of the advantages and disadvantages of the
different hop strategies, that are evaluated experimentally in Section [6.1

4.2 Spatial Crowdsourcing

The previously-described hop strategies have some drawbacks. For example, if the
traffic density is too low, the mobile agent may not find a path to reach the destination
in a reasonable time, or even it may no reach it at all. Similarly, if a vehicle visited
by a mobile agent leaves the area, or just parks in an underground parking before the
agent hops away, it could get trapped or lost and the process would be interrupted.
Two possible strategies to try to limit these drawbacks are the setting of a timeout
and the use of agent’s clones. With the first strategy, once the mobile agent with the
required monitoring parameters is launched, a timeout is set, and if the agent does
not return any result before the time limit expires, the agent is assumed to be lost
and launched again. In the second strategy, the mobile agent creates a number of
copies of itself to increase the probability of successfully reaching the interest area by
using different alternative routes (see Section [6.2.6). This strategy increases the use
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Hop Description Advantages Disadvantages
Strategy
EUC Euclidean distance Simple to compute It does not consider the street
layout

The shortest distance is the
only factor considered

ANG Frontal angle It considers the vehicle’s heading It does not consider the street
layout

The direction of the vehicle is
the only factor considered

EP Encounter proba- It considers the vehicle’s heading It does not consider the street
bility layout

It tries to estimate the probabil-
ity that the vehicle will reach the
target area

MAP Street map dis- It considers the street layout It needs a digital map
tance

It is computationally costly

MapTraj Trajectories using It considers the vehicle’s trajec- It needs a digital map
maps tories and the street layout
The planned trajectories must
be known
Optimal Optimal route It returns the optimal sequence It is unrealistic (based on in-
of hops formation that cannot be avail-
able)

Table 4.1: Summary of advantages and disadvantages of several hop strategies

of the network bandwidth, but maximizing the likelihood of obtaining a result can
compensate this cost.

Another strategy for enhancing the behavior of the monitoring process is the use of
spatial crowdsourcing techniques [UI16bl [UT]. For example, in a certain scenario, the
mobile agent might find it difficult to reach certain areas of a city, but the user that
starts the monitoring process may be willing to pay a certain amount of virtual money
for some help from other vehicles. So, the mobile agent gets the ability to negotiate,
with the drivers in the VANET, a way to reach the interest area faster or straighter
than in the usual way. Recalling the steps followed to complete the monitoring process
(described in Section [3.3]), when the mobile agent hops to a vehicle in the second step
of the process, it would not only look for other vehicles that seem to travel towards the
interest area, but may also try to negotiate to be physically carried there in exchange
of a certain amount of virtual money.

As defined in [ZHI16], spatial crowdsourcing (SC) implies “location-specific tasks
that require people to physically be at specific locations to complete them”. With
spatial crowdsourcing, a vehicle could be willing to physically transport a mobile
agent closer to its destination; we call such a vehicle a collaborator or collaborating
vehicle. However, this collaboration comes at a cost, as it usually requires an effort
by the collaborating vehicles. Specifically, we define the social cost as the time needed
by the collaborating vehicles to deviate from their original routes to carry the mobile
agent towards its destination and, once the agent leaves the vehicle, to recover their
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previous destinations and continue traveling towards there. In other words, the social
cost is the time that collaborators need to invest to help the mobile agent. More
specifically, as shown in Figure [£.7] the social cost is computed as the time needed by
the collaborator to reach the agent’s destination (A), plus the time needed to travel
back to the driver’s original destination (B), minus the time that it would have taken
to directly follow the original route (C). If the agent would have not required this
help, the collaborator would have not spent extra time traveling, so this cost needs
to be compensated somehow.

Figure 4.7: Example of social cost calculation for a single vehicle

Specifically, to encourage the collaboration from other vehicles, we propose an
approach where a mobile agent can pay virtual money to them in exchange of being
transported closer to the target area: the agent has a specific budget to process the
query and tries to use that budget in the best possible way to reach its objectives
and at the same time minimize the amount of money spent. The drivers of the
collaborating vehicles could later use the virtual money received to pay other vehicles
for similar services. The negotiation required to establish if a driver is willing to
alter his/her current trajectory to follow the agent’s objectives could be performed
automatically whenever the agent is looking for the next vehicle to hop to; in order
to accomplish this, the drivers of the area would state previously if they would like
to participate in these exchanges and to what extent they are willing to detour from
their route to bring the mobile agent closer to its destination. As an alternative, the
driver could be explicitly asked if he/she is willing to follow a specified detour.

The basic workflow of the proposed spatial crowdsourcing approach is shown in
Figure where SC'is used as an abbreviation of spatial crowdsourcing. In order to
save virtual money, the mobile agent will first try to reach the interest area by hopping
from one vehicle to another without asking vehicles to collaborate by modifying their
original routes. Ounly if the speed at which the mobile agent approaches its destination
is lower than a certain value, which we call the minimum speed threshold, the agent will
look for nearby collaborating vehicles and will negotiate with them if they are willing
to carry the agent. If the potential collaborator accepts, then the mobile agent will
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stay in the vehicle and will not hop off it unless the approaching speed exceeds again
the threshold value. If the driver does not agree to deviate from his/her trajectory,
then the mobile agent will continue trying to reach the destination with the usual
(non spatial crowdsourcing) approach, by hopping from one vehicle to another, while
at the same time it keeps looking for a potential collaborator. It should be noted that
the minimum speed threshold must be either a positive value or 0; a value of 0 for the
minimum speed threshold means that the agent will never ask for help to potential
collaborating vehicles (i.e., no spatial crowdsourcing will be used). In Section m
we perform an experiment to determine the best value for this parameter.

So, in our proposal, we combine the basic monitoring approach, based on hop-
ping from one vehicle to another by exploiting wireless communications, with spatial
crowdsourcing. It should be noted that the switching between these two methods
can occur several times at any moment during the trip to/from the target area. For
example, if the agent is traveling too slowly (maybe because it is in a low-traffic
street/area that makes it difficult to find other vehicles traveling towards the desired
destination), it can use a collaborator to leave that street/area faster, and once its
speed reaches a higher value, use again the method of hopping from one vehicle to
another until the destination is reached.

It is also relevant to emphasize that we consider the mobile agent’s approaching
speed to the target area, which may not be the same as the speed at which the agent
is traveling. For example, the agent may be in a vehicle moving at 50 km/h, but if its
trajectory is inside a street located parallel to the target area then the approaching
speed would be 0, as that trajectory does not bring the agent closer to the target
area. Similarly, if the mobile agent is traveling in the opposite direction to the target
area, its approaching speed will have a negative value.

In order to know to which extent the spatial crowdsourcing is useful or not for the
data gathering process, we consider two versions of the mobile agent with different
behaviors exhibited once the agent reaches the target area. In the first version, that
we call SCCA (Spatial Crowdsourcing Collecting Agent), the mobile agent always uses
spatial crowdsourcing during the data collection phase (i.e., to travel to the target
area cells and to return to the area if the vehicle leaves it during the data collection).
In the second version, that we call PHCA (Pure Hopper Collecting Agent), the mobile
agent never uses the help of collaborators during the data collection phase; therefore,
the agent tries to reach the cells within the target area by only hopping from one
vehicle to another. Note that, if the purpose of the agent is processing a query inside
the target area (by hopping among the vehicles searching certain data) instead of
monitoring the area (by visiting its cells), then the PHCA version does not have any
sense. The difference between these two versions only affects phase 3 of the query
solving approach (see Section , since in both versions the mobile agent uses spatial
crowdsourcing to travel to the area as well as to return the results to the originator
vehicle. In Section [6.3.1] we compare these two strategies by performing a number of
experiments using both of them.

Several payment schemes could be considered. In our prototype, the amount paid
by an agent is directly proportional to the time spent by the vehicle carrying the agent
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Figure 4.8: Basic workflow of the spatial crowdsourcing approach to travel to an area
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and there is no minimum fare. Therefore, the agent will pay one unit of virtual money
per every time unit (e.g., every second) spent in the vehicle acting as a “taxi” (i.e.,
following the route required by the agent). This route will likely be different than the
one the vehicle was following originally. However, it might also happen that a driver
obtains virtual money even if he/she does not really need to modify his/her trajectory
to transport the agent (because the route required by the agent already matches the
future trajectory of the vehicle) or that he/she gets a considerable amount of money
in exchange of a slight deviation from the previous trajectory. This is unavoidable,
as the intended trajectories of the drivers are unknown to the agent, and so the agent
cannot know that it could achieve its objectives just by staying in the vehicle, even
without paying for the vehicle to change its trajectory.

It should be noted that a minimum stay time in the vehicles has been established
for the following reason: for low values of the minimum speed threshold, once moving
by staying in a collaborator it is very easy to reach the threshold, and thus the agent
may immediately hop to a more promising vehicle (i.e., one that approaches the target
area faster). This may render the behavior of the mobile agent somewhat unstable,
and in addition it may require a higher use of bandwidth, since the agent is constantly
hopping to new vehicles. So, in order to limit this effect, a hysteresis value for the
agent’s stay time (minimum period that the mobile agent must stay in a collaborating
vehicle before hopping to others) is considered. In this way, the bandwidth used and
the likelihood of switching continuously between spatial crowdsourcing and hopping
among vehicles can be reduced. In Section [6.3.4] we perform an experiment to find
out the influence of the minimum stay time.

Summary of Spatial Crowdsourcing Strategies

In the spatial crowdsourcing strategies presented above, a mobile agent uses the help
of collaborating drivers to travel nearer its destination when its approaching speed
is too low. In these strategies, the mobile agent has an influence on the trajecto-
ries followed by the collaborating vehicles, that can alter their original trajectories to
help the mobile agent to reach its destination sooner, in exchange of a compensation.
Table shows a summary with the advantages and disadvantages of the differ-
ent spatial crowdsourcing strategies considered, that are evaluated experimentally in
Section

4.3 Summary of the Chapter

The mobile agents that are used for the data management approach in a VANET must
be able to travel to any location in order to carry with them the code to process the
data stored locally in the vehicles, and also the results obtained after that processing.

To accomplish this, a mobile agent uses intermediate vehicles as relays, and hops
from one to another until it reaches its destination. However, this can be difficult,
since the vehicles are constantly moving, the routes they follow are generally unknown,
and the network links established among them have a short range and last only a few
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SC Description Advantages Disadvantages
Strategy

SC/PHCA Pure hopper col- It needs less collaborators The collecting data task in

lecting agent low-density traffic areas can be
challenging

SC/SCCA Spatial crowd- It can collect more data in low- It needs more collaborators
sourcing collecting density traffic areas
agent

Without SC It does not use SC It does not need to compen- The whole monitoring process

sate drivers in low-density traffic areas can

be challenging

Table 4.2: Summary of advantages and disadvantages of several spatial crowdsourcing (SC)
strategies

seconds. Therefore, it is not possible to plan in advance the sequence of vehicles to
hop to as relays; instead, the mobile agent must determine it in situ, and while it is
traveling to its destination, the best way to reach it.

One way of achieving this is by evaluating the nearby vehicles according to in-
formation such as their position, speed, heading, etc., and the agent will hop to the
vehicle with a higher score. We call hop strategies to these evaluation functions, that
can have different complexity and be based on the availability of different type of
information.

Another way to reach physically the target area is by means of spatial crowd-
sourcing, where the mobile agent is carried closer to the intended destination by
collaborating human drivers. These drivers must therefore alter their original routes,
in order to carry the agent, which has a cost in terms of time and fuel, so they are
compensated in exchange according to the extent of the help provided to the mobile
agent.

Moreover, we have evaluated both the hop strategies and the spatial crowdsourc-
ing approach (the results of this evaluation are shown in Chapter@ using a simulator,
in order to know which one is better and how they can be influenced by some envi-
ronmental factors. In the case of the hop strategies, we concluded that MAP is the
best one in terms of time and bandwidth usage, as long as a digital map is available.
Regarding the use of spatial crowdsourcing, its use clearly enhances the basic hop
strategies, especially in the situations where they are weaker, such as in areas with
low traffic of vehicles.
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Chapter 5

Evaluation Methodology

In this chapter, we explain the methodology followed to evaluate our proposals and
their different features by means of experiments that will be detailed in Chapter [6]
In Section[5.1] we explain the necessity of performing experiments and the systematic
process followed to complete them. In Section[5.2] we establish the experimental setup
that are common for the rest of the experiments. In Section we present MAVSIM,
the VANET simulator with mobile agents that is used in most of the experiments.

5.1 Experimental Methodology

The experimentation is a necessary phase in the development and research of a new
idea, in order to understand and learn all the possible aspects and features about the
subject of the experiments [WRHT™12]. This task must be performed in a systematic
and objective way and its results, once they are analyzed, must be used to support the
initial idea (and the reason why the experiment was done) and reach a conclusion. For
this purpose, a set of variables that are supposed to have any influence on the subject
are considered, so they take different values, whereas those other variables without
any influence are ignored or their values are randomized. During the execution of
the experiment, a number of metrics that are relevant and useful to understand the
status or behavior of the subject, are measured until the test ends. Then, these
measurements are analyzed to reach an explanation or conclusion about the subject,
that may lead to additional experiments under different initial conditions, or to make
changes or amends in the subject if the results were unexpected.

Additionally, experiments should be repeatable by a third party in such a way
that, under the same circumstances, the obtained results would be the same that in
the original experiment, or at least so close that the conclusions are equivalent.

In the case of our data management approach, our global goal is to prove that
it is valid and performs efficiently in different scenarios. For wvalid we mean that it
meets the requirements described in Chapter [3] and by efficiently that the amount of
resources needed to accomplish that remains reasonable.

83
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The general process followed to perform the experiments of this work (that could
also be followed for others) could be summarized in the following steps:

1.

Define the experiment, which means to clearly establish what we want to
find out and why.

. Prepare the experiment, which usually involves the programming of software

and/or utility scripts (for example, to launch sequentially different tests with
different initial variable values).

. Execute the experiment by performing a number of actions, according to the

purposes of the first step, by means of the software programmed in the second
step. Depending on the type of experiment, it may be useful to follow its
execution and measure its consumption of time and other resources (e.g., RAM
memory, CPU, disk space). If at some point some of them grow abnormally,
it can mean that there exists some problem with the experiment, and that
some action could be taken in order to solve the problem, or save time and/or
resources (for example, aborting the execution instead of waiting unnecessarily
for its end).

Obtain the results and analyze them by processing the log files or records
generated or measured by the software programmed in the Step 2, or by some
other means. These data are processed using some mathematical tool (e.g., a
spreadsheet) to obtain statistics, graphics and any other calculation that helps
to understand the results of the experiment.

. Reach a conclusion after analyzing the results, and establish the next actions

to take. For example, publishing it along with the experiment if it is something
new and useful; or repeat the experiments varying the initial conditions for a
better understanding of the subject of the experimentation; or create a new
experiment to extend the original or to test another subject according to the
conclusions learned in the former, etc.

In our case, to perform most of the experiments, it was necessary to program a
mobile agent and a script to launch the simulator with many different values (Step 2).
Moreover, in order to guarantee that the results were statistically relevant, every
simulation was repeated at least fifty times varying only the initial position of the
vehicles, and maintaining the rest of variables with the same values. The subsequent
steps consisted of checking that the execution did not find runtime problems (Step 3),
and importing the data that were written as a result in different files into a spreadsheet
software for their analysis (Step 4).

5.2 Setup for the Experimental Evaluation

In this section, we define the base parameters that are used for the experiments
performed to evaluate the proposed data management approach. We also describe
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the main metrics that we obtain from the experiments, once they are executed, to
understand the performance and behavior of the tested approaches.

5.2.1 Experimental Settings

In the following, we present the general experimental settings (see Table [5.1)), that
have been used in the experiments performed unless specified otherwise in the indi-
vidual descriptions of the experiments (several experiments evaluate the impact of
variations of these parameters). For evaluation, we consider real road networks (ex-
tracted from OpenStreetMap [Ope]) and set a fixed vehicle density value (by default,
a medium traffic density of 100 vehicles / km? is considered). We simulate the move-
ments of vehicles according to a pathway mobility model [HEBO9] (i.e., the shortest
path between two random nodes of a graph is computed, and that path is used to
simulate the behavior of a vehicle) with a speed

The distribution of the streets and buildings in a city constrains the movements
of vehicles and can also determine how efficiently the data can be transmitted us-
ing wireless communications, due to the presence of obstacles or open wide areas.
Therefore, the experiments are performed with three different street layouts, and two
different cities for every type of layout:

e Squared layout, with long and straight avenues. We have chosen New York
and Barcelona as representatives of this type (see Figure |5.1)).

e Old city layout, with many short and curved streets. We have chosen some
portions of London and Madrid (see Figure [5.2).

e Mixed layout, with a mix of long-straight and short-curved streets. We have
chosen San Francisco and Zaragoza (see Figure .

T

(a) New York (USA) (b) Barcelona (Spain)
Figure 5.1: Cities with squared-layout streets

The wireless communication range considered between the communication devices
of the vehicles is 250 meters [MET 13| with a bandwidth of 54 Mbps (nominal transfer
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ALY

(a) London (UK) (b) Madrid (Spain)

Figure 5.2: Cities with old-city layout streets

\
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(a) San Francisco (USA) (b) Zaragoza (Spain)

Figure 5.3: Cities with mixed-layout streets

rate of IEEE 802.11g). Moreover, buildings are simulated appropriately, as they may
block the signal propagation.
A few other parameters deserve further explanations:

e Distance to the target area. The initial position of the vehicle is at a distance
of 1 or 2 kilometers (depending of the experiment) from the target area, which
has a surface of 0.25 square kilometers.

e Density of vehicles. The vehicle density can be defined as the number of vehicles
present per surface unit [DBT5] and it can be measured in terms of vehicles per
square kilometer. Another similar vehicle density measure unit is the number
of vehicles per road length unit [Ker(Q9], that is, vehicles per kilometer or per
mile; this unit is useful for measuring the traffic flow in a mostly-linear road
topology (such as a highway), but it is not suitable for urban scenarios, where
vehicles can communicate not only with others present in the same street but
also with vehicles traveling along other nearby parallel or perpendicular streets.
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Parameter Default value
Dimensions of the map fragment 4 km x 4 km
Size of the target area 0.25 km?
Distance to the target area 1 or 2 km

Density of vehicles

Medium (100 vehicles/km?)

Speed of the vehicles

50 km/h 4+ 10% (random variability)

Mobility model

Pathway mobility model

Hop strategy

MAP (map distance)

Sensor reading delay 5s
Data to collect (number of samples) 6 (1 from each cell of a 3 x 2 grid)
Data collection timeout 3 minutes
Total agent size 200 KB
Communication bandwidth 54 Mbps (IEEE 802.11g)

Communication range 250 m
Mobile agent’s hop delay 1ls
Buildings block communication signals Yes

Relevance of information

50% of vehicles

Time limit

10 minutes
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Table 5.1: Experimental settings

Of course, this is not always possible due to the presence of obstacles such
as buildings but, even in that case, opportunities can appear to perform the
communication in open city areas such as main squares or street junctions. For
these reasons, we use the vehicles per square kilometer (or vehicles/km?) unit,
since it is more appropriate for urban scenarios like those we are testing.

e Hop strategy. We have chosen by default a strategy that uses as a criterion
the remaining distance to the destination (map distance), computed by adding
the lengths of the streets to traverse in the road network. This hop strategy
provides good results (see Section .

e Mobile agent’s hop delay. This is the time needed by the mobile agent to
complete a hop from one vehicle to another. We assume that in our test scenario
the wireless technology used is the widespread 802.11g, that operates in ideal
conditions at a maximum speed of 54 Mbps. For the mobile agent’s hop delay we
use the value we obtained in the experiment in Section [5.2.2] that is, 1 second.

e Data to collect. Without loss of generality, in the experiments we assume that
the target area is partitioned based on a 3 x 2 grid, which makes a total of six
cells, which the mobile agent will have to visit to recover data from them.

e Data collection timeout. To avoid a potential situation where the data collection
task takes too long, a timeout of 180 seconds is set. Reaching this timeout will



88 Chapter 5. Evaluation Methodology

cause the mobile agent to finish the task and start the process that intends
to return the data to the originator vehicle or node where the query process
started. In this case, it might happen that the amount of data collected by the
agent is smaller than the desired quantity. Therefore, the amount of collected
data is a performance metric to consider.

e Time limit. To avoid situations where the query process takes too much time to
complete (for example, if an agent finds an unusually hard-to-solve situation),
an overall time limit of 10 minutes is set. If this limit is reached, the simulation
is aborted and its results are ignored, but the failure is counted and used to
measure the reliability of the algorithm under the conditions that were being
simulated. Thus, the time limit represents the maximum overall time that the
user is willing to wait to obtain an answer.

With this setup, we repeat every simulation 50 times, with different random start-
ing positions for the vehicles, and compute the average of the results obtained.

5.2.2 Determination of a Mobile Agent’s Hop Time

In order to achieve their task, mobile agents must transfer themselves from one vehicle
to another using wireless communication devices. With this experiment, our goal is to
measure the amount of time needed by an agent to jump from one vehicle to another.
Then, we will use this value as an input for the rest of the experiments.

In this test, we use the mobile agent platform SPRINGS [ITLMO0G6], and we pro-
gram a simple mobile agent to follow a fixed route through a number of execution
places hosted on different devices that can communicate among them wirelessly by
using their built-in Wi-Fi devices. Specifically, we use three different Android devices
(see Figure[5.4)) with the following features and roles: 1) a Samsung Galaxy Tab tablet
with 512 MB of RAM and Android 2.3, that hosts place C1 and the RNS (Region
Name Server) of SPRINGS, which is a process in charge of some tracking services for
the execution places belonging to its administrative domain (its region); 2) a Samsung
Galaxy Nexus high-end smartphone, with 1 GB of RAM and Android 4.2, that hosts
place C2; and 3) a Sony-Ericsson Xperia 10 Mini Pro (low-end) smartphone with 128
MB of RAM and Android 2.1, that hosts place C8. They communicate among them
by connecting to the same wireless network through an IEEE 802.11g Wi-Fi router.

For this experiment, a mobile agent visits the three previously-described devices
and measures the time taken to hop from one place to another. The mobile agent
starts its execution on place C3, hops to place C1, and returns again to C3. This is
repeated 10 times (performing a total of 20 hops). The total time is summed and
the mean value to hop between C1 and C3 (hopI) is computed. A similar process is
repeated with the mobile agent starting again in C3 and moving to C2, obtaining the
time of hop2. Finally, the same process is repeated with C1 and C2 (hop3). Notice
that, even though we use the terms hop1, hop2, and hop3, these three hops are not a
sequence of hops performed consecutively.

The need to measure the hop time for every pair of places separately and with
that back-and-forth procedure is due to clock precision reasons: the mobile agent uses
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Figure 5.4: Devices used to measure the hop times

the local clock of every device to measure the time, and if it moves to another device
and gets the time there both clocks should be synchronized to obtain accurate delay
measures. Due to security concerns, Android does not support changes to the device’s
time unless the device is rooted or registered to operate in a GSM mobile telephony
network, which is not the case in our test environment, where only Wi-Fi connections
are used. For these reasons, only the local clock of each device is used to assure the
accuracy of time computations.

In this experiment, we specifically measure the time that the mobile agent needs
to complete each hop for three different sizes of the data that the mobile agent carries:
small (50 KB), medium (200 KB), and big (1000 KB). The data consists of a byte
array of the stated size initialized with random values, so they are transferred along
with the mobile agent’s code every time it hops from one place to another. Figure 5.5
shows the results. As it would be expected, the mobile agent’s transmission time is
proportional to its size. The transmission times are between 651 milliseconds (for the
smallest agent’s size) and about 2115 milliseconds (for the biggest agent’s size). It is
interesting to note that they are smaller when the devices involved in the hop have
newer technology. The highest time occurs in hopl between the low-end smartphone
and the tablet. The second highest time (hop2) is among the low-end and high-end
smartphones. Finally, the better time (hop3) is measured when the mobile agent hops
among the most advanced devices (the tablet and the high-end smartphone).

For the rest of the subsequent experiments described in this section, we consider a
medium-size mobile agent, as a typical agent to perform query processing tasks similar
to the ones considered in our context is not expected to exceed a size of 200 KB. We
also assume that the vehicles carry devices similar to conventional smartphones (not
necessarily the latest models) having an 802.11g wireless interface. So, according to
the results of this test, we decided to simulate the hop time of an agent based on
the average value of the hop times observed for agents of medium sizes when jumping
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Figure 5.5: Hop times for a mobile agent hopping among different devices

between mid-range devices. The exact value, according to the experiments performed,
is 982 milliseconds, so we will round up that value to one second for our experimental
settings. A similar value, close to one second, was obtained in a previous set of
experiments [UIMOS] using the same mobile agent platform (SPRINGS), and PDAs
(Personal Digital Assistants) as mobile devices instead of smartphones.

5.2.3 Evaluation Metrics

When the different experiments are executed and they finish successfully, we obtain
a result, in the form of a number of metrics. These metrics help us to understand
the performance and behavior of the tested scenario, and how it reacts to the initial
parameters that define the experimental scenario. The main metrics considered for
evaluation purposes are the following:

e Time. An obvious metric to evaluate is the amount of time needed by the mobile
agent to reach the interest area and/or perform the monitoring task.

o Number of hops. This metric counts the number of times that the mobile agent
transfers itself from one vehicle to another one by using the wireless connection
(i-e., the number of hops performed by the agent), and therefore it can be used
as a measure of the bandwidth used by the whole process.

e Reliability. The reliability of the query processing is defined as the percentage
of simulations that ended successfully within the simulation time limit of 10
minutes.

e Amount of collected data. This metric indicates the number of cells in the
interest area that the mobile agent visits and reads data from. In our settings
there are 6 cells in the interest area, as we divided the interest area in a 3 x 2
grid, so we count the number of such cells that the mobile agent visits within the
timeout of 3 minutes established for the data gathering phase. If this timeout
is reached, then the mobile agent stops the data collection task and returns to
the origin point with the data collected until that moment.
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e Virtual money spent. In the experiments related to the spatial crowdsourcing
evaluation, this metric represents the payments made by the mobile agent in
exchange of help from the collaborating vehicles.

e Social cost. In the experiments related to the spatial crowdsourcing evaluation,
the social cost, as defined in Section [4.2] represents the extra time invested
by collaborating vehicles in helping the mobile agent to perform its task, as
compared to a situation where no help is provided (i.e., all the vehicles follow
their intended routes).

These are the default parameters that are obtained in most of the experiments
that are described in detail in Chapter [0} with the exception of some other special
metrics that are properly described if it is required by each experiment.

5.3 Simulation Methodology

In the development process of any software, there exists one phase where it must be
tested in order to know if it meets the initial requirements and works as expected,
and also assure that the possible error conditions are treated in such a way that
the execution of the programs never interrupts or behaves in an unexpected way.
Besides, when new algorithms or strategies for finding the solution to a problem are
being researched, it is necessary to prove that the provided solutions are correct and
that they effectively solve the original problem. When these algorithms or strategies
are relatively simple, it may be possible to formally prove their correctness, but for
more complicated systems, which are influenced by several variables, this type of
demonstrations can become too complex. One alternative is to perform different
tests or experiments, setting the variables with different values as the input and, once
the output is obtained, analyzing it to know to what extent the result meets the
requirements.

The data management approach proposed in this thesis is not an exception, and
therefore it is necessary to test it extensively. However, doing so in a real scenario
would be extremely inconvenient and costly, since it would involve vehicles moving
along roads and streets being driven by actual people, as well as carrying computer
devices equipped with wireless communication devices capable of executing a mobile
agent platform. This would be only the physical or hardware part, but it would also
be necessary to have some procedure to load the tested software in all the vehicles,
make them begin their routes at certain fixed points and follow pre-established routes,
or to be present at certain location at a given time. Moreover, some of these and
other conditions would be not only costly, but merely impossible to meet, such as the
repetition by all the involved vehicles of the same movements performed previously
with the same timing, since they would be subject to external random influences,
such as the traffic conditions, the weather, mechanical issues, etc.

Thus, in the context of vehicular networks, real-world tests are usually limited to
very small and controlled scenarios, mainly as a proof of concept or to obtain measures
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that can be used to fine-tune some parameters or to perform proper simulations. The
most logical alternative is, indeed, to simulate the behavior of the developed software
in a controlled and simplified environment that can be managed more easily and that
supports a large-scale simulation with a high number of vehicles.

There exists a variety of simulation software to test and analyze, with the required
precision, different aspects of communication networks and vehicular traffic. However,
as far as we know, none of the most popular simulators can be easily used to simulate
scenarios with the goal of evaluating data management solutions based on the use
of mobile agents. Besides, it is not possible to simulate how they may influence the
movement of the vehicles as in the case of spatial crowdsourcing approaches.

Motivated by this, we developed MAVSIM [UIL14] [UT16al, a vehicular network
simulator in which mobile agents can also be simulated, as well as a set of tools
intended to ease the analysis of the results obtained in a variety of scenarios. In the
rest of this section, we first overview some popular simulation programs and then we
describe our proposal.

5.3.1 Types of Simulators in the Context of VANETSs

A significant number of network and traffic simulators have been developed, both
commercial and free or open source. Most of them have noteworthy features when
they simulate their respective intended scenario types. However, when it comes to
the simulation of data management strategies using mobile agents in VANETS, they
are simply not adequate, since they lack a number of features required in such a
specialized scenario. In this section we briefly present some of the most popular ones.

Network Simulators

Network simulators allow the configuration and simulation of detailed parameters
of the devices and the communication process. For example, they can simulate the
technology used for data transmission (wireless, copper wire, fiber optic, etc.), the
data loss ratio, latencies, shadowing effects that make wireless communications more
difficult, distance attenuation, etc. Some of the most used simulators of this type are
NS-3 [Ns3] and Qualnet (Quality Network) [Qual.

Traffic Simulators

Traffic simulators are specialized in the movement of the vehicles and allow to gener-
ate traces of their movement, following different patterns and behaviors in different
scenarios. Some examples of such simulators are SUMO and VanetMobiSim.

SUMO (Simulation of Urban MObility) [SUM] is an open source microscopic road
traffic simulator. It allows the simulation of vehicles as single entities, with the ability
to traveling through specific routes, changing the road lane, and following the traffic
rules. It can handle scenarios with large road networks and a high number of vehicles.
It can be enhanced with plugins and can interoperate with other software both by
importing and exporting data using different file formats.
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VanetMobiSim [Van| features realistic automotive motion models at both macro-
scopic and microscopic levels. At macroscopic level, it can import maps from the US
Census Bureau database, or randomly generate them using a Voronoi tessellation. It
has also support for multi-lane roads, separate directional flows, differentiated speed
constraints, and traffic signs at intersections. At microscopic level, it implements
different mobility models, providing realistic car-to-car and car-to-infrastructure in-
teraction. According to these models, vehicles regulate their speed depending on
nearby cars, overtake each other, and act according to traffic signs in the presence of
intersections.

Hybrid Simulators

A hybrid traffic-network simulator can simulate both traffic and network elements
in a geographic scenario. Some examples of such simulators are EstiNet [Est] and
VEINS [NCT].

EstiNet is a commercial product consisting on an extensible network simulator
and emulator capable of simulating various protocols used in both wired and wireless
IP networks, as well as wireless vehicular networks (including V2V and V21 commu-
nications), among others. Regarding its traffic simulation capabilities, it can simulate
multi-lane road networks, it incorporates different microscopic vehicle mobility mod-
els, and the behavior of any vehicle can be changed as it receives messages from
the vehicular network. It has been used for modeling VANETSs and other ad hoc
networks as well as for the evaluation of real-life P2P applications and traffic signal
control algorithms.

NCTUns (National Chiao Tung University Network Simulator) is an extensible
network simulator and emulator capable of simulating various protocols used in both
wired and wireless IP networks, as well as wireless vehicular networks (including V2V
and V2I communications), multi-interface mobile nodes for heterogeneous wireless
networks, IEEE 802.16(e) mobile WiMAX networks, IEEE 802.11(p)/1609 WAVE
wireless vehicular networks, various realistic wireless channel models, IEEE 802.16(j)
transparent mode and non-transparent mode WiMAX networks, etc. It has been
used for modeling VANETSs and other ad hoc networks as well as for the evaluation
of real-life P2P applications and traffic signal control algorithms.

VEINS (Vehicles in Network Simulator) [VEI|] is an open source software that
supports online re-configuration and re-routing of vehicles in reaction to network
packets, it supports different vehicular mobility models, and relies on detailed models
of the IEEE 802.11p and IEEE 1609.4 DSRC/WAVE network layers (including multi-
channel operation, quality of service channel access, as well as noise and interference
effects). It can import scenarios from OpenStreetMap, including buildings, speed
limits, lane counts, traffic lights, and access and turn restrictions. It can also employ
validated and computationally inexpensive models of shadowing effects caused by
buildings as well as by vehicles. Finally, it supplies data sources for a wide range of
metrics, including travel time and vehicle emissions.

It is also interesting to mention that the use of videogames to facilitate the evalu-
ation of data management approaches for vehicular networks has also been proposed
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recently (see the VANET-X videogame [IMR13]).

5.3.2 A Simulator for VANETSs with Mobile Agents

Network simulators have very limited (or non-existing) capabilities to simulate moving
objects such as vehicles, whereas traffic simulators cannot simulate network commu-
nications, although some of them can export mobility traces to be imported later in
a network simulator. A hybrid simulator can simulate both aspects at the same time.

However, none of the simulators mentioned can directly support the simulation
of mobile agents, and so they cannot be easily used to evaluate data management
approaches based on mobile agent technology. As this is the focus of our research, we
were compelled to develop our own simulator (MAVSIM, Mobile Agents in VANETs
SIMulator), that offers interesting functionalities for that context. The simulator has
been developed in a quite generic way, with several configurable parameters and a
modular and extensible architecture, to facilitate its use in a variety of scenarios to
test different data management approaches.

In the rest of this section, we describe the main features of the simulator developed,
its architecture, and a use case. See http://webdiis.unizar.es/~silarri/MAVSIM
for additional information, screenshots, videos, and the possibility to download it.

Features

The main features of MAVSIM are the following:

e It is written in Java, which makes it portable among different architectures and
operating systems. It has been successfully tested in Microsoft Windows 7 and
8 (32 and 64 bits), GNU/Linux (32 and 64 bits), and Sun Solaris (64 bits).

e It can run both in graphic interactive mode with a Graphical User Interface
(GUI), or in batch mode (useful to execute a large number of simulations or
experiments in an easy way).

e Simulations can be recorded and replayed later (with step by step, pause, and
rewind and forward functionalities), which facilitates a careful analysis of the
whole process. For this purpose, the replay tool shown in Figure |5.6]is used; in
that screenshot, some information is shown that is relevant for the monitoring
task scenario described earlier.

e Any road map can be downloaded from OpenStreetMap. There is no limitation
in the type of layout imported (cities, highways, rural areas, etc.).

e The simulated mobile agents can be programmed in a similar way as they
would be programmed using real agent platforms such as JADE [BPRO1] or
SPRINGS [ITLMO6] (e.g., we provide methods such as moveTo(targetDevice)
to simulate the movement actions performed by the agents). A generic mo-
bile agent platform is simulated with the most common methods and primitives
necessary for this.
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Figure 5.6: The replay tool of MAVSIM
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e It can import traces generated by real vehicles or by other traffic simulators,

and use them for the experiments with mobile agents.

e It can simulate public transport routes, such as those of buses, tramways or
similar vehicles. It can import lists of stopping places (i.e., bus stops or stations)
and simulate the movement of many simultaneous instances of public vehicles
that travel from one stopping place to the next. When the vehicles arrive at
them, they pause their movements for a few seconds before resuming their travel.

e Roadside units (or fixed communication devices) can be simulated. These units
can be interconnected by wired connections, which allow high-speed communi-

cations among them.

e It includes a variety of movement algorithms for the simulated vehicles, such as

Random way-point, Gauss-Markov, and others.

e In urban areas, it can simulate the presence of buildings that block the wire-
less signal, constraining the communications. For this purpose, the geometric

method described in [MET*13] is used.
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e It can simulate random network communication errors. According to the speci-
fied rate, the transmissions will fail and it will be necessary to retry them again.

e The initial scenario conditions for the experiments can be set randomly or using
a known seed, which allows to reproduce the same conditions and repeat exactly
the same experiment (with the same trajectories for the vehicles and other
random conditions) if necessary.

A number of parameters can be set to configure in detail the simulation scenario.
Table shows a summary of some of the general parameters that can be configured,
as well as parameters that are applicable for the specific case of the evaluation of
monitoring approaches based on mobile agents. Most parameters, when omitted,
take a default value; others are optional and do not have a default value.

l Parameter l Description l Default

General configuration parameters

-mcr Mobile communication range 250 m
-v Number of vehicles to simulate 100
-vld Vehicle Linear Density (vehicles/km). Overrides -v
-s Average speed of vehicles (km/h) 50
-lat Latency for a mobile agent’s trip 1s
-errRate Error rate for communications 0%
-batch Execute in batch mode false
-map Load a scenario map Last used
-mbx Number of mailbozes connected through a wired network (static nodes 0
with storage capacity and the capability to provide wide-area network
coverage)
-f Number of fixed (non-moving) wireless devices 1
-mob Mobility strategy for vehicles (1 = Random, 2 = Routes, 3 = Straight, 4 2
= Heuristic & Destination, 5 = GaussMarkov, 6 = ManhattanDynamic)
-nobldg Do not simulate buildings in the map as communication obstacles false
-rec Record the experiment to a file for later replay and analysis
-seed Seed for random numbers (0 for random seed) 0
Configuration parameters to evaluate monitoring approaches
-d Initial distance (in meters) to the interest area 1000
-j Mobile agent hop strategy (1 = RND, 2 = BEP, 3 = Approach, 4 = ANG, 8
5 = MAP, 6 = EP, 7 = EUC, 8 = Map-Traj, 9 = Optimal)
-m Maximum number of simulation iterations during which to collect data 899
-mih Minimum expected improvement to enable an agent’s hop 0%
-dimArea Interest area dimensions (height, width, longitude, and latitude: -mzh,
-mzw, -mzw, -mzy)
-prd Probability that a device contains relevant data / appropriate sensors 50%
-rph Max distance to hop (as a percentage of the communication range) 100%
-snru Selection of the nearest roadside unit (0 = none, 1 = once, 2 = continuous) 0

Table 5.2: Summary of configuration parameters of MAVSIM
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Structure and Classes

The simulator is designed to be extensible. It contains a number of classes with
different functionalities (as shown in Figure , and the classes are organized in
modules (packages): one package contains everything related to graphics, another
one the functionalities related to mobility strategies, etc. In this way it is easier to
maintain the code and perform changes. Moreover, to facilitate its extensibility, some
abstract classes and interfaces have been defined, that allow to add new functionalities
in a quick and easy way. For example, if it is necessary to add a new mobility strategy
for vehicles, there is an abstract class Mobility available that includes the necessary
methods and attributes for all the mobility strategies and makes adding a new one
easier: it would be enough to define a new subclass implementing the methods of
Mobility and extend the configuration files to add support to select and use that new
mobility strategy in the simulations. In the same way, there also exists an abstract
class (TrackReader) to read different file formats of mobility traces. So, if a new
format is needed, only the appropriate subclass must be implemented. Finally, one
particularly important abstract class and interface are Agent and IAgent, respectively:
they are intended to allow the programming of new different types of simulated mobile
agents.
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Figure 5.7: High-level overview of the architecture of MAVSIM

In this way, the simulator developed can be easily extended in a number of ways,
such as: to incorporate new behaviors for the vehicles (e.g., new mobility strategies),
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to define new types of mobile agents with different behavior (e.g., different agent
mobility strategies), to define different phases in the data management approach for
easy analysis of each of them with the replay tool (e.g., in the monitoring task scenario,
phases such as “going to the area”, “measuring environment data”, and “coming back
to the query originator” are defined, as shown in the upper-left part of Figure ,
or to add new simulation parameters. We could also simulate data management
approaches that do not use mobile agents, as we can simulate that there is a single
static agent (i.e., a mobile agent with no mobility) in each equipped vehicle, that
implements the required data management functionalities that would be available
in the equipped vehicles. Most extensions require defining appropriate subclasses
and configuration parameters. Of course, for a comfortable use of the extensions in
an interactive simulation mode, changes to the graphical user interface may also be
required.

5.3.3 Performance Evaluation of the Simulator

In this section, we present several tests that we have performed to evaluate the be-
havior of the simulator, as well as its throughput, when it executes simulations in
scenarios with different numbers of entities and with varied complexity. Firstly, we
evaluate the scalability of the simulator when we increase the number of vehicles.
Secondly, we evaluate the scalability when the number of mobile agents in the tested
application increases. Finally, we evaluate the simulation overhead when buildings
are simulated.

The tests were executed using a computer with the following features: Linux
CentOS 5.11 operating system, with 16 GB of RAM memory and one six-core Intel
Xeon X5660 processor running at 2.80 GHz. The simulator described in this chapter
does not attempt to perform real-time simulations, as it uses an internal clock based
on iterations of simulation, rather than a global real-time clock; by default, each
iteration in the simulator represents 1 second of changes in the real-world.

Scalability with the Number of Vehicles

This test measures the speed (in iterations per second) achieved by the simulator
with an increasing number of vehicles moving in an urban scenario, with the goal of
finding out how well the simulator scales with the number of vehicles.

The selected scenario is a portion of the city of San Francisco (as shown in Fig-
ure [5.3(a)) extracted from OpenStreetMap. A varying number of vehicles traveling
along its roads and streets are simulated by following a Random way-point mobility
model [KP11], considering an average speed of 50 km/h. The number of vehicles goes
from 1000 to 10000 in intervals of 1000, and for each amount of vehicles the simulation
is executed during 1000 iterations.

The results of the test can be seen in Figure that shows the average of the
results obtained with 50 repetitions of each test (in each test the initial random
positions of the vehicles were different). In the figure, we can see how the speed of
the simulator decreases as the number of vehicles increases. This was expected, as a
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higher number of vehicles implies a higher simulation overload. However, it can be
noticed that the performance decrement is not linear, since the slope is steeper for
values of less than 5000 vehicles and flatter for a higher number of vehicles. Thus,
the results follow a logarithmic curve, which means that for more than 5000 vehicles
the difference in terms of the simulation speed is smaller.

The results obtained show that the overhead of the simulations is kept under
control. In the worst case, for the evaluated scenario, we obtain a performance of
around 10 iterations per second, which shows (if we assume that each iteration com-
putes 1 second of changes —i.e., that it is equivalent to 1 second in the real world—,
as it is the default in our simulator) that the simulator could also be used for real-time
simulations.
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Figure 5.8: Speed of the simulator depending on the number of simulated vehicles

We have also measured the amount of RAM memory needed to simulate a scenario
with an increasing number of vehicles. During each simulation, the amount of RAM
memory used by the Java process was measured, keeping track of the highest memory
usage values during the execution of the simulation (lower values were discarded).
As before, each experiment was repeated 10 times and an average delay for all the
simulations was computed. The results of the test can be seen in Figure [5.9] which
shows how the amount of RAM memory needed increases with the number of vehicles,
from approximately 1.5 GB for 1000 vehicles to almost exactly 8 GB for 10000 vehicles,
following a linear trend.

Scalability with the Number of Mobile Agents

In this test, we measure the speed of the simulator (in iterations of simulation exe-
cuted per second) depending on the number of simultaneous mobile agents that are
simulated in a given scenario. The goal is thus to assess the scalability of the simulator
in terms of the number of mobile agents in the application/system being tested.

As before, the scenario map is that of the city of San Francisco, and the number
of vehicles is set to 1000. The number of mobile agents tested varies from 10 to 100 in
increments of 10, and for each amount of agents the simulation is executed during
1000 iterations. Each test is repeated 50 times with different initial random vehicle
positions, and the average simulation speed is computed from all the obtained values.
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Figure 5.9: Memory usage of the simulator depending on the number of simulated vehicles

The simulated agents behave in a way similar to what was described in Section[3.3]
that is, they try to reach an interest area by hopping from one vehicle to another,
in such a way that with every hop the agent moves closer to the area. This implies
that the mobile agents are constantly evaluating the suitability of all the nearby
surrounding vehicles, regarding the possibility to reach the interest area faster than
with the vehicle where the agent is currently traveling. Moreover, when a mobile
agent is within the interest area, it processes some data stored locally on the vehicles
within the area. For the simulation to be more realistic, the presence of buildings
that block communication signals are also simulated, for which the simulator must
perform additional computations which slow down the simulation speed.

The results of the test can be seen in Figure where we can see how the speed
of the simulator decreases as the number of simulated mobile agents increases. This
decrement is not linear, since the slope is steeper for values of less than 40 agents,
and flatter for amounts higher than that number. In any case, what is particularly
important is that the overhead of mobile agents is not significant and that the system
scales well with the number of mobile agents used.
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Figure 5.10: Speed of the simulator depending on the number of mobile agents

We have also measured the amount of RAM memory needed to simulate a scenario
with an increasing number of mobile agents. During each simulation, the amount of
RAM memory used by the Java process was measured, keeping track of the high-
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est memory usage values during the execution of the simulation. As before, each
experiment was repeated 50 times and an average delay for all the simulations was
computed. The results of the test can be seen in Figure which shows how the
amount of RAM memory needed increases with the number of mobile agents, from
approximately 3.3 GB for 10 agents, to about 3.4 GB for 100 agents. The total size
may seem high, but it must be remembered that there are not only mobile agents’
data in the simulation but also the vehicles, graph map, and others.
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Figure 5.11: Memory usage of the simulator depending on the number of mobile agents

Impact of the Simulation of Buildings on the Performance

This test measures the speed (in iterations of the simulation per second) achieved
by the simulator depending on whether buildings are simulated or not, with the
goal of finding out if the simulation of buildings implies a significant overhead or
not. This study is motivated by the fact that the algorithm used to determine if a
communication signal is blocked by buildings needs to compute a number of geometric
equations [MFTT13|, which can affect the amount of time that every iteration takes
to complete.

For this test, we simulate a fixed number of vehicles (5000) and a mobile agent that
tries to reach an interest area by hopping from one car to another and that processes
some data stored locally in the vehicles within the area (as described in Section .
If the mobile agent infers that a nearby car is a better candidate to travel towards
the intended area than the current one that is physically carrying it, it will try to
transfer itself to that other vehicle. However, the transmission of the agent could fail
if, for example, the target car is behind a building that blocks the signal. Simulating
the presence of a mobile agent or some type of communication between vehicles is
necessary for this test, as computing the presence or not of buildings is unnecessary
in the absence of communications (buildings have an impact only on the performance
of communications, as they may block communication signals).

For this test, we execute 1000 iterations using three different maps, with different
street layouts that can affect the complexity of computing the impact of buildings,
as it is explained in Section The cities and their maps are New York (shown
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in Figure [5.1(a)), London (shown in Figure [5.2(a)) and San Francisco (shown in
Figure |5.3(a))).

For each map, we repeat the simulation with buildings and without buildings
and with 50 different random initial vehicle positions. The average of the simulation
speeds is computed and shown in Figure [5.12}
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Figure 5.12: Speed of the simulator depending on the simulation or not of buildings

We can see that, in general, the simulation speed is lower when the presence
of buildings is simulated, as it was expected, due to the overhead of computing the
equations necessary to evaluate the effect of buildings. A notable exception is the case
of London, where both values are very similar; this is due to the presence of short
and curved streets, which allows the algorithm used for the simulation of buildings
to determine at a very early stage that the communication is not possible, without
hardly performing additional calculations.

We can also analyze the impact of the city topology on the simulation speed. The
performance of simulations in the city with straighter layout (New York) is higher
than in the city with a more complicated arrangement (London).

We also notice that, independently of whether buildings are simulated or not, if
we compare the results obtained in the test for 5000 vehicles and the case of San
Francisco (16 iterations per second, see Figure with the equivalent results shown
in this experiment (14 iterations per second, see Figure [5.12)), the simulation speed is
a bit lower for this last one. The reason is that when only moving vehicles are being
simulated we avoid the additional overhead due to the execution of the mobile agent,
which constantly evaluates the convenience of the vehicle which is currently carrying
it (i.e., it keeps itself on alert looking for a better “taxi” to hop to).

5.4 Summary of the Chapter

In this chapter, we described the evaluation methodology followed in the thesis to
perform experiments. One of the most important parameters in the simulations is
the time needed by a mobile agent to hop between two execution devices, so we first
performed a test with real devices to measure this time. After that, we established
all the parameters and features of the scenarios where the simulations will take place.
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We also presented MAVSIM, the simulator we developed with the ability to per-
form simulations that involve at the same time vehicles, ad hoc communications,
and mobile agents. The reason for developing or own simulator is because existing
software in the context of VANET simulations lacks the ability to simulate all those
elements, and therefore it could not be used to test and develop data management
strategies based on mobile agents.

The simulator also has a number of features that make it a valuable tool, such
as its portability and its ability to use maps of real cities and simulate a number of
elements such as vehicles, public transportation, roadside units, and mobile agents.
It can also simulate other limiting factors typical of VANETS, such as the instability
of wireless network links and the blocking of communication signals by buildings. It
was built in a modular way, so its features can be easily extended.

Some performance metrics of the simulator were evaluated, such as its memory
usage, the simulation speed according to the number of simulated vehicles, the number
of simulated agents, and the impact of the simulation or not of buildings.
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Chapter 6

Experimental Evaluation

In this chapter, we present different experiments performed to validate that the pro-
posed data management approaches work as expected and to measure their perfor-
mance in different situations. In Section we evaluate different hop strategies. In
Section [6.2] we evaluate several factors that have an influence on the basic data man-
agement strategy using mobile agents and hop strategies. Finally, in Section we
evaluate the use of spatial crowdsourcing techniques to enhance the original data man-
agement approach. In all the following experiments, we use the MAVSIM simulator
and the experimental settings defined in Section [5.2

6.1 Evaluation of Travel Approaches

In this section, we evaluate the performance of the travel strategies by means of
experiments that take place in different cities and also varying other conditions that
might have an influence on the strategies’ behavior.

6.1.1 Basic Hop Strategies

Given the variety of possible hop strategies, and their dependence on unknown or
random factors (e.g., the routes followed by the vehicles), it is not entirely clear
which of these (or other) strategies are the best. Moreover, the term best may have
different meanings depending on which factors are considered the most important one,
such as the total time needed by the mobile agent to complete its task, the bandwidth
usage, the reliability, etc.

In this section, we perform an evaluation of the basic hop strategies described in
Section by means of different experiments. By basic we mean that the mobile
agent travels to the target without asking explicitly to other drivers to be carried to a
place, as it occurs with the spatial crowdsourcing approach, which will be the subject
of the experiments presented in Section [6.1.2

105
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In these experiments, the starting point is supposed to be 1 kilometer from the
target area. We perform them in the context of the proposed query processing ap-
proach described in Section and we compare different hop strategies that can be
used by a mobile agent when it evaluates the convenience to hop to another vehicle
in order to reach the target area. If the target vehicle considered is assumed to be
a better carrier (i.e., it has a higher probability to reach the target area) than the
vehicle where the agent is currently executing, then the agent will hop to the new
vehicle; otherwise, the agent will keep itself in the current vehicle.

Data Collection Time and Number of Hops

The data collection time (time needed to obtain the data to answer a query, which
corresponds to steps 1-3 of the proposed approach described in Section with the
different hop strategies, for a medium vehicle density, can be seen in Figure[6.1] The
worst strategy is clearly ANG (in the worst case, with the map of New York, it needs
more than seven minutes to collect the data). The best strategy (if we do not consider
the optimal strategy) is MAP, taking less than two minutes for data collection in the
worst case.

®london ™ New York San Francisco

Time (minutes)

-

NI

MapTraj Optlmal
Hop Strategy

Figure 6.1: Performance of the hop strategies: data collection time

When we consider the optimal strategy, we can see that the mobile agent takes
a very small amount of time for data collection. However, as it was explained in
Section this is an impossible strategy, since it computes the mobile agent’s ideal
actions (e.g., at which moment it should hop to another car or stay in the same one,
and which one is the ideal car to select for each hop) using the knowledge of all the
positions of the vehicles for the whole simulation (current and future locations).

The reason for the good behavior of MAP and MapTraj is that they have knowl-
edge of the surrounding scenario, and thus the mobile agent can take better decisions
when it evaluates if a candidate vehicle will reach the destination sooner or not. The
drawbacks are: it is mandatory to have a map of the area and its streets, and that
information must be accurate (otherwise, the mobile agent could take incorrect deci-
sions). In the case of MapTraj, it also needs to know the planned trajectories that the
vehicles will follow, which is not very realistic since it is unlikely that all the drivers in
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the area will use GPS navigators. Moreover, privacy concerns may also be an obsta-
cle to the adoption of that strategy, as it requires the exchange of some information
about the expected routes. However, MapTraj is slightly worse that MAP, despite
using more information in the decision process. The reason is that with MapTraj the
mobile agent requires quite good conditions to hop to another car: it only hops if the
route of the target vehicle goes through the target area.

We can also consider the number of hops performed by the mobile agent, which
can be seen as an indicator of the bandwidth usage. That is, every time the mobile
agent hops from one vehicle to another, it must transfer itself through the wireless
connection, so a small number of hops implies a low bandwidth usage. However, a
smaller number of hops does not imply a smaller data collection time; indeed, traveling
by jumping through the wireless medium is expected to be faster than traveling by
staying in a moving vehicle. For example, the MAP strategy has slightly better
performance than MapTraj but, as it can be seen in Figure [6.2] it needs a higher
number of hops than MapTraj.
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Figure 6.2: Performance of the hop strategies: number of hops

Effective Traveling Speed and Traveling Reliability

Another interesting metric is the effective traveling speed of the mobile agent. It
can be computed using two key parameters: the existing distance from the origin
point to the target area and the time taken by the mobile agent to reach it. In the
case of the distance, the straight line between the origin and the spatial destination
will be considered the minimum distance possible, since it is highly likely that the
mobile agent will need to follow a less-direct path through the streets of the city.
Computing the effective traveling speed is better for comparison purposes among
different scenarios, since its value is independent of the distance to the target area.
Figure shows the results of the simulations. The better (i.e., fastest) strategy
is MAP, since it uses maps of the streets in the scenario. Regarding the street layout,
the cities with straight and long streets (such as New York, and to a lesser extent San
Francisco) clearly lead to better results, whereas the old city layout (London) usually
implies the worst results in terms of the effective traveling speed. The reason is that
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straight streets usually allow more direct routes and the communication signal can
also propagate better.
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Figure 6.3: Performance of the hop strategies: effective traveling speed

Finally, another interesting parameter that can be evaluated for the different hop
strategies is their traveling reliability, that we define here as the ability of the mobile
agent to reach the target area within a specified time limit. According to Figure[6.4]
the best strategies (besides the Optimal strategy) are MAP and MapTraj, since the
mobile agent reaches its destination in 100% of the simulations. The worst is again
ANG, with slightly more than a 60% of success in the best case scenario for that strat-
egy (London). The other strategies (EP, EUC) have different degrees of reliability,
but all of them below 100%.
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Figure 6.4: Performance of the hop strategies: traveling reliability

Influence of Buildings in Urban Scenarios

The short-range wireless communications used in a VANET operate with radio signals
with a very low depth of penetration [SEGDI1I]. Therefore, buildings and other
obstacles can block the signal propagation, making the communication among vehicles
possible only if they have a direct line of sight. This means that, in urban scenarios,
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there will exist a smaller number of candidate vehicles to be evaluated using the
corresponding hop strategy when the mobile agent tries to reach the target area, thus
reducing the number of options to find a faster path. It also means that the trajectory
followed by the mobile agent will be quite constrained by the street layout, since streets
are surrounded by buildings that cannot be crossed by the wireless signals.

In this experiment, we simulate the absence or presence of buildings, using the
geometric method described in [METT13], to compare their influence on the data
collection time for scenarios with medium traffic density. As can be seen in Figure[6.5]
the presence of buildings has an effect on the time needed. When no buildings are
simulated the whole process is faster, since the agent can hop directly to any other
vehicle within the whole communication radius, thus reaching the target area in a
more straightforward way. Regarding the behavior of the different hop strategies,
when buildings are not simulated the intelligence of the most advanced strategies
(such as MAP) gets blurred and they approach the times obtained with the other
strategies (such as EP and EUC), since the previous knowledge of the position of
the streets (provided by the digital maps) is less useful when such obstacles are not
considered. The opposite occurs when the presence of buildings is simulated. In
such a case, the simpler hop strategies (that do not take into account the topology of
streets) provide the worst results.
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Figure 6.5: Performance of the hop strategies: data collection time with and without the
simulation of buildings
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These experiments show the importance of taking the impact of buildings into
account, as we have done by default in our experimental evaluation.

Conclusions

Since MAP is the best strategy when considering globally all the key features studied
(data collection time, network overhead in terms of the number of hops, effective
traveling speed, and traveling reliability) and besides it does not need to know in
advance the routes followed by vehicles (as opposed to MapTraj), we choose it as the
default strategy to be used in the upcoming experiments. The fact that it needs a
digital road map stored in the vehicles is not considered problematic, given that today
such data can be easily obtained from public sources such as OpenStreetMap.

We would also like to emphasize that, although the strategies evaluated in this
section could be used also as geographic routing strategies in ad hoc networks, the
hop strategies are encapsulated here as part of the behavior of the mobile agents (so,
it is not part of the routing behavior of nodes) and are used autonomously by an
agent to decide potential vehicles to move to. Strategies more sophisticated than the
ones evaluated in this section could be developed. However, our work does not focus
on geographic routing but on the application of mobile agent technology in vehicular
networks.

6.1.2 Hop Strategies with Spatial Crowdsourcing

In this section, we present the experiments that we have performed to test the fea-
sibility of the proposed data management approach in VANETS using mobile agents
with spatial crowdsourcing abilities.

In this set of experiments, we evaluate the potential benefits that spatial crowd-
sourcing can provide. To show this, we compare the proposed spatial crowdsourcing
approach with another one that does not use spatial crowdsourcing, by measuring the
performance of the process followed by the mobile agent to reach the interest area.
The simulations are performed in three cities with different street layouts (defined in
Section : Madrid, Barcelona, and Zaragoza.

Influence of the Size of a Low-Traffic Area

In this first experiment, we perform a test to see how useful the use of spatial crowd-
sourcing might be to the agent for reaching an area with a small amount of vehicles.
For this purpose, we consider an area where the traffic density is low, called cold area,
and we characterize it as a prolongation of the interest area that is extended a certain
length around it (see Figure . Specifically, from all the trajectories of vehicles
randomly created by the simulator for this experiment, a 15% of them cross the cold
area, and thus the traffic inside it is lower than in the rest of the scenario.

In this cold area, which has a shape similar to a belt around the interest area,
the density of vehicles is much lower than in the rest of the scenario, and therefore
the mobile agent will have a lower probability of finding a vehicle traveling towards
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Figure 6.6: Example of a cold area around the interest area

the interest area to use it opportunistically to be carried there, or as an intermediate
place to hop while looking for another better candidate. In this situation, the use of
spatial crowdsourcing can benefit the query processing considerably, since the mobile
agent can find a collaborator willing to alter its original route in order to carry the
agent straight to the interest area in exchange of an amount of virtual money.

With this setup, we performed a series of simulations where we varied the size of
the cold area (i.e., the length of the low-traffic interest area extension) from 0 meters
to 1000 meters. In Figure[6.7} we can see the total time needed by the mobile agent
to complete the travel to the interest area in the three cities. We compare the results
when spatial crowdsourcing is used (Using SC) with a situation where it is never used
(Without SC). The larger the cold area, the longer it takes for the mobile agent to
reach the interest area, as expected. However, when spatial crowdsourcing help is
used, the times are considerably reduced. The differences observed in the total times
for the three cities are due to the fact that the trajectories of the vehicles and the
communications among them vary with the different topologies of the streets.

In Figure [6.8] the total number of hops is shown. When spatial crowdsourcing is
used, the number of times that the mobile agent hops (and so the bandwidth needed)
is smaller: when the agent finds a collaborating vehicle, it is directly carried towards
the interest area and does not need to use any other vehicle to hop to, unless the
agent’s approaching speed increases above the minimum speed threshold and there
is some promising neighboring vehicle; in this experiment, this is unlikely because
the carrying vehicle is usually moving through the cold area, which is a low-traffic
zone. On the contrary, when no collaborators are used, the mobile agent is constantly
looking for a carrier better than the one it is currently traveling on. In this case, the
current carrier may follow unpredictable routes, not only carrying the agent nearer the
interest area; indeed, it might take a route that travels farther from the interest area.
The size of the cold area seems to have little influence on the number of hops. There
are two reasons for that. When using spatial crowdsourcing help, once a collaborator
is found the mobile agent does not usually need to hop to other vehicles and stays in
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Figure 6.7: Traveling to the interest area: comparison of the total time needed by using
spatial crowdsourcing (SC) or not, varying the size of the cold area

the same vehicle moving towards the interest area. When no spatial crowdsourcing is
used, the number of hops varies with the size of the cold area in a more irregular way.
This is due to the unpredictability of the routes and locations of the vehicles: the
mobile agent must constantly evaluate its environment to decide the most suitable
vehicle.

We also evaluated the social cost of using spatial crowdsourcing. In Figure we
show the social cost (in minutes) in the different cities, when the mobile agent uses
spatial crowdsourcing (when spatial crowdsourcing is not used, there is no social cost).
Regarding the size of the cold area, it has little effect in the social cost, although a
slight increase with its size is observed.

To summarize the conclusions regarding the influence of the size of the cold area,
when it is larger the total time needed by the mobile agent to reach the interest
area grows, although it is smaller when spatial crowdsourcing is used. The band-
width usage remains similar, but when no spatial crowdsourcing is used it is higher
and more irregular. Finally, the social cost, which only applies when using spatial
crowdsourcing, is only slightly influenced by the size of the cold area.
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Figure 6.8: Traveling to the interest area: comparison of the total number of hops needed
by using spatial crowdsourcing (SC) or not, varying the size of the cold area

Comparison Varying the Initial Distance to the Interest Area

The previous experiment indicates that spatial crowdsourcing can be very useful in
scenarios with areas where the density of vehicles is not high. Now, we will perform
another experiment with higher traffic density in the whole scenario, in order to see
if the proposed approach also behaves well when the number of potential carriers for
agents increases.

In this experiment, there is no cold area and there is a uniform density of vehicles
in the scenario, which is set to 100 vehicles/km? (a medium density). We vary the
initial distance from the point where the mobile agent starts its execution to the limit
of the interest area, and we evaluate the potential benefits of spatial crowdsourcing
for different values of such a parameter.

In Figure we can see how the total time to reach the interest area varies
with the initial distance. In general, the times are slightly higher when no spatial
crowdsourcing is used for the smaller to medium initial distances, whereas for higher
distances the differences are near 0 and practically the same. A minor exception can
be found in Figure for the city of Zaragoza, in a couple of cases where for
some distance values (e.g., 1750 and 2250 meters) the times are slightly higher when
spatial crowdsourcing is used, but this difference is quite small (about 3 seconds, from
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Figure 6.9: Traveling to the interest area: collaborators’ social cost

a total of around 67 seconds and 80 seconds, respectively).

Regarding the number of hops that the mobile agent performs to reach the interest
area, shown in Figure the figures for the three cities have a similar shape: the
number of hops is slightly higher when no spatial crowdsourcing is used, and it grows
linearly with the distance to the interest area.

As a summary, the time needed to reach the interest area grows with the distance.
For short and medium distances, the spatial crowdsourcing option is better, but for
longer distances the difference between both options is smaller. Regarding the total
number of hops needed, the initial distance has a linear effect and in all the cities the
crowdsourcing option takes less hops than the one without spatial crowdsourcing.

Comparison Varying the Density of Vehicles

The density of vehicles is very important for the performance of the agent, since it
can be difficult to reach the interest area if the number of vehicles that can be used as
a physical transport or as an intermediate relay is low. In this experiment, we want to
know in which circumstances the use of spatial crowdsourcing helps the mobile agent
to reach the interest area. In this scenario, there is no cold area and in all the zone
there is a uniform density of vehicles, which varies from 10 vehicles/km? (a very low
density) to 175 vehicles/km? (a high density).
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Figure 6.10: Traveling to the interest area: comparison of the total time needed by using
spatial crowdsourcing (SC) or not, varying the initial distance (no cold area)

In Figure[6.12] we can see how the total time to reach the interest area varies with
the density of vehicles. In all the cities, the time is lower when spatial crowdsourcing is
used than when it is not. The differences are higher with low vehicle density values,
especially for the lowest value of 10 vehicles/km?. For density values higher than
30 to 45 vehicles/km? the difference between using spatial crowdsourcing or not is
practically negligible. The reason is that, when spatial crowdsourcing is not used,
the mobile agent must go to the interest area by hopping from one vehicle to another
that seems more promising to reach the target sooner, and finding candidates is more
difficult when the density of vehicles (and therefore, its total amount) is lower.

Figure [6.13] shows that, as the vehicular density grows, the number of hops that
the mobile agent needs to perform to reach the interest area decreases when spatial
crowdsourcing is not used. On the other hand, when it is used, the number of hops
increases with the density of traffic until around 45 vehicles/km?, when the number
of hops remains stable with small variations for higher density values. In all the cases,
the number of hops when spatial crowdsourcing is used is smaller than when it is not
used, although the difference decreases as the vehicular density grows. This is due to
the fact that, once the mobile agent takes a collaborator, it stays in there and does
not leave it until the interest area is reached, being unnecessary to perform more hops
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Figure 6.11: Traveling to the interest area: comparison of the total number of hops needed
by using spatial crowdsourcing (SC) or not, varying the initial distance (no cold area)

to other vehicles.

Summing up, we conclude that the spatial crowdsourcing approach is particularly
beneficial in terms of time and bandwidth usage in scenarios with a low density of
vehicles. Moreover, when the traffic density is higher, the use of spatial crowdsourcing
does not harm either the performance. Indeed, based on the minimum speed thresh-
old, the mobile agent can choose to hop among the vehicles when it considers that
paying a collaborator is not needed.

6.2 FEvaluation of the Basic Query Processing Ap-
proach

In the previous section, we evaluated different travel approaches that a mobile agent
can use to reach the interest area in a fast and efficient way. In the following, we
evaluate other factors over the whole basic query processing approach (i.e., involving
all the steps). Again, by basic we mean that the mobile agent does not ask for help of
collaborating human drivers to be carried nearer the target area or any other places.
The chosen default hop strategy for all the next experiments is MAP, and the mobile
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Figure 6.12: Traveling to the interest area: comparison of the total time needed by using
spatial crowdsourcing (SC) or not, varying the vehicle density (no cold area)

agent’s starting point is 1 kilometer from the target area.

6.2.1 Influence of the Uncertainty of the Location of the Query
Originator

As commented in Section [3.3] routing the results back to the query originator in vehic-
ular networks using only short-range wireless communications could still be considered
an open problem in the literature, and therefore, in this thesis, we have adopted a
simple approach based on the availability of an estimation of the location of the query
originator vehicle. In this section, we present an experiment to evaluate the impact
that an imprecise location estimation of the query originator may have on the perfor-
mance of the whole query processing (steps 1-4 of the proposed approach, described in
Section. In this experiment, if the mobile agent does not find the query originator
at the expected location, it will try to find it by moving randomly in the surroundings
of that location.

Figure shows the total time needed to finish the query processing depend-
ing on the existing location uncertainty regarding the query originator (e.g., a location
uncertainty of 500 meters means that the actual location can be anywhere in a circu-
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Figure 6.13: Traveling to the interest area: comparison of the total number of hops needed
by using spatial crowdsourcing (SC) or not, varying the vehicle density (no cold area)

lar area of radius 500 meters). The query processing time increases with the location
uncertainty, as expected, since the agent needs more time to find the query originator
vehicle. The average values are computed considering only the queries that are pro-
cessed within 1000 seconds. Therefore, it is also interesting to look at Figure |6.14(b)|
which shows the number of queries that are completed in time. For example, with
the San Francisco layout and a location uncertainty of 500 meters, which is the most
challenging scenario shown in the figure, the ratio of success in processing a query is
below 70%.

In general, a high reliability is obtained if the location uncertainty of the query
originator is about 250 meters or lower. Moreover, it would be possible to consid-
erably increase the reliability when the location uncertainty is high, for example, by
improving the simple random-search approach tested here to try to locate the query
originator vehicle, by combining the use of pure ad hoc communications with wide-
area communications (e.g., 3G/4G) or vehicle-to-infrastructure communications (use
of fixed support nodes on the roads, usually called roadside units) when they are
available and the extra economic cost that their use implies is affordable [[DTL15],
or by using mailboxes to store the query results at fixed locations to be retrieved by

the query originator [DMITHTI].
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Figure 6.14: Influence of the location uncertainty of the query originator on the query
processing

6.2.2 Influence of the Relevance of Information

In the scenario that we are simulating, once the mobile agent arrives at the target
area, it must hop among the vehicles within, looking for relevant information and
gathering a certain number of partial solutions before being able to solve the query
and return the result. We assume that not all the vehicles contain data the mobile
agent is interested in, so the agent will have to visit one vehicle after another until
it finds one containing relevant information. Then, the mobile agent will process the
data to obtain a part of the query result, and the process will continue. The higher
the number of vehicles that contain relevant data, the faster the agent will complete
the process and the smaller the number of vehicles that will have to be visited.

In this experiment, we test different values of the existing relevance of informa-
tion for the query (defined as the percentage of vehicles that contains relevant data
to solve the query) in the three city maps. Figureshows that, as expected, when
the relevance of the information present on the vehicles is low, the time the agent
takes to solve the query may have relatively-high values. As the value of the rele-
vance grows, the time decreases, and for values of relevance higher than the 50% the
improvement obtained with progressively-higher relevance values reduces to almost
zero and remains under five minutes in the worst case.

As a conclusion, this experiment shows that a relatively-low value of relevant data
(e.g., about 40%) is enough to find the query solution on the fly in an acceptable time,
considering that the data are extracted directly from their sources in a distributed
and ad hoc way.

6.2.3 Influence of the Vehicle Density

In this experiment, we evaluate the performance and reliability of different values of
vehicles density. For our test scenarios, we use the following values for vehicle traffic
density (friendly labels are indicated in brackets, with the purpose of facilitating
reading): 5 v/km? (nearly-absent), 12 v/km? (extremely low), 25 v/km? (very low),
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50 v/km? (low), 100 v/km? (medium), and 200 v/km? (high). These density values
used in the simulation are inspired by those used in works such as [MFT 13, BGFT13].

Figure[6.16|shows that, in general, the query processing time decreases with higher
traffic density values. This is due to the fact that, when the number of vehicles the
mobile agent can jump to increases, the chances to choose appropriate vehicles for
transportation improve. Of course, the benefits obtained by adding more vehicles
are insignificant when the traffic density is already high; thus, as an example, we
can observe in the figure that the difference in the performance between the cases of
medium and high density is close to zero.
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Figure 6.16: Influence of the vehicle density on the query processing: query processing
time

By looking only at Figure [6.16] it might seem that a nearly-absent traffic density
achieves a good performance. However, it must be highlighted that the figure is only
showing the average processing times of the queries completed, which in that case are
a small percentage of the total number of queries submitted. So, in Figure[6.17 we can
see the reliability of the whole process in terms of the percentage of queries finished
within a timeout of 1000 seconds. It can be seen that the approach based on mobile
agents does not require a high traffic density to perform well. So, all the queries finish
in time even with very low density values, except in the case of London (where the
percentage of completed queries is 92%). The percentage of success is quite high even
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with extremely low traffic values (above 90% for the mixed and squared city layouts),
except in the case of the old city layout where the percentage drops to only 30% of
finished queries.
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Figure 6.17: Influence of the vehicle density on the query processing: queries processed

As all the queries are completed with low traffic (and higher traffic densities) and
most of them are also completed with very low traffic, we can conclude that the
proposal performs well in most scenarios, even if the traffic density is low.

6.2.4 Influence of Communication Errors

In this section, we evaluate experimentally the impact of unreliable wireless commu-
nications. For that purpose, we simulate different communication error rates, which
indicate the probability that a communication (e.g., an agent jumping from one car
to another) fails. If the communication fails when an agent tries to jump to another
car, the movement fails and it will need to be re-tried; moreover, due to the constant
movement of the vehicles, the intended target car might move out of range and be-
come unreachable when re-attempting. The simulation of this error rate is in addition
to factors such as the influence of buildings that act as obstacles (evaluated in Sec-
tion ; so, a building may block a communication even if communication error
rates are not simulated.

We vary the communication error rate from 0% (no extra failures simulated) to
100% (all the communications fail always). Figure shows the total time re-
quired to complete the query processing. The query processing time increases with
the communication error rate, as expected. Again, it must be noted that these values
are computed taking into account only the simulations that end within a timeout
of 1000 seconds. Therefore, Figure has to be analyzed by considering also
Figure which shows that starting with an error rate of around 40% the ratio
of queries processed starts to decrease, dropping significantly when the error rate is
80% and reaching near 0% for higher rates. Figure [6.18(a)| shows no value for New
York when the error rate is 90% and no value at all for an error rate of 100%, as in
those cases no query finishes successfully in that scenario before the timeout.

These experiments show that, as expected, the query processing approach per-
forms better when the wireless communication medium is reliable, but that the ap-
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Figure 6.18: Impact of communication failures on the query processing

proach is also flexible enough to adapt to communication failures. Mobile agents
are able to react to these failures and the errors need to be quite high to affect the
reliability of the query processing.

6.2.5 Influence of Unexpected Changes in Routes

In this experiment, we analyze the reliability and performance of the query processing
approach when vehicles change their route unexpectedly. We focus on the MapTraj
hop strategy, as it is the only strategy that benefits from the assumption that the
expected trajectories of the vehicles can be obtained, and we simulate random changes
in the intended trajectory. To evaluate a worst case scenario, we simulate that a
vehicle can change its trajectory with a certain probability (trajectory changing rate)
as soon as the agent jumps to it. Therefore, an agent may decide to hop to a car
because the car’s trajectory is promising and immediately after taking that decision
the situation may change (the car may modify its trajectory and therefore may not
be a suitable vehicle to reach the target area anymore). In other words, the agent
may take a decision based on information that quickly becomes obsolete.
Figure shows the total time needed to process a query when the trajectory
changing rate varies from 0% (none of the vehicles change their intended trajectory
upon the arrival of the mobile agent) to 100% (all the vehicles change their trajec-
tory), and Figure shows the number of hops performed by the mobile agent
during steps 1 and 4 of the query processing approach (traveling to the target area
and returning to the query originator). It can be seen that unexpected changes of
the trajectories do not affect the performance significantly, as mobile agents contin-
uously re-evaluate the current situation and jump to another car if needed; so, they
can quickly fix incorrect decisions when the information they use to decide becomes
incorrect. Indeed, the mobile agent is constantly evaluating the situation and will
jump to a different car if it is more promising, independently of whether its current
vehicle has changed its trajectory or not; this is the reason why Figure does
not show a significant increase in the number of hops when the trajectories change
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more frequently. It should also be noted that when the trajectory changing rate is
100% the Map Traj hop strategy becomes similar in practice to the MAP strategy.
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Figure 6.19: Influence of trajectory changes on the query processing for the MapTraj
strategy

6.2.6 Influence of the Cloning Strategies

In this section, we evaluate the potential benefits of using clones and the influence
of the specific number of clones created during the query processing described in
Section [3.3] With that purpose, in the following experiments, we set the value of
minPercentData (minimum acceptable percentage of data that must be retrieved)
at 75% and we evaluate two different strategies.

Cloning Strategy 1: Clones for Data Collection

In the first experiment, we vary the number of clones created for data collection from
0 (no use of clones) to 20, and set the percentage of vehicles with relevant data to
50%. Following Algorithm @ in Section the clones are created only in the data
collection phase if they are needed to increase the observed collection rate.

In Figure we show the query processing time required to get a first answer
to the query depending on the number of clones. As expected, increasing the number
of clones contributes to decreasing the time required to get the first answer, but only
to a certain extent. Besides, increasing the number of clones also leads to a higher
overhead in the network, as shown in Figure Thus, above a certain number
of clones there is little improvement and the overhead introduced does not pay off.

Cloning Strategy 2: Clones for the Whole Process

In the second experiment, the mobile agent creates copies of itself in the first step
of the process (all at once), and they hop randomly among the nearby vehicles for a
certain interval of time. Afterwards, the original agent and its clones start using the
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Figure 6.20: Performance of the Cloning Strategy 1: use of clones for data collection

predefined hop strategy (MAP) to travel to the target area, executing individually
the algorithms described in Section [3.3] and gathering the collected data in the origin.

The question now is how long the clones should be hopping randomly at the
beginning of the process before starting traveling to the target area. If this amount
of time is too small, then they will not spread far enough from the initial point and
the number of alternative routes found will be low, since all the agent’s copies could
behave similarly. On the other hand, if it is too large, then they might travel to
places too far from the target area. Therefore, we have first performed an experiment
to evaluate the query processing time for different values of the Interval of Random
Hopping (IRH). Figure where the number of clones to use is set to 10, shows
that an IRH value of five leads to the overall smallest processing time.
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Figure 6.21: Performance of the Cloning Strategy 2: query processing time for different
values of IRH in different scenarios
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Comparison of Both Cloning Strategies

Figures|6.22(a)|and [6.22(b)| show the total time spent to process the query using both
mobile agent cloning strategies in the different city scenarios. As we can see in the
figures, the use of the maximum number of clones in the beginning of the process
(second strategy, with IRH=5) minimizes the total time needed to process the query.
This can be seen more clearly in Figure [6.23(a)] that compares the average of the
processing times. However, as shown in F the network overhead for the
second cloning strategy is higher than when using the first one, since all the agents
are created at the beginning of the process.
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Figure 6.23: Comparison of two different cloning strategies

Regarding the city topology, as Figures [6.24(a)| and [6.24(b)| show, the benefits of
using clones is similar for the three types of street layouts considered. However, the
number of intervehicular communications grows with the number of clones in a more
sharply way in the old city layout. This is due to the difficulty for the mobile agents
to travel long distances by hopping to other vehicles, as the proximity of buildings in
narrow and curved streets can block the signal propagation. This circumstance leads
the mobile agents to hop more frequently, thus increasing the network usage.
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6.3 Evaluation of the Spatial Crowdsourcing Query
Processing Approach

In the this set of experiments, we analyze different parameters related to the spatial
crowdsourcing approach (where the mobile agent asks to other users for they collabo-
ration in exchange of a compensation), and the impact they have on the performance
of the whole query solving process. We study the effect of parameters such as the
minimum speed threshold used by a mobile agent to decide when collaborators should
be used, the percentage of collaborators, the existing traffic density, and the required
minimum stay time of mobile agents in the vehicles. In these experiments, the mo-
bile agent starts at a distance of 2 kilometers from the interest area, and follows the
complete query solving process described in Section [3.3} it first travels to the interest
area and, once the interest area is reached, it visits every cell into which it is divided
to read the required data by using the available sensors in its carrying vehicle. When
the mobile agent has read all the sensors required (or the maximum timeout expires),
it returns to its origin carrying with it the data collected.

6.3.1 Minimum Approaching Speed Threshold Determination

As explained in Section the travel to the target area, as well as the return to the
origin with the results, is performed by the mobile agent thanks to a combination
of two techniques: initially, the mobile agent starts hopping from one vehicle to
another one that it considers to be a more promising carrier to reach the target
area and, additionally, the agent may also use spatial crowdsourcing to be physically
carried nearer the target area by a collaborating vehicle. To decide whether using one
technique or the other at any time, a minimum speed threshold is set: if the mobile
agent approaches the destination area with a speed smaller than this threshold value,
it will ask for help to nearby collaborating vehicles to be carried nearer the destination
area faster, until the approaching speed raises again above the threshold. Otherwise,
the mobile agent will keep hopping from one vehicle to another, as described before.

It is important to establish the minimum speed threshold carefully. If it is too
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high, the mobile agent will likely look for collaborators too early, and therefore it will
spend too much virtual money needlessly. On the other hand, if the value is too low,
then the agent will ask for help later, but then it may be already too far from the
interest area and thus take too much time to reach the destination. In this experiment,
we test different values for the minimum speed threshold, in the range from 0 km/h
to 50 km/h (usual maximum speed within a city). The ratio of collaborating vehicles
is set to 50%, taken as an intermediate value, and there is no cold area. As we want
to see the benefits of using spatial crowdsourcing also within the interest area, the
probability that the trajectory of a given vehicle will travel inside the interest area is
10%, as this implies a low-traffic situation where the difference between using spatial
crowdsourcing or not using it during the data collection phase can be more relevant.

We perform the experiments using two versions of the mobile agent (SCCA and
PHCA), with different behaviors exhibited once the agent reaches the target area (see

Section .

Results with SCCA

Figure shows the time required for completing the query solving process in
the three cities, by using the SCCA variant of the mobile agent, as described before.
The extreme case when the minimum speed threshold equals 0 km/h means that
the condition for using spatial crowdsourcing is never met, and therefore the agent
must reach the target area only by hopping from one vehicle to another (spatial
crowdsourcing is not used at all). However, once the target area is reached, the
SCCA mobile agent always uses spatial crowdsourcing to travel to all the cells, with
independence of the minimum approaching speed threshold (the agent is already
within the target area, and so the concept of approaching speed does not apply). As
a result, in general, in all the maps, the total time required is higher with a value of
0 km/h than with other higher values, and the variations for higher minimum speed
thresholds are quite small.

In Figure we can observe that the number of hops needed by the mobile
agent to complete the process is much higher for the minimum speed threshold value
of 0 km/h (when no spatial crowdsourcing is used), and for values higher than 5 km/h
the number of hops decreases. The reason is that when no spatial crowdsourcing is
used the mobile agent needs to constantly hop from one vehicle to another until it
reaches the interest area.

In Figure the percentage of collected data is shown. The result for all
the minimum speed threshold values tested are 100% (i.e., all the requested data are
collected), but it must be taken into account that for the value of 0 km/h (i.e., when
no spatial crowdsourcing is used) the reliability is below 90%, so the collected data
percentage shown in Figure refers only to the simulations ended within the
simulation time limit.

In Figure the amount of virtual money spent by the mobile agent is shown.
As explained in Section [£.2] in our experiments, we assume that the agent pays one
unit of virtual money for every second it is carried by a collaborating vehicle. When
the minimum speed threshold value is 0 km/h, the amount paid is very low, since the
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Figure 6.25: Query solving process: results with SCCA

collaborators are only used when the mobile agent collects data when traveling to the
target area cells within the interest area, but not for reaching the area when returning
to it when the agent leaves it unintentionally, or for returning to the monitoring origin.
For higher values of the minimum speed threshold, the virtual money spent increases,
being the best overall value around 5 km /h.

Regarding the social cost, shown in Figure|6.25(e), the SCCA agent exhibit a sim-
ilar behavior in the three cities: when the minimum speed threshold value is 0 km /h,
the cost is very low because spatial crowdsourcing is used only when the mobile agent
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is inside the target area collecting data. For higher speed threshold values, the social
cost also increases, since the agent makes use of spatial crowdsourcing more frequently.
Note that this graphic is very similar to the one of the virtual money spent (though
not exactly the same), which means that the established mechanism to compensate
the collaborators (paying them according to their invested time) is quite fair, since
the compensation paid is proportional to the costs incurred by the collaborators.

Finally, Figure shows the number of collaborating vehicles that the SCCA
agent needs to complete the process. For the minimum speed threshold value of
0 km/h, the number of collaborators is very low, because they are only used in the data
collection phase, but not for traveling to/from the target area. For the next minimum
speed threshold value (5 km/h), the number of collaborators grows to between 11 and
15, but then it decreases as the minimum speed threshold value increases, until 6 to 10
collaborators for 50 km/h. This is interesting, as compared to the results of the total
time, which has a low variability for minimum approaching speed threshold values
in the range of 5 to 50 km/h (see Figure [6.25(a))). When the minimum approaching
speed is set to a low value (e.g., 5 km/h), the mobile agent uses more collaborators
but for a shorter time. On the other hand, when the minimum approaching speed is
set to high values (e.g., 45 km/h), less collaborators are used by the mobile agent,
but it travels physically aboard them for a longer time. The reason is the following:
when the agent uses spatial crowdsourcing it will stay in the collaborating vehicle
until the approaching speed exceeds the minimum speed threshold, and shortly after
that moment the agent will leave the collaborator if it finds a more promising vehicle,
and will continue approaching the target area, hopping from one vehicle to another by
using the established hop strategy. For low values of the minimum speed threshold,
it will be easier to reach the threshold value, and the agent will leave the collaborator
sooner than for high values. As the minimum approaching speed threshold grows, the
mobile agent will travel longer in a collaborator, and will approach nearer the target
area, so it will also need a smaller number of collaborators to reach it.

It should be noted that the performance results of unended simulations are not
available, and so another parameter tested in the experiment is the reliability of
the query solving. In Table we can observe that the reliability of the process
is between 56% and 90% when then minimum speed threshold equals 0 km/h (i.e.,
when no spatial crowdsourcing is used). For higher values of the minimum speed
threshold, the reliability reaches 100% (with one single exception for the minimum
speed threshold value of 40 km/h and the city of Zaragoza, with a reliability of 98%),
meaning that the simulations end within the time limit. That is, the use of spatial
crowdsourcing for values above or equal to 5 km/h increases the reliability of the
whole query solving process considerably.

minspeed (km/h) 0 5 10 15 20 25 30 35 40 45 50
Madrid (% of ended simulations) 56 100 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 90 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 68 100 100 100 100 100 100 100 98 100 100

Table 6.1: Query solving process: reliability with SCCA
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Results with PHCA

If we test the same minimum speed threshold values with the variant PHCA of the
mobile agent, we obtain another set of results, that are shown in Figure [6.26] This
version of the agent never uses spatial crowdsourcing when it is inside the target area,
nor when the agent leaves it accidentally and must return to resume the monitoring
task. The mobile agent only hops from car to car by using the MAP hop strategy to
estimate which car in range will reach the target area earlier.
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Figure 6.26: Query solving process: results with PHCA

In Figure |6.26(a)} the total time is shown and the best results are, in general, for
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minimum speed threshold values around 5 km/h, whereas for higher values the total
time increases very slightly.

The total number of hops is shown in Figure which exhibits a behavior
similar to SCCA. For the extreme value of 0 km/h, the agent must only hop among
the vehicles without using spatial crowdsourcing, and therefore the number of hops is
much higher. For higher values of the minimum speed threshold, the number of hops
decreases very slightly due to the use of spatial crowdsourcing to reach the target area
and return to the origin.

The results of the amount of collected data, shown in Figure are note-
worthy: all the results are only around 60%, which is much lower than with SCCA.
The reason is that, once the agent reaches the target area, it must visit the cells
through only car-to-car hops, without using spatial crowdsourcing, which is harder
to accomplish, as the number of vehicles inside the area is low and their trajectories
unknown. Due to this, the agent needs more time to perform the task and in many
cases it reaches the data collection timeout of 3 minutes even before it is completed.

In Figure[6.26(d)] the virtual money spent by the agent is shown. For the minimum
speed threshold value of 0 km/h, the amount of money spent is 0, since the agent
never uses spatial crowdsourcing inside the target area, and neither to reach or leave
it. For higher values, the best results are obtained for 5 km/h and the worst results
for values higher than 30 km/h.

Regarding the social cost shown in Figure we can observe the same behav-
ior as with the SCCA version, and thus the collaborators are compensated according
to their actual cost in quite a fair way.

Finally, in Figure[6.26(f)] the number of collaborators taken by the agent is shown.
This amount is exactly 0 for the minimum speed threshold value of 0 km/h, since
spatial crowdsourcing is never used for traveling to/from the target area, nor for
collecting data inside it when it is reached. For minimum speed threshold values of
5 km/h and above, the collaborators are used in a similar way to the SCCA variant
of the agent: as the minimum speed threshold grows, the number of collaborators
decreases. Since the total time remains more or less constant, this means that for low
values of the minimum speed threshold, a collaborator is usually taken for a smaller
time than for higher threshold values.

Regarding the reliability of the whole process (shown in Table the best results
are for minimum speed threshold values between 10 km/h and 45 km/h, with reliabil-
ities of 100%. On the other hand, the worst results are for the value of 0 km/h, when
no spatial crowdsourcing is used, but there are also some cases when the reliability
does not reach 100% and stays in 98%.

minspeed (km/h) 0 5 10 15 20 25 30 35 40 45 50
Madrid (% of ended simulations) 68 98 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 82 100 100 100 100 100 100 100 100 100 98
Zaragoza (% of ended simulations) 80 98 100 98 100 100 100 100 98 100 100

Table 6.2: Query solving process: reliability with PHCA
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Comparison between SCCA and PHCA

Comparing the results of these experiments (regarding the determination of the min-
imum approaching speed threshold), we can conclude that:

e The variant SCCA of the agent takes less time than PHCA to complete the query
solving process, due to the advantage of using spatial crowdsourcing inside the
target area (on average, around 300 s in the first case and slightly more than
400 s in the second).

e Regarding the reliability, both approaches yield similar results, being not smaller
than 98% for minimum approaching speeds of at least 5 km/h.

e Considering the total number of hops, SCCA is better (less than 100 hops,
versus a value between 100 and 200 hops with PHCA) since the use of spa-
tial crowdsourcing reduces the necessity to keep looking for potentially better
vehicles to hop to.

e Regarding the data collection rate, again SCCA outperforms PHCA, being the
first one around 100% and the second one around 60%.

e Concerning the virtual money cost, however, PHCA is better than the SCCA
(with an average cost of 93 versus 126 units of virtual money), due to the fact
that the former never uses spatial crowdsourcing once the mobile agent reaches
the target area, which saves money.

e For both approaches, the use of spatial crowdsourcing with a minimum ap-
proaching speed threshold is always better than not using it, in terms of time,
reliability, bandwidth usage and amount of collected data, as the results for the
minimum speed threshold value of 0 km/h show.

e For both variants, a minimum approaching speed threshold around 5 km/h is
appropriate, if we take into account all the results from these experiments.

Therefore, we can establish that the best algorithm in all terms (except in the virtual
money cost) is SCCA, and we choose for the minimum approaching speed threshold
5 km/h, which is quite a low value. This value, as well as the SCCA strategy, are
used by default in the experiments described in the following sections.

6.3.2 Influence of the Percentage of Potential Collaborating
Vehicles

Figure shows how the total time needed to complete the whole query solv-
ing process varies with the ratio of vehicles willing to act as collaborators in spatial
crowdsourcing tasks. The required time is around 500 to 700 seconds for 0% of poten-
tial collaborators, that is, when no spatial crowdsourcing can be used and the mobile
agent can only rely on hopping from one vehicle to another to reach the destination
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and perform the query solving task inside the target area. The time decreases to
around 400 seconds when the ratio of potential collaborators increases to 10%, and
then decreases slightly until it reaches around between 300 and 350 seconds for 100%
collaborators (i.e., all the vehicles in the scenario can act as collaborators). The rea-
son is that once the mobile agent finds a suitable collaborator it is not necessary to
keep looking for another one, and thus having more potential collaborators to choose
from is useless.

Figures [6.27(b)} [6.27(c)| and [6.27(e)| show the number of hops performed by the
mobile agent, the amount of data collected, and the social cost, respectively. In all
these figures, we can see the same pattern: when spatial crowdsourcing is not used
(because the ratio of potential collaborators is 0%), then the corresponding metric
measured is significantly worse than when it is used. The results improve dramatically
with only about 10% collaborators. However, when the ratio of potential collaborators
is higher than this value, the measured parameters do not show further improvement
(the mobile agent does not significantly benefit from a higher number of potential
collaborators). The exception to this pattern is the virtual money spent, shown in
Figure which is obviously 0 when no collaborators are used for performing
spatial crowdsourcing.

Regarding the number of collaborators used by the agent, shown in Figure
it is obviously 0 when the ratio of potential collaborators is 0%. For higher ratios, the
number of effective collaborators used by the agent varies more or less randomly, but
for all the cases its number is within the range of 10 to 21 collaborators. When the
mobile agent commutes from spatial crowdsourcing to hopping to other vehicles and
back again to spatial crowdsourcing, it seems to find a new collaborator easily, as the
total time for the monitoring (shown in Figure does not increase significantly.

In Table we can see how the reliability is between 68% and 80% (depending
on the city map) when the ratio of potential collaborators is 0%. For 10% of potential
collaborators, it increases to between 96% and 100%, and for higher values the relia-
bility is always 100%, with the exception of a few cases where it is 98%. Therefore,
not being able to use spatial crowdsourcing (i.e., 0% of potential collaborators) makes
the process more unreliable than using it.

% of collaborators 0 10 20 30 40 50 60 70 80 90 100
Madrid (% of ended simulations) 68 100 100 100 98 100 100 98 100 98 100
Barcelona (% of ended simulations) 82 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 80 96 100 98 100 100 100 98 100 100 100

Table 6.3: Query solving process: reliability varying the percentage of collaborating vehicles

As a conclusion for this experiment, we can say that the benefits of using spatial
crowdsourcing are remarkable even with a ratio of potential collaborators as low as
10%. Therefore, we do not need a high number of drivers willing to modify their
trajectories to benefit from the spatial crowdsourcing approach and increase the per-
formance of the process.
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Figure 6.27: Query solving process: results varying the percentage of collaborating vehicles

6.3.3 Influence of the Density of Vehicles

In this experiment, we test the influence of the density of vehicles on the performance
of the query solving process. In the previous experiments, where the density was set
to 100 vehicles/km? (a medium value), the results showed that even with a small
number of potential collaborators the performance improves dramatically. However,
we also want to test it in a more challenging scenario with low and very low vehicle
density, to find out the limits of spatial crowdsourcing. The chosen density values and
their denomination (low density, medium density, etc.) are inspired by those used in
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proposals such as [MFT™13, BGF™13|, and for this experiment we vary them from
10 vehicles/km? (very low density) to 100 vehicles/km? (medium density). Based
on the results of the experiment presented in Section [6.3.2] in this experiment the
percentage of potential collaborating vehicles is set to 10%.
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results varying the density of vehicles

In Figure the total time to complete the query solving process is shown.
As the number of vehicles increases, the time needed decreases, with little variance
when the density reaches around between 70 and 80 vehicles/km?. The reason is that,
with a high number of vehicles, the mobile agent has less difficulties to find a car to
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be carried nearer the target area, whether it uses spatial crowdsourcing or just hops
from one vehicle to another.

Regarding the number of hops performed by the mobile agent, shown in Fig-
ure its number increases with the vehicle density, since the agent is constantly
looking for a better option to reach its destination sooner: if there exist more vehi-
cles, then the number of opportunities is also higher and the agent will likely hop to
another car more frequently.

The amount of data collected within the timeout of 3 minutes, shown in Fig-
ure increases with the vehicle density, although there is little variation and
all the values are higher than 90%.

Figures [6.28(d)| and [6.28(e)| show the virtual money paid by the mobile agent to
the collaborators and the social cost, respectively. As in the previous experiments,
these figures are closely related, and both values increase slightly with the density of
vehicles. With a higher number of vehicles there is also a higher number of potential
collaborators, and the agent can obtain help more easily, and therefore it could end
up spending more virtual money. On the other hand, with less vehicles there is a
smaller number of potential collaborators, so it is more likely that the agent cannot
find one of them when needed and, consequently, it might spend less virtual money.

Finally, the number of collaborators taken by the mobile agent, shown in Fig-
ure increases significantly with the density of vehicles, for the same reasons:
since the number of potential collaborators is higher, the agent has more opportunities
to take advantage of them and they are used more frequently.

Table [6.4] shows the reliability of the query solving process for the different traffic
density values. As the vehicle density increases, so it does the reliability, and starting
with 50 vehicles/km? there is little variance. This result is related to the total time
required for the query solving, as the sooner the mobile agent completes all the phases
of the process, the less likely the time limit will be reached.

Density (vehicles/km?) 10 | 20 30 40 50 60 70 80 90 100
Madrid (% of ended simulations) 86 98 98 100 98 100 98 100 98 100
Barcelona (% of ended simulations) T4 86 100 92 96 98 100 100 100 100
Zaragoza (% of ended simulations) 80 82 96 88 98 100 100 100 100 96

Table 6.4: Query solving process: reliability varying the density of vehicles

As a conclusion for this experiment, we can say that, regarding the influence of the
vehicle density on spatial crowdsourcing, the best results in terms of time, reliability
and amount of collected data are obtained for values around 60 vehicles/km? (a
low density) and higher. For lower densities, the results are worse, but not so bad
for the spatial crowdsourcing to be considered useless under those circumstances:
for example, for the extremely low density value of 10 vehicles/km? the amount of
collected data is higher than 90% and the reliability is near 75% in the worst case,
which may be enough for query solving tasks with soft requirements.
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6.3.4 Influence of the Minimum Stay Time in Collaborators

In this experiment, we evaluate the impact of the minimum stay time in the collabo-
rating vehicles. Specifically, we vary this value from 0 to 50 seconds in increments of
5 seconds, to evaluate its impact. Besides, based on the results of the experiment pre-
sented in Section [6.3.2} in this experiment the percentage of potential collaborating
vehicles is set to 10%. In Figure we can see how the total time to complete
the process decreases slightly as the minimum stay time increases. The reason is that
the likelihood of wasting time decreases when the agent stays in a collaborator longer,
as the collaborator commits itself to bring the agent to its destination. Besides, the
number of hops also decreases, as shown in Figure

Regarding the amount of collected data, shown in Figure it remains more
or less constant as the minimum stay time increases, and it is always above 96%. The
mobile agent takes into account the minimum stay time only in the phases of the
process where it approaches the target area and returns to its origin, but not in the
data gathering phase, so it has no influence during the data collection step.

The invested virtual money and the social cost, that can be seen in Figures
and [6.29(e)| respectively, exhibit a similar behavior, both growing with the minimum
stay time. The difference between the values observed for the lowest minimum stay
value (0 seconds) and the highest minimum stay value (50 seconds) is about 25%,
and the reason is that the mobile agent wastes less time in hops to other vehicles
and stays longer in the collaborating vehicles, so these collaborators receive more
compensations in the form of virtual money. This fact is confirmed by the number of
collaborating vehicles taken by the agent, shown in Figure As the minimum
stay time grows, the number of collaborators decreases strongly. Along with the low
variability of the total time, this means that the mobile agent takes a smaller number
of collaborators but stays longer in them.

As shown in Table the reliability parameter is 100% for almost all the minimum
stay times (with only one exception, with 96%, for the city of Zaragoza and a minimum
stay time of 0 seconds). The reliability is related to the total time of the process (and
whether it takes longer than the timeout or not), and given the small variance of the
total time, the minimum stay time has no appreciable effect on the reliability.

Minimum stay time (s) 0 5 10 15 20 25 30 35 40 45 50
Madrid (% of ended simulations) 100 100 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 100 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 96 100 100 100 100 100 100 100 100 100 100

Table 6.5: Query solving process: Reliability varying the minimum stay time of the mobile
agent in collaborators

As a conclusion, the use of a minimum stay time in a collaborator has a certain
influence on the number of hops that the agent needs to take, decreasing them as the
minimum stay time grows. However, this reduction has no influence on the reliability
or the amount of collected data, and increases the social cost of the collaborators and
the amount of virtual money spent by the agent.
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Figure 6.29: Query solving process: results varying the minimum stay time of the mobile
agent in collaborators

6.4 Summary of the Chapter

In this chapter, we evaluated experimentally the travel strategies and the whole query
processing approach. In both cases, we considered them using the basic approach and
the version enhanced with spatial crowdsourcing.

To evaluate the basic approach, we tested a number of factors that might have
an influence on the performance of the query processing, such as the uncertainty in
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the position of the query originator, the relevance of the information stored in the
vehicles, the vehicle density, and others.

We also explored the potential benefits and disadvantages of cloning a mobile agent
(i.e., the deployment of multiple copies of the agent) and we tested and compared
two variations of this strategy. In the first variant, the clones were only used for
collecting data once a single copy of the mobile agent reaches the target area. In the
other variant, the clones were used during the whole process, and the agent starts to
replicate itself a few seconds after departing from its originator.

We also evaluated the approach based on spatial crowdsourcing, where the mobile
agent asks for help to potential collaborators when its approaching speed to the
target area is too slow. The first experiment focused on determining a suitable speed
threshold to switch to spatial crowdsourcing. After that, we tested two variations of
a spatial crowdsourcing algorithm: SCCA and PHCA. In SCCA, the mobile agent
only asks for the help of collaborators in the data collecting step of the process. In
PHCA, the agent only uses spatial crowdsourcing to reach the target area but, once
there, it only hops among the vehicles to collect the required data.

Finally, we chose the best of the variants (SCCA) and performed another set of
experiments to evaluate the influence of parameters such as the percentage of potential
collaborators, the density of vehicles, or the minimum time that the mobile agent must
stay in a vehicle.

The experiments presented in this chapter show the feasibility of the proposed
approach and the additional benefits of spatial crowdsourcing even if only a small
amount of drivers are willing to cooperate.
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Chapter 7

Use Case Example: Parking
Spaces in a Mixed
Urban/Interurban Scenario

Looking for available parking spaces is a task that consumes both time and money
from drivers, especially in big cities. According to a recent study by INRIX Re-
search [Cool7], “searching for parking imposes a significant economic burden with
drivers in the U.S., U.K. and Germany wasting 17, 44 and 41 hours a year respec-
tively at an estimated cost of $72.7 billion, £23.3 billion and €40.4 billion a year in
these countries”. In another article published in the Washington Post [Hall0], pro-
fessor D. Shoup “studied a 15-block business district in Los Angeles and determined
that cruising about 2.5 times around the block for the average of 3.3 min required to
find a space added up to 950,000 excess miles traveled, 47,000 gallons of gas wasted
and 730 tons of carbon dioxide produced in the course of a year”.

Therefore, there exists a lot of interest in the research community in finding meth-
ods, related to communications and information technologies, that help drivers to find
available parking spaces more easily, so that they do not need to spend so much time,
fuel, and money in such an ungrateful and inefficient task.

In this chapter, we present a use case scenario that illustrates the techniques
related to data management in VANETS using mobile agents described in this thesis.
It tackles the problem of searching for a number of available parking places in an
area towards where the user is driving, by retrieving data from vehicles located in its
vicinity. It has the particularity of taking place in a scenario where there exist both
urban and interurban roads, which is not usual in the literature. In Section we
describe in detail all the features of the scenario and the setup of the experimental
evaluation. In Section we perform an experiment to test the influence of both the
urban and interurban vehicle density on the data retrieval task. In Section we
test the influence of the initial density of occupied parking places, and in Section [7.4

141
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the influence of the number of requested places.

7.1 Scenario Evaluated

In the use case considered, a person traveling along a highway approaches a city to
attend a meeting [UI17a]. When he/she is 15 km from the city, he/she wants to
obtain information about available parking spaces near the meeting point (located
in the city center). With that goal, a mobile agent is launched, that travels to the
destination area (the city center) with the purpose of collecting information about
available parking spaces by querying the vehicles present in that area; we assume
that the driver will be satisfied when he/she retrieves information about a specific
number of parking spaces, that will provide him/her with an overview of the parking
availability in the area.

As shown in Figure[7.1] the map scenario chosen is a portion of the city of Zaragoza
(Spain) and some fragments of interurban roads where the vehicle with the driver
asking for parking spaces is located when the experiment starts. We consider for
this scenario two areas. On the one hand, we can observe the urban area, which
includes the city streets, where the maximum speed of vehicles is around 50 km/h
and the presence of buildings block the propagation of wireless signals. On the other
hand, the interurban area includes roads and highways that extend northwest, where
vehicles travel at speeds of up to 120 km/h, and where there are no buildings blocking
radio signals (and therefore the vehicles can transmit data to distances close to the
maximum theoretical communication range). The rectangle shown in Figureshows
the destination area in the city (i.e., the city area near the meeting place), whose size is
0.25 km?. Some parameters of the simulations considered in the experiments carried
out are shown in Table n while the rest of parameters (such as the hop strategy
used by the mobile agent, the wireless communication range, the mobility model, the
mobile agent size, or its hop delay) have the same values defined in Table A few
parameters deserve further explanations:

e The percentage of vehicles with relevant data is set to 50% by default, which
means that only half of the vehicles within the area are really relevant to collect
data for the query processing. This percentage allows to simulate cases where,
for example, some vehicles do not participate in the data sharing and therefore
store no information about available parking spaces.

e The percentage of available parking spaces per vehicle is the percentage of avail-
able parking places within the area that are stored in a vehicle within that area.
With a perfect push-based data sharing approach, the value of this parameter
could reach 100%. However, due to a number of reasons it is not reasonable
to assume that all the vehicles will have all the information about the available
parking spaces in the vicinity. For that reason, we have decided to choose by
default a value of 10% for this parameter, which is quite pessimistic. This means
that, for example, if there are 50 available parking spaces, each vehicle with data
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Figure 7.1: Scenario map used in the use case simulation
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would have information about 5 of those available parking places. The smaller
this value, the higher the number of vehicles that the mobile agent will need to
visit in order to collect information about a specific number of parking places
required. Independently of the specific value of this parameter, as the value of
the parameter percentage of vehicles with relevant data is smaller than 100%,

some vehicles will store no data about parking spaces.

e The data processing delay represents the amount of time needed by the agent
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Parameter Default value

. X 4 kmx 4 km (urban area)
Map dimensions .
20 km (interurban area)

Map scenario Zaragoza (Spain) and its surroundings
Size of the destination area 0.25 km?
Distance to the destination area 15000 m

Medium density:

Density of vehicles 50 vehicles / km? (urban area)
10 vehicles / km (interurban area)
50 km/h £+ 10% (urban area)
120 km/h £ 15% (interurban area)

Speed of the vehicles

Percentage of vehicles with relevant data 50%
Total number of parking spaces in the destination area 220 parking spaces
Percentage of available parking spaces per vehicle 10%
Data processing delay 55
Number of available parking spaces to retrieve 10 available parking spaces
Parking occupancy 90%
Data collection timeout 4 minutes
Warning timeout 60% of the data collection timeout

Table 7.1: Use case simulation parameters

to extract the relevant data from the vehicle that it is visiting.

e The warning timeout represents an amount of time (over the total data collection
time available, represented by the data collecting timeout parameter) that, if
exceeded, will lead the agent to enlarge the search area (100 meters in each
direction) to try to find available parking spaces more quickly. This represents
a classical parking search behavior: the driver starts looking for a parking space
as close to the destination area as possible, but he/she will search further also
if there are difficulties to find parking there.

With these settings, we perform different experiments to test the influence that
a number of parameters have on the retrieval of information about available parking
spaces. As a result, we obtain some metrics that help to evaluate the performance of
the process, such as the total query processing time, the number of hops performed
by the mobile agent, the amount of available parking places found, or the effective
speed of the agent.

7.2 Influence of the Interurban Vehicle Density

In this experiment, we evaluate how the retrieval of information about available park-
ing spaces is influenced by the density of vehicles in the interurban area. Interurban
areas are characterized by long roads (lengths of tens of kilometers), a constant num-
ber of lanes, a small number of intersections with other roads, and the lack of buildings
that block wireless communication signals. Due to the long length of these roads, the
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most suitable traffic density measurement unit is the number of vehicles per linear
kilometer, or simply the vehicles per kilometer. In this experiment, we vary this value
from 2 vehicles/km (very low density) up to 20 vehicles/km (high density).

On the one hand, Figure shows how the time required to obtain the desired
information about available parking spaces decreases as the density of vehicles in
the interurban area increases. Besides, the figure shows that the delays are quite
reasonable for this type of query. On the other hand, Figure [7.3] shows the total
number of hops performed by the agent. This value is the number of times that the
mobile agent moves successfully from one vehicle to another, and it can be used as
a measure of the bandwidth required by the query processing, since the completion
of such hops requires that the code and data of the agent must be transferred using
the wireless connection. When the density of vehicles increases, the number of hops
also increases, due to the fact that the mobile agent is constantly looking for more
promising vehicles to try to reach sooner the destination area, and the agent will move
immediately to any of them as soon as it enters within its communication range; more-
over, when the agent transports itself through the wireless medium (transportation
via communications) it can travel faster than if it just lets itself be transported by a
car (transportation via locomotion). The growth in the number of hops, however, is
not very steep and it stabilizes for about 8 to 10 vehicles per kilometer.
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Figure 7.2: Searching for parking spaces: time to solve the query according to the density
of vehicles

In Figure[7.4] we show the effective speed of the mobile agent when it solves the
query about available parking places. The speed grows with the density of vehicles in
the interurban area from around 100 km/h to slightly more than 100 km/h when the
density is around 14 vehicles/km, remaining more or less constant from that value.
Note that the vehicles travel physically at no more than 130 km/h, and therefore for
densities greater than 4 vehicles/km the mobile agent travels faster than the vehicles
it uses for moving, thanks to the use of wireless ad hoc connections.

Figure [7.5] shows the number of vehicles whose data have been processed by the
mobile agent looking for information about available parking spaces. Note that this
number refers to the number of vehicles that have data about parking places, since
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Figure 7.3: Searching for parking spaces: number of hops performed by the agent according
to the density of vehicles
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Figure 7.4: Searching for parking spaces: effective speed of the agent according to the
density of vehicles

there also exist other irrelevant vehicles where the agent can move but that do not
contain data about parking spots (the amount of relevant vehicles set for these ex-
periments is 50%, as shown in Table . Since, in this experiment, we vary the
interurban density of vehicles and the query is solved in the phase of data collection,
that takes place in the urban area, the interurban density has no influence on the num-
ber of vehicles processed by the mobile agent, and therefore it remains approximately
constant in the experiments.

7.3 Influence of the Occupancy of Parking Spaces

In this experiment, we vary the occupancy rate of the parking spaces (i.e., the ratio
of available parking places in the scenario), to evaluate its impact on the performance
of our proposal. For this, we vary the parking occupancy from 0% (all the parking
places are available) to 100% (there is no available parking space). Note that in the
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Figure 7.5: Searching for parking spaces: number of vehicles with data queried by the
agent according to the density of vehicles

latter case the mobile agent will always fail in accomplishing its task.

Figure [7.6] shows the total time needed to solve the query searching for parking
spaces. We can see that the rate of parking occupancy has little impact on the
total time. The reason is that the mobile agent spends most of the time traveling to
the destination area and returning to the originator vehicle, whereas the actual data
collection process is performed quite fast. The average time spent in the different
phases of the query processing is shown in Table The first phase (mobile agent
traveling to the destination area) takes always the same time independently of the
occupancy of the parking spaces, since the ratio of available parking spaces does not
have any influence on it. In the second phase (mobile agent collecting data), the time
invested increases with the occupancy rate, since the agent will need to visit more
vehicles to find information about the required number of available parking spaces.
Finally, the time invested in the fourth phase (mobile agent traveling back to the
origin vehicle that submitted the query) decreases as the occupancy of parking spaces
increases; this may seem surprising, but there is an explanation: whereas the mobile
agent is collecting data in the urban area, the origin vehicle is also traveling towards
that area, and therefore the distance that the agent will need to traverse to reach the
vehicle decreases along time.

Parking occupancy 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Phase 1 time (s) 160 160 160 160 160 160 160 160 160 160 160
Phase 2 time (s) 11 11 11 11 11 11 22 22 31 77 7
Phase 3 time (s) 0 0 0 0 0 0 2 2 2 2 2
Phase 4 time (s) 123 123 121 121 120 122 120 122 110 108 108
Total time (s) 294 294 292 292 291 293 304 306 303 347 347

Table 7.2: Searching for parking spaces: average time per phase in the query processing
for the use case

Figure shows the percentage of the number of parking spaces requested by
the user that are effectively collected and returned to the driver by the mobile agent.
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Figure 7.6: Searching for parking spaces: time to solve the query according to the parking
occupancy

For all the parking occupancy rates, the result is 100% (i.e., the information about
all the spaces requested was found by the agent), with the exception of the case
where there are no available parking spaces. In that case, the result is 0%, since it
is impossible for the agent to find any parking spot available. As in the experiment
we increase the occupancy rate by 10% increments, the second worse case scenario
evaluated corresponds to a situation where 90% of the parking spaces are occupied,
but with this occupancy rate there are still enough available parking spaces within
the destination area (specifically, 22 available parking spaces) to satisfy the query.
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Figure 7.7: Searching for parking spaces: percentage of collected data according to the
parking occupancy

Figure [7.§] shows the number of vehicles whose data have been processed by the
mobile agent. This number remains quite small until the parking occupancy increases
considerably. Besides, when there is no available parking space (occupancy rate of
100%), the number of processed vehicles rises abruptly: this is due to the futile efforts
performed by the mobile agent to try to solve the query, looking for non-existing data.
In such a case, the timeout established for data collection is reached and the agent
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returns to its query originator vehicle with an empty response, which on the other
hand might be a useful answer for the user (i.e., the area is packed, so it will be very
difficult to park there!).
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Figure 7.8: Searching for parking spaces: number of vehicles with data queried by the
agent according to the parking occupancy

7.4 Influence of the Number of Requested Available
Parking Spaces

In this experiment, we vary the number of available parking spaces that the driver
wants to retrieve to have a good overview of the availability of parking spaces. The
parking occupancy ratio is set to 90%, as this is a quite challenging scenario. There-
fore, the total number of available parking spots in the destination area is initially
22, and thus we vary the requested number of parking spaces to retrieve from 2 to
22; it should be noted that if the agent cannot find enough available parking spaces
within the destination area (e.g., because the requested number of parking spaces is
higher than 22), then it would enlarge its searching area, according to the parameter
warning timeout (explained in Section [7.1)). Figure [7.9]shows the total time needed to
solve the query searching for parking spaces. As expected, the higher the number of
parking spots to collect, the higher the time needed by the mobile agent to complete
the process. However, the query processing times are not excessive in any case.

Figure [7.10] shows the total number of hops performed by the agent. When the
number of requested available parking spaces increases, the number of hops also in-
creases, since the mobile agent needs to visit more vehicles (as each vehicle has infor-
mation about a limited number of places). Consistently with this result, Figure
shows the number of relevant vehicles that the mobile agent needs to visit to get the
requested data. Unlike in previous experiments, in this case the number of processed
vehicles grows, since the mobile agent needs to visit an increasing number of them to
find the information they have about the existing available parking spots.
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Figure 7.9: Searching for parking spaces: time to solve the query according to the number
of requested parking spaces
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Figure 7.10: Searching for parking spaces: number of hops performed by the agent accord-
ing to the number of requested parking spaces
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Finally, the percentage of collected data was 100% in all the cases, with the ex-
ception of the case of 22 parking spaces, where a 98% of the requested parking spaces
(i.e., around 21.5 places, on average) were found. Despite the efforts performed by the
mobile agent, that enlarges the searching area to find parking places that are located
further when the warning timeout is reached, in some cases it is not possible to find
the requested number of available parking spaces within the data collection timeout
established, due to the randomness of the information available in the vehicles as well
as the high parking occupancy.

7.5 Conclusions of the Evaluation for the Use Case

The experimental results presented show the performance of the proposal in different
conditions and its feasibility:

e The mobile agent behaves well in both types of roads and is able to travel long
distances in a relatively short time.

e The agent spends most of the time in traveling from the origin vehicle to the
destination area and in returning to the origin vehicle once the required data
have been collected, whereas the process of searching data inside the interest
area takes comparatively less time.

e The whole process is completed with enough time for the mobile agent to return
to the origin vehicle with the result before the vehicle reaches the destination
area. Thus, the driver can retrieve the desired information with enough time in
advance.

e A higher density of vehicles leads to an improvement of the performance of
the query processing. Similarly, the query processing is favored when there is a
higher number of available parking spaces stored by the vehicles, a lower parking
occupancy rate, or a lower number of places requested by the driver.

Up to the authors’ knowledge, existing proposals to provide information about
available parking spaces are push-based, and therefore they cannot be used in scenar-
ios like the one studied in this use case, where the driver needs to retrieve information
about parking spaces in areas that are not nearby. Moreover, the use of mobile agents
to search available parking spaces is also new. Finally, the experimental evaluation of
approaches for VANETS usually focus either on urban scenarios or highways, whereas
we have considered a mixed scenario that includes both a urban area and an inter-
urban region.

7.6 Summary of the Chapter

In this chapter, we presented a use case that uses the technology of mobile agents
to find available parking places in a city area by looking in situ for that information
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among the data collected individually by the vehicles that circulate in that area. The
novelty of this study resides in the use of a pull-based approach to query data about
parking spaces in areas that are not located near the driver who submits the query
(thus allowing new interesting use cases), the use of mobile agents in an on-street
parking space searching scenario, and the experimental evaluation with real maps
combining both city areas and interurban areas.

Upon this scenario, a number of experiments were performed to test the solution
and analyze the influence of parameters such as the vehicle density, the occupancy
of parking places, and the number of places requested by the user. As a result, we
obtained some metrics about the invested time, the number of parking spaces found,
or the bandwidth usage needed to complete the query searching for the requested
data. With all these results, we concluded that the use of mobile agents for retrieving
data about available parking spaces is an adequate choice that performs well in a
mixed urban/inter-urban scenario.



Chapter 8

Related Work

In the previous chapters, we described the main features of our approach for data
management in vehicular networks using mobile agents. In this chapter, we present
some works about topics related to our proposal. In Section [8.1] we first review works
about the usage of mobile agent technology in vehicular networks. In Section [8.2]
we present works about processing queries in VANETSs. In Section B3] we focus on
spatial crowdsourcing techniques and crowdsensing. In Section[8:4] we briefly describe
some works about monitoring and the use of vehicular networks as mobile networks of
sensors. Finally, in Section[8.5] we review works related to searching available parking
spaces, as this is the problem tackled in the use case scenario presented in Chapter [7]

8.1 Mobile Agents in VANET'Ss

As described in Section [2.5] mobile agents can provide significant benefits in dis-
tributed and mobile environments, thanks to their ability to move from one execution
environment (in a computer or device) to another in an autonomous way by means
of wireless communications. Along with their flexibility, that allows them to be pro-
grammed to perform any task, this makes them an adequate option for the develop-
ment of applications in an environment such as a VANET, which is a highly-dynamic
mobile and distributed system. In the following, we present some works related to
the use of mobile agents in the context of vehicular networks.

In [dFHC™11], mobile agents travel to areas where different environmental sensors
are used to collect data using the vehicles in a taxi fleet. This is probably the most
similar work to ours, concerning the use of mobile agents in VANETS, but it focuses
on data from environmental sensors and does not cover query processing. Besides,
the experimental evaluation is not as extensive and realistic as ours, since the authors
do not use real city maps (instead, they use grid-like maps). That work is in the same
spirit as a previous work that we had presented in [UIDM09]. We later presented
also a methodological approach and outlined our research plans to extend that initial
work to go beyond environmental monitoring and tackle the processing of queries in
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vehicular networks [UIT3], and in subsequent works we fully developed our proposal.

In [KDI0], mobile agent technology is used in VANETS to manage the Quality of
Service (QoS) in the network. Specifically, an architecture involving stationary and
mobile agents, both in the moving vehicles and in the fixed roadside equipment, is
proposed. The agents constantly search ad hoc paths to send messages, according
to certain constraints in terms of bandwidth, latency, and other parameters. In this
way, the messages can be delivered more efficiently to their destination (the drivers in
the VANET), with the goal of improving the security and flow of the road traffic. In
our proposal, mobile agents also take routing decisions to transport data and queries
through the vehicular network, but they perform these tasks within the scope of a
whole query processing framework. Besides, no experimental evaluation is presented
in [KD10].

In [RNBIO7], a system called TJam is used to predict traffic jams in certain areas
of highways using short-range vehicle-to-vehicle communications. This system is pre-
sented as a proof-of-concept to test a framework built to provide migratory services
in ad hoc networks. These migratory services can be seen as mobile agents (i.e., code
that moves from one execution place to another to offer a service), and therefore that
work shows how useful they can be in a vehicular network scenario.

In [VS1I], the authors propose a system that uses both mobile and static agents to
find parking spaces. The static agents are called URAs (Unique Routing Agents) and
they are hosted in fixed network nodes near intersections and parking lots. The URAs
periodically collect routing and service availability information and, when a vehicle
looks for a parking space, it launches a mobile agent, called a Discovery Agent, to the
nearest URA node. Then, the URA provides the Discovery Agent with information
about nearby parking spaces, and it guides the driver towards them. This work focuses
on the specific use case of searching parking spaces, rather than on distributed data
management in vehicular networks to support different types of queries. Besides, as
opposed to our proposal for the parking space case study described in Chapter [7]
this approach relies on the availability of fixed nodes that index data about parking
spaces. Finally, the URAs provide data about nearby parking spaces, and therefore
this solution cannot be applied in the case of a driver approaching a city and who
requires information about the availability of parking spaces in the city center well in
advance.

Dynamic clustering is a technique to form groups of vehicles on the fly, which
is a challenging problem due to the rapidly-changing network topology and frequent
network disconnections of vehicles. In [KMI2], the authors propose a multiagent-
driven dynamic clustering scheme for VANETS, by considering the vehicle’s speed,
direction, connectivity degree to other vehicles, and mobility pattern. The scheme
comprises heavyweight static agents and lightweight mobile agents. The authors
evaluate the performance and effectiveness of the proposed scheme by comparing it
with an existing clustering scheme. According to the experimental results presented,
it performs better in terms of cluster formation time, cluster member selection time,
cluster head selection time, and control overheads. Instead of query processing issues,
this work tackles the problem of vehicle clustering, which can be useful, for example, as
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part of a contention-based forwarding approach for data dissemination in a vehicular
network. For example, in [VNI5] a specific vehicle within the cluster (the cluster
head) is in charge of forwarding messages.

In [HZS™15|, S-Aframe is presented, which is a framework for the development
of vehicular social networks which uses mobile agents as the underlying technology.
The framework consists of different layers, and mobile agents are used to provide
the needed flexibility to adapt the system to the changing conditions of a mobile
environment, including network connectivity and the contexts of the users of the
vehicular social network. Although this work also uses mobile agents in a vehicular
network, it focuses on a problem that is out of the scope of this thesis.

Finally, in [CCP09], mobile agents are also used for a vehicle-related topic. How-
ever, that work is focused on urban traffic management using a fixed infrastructure,
instead of considering the general case of mobile agents that hop among vehicles using
ad hoc network connections.

Overall, as described in [IDTL15|, the use of mobile agents in Intelligent Trans-
portation Systems (ITS) and vehicular networks has been quite unexplored so far.
This claim can be extended to standard agents in general, according to [DIACRH14].
With this thesis, we have contributed to cover this research gap.

8.2 Query Processing in VANETSs

As described in Section [2.6] query processing in vehicular networks involves the re-
trieval of data that meet the required conditions and that are distributively stored
among the vehicles that travel through the roads of an area. The data can be trans-
mitted using direct P2P connections or cellular phone-based communications, such as
3G/4G. In the first case, a temporary ad hoc network is established, which has the ad-
vantage of not requiring a previously-existing communication infrastructure, but has
the drawback of its limited range and duration, which makes the transmission of data
to other vehicles beyond that wireless communication range difficult. On the other
hand, communications using 3G /4G are much easier, but they need the existence of
a cellular communication infrastructure and the payment of a fee to use it.

The processing of queries in a vehicular network is usually performed following one
out of two possible approaches. In push-based approaches, the data are transmitted
by their originators to their nearby neighbors, who can retransmit them again (or
not), and in this way the data reach distant places, with the hope that they will
arrive at some receiver interested in them; then, the query processing is performed
locally by each vehicle, by executing the query over the local knowledge base or local
database that stores the data received opportunistically from other vehicles. On the
other hand, with pull-based approaches the users search actively for the data they are
interested in, by disseminating the query through the vehicular network and, after
that, retrieving the answer using different techniques.

Most research on query processing in vehicular networks has focused on push-based
approaches (e.g., [CDI11]) and only a few works consider pull-based approaches in-
stead (e.g., [DMIHT11]). The main reason is higher simplicity: push-based approaches
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avoid some challenges that appear when a query is disseminated in a VANET and
the results need to be collected and communicated to the query originator vehicle.
For example, in order to facilitate the return of a query answer to the query origi-
nator vehicle, the usage of mailboxes is proposed in [DMIHII]. Mailboxes are static
locations where the data of the query answers can be stored (e.g., roadside units), in
such a way that the problem of routing a query answer to a moving query originator
disappears; instead, when the driver needs to retrieve an answer, he/she will need to
drive towards the mailbox assigned to his/her query or contact it remotely. Another
option is the application of mobile agents for query processing in vehicular networks,
but it has not been studied in depth, except for the work performed in this thesis. In
the following, we present some existing works for the processing of queries in vehicular
networks.

In [WXC09], a system called TrafficMedia is proposed for querying multimedia
clips recorded by vehicles, which store visual and audio information about the traf-
fic conditions. In that system, the vehicles exchange information directly using P2P
communications (there is no central node for query processing). However, not only
short-range communications such as Wi-Fi, but also cellular communications, are
considered. The problem of routing the answer of a query to a mobile query orig-
inator is not addressed explicitly, although the authors of that paper are probably
assuming that the cellular network is used to communicate the answer. Of course,
using a cellular network it is possible to return the results to the query originator
more efficiently.

In [LLPGI0D], the authors propose a system called FleaNet, which is a flea market
where sell and buy requests are made by vehicles, pedestrians, and also passengers of
public transportation. In that system, the messages are disseminated by sending them
only to neighbors that are at k-hop distance, so the dissemination depends heavily on
the mobility and density of the nodes. It does not include the possibility of hopping
from one node to another to reach other specific places faster, as in our proposal.

In [TWW14], an application scenario similar to ours is presented, although it does
not take advantage of mobile agents. In the proposed system, queries are launched on
a vehicular network and are routed to a destination area, where the query is solved
using data from sensors present in that area. Then, the response is routed back to
the query originator, which will usually be a moving vehicle. A method to locate
the mobile query originator is proposed, based on what the authors call breadcrumbs.
These are small pieces of information, stored at certain nodes along the route followed
by the originator, that will help to track back the position of the query originator
when the response has to be returned.

Other interesting works are [MSNO5, [ZZC09, XVWO09]. PeopleNet [MSNOF] is
an infrastructure-based proposal for information exchange in a mobile environment.
Roadcast [ZZCO9] is a content sharing scheme for VANETS, such that a vehicle can
only query other vehicles that it encounters on the way, and the scheme proposed tries
to return the most popular content relevant to the query. In [XVWQ9], a combination
of pull and push is considered for in-network query processing in mobile P2P databases.
In these works, the queries and results are communicated only to the neighboring
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vehicles, and therefore the query/result routing problem does not appear (the query
originator is always at one-hop distance). Besides, these proposals are not able to
process some kinds of queries, since the query originator must move near the nodes
which store the information needed.

A survey collecting different methods for routing data in vehicular networks is
presented in [BBGI3|. This is a very important and also challenging issue in our
application scenario, since the success of the query processing depends entirely on
how efficiently the query is routed to the interest area and the results returned to the
originator. There exist different routing algorithms that can be used depending on a
number of scenario conditions, such as the presence or not of roadside units, if these
roadside units are static or mobile, and if GPRS-like communications are available or
only short-range communications (e.g., IEEE 802.11) are allowed.

As opposed to these approaches, in our proposal the routing decisions are encap-
sulated by mobile agents, which may apply different hop strategies based on the data
they receive from the environment.

8.3 Spatial Crowdsourcing and Crowdsensing

The topic of mobile crowdsensing (also called collaborative sensing, mobile sensing, or
participatory sensing) has attracted significant research attention (e.g., see [GYL11l,
STZ12, |CCC™14, ICFZ ™14, [TGS14, GWY ™15, [TCS17]). One common problem of
spatial crowdsourcing is known as the Mazimum Task Assignment (MTA) problem,
which focuses on how to allocate the available workers (in our context, collaborating
vehicles) to spatial tasks, to maximize the global performance. There exist many
proposals to tackle this problem (e.g., see [TSD™16, [TSKT5, [CLC ™15, nHCT6, [To16}
WLLI7]) under different circumstances and with different constraints. However, most
of them need a central server, which centralizes all the tasks that need to be assigned
and which constantly receives the updated locations of the potential collaborators, in
order to allocate them the most appropriate task according to several factors (e.g.,
their positions, travel times to the destinations, etc.). These solutions have the advan-
tage of optimizing the performance of the crowdsourcing process, but they also have
some drawbacks, such as privacy concerns (the central server needs to know the posi-
tions of all the collaborators) and the need of direct communications with the central
server, which can have an economic cost (in case of using 3G /4G technologies) or may
need a previously-existing infrastructure (e.g., cellular phone towers or Wi-Fi access
points). In our approach, we consider a pure ad hoc solution where a mobile agent
directly asks for help to the neighbor vehicles. Thus, we avoid the disadvantages of
the centralized approaches. However, the assignments performed in our approach are
not necessarily globally optimal, as they are based on local decisions taken without
having a global vision of the scenario.

In [WYWT™18|, the authors propose a method for recruiting collaborators for
crowdsensing tasks, by using semi-Markov models to predict the trajectory that the
potential collaborators will follow and to estimate if recruiting them may be interest-
ing or not according to the existing sensing needs. In our approach, there is no explicit
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recruiting process based on the trajectories of the vehicles, which we assume that can
be unknown (e.g., due to privacy reasons): only vehicles in the neighborhood (within
the communication range) of the vehicle carrying the mobile agent can participate in
the spatial crowdsourcing, and they may accept or not a collaboration request when
the agent asks for their help. Nevertheless, the proposal in [WYWT18] could be used
as a complementary technique if access to those trajectories is enabled.

In [CCC™14|, the authors present a sensing engine called MoST (Mobile Sensing
Technology), that can be used as a framework for the development of location-aware
applications for Android mobile phones. The data read by the mobile phone sensors
are transferred to a central server by using the connection available on the phone (Wi-
Fi, 3G/4G, etc.) and processed in the server. This work is not related specifically to
VANETS, but it illustrates the interest of sensing and crowdsourcing applications.

In [AHTIS], the authors tackle the problem of recruiting vehicles for public sens-
ing in such a way that the selected vehicles cover an area as large as possible at the
lowest cost. To achieve this, they present a reputation-aware, trajectory-based recruit-
ment (RTR) framework that handles the recruitment of vehicles for public sensing.
The framework considers the spatiotemporal availability of participants along with
their reputation to select vehicles that should achieve the desired coverage of an area
of interest with a cost within the budget limitations. The framework consists of
a reputation assessment scheme, a pricing model, and a selection scheme, that are
combined to accomplish the objective of maximizing the coverage with the minimum
cost. The authors propose greedy heuristic solutions targeting the selection problem
in real-time. The RTR framework generalizes the basic selection problem to handle
some practical scenarios, including vehicles that leave the area that needs to be mon-
itored, and varying redundancy requirements. An extensive performance evaluation
shows that the proposed greedy heuristics are able to achieve results close to those
previously obtained by optimal benchmarks under different scenarios, and that the
framework succeeds in achieving high levels of coverage even when the vehicles do
not stick to their announced trajectories. In our spatial crowdsourcing approach, a
mobile agent takes decisions locally based on information regarding the neighbor vehi-
cles, and therefore the collaboration takes place opportunistically rather than through
an explicit recruitment process.

It might also be possible to consider more sophisticated crowdsourcing strategies
with the goal to minimize the social cost while at the same time ensuring a minimum
compensation for the driver. For example, in the context of ride-sharing for passen-
gers, |[TLZ™18| provides a method to select a driver to maximize the overall shared
route percentage (SRP) subject to a minimum required value of this parameter for
each driver (exzpectation rate of the driver). This technique could be applied to lo-
cate vehicles that, even if they are not at that moment within communication range,
could pick up the mobile agent and carry it to the intended destination. However,
applying this method in a vehicular ad hoc network, where there is no global view of
the environment and the vehicles are usually constantly moving, is challenging.

Other works related to crowdsensing, but further from the specifics of spatial
crowdsourcing in this thesis, are [FBGIT7, (QCJ"18]. In [FBGIT], the authors pro-
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pose GENIUS-C, a framework to support the development of spatial crowdsourcing
platforms. It is based on a generic architecture to reduce the gap between academy
and industry, and is meant to decrease the development cost and effort and increase
the overall quality of spatial crowdsourcing platforms. A case study is created using
GENIUS-C to demonstrate its benefits and how it can be used in the development
of spatial crowdsourcing platforms. In [QCJT 18|, the authors describe an algorithm
to detect the accuracy of data that come from crowdsensing sources such as sen-
sors aboard vehicles (car sensors), sensors built into mobile devices (phone sensors)
carried by one or more occupants, or both. They demonstrate, through evaluation,
that their detection algorithms can achieve high accuracy for some tasks related to
the driver’s behavior and the environment (e.g., higher than 90% for lane change
determination) and that crowdsensing plays an indispensable role in improving the
detection performance (e.g., improving recall by 35% for lane change determination
on curves).

Besides, although it does not specifically propose a crowdsensing method, another
relevant related work to mention is [YLOJI12|, where the authors describe a hierar-
chical Bayesian non-parametric approach for efficient and scalable route prediction,
that can harness the wisdom of crowds of route planning agents by aggregating their
sequential routes of possibly-varying lengths and origin-destination pairs. This ap-
proach has the advantages that it does not require a Markov assumption and that it
generalizes well with sparse data, thus resulting in an improved prediction accuracy,
as the authors demonstrate empirically using real-world data about trajectories of
taxis.

Finally, regarding the use of incentives to encourage cooperation, OPPay [SQM17]
is a payment system for opportunistic data services (such as Wi-Fi sharing, content-
based file sharing, and opportunistic networking), which implements a micropayment
communication protocol for mobile devices to perform data transactions and make
payments using bitcoins. In our approach, we propose the use of virtual money to pay
collaborating vehicles, but the specific details about how those payments can be made
is out of the scope of this paper. OPPay is intended to operate using incremental
payments that are resilient to interruptions in the communications, and therefore
it may be of interest in the context of vehicular networks. Other economic and
incentive models have been proposed for mobile P2P networks (e.g., [WXS04| [YT.14])
and collaborative sensing in general (e.g., [JVLRI5, I GLW ™15, [ZYS™16, DWSHIT]).

8.4 Monitoring Tasks with Vehicles

The monitoring of certain parameters (e.g., polluting gases and particles, pollen, or
solar radiation) has been performed traditionally using fixed sensing stations, that
have a number disadvantages, such as their lack of flexibility to perform a different
monitoring task (e.g., monitor a different area), and the requirement of a certain
infrastructure to provide the energy and communication support required, which also
make them costly to build and maintain. As an alternative, vehicles can be used as
mobile monitoring platforms, since they can be equipped with the necessary sensors
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and can travel to any place (as long as a nearby road exists) to monitor the required
parameters. The sensors installed can be replaced by others if it is required to monitor
different parameters, and the sensors do not need a dedicated power or communication
infrastructure, since they can use the power generated by the vehicle’s engine and the
wireless communication devices of the on-board computer. For these reasons, the use
of vehicles for performing monitoring tasks have attracted the attention of the research
community, and the term vehicular sensor network has emerged [LG10, Vacl5]. In
the following, we present some works related to this topic.

In [LWZMT5], the authors assume the existence of a vehicular network in which
the vehicles carry sensors, and they pose the problem of determining how much infor-
mation should be received from the sensors and where the vehicles should be located
to achieve an optimum monitoring process. If the sensors send information very fre-
quently, then their readings would likely be similar, which implies that bandwidth
would be wasted. On the other hand, if the sensors send a little amount of infor-
mation, then the measurements may be not accurate enough. That work is centered
on the mathematical aspect of such a method. It is considered that sensors send
their data to a central server by using cellular connections instead of ad hoc com-
munications. As stated before, and also in studies such as [IDTLI5], this has some
disadvantages, such as the existence of economic cost for the user.

In [WJMI3], the authors use information about the traffic status to compute
the best route to recharging points for electrical vehicles, taking also into account
the amount of energy available on board. The traffic status is received from the
surrounding cars, that send information about their positions and speeds to estimate
if the traffic is light or dense. Ad hoc communications and a simple flooding model
for data dissemination are used. However, the proposal focuses only on sharing traffic
data. In our proposal, the data sent by the vehicles can be of any type (not only the
speeds and positions of vehicles) and the sensed data are carried by mobile agents,
which can behave more efficiently than flooding algorithms that continuously send
all the data to all the neighbors. So, a mobile agent can encapsulate any desired
dissemination approach and even commute from one approach to another depending
on context conditions (e.g., the density of vehicles in the area). With the approach
presented in this thesis, only a limited amount of data is sent, every time a mobile
agent hops from one vehicle to another, instead of sending multiple copies of the data
to multiple receivers, as it occurs with flooding algorithms. Besides, the proposal
in [WJM13] does not exploit any spatial crowdsourcing approach.

A working prototype is presented in [SCGa™15] that consists of a monitoring
VANET where the vehicles are equipped with sensors and wireless communication
devices that constantly look for Wi-Fi access points to opportunistically send the
collected data to a central server. By contrast, in our approach the data are stored
in the vehicles instead of being all sent to a central server, and they are processed
distributively by mobile agents looking for the most relevant data to perform the
monitoring task. The system presented in [SCGa™15] was deployed in a real city and
the vehicles participating in the VANET belonged to the local authority, instead of
being open to any citizen, which has both advantages and drawbacks.
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In [CDMPT16], the authors propose a method for route planning in a city by using
information collected opportunistically by the moving vehicles. The system operates
in a decentralized way and it exploits a technique based on the ant optimization
problem, which leads to routes that are not strictly optimal (as opposed to classic
shortest-path search algorithms) but good enough to both reach the intended destina-
tion and distribute the traffic flow along different streets so that they do not become
congested. While the approach is interesting, its application is limited to the problem
of route planning and its performance in low-traffic density scenarios is not clear.

In [GPZA13], a smart parking system for locating available parking slots is pro-
posed. In this system, end users are not the only subjects that collaborate by sharing
information. Additionally, both the parking controllers and the city administrators
also participate by providing information in a fast and integrated way. However, the
system operates in a centralized way, and a mobile 3G/4G connection is required to
operate it.

In [ZMLT18], the authors present a unified delay analysis framework for oppor-
tunistic data collection, that integrates the sensing and transmission delays, that are
usually analyzed separately. A third delay metric (that they call data collection delay)
is added to the analysis that can be performed by the framework, and thus the QoS
of opportunistic data collection applications can be measured more comprehensively.
The theoretical analysis of the framework is validated by the authors by performing
a number of simulations. This work is complementary to ours, as it focuses on the
analysis of performance metrics.

Also related to delay aspects, in [LCXT17], the authors tackle the problem of the
sensor’s reading delay, and they propose a solution to mitigate it. Certain types of
sensors (for example, some gas sensors) take a relatively long time (about 20 to 50
seconds) to reach a stable state and obtain a valid sample measurement. If these
sensors are carried by moving vehicles, they may have moved several hundred meters
in that lapse, thus obtaining data from a place which is distant from the intended
target. If this effect is not taken into account, the measured parameters may be
treated incorrectly and they could lead to wrong conclusions. To avoid this, the
authors propose a method to calibrate the sensor readings by using a filter on the raw
data provided by the sensors, which also has as a benefit the reduction of the time
needed to obtain valid sensors readings.

Finally, a recent work [WZZ"16| analyzes crowdsourcing in ITS, but it does not
focus on vehicular networks nor spatial crowdsourcing. As another example, [ZLJ"17]
proposes a privacy-preserving vehicular urban sensing platform; however, it relies on
a cellular network, rather than using ad hoc communications, and focuses on privacy
issues and not on the use of spatial crowdsourcing.

8.5 Searching for Parking Spaces

Searching for an available parking space is a time-consuming task for drivers and it
also has a high environmental cost due to the fuel that is wasted. Therefore, as a
representative case study for the work performed in this thesis, in Chapter |7} we have
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chosen a scenario where a driver asks in advance for information about one or more
available parking spaces in a city area. The driver receives a list of such spaces that
he/she can try to reach, instead of having to look around searching for them, and
thus potentially saving time and fuel. It is likely that some of the suggested parking
spaces are occupied by other drivers while the user reaches them, but although the
proposed system is certainly not perfect, it can still be helpful to their users.

Helping drivers to find parking spaces is a topic that has received considerable
research attention. So, smart parking systems can be designed and deployed to provide
information about parking spaces in specific areas (e.g., see [KcSHI7|] for a recent
review). However, these infrastructure-based solutions are quite expensive and not
available globally. On the contrary, it would be interesting to have solutions that
are flexible enough to obtain information about any available on-street parking. This
motivated the development of proposals that exploit data dissemination in VANETS,
such as [CGMO0G, [DILCT3]. Information about the availability of parking spaces can
be quite volatile, and therefore some proposals try to take this into account. For
example, the work presented in [CGMO06] emphasizes the interest of guiding drivers
towards areas where the probability to find an available parking space is high, rather
than towards a specific parking space that may become occupied in a short time.
In [DILC13], an allocation protocol is proposed for sharing information about available
parking space using only ad hoc communications. This proposal guarantees that the
information about a parking space is provided only to a single interested driver,
which avoids competition problems that arise if several drivers receive an alert about
the same parking space. Several approaches related to searching parking spaces are
described in [DILC13, IDTLI5]. In the following, we describe a few related works
related to the problem of finding parking spaces using a VANET; it should be noted
that a couple of related approaches have already been cited previously: [VS11] in
Section [8.1] and [ZMLT1S8] in Section

In [KLW14], the authors address the problem of predicting the number of avail-
able parking spaces in a parking lot. The parking lot is modeled by a continuous-time
Markov chain, and it regularly communicates the number of occupied spaces, capac-
ity, arrival, and parking rate, by disseminating that information through a vehicular
network. The vehicles that receive those data compute the probability of an available
parking space upon arrival, by applying the method proposed by the authors. Thus,
the driver can choose, among different parking lots, the one which will most probably
have more available spaces. This work only considers parking lots, and therefore it
cannot be used for on-street parking spaces.

In [SJLF17], a smart parking system is proposed, in which a network of sensors
monitors the availability of parking spaces in several parking lots, and sends those
data using Narrowband Internet of Things (NB-IoT) modules, which is a new cellular
technology introduced for Low-Power Wide-Area (LPWA) applications. The basic
information management, sensor node surveillance, charge management, task man-
agement and business intelligence modules are implemented in a cloud server. With
an integrated third-party payment platform and parking guide service, the mobile
application developed for drivers is easy and convenient to use. The proposed system
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has been deployed in two cities to improve the utilization of existing parking facilities
effectively. This work uses a communication technology that requires the installation
of an infrastructure, although it is optimized for its use in mobile devices, thanks to
its low power requirements. Besides, it is focused on the management of parking lots
and the payment of their services, which also differs from our proposal, which is more
generic.

In [MDLW18§], the authors propose a parking allocation model where parking lots
are assigned to vehicles. The vehicles are assumed to be connected and can exchange
information with a central management system. The vehicle’s arrival times can be
provided by a GPS device, and the estimated number of available parking slots, at
each future time moment and for each parking lot, is used as an input. The author’s
initial model is static and may be viewed as a variant of the generalized assignment
problem. However, the model can be re-run, and the algorithm can handle dynamic
changes by frequently solving the static model, each time producing an updated solu-
tion. In practice, this approach is feasible only if reliable quality solutions of the static
model are obtained within a few seconds, since the GPS can continuously provide new
input regarding the vehicle’s positioning and its destinations. The authors propose a
0-1 programming model to compute exact solutions, together with a variable neigh-
borhood search-based heuristic to obtain approximate solutions for larger instances.
This work proposes a centralized solution where the vehicles send their updated po-
sitions to a server (using a 3G/4G connection), that allocates specific parking places
from lots to vehicles, and can adapt dynamically to changes in their positions. On
the other hand, our proposed solution is decentralized and exploits the information
exchanged among nearby vehicles. The communications in our solution are P2P and
multi-hop, and the proposal can be used for both parking lots and street parking.

In [AWD™ 18], the authors present a search problem where mobile users are search-
ing for static resources. Each user wants to obtain exactly one resource, and both
users and resources are spatially located on a road network, which also constrains
the movements of the users. This problem can be applied to various transportation
applications; for example, vehicles searching for available parking spaces or taxicabs
searching for clients to pick up. The authors model the problem in different scenar-
ios that vary based on the level of information that is available to the users. They
range from cases where the users have complete information about other users and
resources to those where the users only have access to a fraction of the data about
the availability of resources (i.e., there are uncertain data). The authors also propose
pricing schemes that incentivize vehicles to search for resources in a way that benefits
the system and the environment. The proposed algorithms are tested in a simula-
tion environment that uses real-world data, and they are able to attain up to 40%
of improvements over other approaches. In this work, some communication mecha-
nism (e.g., cellular-based or P2P communications) is assumed to exist between the
users and the information sources, and the work is focused on the resource allocation
problem itself. In our approach, we focus on how to obtain the available parking
information, and we do not tackle the problem of resource allocation among several
users.
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Up to the authors’ knowledge, existing proposals to provide information about
available parking spaces are push-based, and therefore they cannot be used in scenar-
ios like the one presented as a sample case study in this thesis, where the driver needs
to retrieve information about parking spaces in areas that are not nearby. Moreover,
the use of mobile agents to search available on-street parking spaces is also new. Fi-
nally, the experimental evaluation of approaches for VANETS usually focus either on
urban scenarios or highways, whereas in the evaluation of the case study presented in
Section [l we have considered a mixed scenario that includes both an urban area and
an inter-urban region.

8.6 Summary of the Chapter

In this chapter, we presented relevant works in areas related to our data management
approach for VANETSs. Firstly, we reviewed some works that use mobile agents in
vehicular networks for a variety of tasks. Secondly, we described works related to
query processing in VANETS, where information about the traffic or other topics are
transmitted to other users in the area, whether they are traveling in vehicles or not.
Thirdly, we presented some other works about the topic of spatial crowdsourcing and
crowdsensing, where collaborating users help by working on small portions of bigger
tasks related to visiting certain places or taking measures of certain parameters in
those places. After that, we reviewed works where vehicles are used as mobile sensing
platforms to perform monitoring tasks in relatively wide areas. Finally, we described
some works related to the parking space use case scenario.
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Conclusions

In this chapter, we present some conclusions about the work presented in this thesis.
Firstly, we summarize our contributions to the field of data management in vehicular
networks. After that, we evaluate the results obtained. Finally, we point out some
open lines of work for future research.

In this thesis, we studied the use of mobile agents in vehicular networks and we
developed an approach for distributed data management in such type of networks. To
accomplish this, we used mobile agents that can move to any location in the network
by using different techniques, such as different hop strategies or spatial crowdsourcing.
Thanks to their mobility, different actions can be performed on the existing data, such
as their processing, filtering, and/or transportation to other places. As part of this
research work, we performed the following tasks:

e We developed and evaluated experimentally a method that allows a mobile agent
to move anywhere in a VANET by using different hop strategies.

e Motivated by the limitations of existing simulation software regarding the sim-
ulation of mobile agents, we developed our own simulator (MAVSIM) to help
us in the development, evaluation and testing of different data management
strategies involving mobile agents and vehicular networks.

e We developed a complete distributed data management approach based in a
four-step process for monitoring and retrieving data located in a certain geo-
graphic area in the context of a vehicular network. This approach uses mobile
agents for all the main tasks, such as locating, filtering, processing and moving
the data from/to any static or moving location.

e We studied and evaluated the enhancement of this approach by applying spatial
crowdsourcing techniques in such a way that mobile agents use the help of
collaborators to perform their task more efficiently and faster.

As far as we know, no existing work addresses the problem of data management
in vehicular networks in such a generic and flexible way as we propose, since the
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proposed approach can be used for the management of any type of data (e.g., sensor
data, data coming from other vehicles or roadside units, etc.) and in any type of
vehicular scenario (i.e., highways, interurban roads, and different layouts of urban
streets). Moreover, this work is also novel in exploring the possibility of building such
a system using the technology of mobile agents, which eventually proved to be highly
flexible and adequate enough for accomplishing the required tasks.

9.1 Main Contributions

In the following sections, we summarize in more detail the main contributions of this
work.

9.1.1 A Data Management Approach Using Mobile Agents

The proposed data management approach allows the exploitation of the data that
are present in a VANET. These data are usually scattered, unorganized and with
intermittent availability due to the movements of their holders (i.e., the vehicles) and
the limited-range wireless communications. Thanks to the method developed, it is
possible to perform queries about those data, which involves a number of steps:

e Firstly, it is necessary to define what data the users want to query.

e Secondly, it is necessary to go where the data are stored, which in a vehicular
network are the vehicles traveling within an area. For this step, we use mobile
agents, thanks to their abilities to move wirelessly in a changing and dynamic
environment such as a VANET.

e Thirdly, the relevant data must be located and aggregated to compose a com-
plete solution. These data are distributed among the vehicles in the interest
area and, again, mobile agents are used for this task, not only due to their mov-
ing abilities, but also because they are able to process the data stored locally in
the vehicles, filter out the data that are irrelevant to the query, and carry only
the relevant data.

e Finally, once the requested data have been located and gathered, they are re-
turned to the user who initiated the query, by means of mobile agents.

This approach has the advantage of being very generic, and therefore it can be used
for the development of a variety of applications and services on top of it. Regarding
its generality, we could highlight the following features:

e It can use any communication technology, both wireless (e.g., Wi-Fi, Bluetooth,
Ultra Wide-Band, etc.) or wired, as long as it allows the transfer of mobile
agents.

e It can operate in any kind of device with computing and communication ca-
pabilities, as long as it can execute the mobile agent platform. This includes
devices such as smartphones, tablets, laptops, etc.
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e Any data acquired and stored in the vehicles can be queried, whatever their
nature. For example, it could be data from sensor readings (temperature, air
pressure, noise level, etc.), data obtained from the environment by on-board
cameras, data received from other vehicles via Wi-Fi, etc. Moreover, these data
can be stored in the vehicles’ computer devices in either a structured format
(e.g., relational or NOSQL databases) or an unstructured way (e.g., plain files).
If there exists some program or algorithm that can access those data, then the
mobile agent moves to where the data are stored and processes them in situ
without the need of transferring or carrying all of them.

e The data to be queried can be present in any place or area of any size, and
the position, size and even the shape of that area can be static or change as
time passes. For example, the data queried can be limited to the streets of the
city center, to the vehicles traveling along a certain road in a certain direction,
to a circle with a radius of 1 km centered around a truck carrying dangerous
merchandise, etc. Thanks to the intelligence encoded in a mobile agent, it is
able to know at every moment if the place where it is currently located belongs
or not to an arbitrarily-complex interest area.

e Similarly, and regarding the temporal dimension, the queries can refer to data
stored in a certain past date or interval (as long as those data have not been
deleted and are still stored in some nodes of the network), or to present data.
In fact, it could even refer to future data, in which case the mobile agent could
be wandering near the interest area in advance, waiting for a certain date or
hour to start the task of locating, processing and querying the interest data.

e This data management strategy was developed to be effective in a VANET,
which is a very challenging environment, but it could also be used in other
scenarios with moving nodes (such as a MANET) or static nodes (such as a
sensor network), and with different kinds of communications and data. The
principles of the data management approach would be very similar and mobile
agent technology could be used in the same way.

As a conclusion, we believe that, thanks to its generality, the proposed approach
(which is not tied to any specific technology or hardware platform) can be used to
develop interesting applications in the context of data management in mobile and
dynamic scenarios.

9.1.2 Hop Strategies

The transfer of data between two distant places (i.e., farther than what is directly
reachable) or vehicles in a VANET is problematic, since multi-hop protocols are nec-
essary, that use intermediate vehicles as relays to resend the data from one to another
until the destination is reached. Therefore, we proposed the use of mobile agents to
accomplish this task, due to their ability to move wirelessly from one execution device
to another in such a constantly-changing environment.
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However, in order to complete the routing of the transmitted data to the desired
destination, it is necessary that the mobile agents be programmed to follow some
algorithm or heuristic function that helps them to estimate if a certain neighbor vehicle
will bring them closer or farther from their destinations. We call these heuristics hop
strategies and we proposed a number of them that assume the availability of a different
amount of information to help a mobile agent to take a decision.

These hop strategies were extensively evaluated using a simulator, under different
conditions of traffic density, network reliability, geometry of the streets, presence
or absence of signal-blocking obstacles, distance from the origin to the destination,
availability and relevance of data, etc. Additionally, along with the evaluation of every
hop strategy, their working details were fully disclosed and explained, including the
previous necessary knowledge needed by them, that can be as simple as the position
of the vehicles in relation to the destination, or as complex as the intended route to
be followed by the vehicle’s driver.

As a result, for every evaluated hop strategy we obtained measures such as the
total time spent by a mobile agent to finish its travel, the number of hops (and
therefore, the bandwidth usage) needed, the effective speed of the process, etc.

These results, as well as the amount of information needed by each hop strategy,
can help to decide which of them would be the best one to use according to the
conditions and resources available.

9.1.3 Spatial Crowdsourcing

After evaluating the hop strategies previously described, we found that they performed
acceptably well in most conditions. However, there exist some cases where their
behavior could be enhanced.

With the aforementioned hop strategies, the mobile agent can easily reach the
places crossed by frequently traveled roads, since the agent can hop more frequently
to different vehicles and the probability of finding one that travels towards the des-
tination increases. However, it would be more difficult for the mobile agent to visit
places whose roads are not frequently traveled. Note that, in this case, we are not
talking about low vehicle density, but instead about infrequently-traveled roads. In
the first case, a road can have a small number of vehicles crossing it (e.g., one vehicle
per kilometer), but sooner or later it will be traversed. In the second case, a certain
street or a stretch of road can be barely traveled by any vehicle, independently of the
traffic density in the area.

In such cases, it is necessary to use methods different from the basic hop strategies.
Specifically, in order to find a solution to this problem, we explored the use of spatial
crowdsourcing techniques, which use the help of collaborating drivers so that the
mobile agent can be explicitly carried to the required place, or at least near it. Since
helping the mobile agent takes some cost for the collaborators, the collaboration is
assumed to be compensated in order to encourage the drivers to help agents. We
performed many experiments exploring the application of these techniques to the
movements of mobile agents through a VANET.
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One of the conclusions drawn is that a crowdsourcing-only strategy is not ade-
quate, since despite its high reliability to take the mobile agent nearer its destination,
it also has some drawbacks. Firstly, the mobile agent tends to travel physically in
the vehicles, which is much slower than using the wireless communications to transfer
itself from one vehicle to another. Secondly, the compensating costs for the collabo-
rators may grow a lot, since the amount to pay is proportional to the duration of the
trip in the collaborator. Therefore, it is necessary to use a mixed solution, where a
mobile agent uses by default the initial hop strategies and switches to using spatial
crowdsourcing when they perform poorly. This solution proved, after being exten-
sively evaluated, to be more efficient than using the basic hop strategies or only the
spatial crowdsourcing strategies independently.

9.1.4 Simulation of VANETSs for the Evaluation of Data Man-
agement Strategies Using Mobile Agents

When we started to explore the data management techniques described above, and
particularly the hop strategies used by the mobile agents, we realized that the existing
simulation software did not meet some special needs that were essential to properly
test and evaluate these strategies.

The main drawback of existing simulators is that they are not capable of simu-
lating at the same time the movement of the vehicles and the mobile agents. The
closest functionality that can be obtained is by means of combining different types of
simulators, by exporting and importing among them the data created in the simula-
tions following a multi-step process. Moreover, even following this procedure, it is not
possible to define scenarios where the behavior of the vehicles (e.g., the routes they
follow) could be influenced by the information provided by the mobile agents, which
would certainly be an interesting feature for the development of applications related,
for example, to traffic security, searching of parking spaces. This is also essential for
the evaluation of spatial crowdsourcing strategies, where the collaborating drivers can
alter their routes to help a mobile agent.

Due to these limitations, we developed our own software, that meets our espe-
cial requirements regarding the simulation of VANETSs and mobile agents, and also
contributes to cover the existing gap in this topic. The main features of MAVSIM
are:

e It is portable (written in Java), so it can be executed on a variety of computers
and architectures, from a Mac laptop running macOS, to an x86-64 workstation
or a SPARC-based server.

e [t can execute simulations in both graphic and batch mode. This last feature
is especially useful for launching a high number of simulations, that can also
use any existing job scheduler, such as HTCondor [HTC], Torque [TORI, or
Slurm [SLU], which allows a more efficient use of computing resources.

e The whole simulations can be recorded to data files, that can be replayed later
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using a graphic tool that allows to follow step by step the status of the simulated
objects (i.e., the vehicles and the mobile agents).

e It is highly configurable, so it can execute simulations in a high variety of sce-
narios and under different conditions.

e It supports using real world maps (of any city or interurban area) from the
OpenStreetMap site, so the simulations can take place in realistic places.

e It can simulate a high number of both mobile and static elements: vehicles
that follow different mobility models, public transport vehicles that follow fixed
routes, roadside units or antennas at fixed places that can communicate among
them instantly using simulated wired communications and, of course, mobile
agents that can transfer themselves to any simulated device or be physically
transported by any vehicle.

e It can also simulate some limiting factors, such as the blocking of wireless signals
by buildings or the interruption of communications by unexpected errors. This
helps the simulation to be more realistic and challenging, just like real VANETS.

e It can simulate many instances and types of mobile agents simultaneously, that
can be programmed in a similar way as they would be developed using a conven-
tional mobile agent platform such as JADE [BPRO1] or SPRINGS [ITLMO06].

As a result, thanks to the use of this simulator, the development and testing
of the proposed data management approaches was possible in all their extent. The
simulations performed provided a high amount of data and details about all the
processes followed by the mobile agents and the other simulated objects. For example,
the simulator provides information about the amount of data gathered by an agent
along the simulated time in the query solving scenario, the speed and heading of every
vehicle in range just before evaluating them as potential carriers, the distance traveled
by the vehicles, the mobile agent’s remaining distance to reach its destination at every
time instant, etc.

We think that the simulator developed is quite well suited for testing applications,
protocols and systems that require the use of mobile agents in vehicular networks,
taking into account different elements that can have an influence on their performance.
The simulator is written in a modular and extensible way, so it can be enhanced with
new features with little effort. We continue using the simulator in our research,
and we are constantly adding new features when we need them to evaluate different
data management strategies. Thanks to the use of this simulator, we have obtained
promising results regarding the potential interest of using mobile agents in vehicular
networks.

9.1.5 Experimental Evaluation

Our contributions have been tested through an extensive set of experiments, that
have shown the following:



9.2. Evaluation of Results 171

e It is possible to build a data management strategy in a VANET, despite the
difficulties caused by ad hoc communications.

e The use of mobile agents helps to solve many of the problems that occur in a
highly-dynamic and changing environment like a VANET.

e Mobile agents are real practical software and not only a theoretical computa-
tional concept. They can actually be executed in real and heterogeneous devices
that use currently available technology, and transfer themselves among them by
using wireless communications.

e The application of the proposed data management strategy for the distributed
processing of queries works well even in scenarios with a high number of limita-
tions, such as low traffic density, communication interruptions or changes in the
route of the vehicles, etc. Despite these difficulties, mobile agents can, in gen-
eral, end the process in reasonable times, with a high reliability and an efficient
usage of the available bandwidth.

e New forms of joining efforts in a collaborative way, such as using crowdsourcing
(or, more specifically, spatial crowdsourcing methods) can be applied success-
fully in order to enhance the process.

Summing up, the extensive experimentation performed shows that the proposed
data management has a good performance even in challenging scenarios, thanks to
the use of mobile agents, whose special features are suitable to face the difficulties of
using a VANET.

9.2 Evaluation of Results

The results of this work have been published, along its development, in different
international journals and conferences. These are the main publications obtained in
relation to this thesis, in chronological order:

e In [UIMOS], we presented results of evaluating the execution of mobile agent
platforms in real mobile devices. We measured the performance of mobile agent
movements and calls using different communication technologies, both wired
and wireless.

e In [UIM09], we discussed the ideal properties that mobile agent platforms for
mobile devices should have, and performed a comparative analysis of some ex-
isting platforms to know to what extent they met the requirements or not.

e In [UITLMO0Y], we compared the features of different mobile agent platforms
capable of being executed on a mobile device, and evaluated the performance of
a proof of concept demo that involved a mobile agent searching data in different
devices.
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e In [UIDMUQ9], we presented the novel idea of using mobile agents in a VANET for
monitoring the environment, as an alternative (or complement) to traditional
and costly fixed and dedicated monitoring stations.

e In [UIDMI0], we discussed the advantages and difficulties of the development of
applications in VANETS, and advocated the use of mobile agents as an adequate
option to deal with such difficulties.

e In [UT13], we presented a generalization of the idea of environment monitoring,
leading to the processing of data in general (not only related to the monitoring
of the environment) in VANETS using mobile agents.

e In [UI16D], we presented for the first time the idea of applying spatial crowd-
sourcing techniques for data management in VANETS.

e In [UITLI7al, we presented our query processing approach in detail, and we
evaluated exhaustively all the aspects of the solution in different scenarios. This
work was one of the three already-published papers selected, due to its quality
and impact, as examples of relevant research performed by the JISBD (Software
Engineering and Databases) community in Spain, for presentation in the hall of

fame of JISBD 2017 [UITLI7h].

e In [UI17a], we presented a use case of the data management approach, focused
on an application to find available parking places in a city area, with the novelty
of considering a mixed urban/interurban scenario and using mobile agents.

e In [UTI7D], we described how the distributed query processing in a VANET
using mobile agents could be modeled with Petri nets.

e In [UI], we described in detail the spatial crowdsourcing approach and evaluated
it extensively, extending the initial work presented in [UI16D].

During the development of this thesis, we also presented some intermediate results
in national conferences and events, such as [UILI4], and [UITLI7b], and we
were also invited to write some book chapters about topics related to mobile agents
and the simulator developed [UITLM12], [UITLMTI5], [UT16a).

Concerning other parameters that measure our contributions, our papers were
referenced in other works, such as ﬂm, [EAADI2], [Rom12], [CNTI], [NCNT1],

where we can highlight references from some journals such as Vehicular Communica-
tions and Ad Hoc Networks [TW16]. As an example, the authors of
refer to our work in the following terms: “7To this aim we followed the strategy pro-
posed by Urra et al. [1], who provide a five-step process for general-purpose monitoring
using vehicular networks”.
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9.3 Future Work

Developing applications for VANETS is an interesting topic with a high potential, and
our data management approach using mobile agents has shown to be an adequate
option to support such applications. In order to enhance the approach, a number of
improvements could be performed:

Explore the use of mobile agents that can collaborate and communicate among
them, so that they help each other to perform their tasks earlier.

Also related to the former, explore the opposite situation, where many mobile
agents have the same goal and compete for being the first to achieve it. The
problem would be how to deal with these situations automatically in a fair and
efficient way.

Create new advanced hop strategies that, for example, make use of historical or
statistical data about patterns of the driving style of the drivers, or about the
traffic in a certain place according to the day of the week or the time of the day,
to cite some examples.

Explore the use of the data management approach in vehicular networks that
also include drones or UAVs (unmanned aerial vehicles), that could be used
not only as intermediate nodes for the mobile agents but also to transport them
physically through the air.

Build a working prototype using real devices aboard vehicles as well as personal
mobile phones and desktop computers. The mobile agents could then accom-
pany the user, or travel freely to other devices to perform some tasks, making
the creation of entirely new types of applications possible. Defining suitable
proof-of-concept scenarios and adjusting the developments for their use in real
environments is not an easy task.

Regarding the spatial crowdsourcing topic, design a compensation mechanism
based on a cryptocurrency. Instead of the usual proof of work typical of most
of these currencies, the new one would be based on proof of collaboration.

Enhance the MAVSIM simulator with new types of scenarios and elements that
would make the task performed by the mobile agents more interesting. For
example, the addition of traffic jams could have benefits and drawbacks, since
the movements among the vehicles could be easier if there are a great number
of them very close to each other and moving at very low speeds. It would also
be very interesting to simulate that the vehicles, from time to time, park at
some places and remain stopped for hours or days. This could be used, for
example, to temporarily convert such vehicles in fixed places where they can
offer some services that require some spatial stability (i.e., that the node does
not keep moving), for example, to act as a mailbox where mobile agents can
leave messages or small amounts of data, so that other agents operating nearby
could read or use them.
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e Other operative enhancements for MAVSIM, such as improving the replay tool,
so that it can show more information about a recorded simulation. Another
enhancement would be the usage of GPUs to parallelize and accelerate some
mathematical calculations, and thus increase the simulation speed.

As a conclusion, the goal of our future lines of research will be to continue exploring
the challenges related to the development and use of data management strategies for
VANETSs. As a part of this future research, specific novel applications could also be
considered.
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