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Abstract

In the last years, robots are more and more present in many aspects of our daily lives,
like domestic household appliances, autonomous cars or personal assistance devices. The
interaction between users and these robots is one of the key aspects in service robotics. Such
interactions need to be comfortable and intuitive to be useful. They are necessary for the
robot to learn and update the world model and its affordances. There are many components
needed for the well functioning of these interactive robotic systems.

This PhD Thesis focuses on the visual perception system. For humans, visual perception
is an essential component, allowing tasks like object or people recognition and 3D pose es-
timation. Given the great success of deep learning-based approaches for recognition tasks,
recent works focus most on data-driven models, typically trained offline. However, models
trained offline on large datasets cannot, in general, address common challenges in real home
environment data. Some of these challenges are due to the nature of home environments. For
example, new objects that did not exist at the time the training dataset was created appear
often. Another relevant challenge is the long-tail distribution of object classes, i.e., objects
with sparse apparition and with few or none training samples in common datasets.

This work has been developed within the context of the IGLU (Interactive Grounded
Language Understanding) 2 project. Within this context, the overall goal of this PhD Thesis
is to investigate novel methods for a robot to learn incrementally from multimodal
user interaction. Towards this objective, the main contributions of the thesis are:

• The construction of benchmarks more adequate for learning tasks from natural human-
robot interaction. Most datasets for object learning focus just on images that contain
the objects. During this work, to be able to explore learning tasks from human-robot
interaction, new data has been collected that combines user interaction with object
information.

• New strategies for object learning from multimodal human interactions. Object de-
tection typically attempts to find any known object, from previously learned models,
visible at certain scene. Differently, this thesis includes novel strategies that analyze
the user interactions to focus on the object of interest, and learn information from it
incrementally.

• A novel incremental learning method that can handle fully incremental scenarios, i.e.,
new object classes appearing in the scenario or objects that change over the time. In this
thesis, a system that can learn classes from scratch and is able to update information
on-the-fly is developed and evaluated.

• An end-to-end prototype for the incremental and multimodal learning from human in-
teractions. To complete the main objective, a complete prototype with all the steps
integrated has been developed.

2https://iglu-chistera.github.io/
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Resumen

En los últimos años cada vez es más frecuente ver robots en los hogares. La robótica está
cada vez más presente en muchos aspectos de nuestras vidas diarias, en aparatos de asistencia
doméstica, coches autónomos o asistentes personales. La interacción entre estos robots asis-
tentes y los usuarios es uno de los aspectos clave en la robótica de servicio. Esta interacción
necesita ser cómoda e intuitiva para que sea efectiva su utilización. Estas interacciones con
los usuarios son necesarias para que el robot aprenda y actualice de manera natural tanto su
modelo del mundo como sus capacidades.

Dentro de los sistemas roboticos de servicio, hay muchos componentes que son necesarios
para su buen funcionamiento. Esta tesis esta centrada en el sistema de percepción visual de
dichos sistemas. Para los humanos la percepción visual es uno de los componentes más esen-
ciales, permitiendo tareas como reconocimiento de objetos u otras personas, o estimación de
información 3D. Los grandes logros obtenidos en los últimos años en tareas de reconocimiento
automático utilizan los enfoques basados en aprendizaje automático, en particular técnicas
de deep learning. La mayoría de estos trabajos actuales se centran en modelos entrenados ’a
priori’ en un conjunto de datos muy grandes. Sin embargo, estos modelos, aunque entrenados
en una gran cantidad de datos, no pueden, en general, hacer frente a los retos que aparecen
al tratar con datos reales en entornos domésticos. Por ejemplo, es frecuente que se de el caso
de tener nuevos objetos que no existían durante el entrenamiento de los modelos. Otro reto
viene de la dispersión de los objetos, teniendo objetos que aparecen muy raramente y por lo
tanto habia muy pocos, o ningún, ejemplos en los datos de entenamiento disponibles al crear
el modelo.

Esta tesis se ha desarrollado dentro del contexto del proyecto IGLU (Interactive Grounded
Language Understanding) 3. Dentro del proyecto y sus objetivos, el objetivo principal de esta
Tesis doctoral es investigar métodos novedosos para que un robot aprenda de manera
incremental mediante la interacción multimodal con el usuario.

Desarrollando dicho objetivo principal, los principales trabajos desarrollados durante esta
tesis han sido:

• Crear un benchmark más adecuado para las tareas de aprendizaje mediante la interacción
natural de usuario y robot. Por ejemplo, la mayoría de los datasets para la tarea de
reconocimiento de objetos se centra en fotos de diferentes escenarios con múltiples clases
por foto. Es necesario un dataset que combine interacción usuario robot con aprendizaje
de objetos.

• Mejorar sistemas existentes de aprendizaje de objetos y adecuarlos para aprendizaje
desde la interacción multimodal humana. Los trabajos de detección de objetos se focal-
izan en detectar todos los objetos aprendidos en una imagen. Nuestro objetivo es usar
la interacción para encontrar el objeto de referencia y aprenderlo incrementalmente.

• Desarrollar métodos de aprendizaje incremental que se puedan utilizar en escenarios
incrementales, p.e., la aparición de una nueva clase de objeto o cambios a lo largo del
tiempo dentro de una clase objetos. Nuestro objetivo es diseñar un sistema que pueda
aprender clases desde cero y que pueda actualizar los datos cuando estos aparecen.

• Crear un completo prototipo para el aprendizaje incremental y multimodal usando la
interacción humana-robot. Se necesita realizar la integración de los distintos métodos
desarrollados como parte de los otros objetivos y evaluarlo.

3https://iglu-chistera.github.io/
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Chapter 1

Introduction, motivation and context
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1.1 Introduction

Humans are born like a blank canvas. As they grow, they learn concepts, ideas and

actions in a continual manner. They learn both from interaction with the environment,

objects or other humans and from previous knowledge transmitted by others. Machine

learning is the field that researches how to obtain models for computers to learn con-

cepts, ideas or actions. These methods are usually based on a mathematical approach

or a biological-inspired approach. With the learned models, machines are able to exe-

cute algorithms to perform autonomously certain tasks of a broad range of complexity.

Many of these applications are related to computer vision, such as detecting events [1],

navigation [2], automatic inspection [3] or recognizing objects in the environment [4].

Figure 1.1: Many tasks can be performed learning static models a priori1 (left). How-
ever, tasks related to learning in domestic scenarios need to be able to learn and update
their models incrementally as new objects appear in the scenarios 2 (right).

Learning to recognize any kind of object is a very common and widely studied

problem within the fields of computer vision and machine learning. In general, works

on this topic attempt to create representations of different objects and learn how to

recognize them if they occur again later. This idea of learning a static model of the

objects to be recognized later is interesting and useful if the system goal is to model a

fixed subset of the objects that exist in the world. However, these systems are indeed

bounded by the limits of the defined subset. While most common object recognition

systems are limited by this pre-defined subset, there is an increasing amount of research

on strategies to expand, on demand, the number of categories that can be learnt.

Robotics has many applications, such as factory automated tasks [5], that fit static

1 https://www.cognex.com/products/deep-learning/visionpro-vidi
2 https://www.visiononline.org/vision-resources-details.cfm/vision-resources/

Why-More-Retailers-Are-Adding-Computer-Vision-to-Their-Shopping-Lists/content_id/
7468
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models learned from a pre-defined set of fixed training examples. However, there

are many other applications where the environment changes and the robot needs to

adapt to such changes, as depicted in examples from Figure 1.1. For example, factory

applications that intend to bring robots to work autonomously in complex tasks or

alongside humans [6, 7], develop robots to do specific dangerous tasks [8] or help and

interact with humans [9, 10]. Because of this desire to enable robotic systems to learn

how to perform varied tasks autonomously, nowadays machine learning is a key field

for robotics. In particular, object learning is an essential ability when the task involves

interaction with objects in the environment. Many proposed approaches [11, 12, 13,

14, 15] create an offline subset of objects that the robot is supposed to interact with.

Differently, this Thesis is focused on the robot learning the objects incrementally as

they appear, without any constraint or prior knowledge.

This PhD Thesis explores novel strategies to improve existing machine learning

techniques for object learning harnessing the human robot interaction potential.

1.2 Motivation, objectives and contributions

This work has been developed within the context of the IGLU (Interactive Grounded

Language Understanding) 3 project. As explained in the project objectives: Interac-

tive Grounded Language Understanding is an ability that develops in young children

through joint interaction with their caretakers and their physical environment. At this

level, human language understanding could be referred as interpreting and expressing

semantic concepts (e.g. objects, actions and relations) through what can be perceived

(or inferred) from current context in the environment. The project goal is to, through

a developmental approach where knowledge grows in complexity while driven by multi-

modal experience and language interaction with a human, research an agent that will

incorporate models of dialogues, human emotions and intentions as part of its decision-

making process. Within the context of this project, the main goal of this PhD Thesis

is to investigate novel methods for a robot to learn incrementally from mul-

timodal user interaction.

There are numerous fields of applications of intelligent and autonomous robots. In

particular, the motivation of this work is related to service robotics, towards robotic

systems able to learn from natural interactions with human users that require the

robot services. Indeed, it is important to note the differences between a manufacturing

robot, that works in workshop-like scenarios usually more constrained and repetitive,

and a service robot, that works in more varied human environments, as shown in

3https://iglu-chistera.github.io/
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Service Robot Service Robot Manufacturing Robot

Figure 1.2: Service robots vs Manufacturing robots. Variations and dynamic changes
are much more frequent in the first case scenarios.

the examples in Figure 1.2. Most service robot scenarios are everchanging, whereas

typically a workshop changes little over time and robots in it are meant to do the same

actions over and over.

Challenges. Service robots’ adoption at our homes is becoming more frequent in the

recent years, and robotic systems can be found often in our daily life, in applications

such as smart cars and household or personal assistance devices. However, there are

still several challenges that prevent broader adoption of these systems. The interaction

between users and these systems is one of the key aspects to be developed in service

robotics. For these systems to have good usability, the interaction needs to be com-

fortable and intuitive for the user. Such interactions are important for the system to

online learn the world model and capabilities using the user’s knowledge and behaviour

as natural as possible.

Other open challenges related to better usability of service robotic systems include

the adaptability to the environment changes, which is one of the objectives in this work.

For humans, visual perception is essential, allowing us key abilities like object cate-

gory and instance recognition or position estimation. Given the great success of deep

learning-based approaches for recognition task, recent works focus most on data-driven

models trained offline. However, models trained offline (e.g., [4]) on large datasets (e.g.,

[16]) cannot, in general, address common challenges in real home environment data, as

highlighted in Figure 1.3. These challenges appear due to the nature of home environ-

ments, where new objects appear often and they did not exist at the time the dataset

was created, or the long-tail distribution of object classes, i.e., there are objects with

sparse occurrences and with none or few training samples in common datasets.

Objectives. Towards solutions and advances regarding these challenges, this Thesis

develops the following more concrete objectives:

• To build benchmarks more adequate for learning tasks from natural human-robot

4



Coco dataset

Washington RGB-D Object dataset

MHRI dataset

Figure 1.3: Comparison between data from different sources. Coco dataset, that con-
tains several thousands of scenes with objects. Washington RGB-D Object dataset,
that contains 300 common household objects. The presented MHRI dataset, that con-
tains 22 kinds of objects. This new dataset brings together properties from the other
two, capturing household objects in a realistic scenario, and adding multimodality and
human interaction aspects.

interaction. Most datasets for object learning focus just on images that contain

the objects. During this work, to be able to explore learning tasks from human-

robot interaction, new data needs to be collected that combines user interaction

with object information.

• To improve existing systems for object learning from multimodal human inter-

actions. Object detection typically attempts to find any known object, from

previously learned models, visible at certain scene. Differently, novel strategies

will be designed that analyze the user interactions to focus on the object of in-

terest, and learn information from it incrementally.

• To develop incremental learning methods that can handle fully incremental sce-

narios i.e., new object classes appearing in the scenario or objects that change

over the time. In this Thesis, a system that can learn classes from scratch and is

able to update information on-the-fly will be designed and tested.

• To build an end-to-end prototype for the incremental and multimodal learning

from human interactions. To complete the main objective, a complete prototype

5



with all the steps integrated will be developed.

Contributions. In order to fulfill these objectives, during this Thesis, the following

contributions have been developed:

• Two novel datasets focused on benchmarking natural human interaction with

robotic systems. One of them is designed to benchmark object learning from

human robot interaction; another dataset is designed to benchmark robot guid-

ance through natural interaction. Figure 1.4 shows sample images from these

datasets, that are detailed in Chapter 2.

MHRI Dataset DDIR Dataset

Figure 1.4: Datasets recorded and published as part of this PhD Thesis.

• Incremental algorithm. An algorithm has been developed and used for several

incremental tasks within the Thesis, including action and object recognition. It

is based on incremental clustering, as explained in more detail in Chapter 3.

• Two novel interaction recognition framework. One framework recognizes human

interactions in the object teaching scenario, where an user is on front of the robot

teaching an object that is on the scene. The other framework recognizes pointing

directions to the drone scenario, where the user in in front of the drone pointing

the desired movement direction. Figure 1.5 shows an example of both scenarios.

Both frameworks are detailed and evaluated in Chapter 4.

Object teaching scenario Pointing direction to the drone scenario

Figure 1.5: Scenarios studied in the human robot interaction frameworks in this PhD
Thesis.

• Strategies for object segmentation guided by human interaction. Following the

framework developed to recognize interactions in Chapter 4, three strategies (one

6



for each type of human interaction recognized, as shown in Figure 1.6) to segment

the object that the user is referring to have been developed. They are detailed

and evaluated in Chapter 5.

(a) Point (b) Show (c) Speak

Figure 1.6: Examples from the three interaction types studies in this PhD. Thesis.

• Incremental object learning. An analysis of the incremental method in the object

learning scenario is done. This analysis compares the influence of static descrip-

tors and parameters in the performance of the incremental algorithm presented

in Chapter 3.This study is presented in Chapter 6

• A end-to-end framework to learn object classes from Human-Robot interactions

that integrates all the modules developed in previous contributions of this Thesis.

This framework is summarized in Figure 1.7 and analyzed in detail in Chapter 7.

Figure 1.7: Overview of the presented approach for incremental learning from human-
robot interactions. A human user teaches a robot new objects through natural inter-
actions (e.g., pointing to it). The robot recognizes the type of interaction from the
multimodal recordings, finds the target object region on its camera views and updates
the object model incrementally.

7



Dialog5 Gesture-Pointing6 Gesture-Showing7 Physical interactions8

Figure 1.8: Common interactions in the literature of Human Robot Interaction.

• A novel approach to online descriptors. This approach is focus on the object

learning scenario. It uses deep learning descriptor that can be retrained as new

data appear using the incremental algorithm. This approach is explained and

evaluated in Chapter 8.

1.3 Incremental learning from human interaction

Incremental learning, Human interaction and Object learning are well-known problems

both in the Robotics and Machine Learning communities, and therefore, extensively

present in the literature. This section presents a quick overview of existing works

that bring the three topics together, since it is the context of this Thesis goals and

work. Along the following chapters, more specific related works on particular topics

are discussed in detail.

A key aspect to consider when discussing these approaches is how the interactions

are performed. Figure 1.8 illustrates the most common interactions considered: dialog,

hand gestures and physical interaction. dialog is one of the most natural interactions

for humans and allows the user to have free hands. Krause et al. [17] present a one

shot object learning approach where user and robot see a common scene and, through

the dialog, the robot learns the properties of all objects in the scene. Similar to them,

Skočaj et al. [18] present the same scenario but add a long term memory and multiples

dialogs to incrementally learn object concepts.

Related work often uses hand interaction (showing or pointing) to lead the robot’s

teaching. It is actually one of the main interactions considered in this Thesis work.

Pasquale et al. [20] present a work where the object is shown in front of the robot

(iCub) and the object label is said by the user. They use a CNN as a feature extractor

5 CATHI - Cognitive Assessment Through Human-Robot Interaction from IBM UK Lab Cam-
pus https://festival-of-innovation.eu-gb.mybluemix.net/page55.html

6 Static pointing gesture identification from FourByThree https://www.cobot-systems.com/
software/human-robot-interaction/static-pointing-gesture-identification/

7 Human interaction with Apollo from Max Planck Institute for Intelligent Systems [19]
8 3rdHand project from INRIA FLOWERS team https://www.youtube.com/watch?v=

6zdN4QVlRBQ

8



and a Recursive-Least-Squares to classify. Similar to them, Siam et al. [21] present

a dataset with two different settings: teaching objects and robot manipulation tasks.

They focus on object segmentation and manipulation with the user help. Another

approach learning from hand interactions is the work in Kasaei et al. [22]. They

present an approach where the interaction consists of the user pointing to the object

in the scene. Differently from the other examples, this work focuses on the 3d object

model learning.

Closer to this Thesis goals, there are works that use a combination of interactions.

Often, one interaction is the main one and the other is for clarification. In this line,

He at al. [23] present a framework that learns basic object shape and color through

the user pointing and speaking. It creates a mental world for the robot and changes as

the user and the environment changes. This mental world is the one that defines the

robot actions. Similar to them, Valipour et al. [24] present a scenario where the user

is working and asking for an object to the robot. If the object is not found, the user

clarifies by pointing to it leading to update the object representation.

Finally, there are also works that learn semantics from objects or physical interac-

tions. For example Aksoy et al. [25] present an approach that uses data from the user

point of view. It learns which action and which object is interacting with. Another

related example is Toussaint et al [26], where the robot learns through reinforcement

learning the collaboration needed to achieve a goal with the user.

Our work belongs to the set of groups using combinations of interactions, since we

use dialog and hand gestures. Differently from existing incremental learning works,

this Thesis work considers different interactions (including different hand gestures) in

realistic and natural conditions for the user. Another key component in this work is

the automatic object detection strategy specific for each interaction, all combined in

end-to-end systems.
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Chapter 2

Human-Robot interaction datasets
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2.1 Introduction

One of the first and main aspects to consider in any machine learning problem is which

data needs to be gathered or is available. Benchmarking datasets are a key aspect in

the literature, enabling to advance research and compare different approaches in a fair

manner. In the recent years, datasets are becoming larger as researchers are able to

collect more data and share it.

This chapter details the two datasets (Multimodal Human-Robot Interaction (MHRI)

dataset and Direction Dataset for Interaction with Robot (DDIR) dataset) that were

collected during this Thesis. Besides, it discusses related work and another public

dataset (Core50) used for the evaluations on different chapters. For the two datasets

that were recorded, the main motivation was to fill existing gaps in the public data

corpus that did not allow a proper evaluation of certain aspects in Human Robot

Interaction (HRI).

HRI datasets usually focus only on the interaction, normally with only one type of

interaction per dataset. The objectives in this work require richer data that contains

object teaching information from an HRI perspective using multimodal sensors. Multi-

ple modalities are useful to learn in the target scenarios. Besides, to explore interaction

recognition from the sensors of an aerial vehicle, it was required to acquire data from

a drone perspective.

2.2 Related datasets

To study and evaluate different approaches for object recognition, the research com-

munity has released plenty of public datasets. For example [27, 28] are two well-known

datasets targeting object recognition from RGB-D images. However, most of the ex-

isting datasets focus on offline visual learning and RGB images, like Coco dataset [16]

and Imagenet [29]. Interactive, multi-sensor, and multimodal datasets are scarcer.

Multiple aspects should be considered on a dataset targeting interactive learning.

We focus, in particular, on multimodality and on realistic HRI settings. In such sce-

narios, images are expected to have very different appearance than in the previously

mentioned datasets for offline learning. The objects are shown by a human through

different ways of interaction and the images are seen from the robot point of view. This

causes noticeable domain shift: recognizing a pedestrian from a close-up view from a

service robot is immensely different from performing the same task with the raw video

from a distant wide-angle surveillance camera.

Vatakis et al. [30] shows a multimodal recording approach similar to the set up

12



Figure 2.1: Example images of the 50 objects in CORe50. Mosaic from https://
vlomonaco.github.io/core50/index.html#dataset. Each column denotes one of
the 10 categories.

of this Thesis data acquisition, but the purpose of their dataset was to capture the

reactions of users to stimuli with objects or images in a screen. Datasets like [31] or

[32] capture human-robot interaction from a third-person point of view (POV). It is

useful in some cases, but in the context of service robotics, information must be taken

from the onboard sensors to be realistic. Temel et al. [33] shows a dataset with the

same object in both real and unreal environments and different challenging conditions.

Besides the different target applications, the majority of the datasets lack multimodal

sensor data, common in human-robot interactive scenarios, like the user speech.

2.2.1 Core50

CORe50 [34], specifically designed for (C)ontinual (O)bject (Re)cognition, is a collec-

tion of 50 domestic objects belonging to 10 categories: plug adapters, mobile phones,

scissors, light bulbs, cans, glasses, balls, markers, cups and remote controls. There

are two types of classification: per instance (50 classes) and category level (10 classes).

There are three type of scenario proposed depending on the data separation per training

(New instances, New classes and New instances and classes).

As explained in their paper [34]: Objects are hand hold by the operator and the

camera point-of-view is that of the operator eyes. Several examples of this dataset

are show in Figure 2.1. The operator is required to extend his arm and smoothly

move/rotate the object in front of the camera. A subjective point-of-view with objects

at grab-distance is well-suited for a number of robotic applications. The grabbing hand

(left or right) changes throughout the sessions and relevant object occlusions are often

13



(a) Point (b) Show (c) Speak

Figure 2.2: Examples from the three interaction types in MHRI dataset. The user
says, respectively, (a) “This is a box”, while pointing at the box, (b) “This is a box”,
while holding the box, and (c) “The box is next to the chips and has a banana on top.”

produced by the hand itself.

Technical information. The dataset has been collected in 11 distinct sessions (8

indoor and 3 outdoor) characterized by different backgrounds and lighting. For each

session and for each object, a 15 seconds video (at 20 fps) has been recorded with a

Kinect 2.0 sensor delivering 300 RGB-D frames.

Annotations. The dataset annotations include, for each video, the object label and

the category label as well as object position and mask segmentation.

2.3 Multimodal human-robot interaction dataset

One of the contributions of this Thesis is the Multimodal Human-Robot Interaction

(MHRI) dataset 1. It captures the most common natural interactions to teach object

classes to a robot, namely Point, Show, and Speak, from a robocentric perspective.

Figure 2.2 shows an example for each considered interaction type (captured from the

robot frontal camera):

• Point : the user points at an object on the table and announces its name.

• Show : the user grabs an object, moves it closer to the robot, and utters its name.

• Speak : the user describes where a certain object is in relation to other objects.

Table 2.1 summarizes the contents of the dataset. It contains recordings from 10

users and each user performed 10 object interactions of each of the 3 types (Point,

Show, Speak), for a total of 300 multimedia short clips. The aforementioned 10 objects

per user were picked randomly out of a pool of 22 objects and used by that user for
1Available at http://robots.unizar.es/IGLUdataset/
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Table 2.1: Summary of the dataset content

Users 10
Interaction Type 3 Point, Show, Speak
Interactions per User 30 10 of each type. 1 object per interaction.

Object Pool 22

Apple, Banana, Big Mug, Bowl, Cereal Box, Coke,
Diet Coke, Glass, Fork, Ketchup, Kleenex, Knife,
Lemon, Lime, Mug, Noodles, Orange, Plate,
Pringles, Spoon, Tea Box, Water Bottle

Figure 2.3: Five examples (one user per column) from MHRI dataset. Each row
displays a different sensor modality. From top to bottom: Frontal -RGB, Frontal -
depth, Top-RGB, Top-depth, HD camera, and audio. See Figure 2.4 for the placement
of each sensor in the robot.

all their recordings. Figure 2.3 illustrates the different sensor modalities of the dataset

for different users.

Technical information. The dataset contains four synchronized streams of data:

2 RGB-D video feeds, from frontal and top point of views, acquired with Kinect v1

sensors), 1 RGB video feed from a 1280× 720 HD camera, and 1 audio feed captured

with a studio microphone. Table 2.2 shows the specific data formats available and

Figure 2.4 shows the cameras placement in the Baxter robot used for the acquisition.
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Table 2.2: Dataset format specifications

Device Data Format

RGB-D Cameras (Frontal & Top)
RGB frames
Depth frames

640x480 JPEG
640x480 PNG

HD Camera RGB frames 1280x720 JPEG
Microphone Audio file 44.1kHz Stereo WAV

Figure 2.4: Baxter robot used to acquire the dataset. The three cameras and the
microphone locations are highlighted.

The Frontal RGB-D camera is mounted on the robot chest to give a frontal view of

the user and the table. The Top RGB-D camera is mounted at the highest point of

the robot and has a holistic overview of the scene.

Annotations. The dataset annotations include the list of the objects each user inter-

acted with, the first uttered word (which is either “this”, “that” or “the”), and the label

of the object in question for each interaction. Additionally, each frame is timestamped

(using ROS2) and labeled with the type of interaction (Point, Show, Speak).

2.4 Direction dataset for interaction with robots

The motivation for acquiring this dataset is to train a system to understand the direc-

tions pointed by users from a drone perspective. As there was no prior published data

on this problem, the Direction Dataset for Interaction with Robots (DDIR) has been

recorded and released. The data is organized in five subsets (DDIR 1 to 5) depend-

2http://ros.org/
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DDIR-1 DDIR-2 DDIR-3 DDIR-4 DDIR-5

down-right (User4) up-left (User4) left (User6) down-left (User4) down-right (User3)

up (User1) down (User1) unknown (User2) left (User5) forward-up (User7)

right (User5) up-right (User3) down (User2) down (User2) backward-up-left (User6)

down (User5) right (User2) up (User1) unknown (User2) down (User4)

Figure 2.5: Examples of the five sets of the Directions Dataset for Interaction with
Robots(DDIR). Each example specifies its interaction name and the user.

Table 2.3: Summary of the DDIR dataset.

Set DDIR-1 DDIR-2 DDIR-3 DDIR-4 DDIR-5
Image resolution 640× 480 640× 480 823× 480 823× 480 823× 480+

# users 5 3 6 5 7
# actions per user 8* 8* 48* 64* 52*
User distance (m) 5 2.5-5 2.5-10 5-10 2.5-5
# Indoor/Outdoor scenarios 1/0 3/1 2/1 0/2 4/3
# direction classes 8 8 8 8 26
# frames, direction classes 1393 3212 16430 11711 22628
# frames, unknown-class 2035 2093 6356 16520 4726
* Evenly distributed for each class.
+ RGB-d recording.

ing on different characteristics. Figure 2.5 shows sample frames of each of these five

sets, which are detailed next. Figure 2.6 shows representative examples of the dataset

classes. Table 2.3 summarizes the data technical specifications.

DDIR-1 This set was recorded within a single indoor scenario (at ETH Zurich), with

the camera plugged into the base processing station. Since this set is used for training

and testing, the data was split following a cross-validation strategy, where for each fold

we always leave one user data out of the training set (DDIR-1, train-fold : images

17



“up-right” “up” “up-left”

“right” “unknown” “left”

“down-right” “down” “down-left”

Figure 2.6: Example of each 2D direction class considered in our data. The label of
each class (right under each image) is the direction in which the person is pointing.
The “unknown” class is the most heterogeneous because it covers every image in which
the pointing direction is not clear (or the user is not pointing).

from 4 of the 5 users in the dataset. DDIR-1val, validation-fold : images of the

remaining user, used for the validation).

DDIR-2 This set was recorded in three different indoors and two outdoors scenarios

(at I3A Zaragoza), also with the camera plugged into the base processing station. This

data is used to evaluate robustness to scene and user changes. The training is done on

DDIR-1 set and then test on this set. The domain change is challenging, but allows us

to demonstrate how our algorithm generalizes.

DDIR-3 This set was recorded in three different scenarios: two indoors and one

outdoors (at I3A Zaragoza). The different users perform the pointing gestures 2.5, 5

or 10 metres away of the camera. This dataset is used together with the next one for

testing the complete system.
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Figure 2.7: Illustration of the 26 navigation directions recognized by our system. In the
experiments where only 8 directions are named, we use the CENTER plane directions.

DDIR-4 This set was recorded in two different outdoor scenarios (at ETH Zurich),

and in this case, with the camera aboard the drone. The drone is hovering at 3 metres

above the ground. The different users perform the pointing gestures 5 and 10 metres

away from the drone. In half of the footage there are other people in the background

while the user is pointing. This data is essential to demonstrate robustness to different

image viewpoints due to the fact of having the camera on the base station or attached

to the drone.

DDIR-5 This set was recorded in seven different scenarios: four indoors and three

outdoors (at I3A Zaragoza). The users perform gestures at approximately 5 metres

from the camera. The camera used in this set has infrared sensors that let us also

record depth information of the footage. This set is used for expanding the system to

3D movement, so the pointing directions cover all the 26 shown in Figure 2.7. This

set uses a data splitting similarly to set DDIR-1: DDIR-5 is the train-fold and

DDIR-5val is validation-fold .

2.4.1 Annotations

The dataset annotations include, for each frame, the corresponding 2D pointing direc-

tion out of a 8-bin representation (except DDIR-5 which has 26 possible directions in

3D) and an unknown class label. The labels are text-based ("up","down",...).
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Chapter 3

Incremental learning algorithms
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3.1 Introduction

The need for incremental learning systems comes from the fact that models trained

offline on large generic datasets cannot, in general, address certain challenges and

problems from home environment real data. One typical challenge is the long-tail

distribution, i.e., objects that appear rarely and for which few or none training samples

exist in generic datasets. Another challenge is the changing nature of the environments,

with new objects appearing, e.g., food products that did not exist when the large

training datasets were created. In order to address these and other problems, robotic

perception should have lifelong learning components.

This chapter details the proposed algorithm for incremental learning. This algo-

rithm is based on incremental clustering with data selection strategies. The validation

and evaluation of this algorithm is included in following chapters, together with the

details of the applications using it.

3.2 Related work

In recent years, significant advances have been made in the field of incremental learning,

many of them applying deep learning techniques. Open-class approaches, i.e., those

able to add new categories as the data comes, are particularly relevant for our work.

Li et al. [35] create and train new classification layers as new classes are added and

fine-tune the rest of the network to maintain the outputs for older classification layers.

Following this work, Rannen et al. [36] use a similar setting, one shared model and

several classification layers, but at training time they add one feature-autoencoder per

class. The new autoencoder is trained on the data for the assigned class and uses a loss

to keep the build-up error on the old ones. More similar to our work, Rebuffi et al. [37]

use deep learning to obtain image representations that can be incrementally updated.

They set a limit in the total number of stored examples and classify using the average

feature of each class examples. With our approach, we outperform this work in the

Core50 dataset at a lower cost, as we do not fine-tune the network.

Other works apply deep learning techniques to incrementally bind multimodal at-

tributes to the objects models, like Xing et al. [38]. Here, the Perception Coordination

Network acquires and binds multimodal concepts between different sensory modules

in an online manner. It uses two levels of neurons inspired by the brain structure and

separates lower neurons depending on the modality of the input. Our work only applies

deep learning techniques to extract image features, because training a network online

implies too high computational cost and the binding of concepts is out of our scope.
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Besides deep learning based strategies, many former approaches for incremental or

online learning can be found in the literature. Passive-Aggressive algorithms [39] use

an offline learning algorithm as a base and incrementally modify their parameters. [40]

present a variation of SVM that is able to change the support vector online. We can

also find online variations or combinations of K-means clustering algorithms. Murty

et al. [41] present an approach that combines the k-means algorithm with multilevel

representation of the clusters. Likas et al. [42] present a global K-means that adds a new

cluster at a time and dynamically updates the other clusters by applying the k-means

algorithm multiple times. More recently, Mensink et al. [43] present an incremental

Nearest Mean Classifier which uses nearest neighbor with the mean of each class for

classification and also for generalization.

Other group of approaches apply a data transformation based on Self-Organizing

Maps (SOM), as a base to incrementally update the nodes in the network. For example,

Furao et al. [44] present an online unsupervised system with an incremental update of a

neural network based on SOM (SOINN). Xing et al. [45] present a more recent variant

of the Self-Organizing Incremental Neural Networks that incrementally transforms the

nodes in the layers of the SOINN using the local distribution. Gepperth et al. [46] use

SOM to reduce the dimensionality of the data in the hidden layer, but it needs to keep

all the data in memory for re-training.

These approaches work with seeds for each class based on the existing data and

cannot add new classes over time. Differently, the goal in this Thesis work is to be able

to learn completely from scratch and increase incrementally the number of classes.

Incremental learning is a paradigm very suitable for robotics, where the data typ-

ically arrives sequentially, and the robot needs to keep the best model up to date at

real time, such as mapping in [47] or inverse dynamics incremental learning in [48].

The same way, Angeli et al. [49] present an incremental method to build a model to

recognize visual loop-closures. There are multiple examples that propose how to in-

crementally adapt environment visual models as the robot moves. These approaches

are often based on Gaussian Mixture Models that can be easily updated and main-

tained to recognize regions of interest for the robot [50, 51]. In robotics, there are

situations where the robot interacts directly with the scene, e.g., grasping and moving

an object, to build an incremental object model [52, 53, 54]. The proposed approach is

complementary to these works, as this Thesis focuses on the human interaction. This

interaction is needed in real scenarios, e.g., if the object to be learned or explored is

out of reach of the robot.
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Figure 3.1: Summary of the use cases considered in the proposed online learning algo-
rithm.

3.3 Our incremental learning approach

The online learning algorithm proposed in this work is inspired by incremental clus-

tering approaches, and it is used in two different stages of our pipeline: interaction

recognition and object model learning.

The algorithm works as follows. We represent each class model C with a hierarchical

set of clusters in the descriptor space C = {C1, . . . , Cl, . . . , CN}, where Cl represents

the set of clusters for class l, Cl = {C1
l , . . . , C

j
l , . . . , C

s
l }.

Each cluster Cj
l groups a representative subset of j descriptors for class l, most of

the time corresponding to a specific viewpoint. We assign an integer score τ jl to each

cluster Cj
l to gather evidence of the suitability of such cluster via consensus.

As new samples arrive, existing clusters evolve and update their centroids (used as

representative descriptors) and scores. Besides, new clusters can be created for new

classes. Figure 3.1 represents the possibilities when a new training sample is given to

the incremental learning algorithm. The total number of classes N is not limited by

construction but, in order to avoid unlimited growing, the number of clusters per class

is limited by a predefined size k. Algorithm 1 summarizes the proposed strategy, and

its main components are discussed next.
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Algorithm 1 Incremental learning algorithm
1: procedure Inc.Train(e,l)
2: Ce

l = Create_Cluster(e,l)
3: Cl.add(Ce

l )
4: if l not in system.Labels then
5: system.add_label(l)
6: else
7: if Cl.is_full(k) then
8: if system.updates % nupdates 6= 0 then
9: // Merge similar cluster
10: max_distance = 0
11: min_distance = inf
12: for each x in Cl do
13: for each y in Cl do
14: if x 6= y then
15: distance = DB(Cx

l ,C
y
l )

16: if distance < min_distance then
17: min_distance = distance
18: x̂ = x
19: ŷ = y
20: end if
21: if distance > max_distance then
22: ẑ = x
23: max_distance = distance
24: end if
25: end if
26: end for
27: end for
28: Cs

l = Merge(C x̂
l ,C

ŷ
l )

29: update_score(Cs
l ,+1)

30: update_score(C ẑ
l ,−1)

31: else
32: // Remove worst scored cluster
33: w = Cl.get_worse_score()
34: Erase(Cw

l )
35: end if
36: system.updates +=1
37: end if
38: end if
39: end procedure
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3.3.1 Incremental model update

The input to our algorithm is a descriptor e corresponding to a new training sample,

and its label l. As represented in Figure 1.7(a), a new cluster Ce
l is created with e

as its centroid and l as associated label. The new cluster Ce
l is added to the list of

clusters Cl. If label l does not exist in the system, it is added to it. If Cl has reached

the maximum number of associated clusters k, as represented in Figure 1.7(b-c), the

following two cases can happen.

• The first nupdates times, the algorithm computes the pairwise distance of each

cluster in Cl with respect to the rest. We compute the distance DB between the

cluster centroids and find the pairs {x̂, ŷ} and {ŵ, ẑ}, corresponding respectively to

the maximum and minimum intercluster distances. In the experiments, we compare

differents type of distance (Euclidean, cosine, Battacharya,...) with different kind of

descriptors.

{x̂, ŷ} = argminx,y{DB(C
x
l , C

y
l )} 3 x 6= y

{ẑ, ŵ} = argmaxw,z{DB(C
w
l , C

z
l )} 3 z 6= w

(3.1)

The two clusters at minimum distance, C x̂
l and C ŷ

l , are merged into one single clus-

ter Cs
l . The resulting cluster is assigned the centroid of cluster with the better score

between τxl and τ yl and its score incremented by one. The score (τ zl ) of the cluster at

maximum distance C ẑ
l is decremented by one.

• After nupdates, the cluster Cŵ
l with the worst score (τ ŵl ) is removed and replaced

by the cluster of the new sample.

ŵ = argminwτ
w
l (3.2)

In addition to the approach to update the model described above, several simple

baselines were considered (random and always similarity, where the merging happens

always with the closest clusters) as alternative criteria for the cluster reorganization.

This approach prevents too much intercluster similarity by merging certain clusters,

and also penalizes and eventually removes clusters too different from the rest (possibly

corresponding to outlier data). However, when using an online descriptor the always

similarity gives a better performance since the penalty for outlier data is less important

than the intercluster similarity. Since the available data is likely to contain significant

noise and have a different distribution than typical public datasets, there is no clear

benefit from pre-training the proposed models on such data.
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3.3.2 Classification of new samples

A new sample is assigned to the existing classes applying a k-Nearest Neighbor (k-

NN) approach, following eq.(3.3). The distance from the new sample descriptor e is

computed to all the cluster centroids in the proposed model (C). The algorithm sorts

them and obtains the k-top clusters (x0:k in the eq. 3.3). Each existing cluster, x, has

a label assigned, lx, and the new sample is classified as class lx̂, where lx̂ is the Mode

from the top k labels obtained.

x0:k = sort(DB(e, C))[0 : k]

lx̂ = Mode(lx0:k) (3.3)
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Chapter 4

Human-robot interaction recognition
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4.1 Introduction

Humans interact with other humans for a variety of reasons. When humans interact

with robots, the number of reasons decrease since all social interactions are not nec-

essary. Usually, robots are the ones interacting with humans in order to help them or

support them in a task. However, humans might also need to interact with robots when

they need to teach them new things. Towards a long term goal of allowing robots to

learn from human users, the first step is to know the type of interaction that is being

used for teaching. In this chapter, the following approaches to HRI recognition are

presented, evaluated and discussed:

• Offline Human-Robot interaction: This approach evaluates each frame of the

video against a offline model and makes a consensus between them. This model

is pre-trained on the interactions the system needs to recognise.

• Online Human-Robot interaction: A different approach where there is an active

interaction needed, since the user may need to do some clarification. If the model

is not certain of the recognition, it will ask the user if it is correct.

• Human-Drone interaction: The scenario for this case is different from the previous

two ones. It consists of a user giving directions to a drone.

4.2 Related work

There are plenty of applications where a service robot assists a human user and learns

or updates its models interacting with him/her. Bohg et al. [55] present a survey on

interactive perception and how it can be leveraged for robotic actions, with specific

references to interactive object modeling. Some works focus on the value added by

the robot motion. For example, Park et al. [56], present a robot that interacts with

users to perform daily routines, and Reiser et al. [57], present a robot with perception,

navigation and manipulation capabilities that interacts with a user via a touchscreen.

Other works focus on the interaction in a workshop like scenario, more closer to our

setup. For example Baraglia et al. [58] aim to decide if it is the robot or the human

who should take the initiative in collaborative work, and Dumora et al. [59] present an

approach where the robot decides the action to perform next based on a set of haptic

cues from the human user.

More similar to our work, other approaches study how the user can teach the robot,

like Skočaj et al. [18] and Krause et al. [17]. There, the user maintains a conversation

with the robot to teach objects and attributes from a common view of the table scenario.
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Valipour et al. [24] present a work where the user can correct the robot when an object

is not found using voice commands and pointing. In Siam et al. [21], HRI help to

improve the segmentation of a target object and to learn a better model. Other works

focus on teaching actions like Aksoy et al. [25], which is able to incrementally learn

semantic event chains (SECs) extracted from actions using human demonstration.

Very related to our work, Pascuale et al. [20] use Convolutional Neural Network

(CNN) based features and Support Vector Machine (SVM) classification for teaching

visual models to a robot. The training data consists of egocentric images, where a

human presents an object in front of the robot. Camoriano et al. [60] harnessed that

data (vision-only data and user interactions consisting only of users showing the objects

to the robot) and uses a variation of Regularized Least Squares for incremental object

recognition. Similarly, Kasaei et al. [22] use the point cloud to obtain a 3D descriptor

and incrementally learn objects looking where the user points.

Other set of works explore when the robot is able to interact also with the objects.

Lyubova et al. [61] learn objects models using point-feature descriptors and Bag of

Words (BoW) models in two steps. The first one is based on just observation (either

from the table or from a human showing the object) and the second one includes

the robot interaction with the objects. He et al [23] present an incremental network,

called Adaptative Neural Gas (ANG) that learns shape and color of simple objects in

the robot workspace using visual-audio input and the possibility of the robot to ask

for more information. The contribution of our proposal over these works is a more

generic strategy, towards a more natural human-robot interaction, using multimodal

data and enabling different types of user interactions (point, show and speak) to learn

new objects.

4.3 Offline human-robot interaction recognition

Classifying the type of interaction performed by a person using only visual data is

considerably challenging. The work of [62] show that the combination of language

and vision can lead to a substantial improvement. Our offline Human-Robot interac-

tion recognition approach uses visual and language features in a nested SVM-based

classification.

4.3.1 Recognition algorithm

We propose the following interaction recognition, using the language and visual fea-

tures, based on two nested classifiers:
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Figure 4.1: Language feature occurrences in all recordings from the MHRI dataset.
They are grouped per type of interaction and per user.

1. Binary discrimination between Speak videos and the other two types using the

language features.

2. SVM classification into hand vs no-hand classes of sliding window-based patches,

trained with random patches of the dataset and manually selected patches of

hands. This step only uses the HC descriptor due to its high efficiency and good

performance at removing most of the no-hand patches.

3. SVM classification of resulting hand patches into Point or Show classes. Here

we use both the HC and the HOG descriptors.

4. Assign a label, Point or Show, to each video according to the label obtained by

the majority of its frames. All windows from each video are labeled as that action

for the next step.

Language features. The built system uses a simple language feature consisting of

the first word of the user’s narration. In the acquired dataset this word is either this or

that for Point and Show interactions or any other word for the more descriptive Speak

interaction. This feature is not discriminative enough to separate the three interaction

classes, as we show in Figure 4.1. It clearly separates Speak interactions, but cannot

differentiate between Point and Show. Separating Speak is particularly valuable, as

there are no specific visual patterns associated with this interaction.

Visual features. Before computing the visual features, in order to focus on the

user and table regions, the background is removed using two strategies: a standard

background removal procedure, based on sliding-window average of all the previous
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(a) Show (b) Show (c) Point (d) Point

Figure 4.2: Examples of skeleton detections. Notice that, in 4.2b, the hand joint is
predicted even when it is occluded.

frames, and a depth map based filter, where all image pixels with a depth value over

a threshold of 1.7m are removed (based on the distance to the user and the table).

These two filters are applied on the image and a sliding-window filter (window size of

100 × 100 pixels, stride of 10 pixels) runs over the masked image to reject windows

where more than 30% of the pixels were removed by either one of these filters. Then,

visual descriptors are computed on the accepted windows. The following two different

descriptors are evaluated:

• Color histograms HC = [Hr Hg Hb], with Hi =
∑

x,y pi(x, y) mod B, where pi is

pixel i component value and B the number of bins.

• Histogram of Gradients (HOG), as described in [63].

4.4 Online human-robot interaction recognition

The recognition of the type of interaction has several challenges. First, gestures are

very different between users. Second, such gestures are also highly dependent on the

camera viewpoint. Because of these two challenges, together with the small amount of

data in our dataset, an online approaches to this problem is developed.

Due to the low number of users available, none of them converged to a model

that generalizes well for new users, giving in most cases random accuracy. Instead,

the incremental learning algorithm described in Chapter 3 is used. It uses interactive

supervision from the user if the classifier output is not conclusive.

4.4.1 Visual analysis of the user

To recognize the user interaction, an analysis of the possible users in the robot field of

view and then focus on the main user hand.

To identify all skeleton joints for all the people in the image, a CNN-based approach

by Cao et al [64] is used in the pipeline. The locations and associations are learned
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jointly using a specific representation (denoted as Part Affinity Fields or PAFs) with

all the individuals on the scene. Any skeleton segmentation strategy could be use in

the pipeline, but this particular approach was chosen for several reasons. It shows

good performance in our images, even with considerable occlusions of the user, and its

computational load is reasonably low. Figure 4.2 shows several examples of estimated

skeletons where its accuracy can be appreciated.

After the skeletons have been detected, the pipeline focuses on the largest indi-

vidual. A 200 × 200 patch around the hand joint is extracted, which is expected to

contain the hand. The visual features for the interaction classification, detailed next,

are computed over this patch.

4.4.2 Multimodal features

Language features. In this online version, the language features is the same as

the offline version. These features consist on the first word of the user. As shown in

Figure 4.1, it is not discriminative enough, but it is helpful enough to separate Speak

from the other two interactions. This is important since there are no specific visual

patterns associated with this interaction.

Visual features. Histogram of Gradients (HOG) [63] is computed in the depth

channel of the hand patch. This method focuses on the hand shape and it is quite

independent of variations in the hand color.

4.4.3 Incremental interaction recognition

This process is detailed in Algorithm 2. At the start, there are no training samples

for a given user. For the first n_vids samples (in our experiments n_vids = 4), the

algorithm chooses one type of interaction randomly and asks the user if the predicted

interaction is correct. Depending on the answer, the label is corrected, and the labeled

video is used to train the incremental model. After n_vids video samples, each video

frame is classified according to the hand patch found on it. The video is assigned the

class of the majority of the frames classified with high confidence. If this majority is

less than min_prob, the algorithm asks the user for the actual interaction type and

the model is re-trained.

4.5 Human-drone interaction

With aerial robots, such as Unmanned Aerial Vehicles (UAVs), promising great value

in a variety of applications ranging from industrial inspection to search-and-rescue and
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Algorithm 2 Incremental interaction recognition.
1: min_prob = 85%
2: videos_processed = 0
3: n_videos = 4
4: min_dist = 0.56
5: function Extract_Descriptor(Frame_RGB)
6: Skeleton = obtain_skeleton(Frame_RGB.Front)
7: Hand_patch = Crop_Hand(Frame_RGB.Front,Skeleton.wrist)
8: Descriptor = Calculate_HOG(Hand_patch)
9: return Descriptor

10: end function
11: function Train_Incremental(Video_RGBD)
12: Interaction = Ask_User()
13: for each Frame_RGB in Video_RGBD do
14: Descriptor = Extract_Descriptor(Frame_RGB)
15: Inc.Train(Descriptor, Interaction) . See Alg. 1
16: end for
17: return Interaction
18: end function
19: function Interaction Recognition(Video_RGBD,speech)
20: if speech.get_first_word() 6= ("This" | "That") then
21: return "Speak"
22: else
23: if videos_processed < n_vids then
24: videos_processed += 1
25: Interaction = Train_Incremental(Video_RGBD)
26: return Interaction
27: else
28: videos_processed += 1
29: Votes = []
30: for each Frame_RGB in Video_RGBD do
31: Descriptor = Extract_Descriptor(Frame_RGB)
32: Class, Distance = Inc.Test(Descriptor)
33: if Distance < min_distance then
34: Votes.add_vote(Class)
35: end if
36: end for
37: Interaction,Confidence = Process_Results(Votes)
38: if Confidence > min_prob then
39: return Interaction
40: else
41: return Train_Incremental(Video_RGBD)
42: end if
43: end if
44: end if
45: end function

35



Figure 4.3: Drone guidance by natural pointing. The presented system receives the
captured video as input, estimates the user pointing direction seeking consensus across
a window of frames and sends the command to the drone using ROS.

crop monitoring, the demand for user-friendly interfaces that eliminate the need of an

expert pilot becomes more evident. In this section a framework to recognize directions

from the UAV POV is presented, and next section will show experimental results.

4.5.1 Overview

As summarized in Figure 4.3, the pipeline for high-level drone guidance through natural

pointing interactions has the following components:

1) Input. Two setups were considered, the camera is placed on board the robot

(to enable configurations where the robot operates near the human user) or at a base

station (if the robot operates at scenarios not accessible for the human).

2) Pointing direction recognition. This is the core component of the pipeline

and consists of three stages.

Person detection and representation (per frame). The detection of the user is pro-

cessed each frame, exploring three alternatives detailed in section 4.5.2.

Direction classification (per frame). To estimate the direction to where the detected

person is pointing, the space of possible navigation directions (see Figure 2.7) is dis-

cretized and formulate this step as a classification problem. The alternatives explored

are also detailed in section 4.5.2.

Consensus (over temporal window). The classification of natural gestures addressed

in this work is challenging due to the high variability and limited training data. A
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(a) (b) (c)

Figure 4.4: Example of the three alternatives for person detection and representation.
(a) Segmentation. (b) Skeleton. (c) Hands&Faces

voting scheme over several frames within a small sliding window (5 frames in our

experiments) is applied as an effective way to add robustness to our classification. This

consensus block receives, from the previous block, the estimated pointing direction and

a confidence value for each frame within the window. It only accepts a command if 4

of the 5 last images agree on the command. If the confidence on the classification of

a frame is below certain threshold (0.5 in our experiments), the vote of that frame is

ignored.

3) Output (Drone command). Once there is consensus on a certain direction,

the corresponding command is sent to the real or simulated UAV via network message.

The message contains the x, y and z coordinates of the relative position where the

drone has to move to.

4.5.2 Pointing direction recognition in RGB

This subsection details the recognition of the user pointing direction, the core compo-

nent of our pipeline.

The first step is to detect the persons in the scene, to select the region of interest

(ROI) and represent the data adequately for the direction classification stage. Regard-

ing this final direction classification step, there are two main constraints to consider.

First, due to the interactive application targeted, the system needs to react to the user

actions in acceptable rates for an interactive application (i.e., a few milliseconds). Sec-

ond, since the amount and heterogeneity of the labelled data available is fairly small

(see Chapter 2 for a detailed description of the DDIR dataset used in the evaluation)

rather than training from scratch large models, simple models or transfer learning

techniques need to be considered.

Following the three most common alternatives in the literature for people detection

or segmentation in images, the three strategies were built and detailed next (illustrated

in Figure 4.4): Segmentation, Skeleton and Hands&Faces.
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Segmentation. This strategy is based on a well known semantic segmentation CNN,

Mask R-CNN [65], to detect all the people in the scene (we use the official implemen-

tation, Detectron [66] pre-trained on the COCO dataset). In particular a publicly

available model for scene segmentation1 is used. This model labels every pixel in the

image with one of the target labels (i.e., semantic/instance segmentation), one of them

being person. From this output, the image segments with the person label is keeped.

The person segment with the largest area is designated as the pilot. The minimum-

size squared patch that contains the pilot segment is selected. The pixels that do not

belong to the person are masked out. With this, irrelevant background information

that could have a negative influence in next stages is removed.

For the direction classification part, several CNN architectures for image classi-

fication have been explored, offering MobileNetV2 [67] the best compromise between

performance and delay. MobileNet is a well known efficient architecture very well suited

for applications with execution time restrictions.

Skeleton. This strategy is also based on Mask R-CNN [65], but in this case a model

pre-trained to estimate a person skeleton keypoints2 is used. This model estimates the

postural information from all the people in the image. In particular it provides a list of

the coordinates of the following keypoints for each person found: {nose, left eye, right
eye, left ear, right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist,

right wrist, left hip, right hip, left knee, right knee, left ankle, right ankle}. These 17

keypoint coordinates are used to represent a person. As in the previous strategy, the

person of largest area as the pilot is designated.

To recognize the pointing direction, the angle (θ) of the arm link between the elbow

and the wrist is calculated, using the corresponding skeleton keypoints pelbow and pwrist

coordinates:

θ = atan2

(
pyelbow − p

y
wrist

pxelbow − pxwrist

)
. (4.1)

θ is computed for both arms and the system chooses the arm that is farther from the

“resting” position as the “pointing” arm. Numerous options to classify θ into one of the

8 possible pointing directions were explored. The most relevant are the following:

• Nearest Neighbour (NN). The median of the orientation of the arm link for

each class in the training examples is computed. Given a new θ, it is assigned to

the class of the closest median. This is a fairly simple process, which does not

contemplate the possibility of having an unknown class.

1Set 12_2017_baselines, model e2e_mask_rcnn_R-101-FPN_2x [66]
2Set 12_2017_baselines, model e2e_keypoint_rcnn_R-101-FPN_1x [66]
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Table 4.1: Detection results of the Hands&Faces YOLOv3 model on the DDIR dataset.

Result found DDIR-1 DDIR-2
No face 133 (7.95%) 720 (22.41%)
Only face 97 (5.80%) 75 (2.33%)
Face and one hand 698 (41.75%) 668 (20.8%)
Face and two hands 744 (44.50%) 1749 (54.45%)
Total 1672 3121

• SVM. Standard RBF-kernel SVM classifier [68]. Different kernel functions and

configurations have been evaluated and the RBF kernel obtained the best per-

formance.

• Decision-Tree. Standard Decision Tree classifier [68]. Compound classifiers like

Random Forests were also considered, but they converged to a single tree because

of the simplicity of the input (a single number/angle).

Hands&Faces. This third strategy is based on the detection of the person’s hands

and face, rather than segmenting the whole body. It is inspired by [69], where they

fine-tuned a YOLOv2 [70] model, with a new dataset they released, to detect hands

and faces. Using their released dataset, a COCO-pretrained YOLOv3 [71] model was

fine-tuned. This model outputs the position and size (i.e., bounding box) of the hands

and faces that appear in the image.

An evaluation of the detector obtained on both challenges presented by the hands

and faces data authors [69], for hands3 and faces4 detection respectively. This evalua-

tion obtain an AP of 87.7 and AR of 74.5 for the VIVA hand detection challenge and

AP average of 0.36 in the WIDER face challenge. These results show our model does

not reach the top performance in the face detection, however it is important to note

that the challenge poses very general and heterogeneous face detection tasks, which

are often far from the type of images expected in our system. Analyzing the detection

results of the obtained model in our data, shown in Table 4.1, it detects at least a hand

and a face (enough for our approach to work) in most of the images (75-80%).

Inspired by [69], the relative position of the hands and face is computed in our

algorithm to identify the pointing direction. The chest position based on the detected

face is approximated and trace a ray to the center of the hand, as an approximation to

the arm pointing direction. The pointing angle is computed similarly to our previous

approach:

θ = atan2

(
pychest − p

y
hand

pxchest − pxhand

)
. (4.2)

3http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-detection/
4http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html
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θ is again computed for both hands and the one farthest from the “resting” position is

kept. Once the angle of the link between a hand and the chest is computed, the clas-

sification of the pointing direction is computed in an identical manner to the previous

approach.

There are significant differences between the three strategies built. The biggest

advantage in the segmentation is that it works with the input image directly, which

means that our objective of making this a natural pointing recognition system is easier

since posture geometry is not necessary to define the gestures. However, since it is

a more variant representation, the success of this strategy depends greatly on the

heterogeneity of the training dataset to make sure it generalizes correctly. The skeleton

and Hands&Faces representations are far more abstract and invariant to the person and

their surroundings, and consist of much smaller descriptors, which facilitate an efficient

classification. As mentioned, in these approaches the gestures need to be defined with

posture geometry and they discard the visual information from the image, so any error

in the skeleton information has much more effect on the results.

4.5.3 Pointing direction recognition in RGB-D

As a more general extension to the 2D pointing direction recognition task, a system

that recognize 3D pointing directions was explored. The added value of this extension

is evident due to the increase in maneuverability.

The subset DDIR-5 from the DDIR dataset contains contains RGB-D images of

users performing 26 different 3D pointing gestures (the 3D directions considered are

represented in Figure 2.7). The same 8 pointing directions than the 2D case were

considered, but in three different depth planes: center (aligned with the person), front

(closest to the camera) and back (furthest from the camera). To classify all the 3D

directions was attempt on an end-to-end similar to the 2D case, but as detailed later

in the experiments, the best option is to separate the 2D direction and the depth

classification problems. This was solved with an additional classifier to identify the

depth. The depth value is discretized into three possible classes: back, center and

front, corresponding to the space in front of the user (front), at the same depth that

the user (center) or the plane behind the user (back).

The approach used for this additional module is based on the skeleton approach.

The skeleton keypoints are detected using the skeleton detector and use the x, y and

depth from those points to calculate the x-, y- and z-angle of the vector that goes from

the centroid of the skeleton to each keypoint.
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Table 4.2: Interaction recognition accuracy.

Point Show Speak Point Show Speak

Point 72.85% 76.01% 55.46% 85.71% 22.03% 0.00

Show 12.36% 12.88% 20.00% 14.29% 77.97% 0.00

Speak 14.78% 11.11% 24.54% 0.00% 0.00% 100.00%

(a) Vision-Only Classification (b) Multimodal Classification

4.6 Evaluation

The evaluation of the three approaches is reported in this section. First, the evaluation

of the offline approach to the Human-Robot scenario. Then, the online approach is

evaluated and compared with the offline version. Last, the versions presented of Drone-

Human scenario in previous section are evaluated and compared.

4.6.1 Offline human-robot interaction

In order to demonstrate the benefits of multimodal data, the interaction type is classify

by using only visual data and SVM. Table 4.2(a) shows the confusion matrix.

With the speech modality using the first word of the user speech (this/that/the), as

explained in Sec. 4.3, the model is augmented. Table 4.2(b) shows the confusion matrix

obtained by this classifier, which improves the results for all classes, discriminating the

Speak interaction and improving Point and Show from 72.85% to 85.71% and 12.88%

to 77.97% respectively.

4.6.2 Online human-robot interaction

This approach presents several variations in comparison to the offline version. Since it

works incrementally and it uses interaction to clarify, a direct comparison is not pos-

sible. However, a comparable error rate can be extracted at the end of the evaluation.

To evaluate our online interaction recognition, the Algorithm 2 is run for all videos

in the dataset (100 Point, 100 Show and 100 Speak), in order to incrementally learn

and classify them into the considered interaction types. The specific values for the

parameters detailed in Section 4.4 that were used in all our experiments are: n_vids =

4, min_prob = 85%, n_updates = 5 and min_distance = 0.56.

The algorithm maintains a stable accuracy for the different users. Figure 4.5 shows

how the interaction recognition accuracy barely changes as we incrementally process

more users. In this plot, Error means the output of the classifier is erroneous because

it classifies a video with confidence (probability above min_prob) into a wrong type

of interaction. Correct means the algorithm classifies a video with confidence into the
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Figure 4.5: Interaction recognition results.

Table 4.3: Interaction recognition results per class (10 users).

Correct Question Error
Show 0,60 0,31 0,10
Point 0,62 0,27 0,11
Speak 1,00 0,00 0,00

Total 0,74 0,19 0,07

correct interaction. Question means the confidence of the classification output is below

min_prob and the algorithm needs to ask the user for clarification.

Looking into the results per class, Table 4.3 shows that Point and Show achieve

similar accuracy. Compared to the offline version, an improvement (13% error rate in

the offline versus 7% error rate here) and more balanced results (14% and 22% error

rate for Point and Show vs 11% and 10% error rates here) are obtained. The key

difference between the offline and online versions is the skeleton detection. Thanks to

this, the method improve from an average of 33 valid frames found per video to an

average of 47. Besides, the hand patches extracted now present a higher quality, as

shown in the examples in Figure 4.6. This also benefits the general performance of the

pipeline because the hand patch is used in following steps.

4.6.3 Human-drone interaction

We analyze the different alternatives of our approach in the Drone-Human scenario and

then analyze the performance of our best system configuration. All the experiments

were run with an Intel R© CoreTMi7-6700 CPU@3.40GHz×8, 32GB RAM and GPU
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(a) Offline version (b) Online version

Figure 4.6: Interaction recognition sample results.

Geforce GTX 1070 8GB DDR5.

4.6.4 Analysis of design choices and alternatives

Per frame classification with different representations. For all these experi-

ments, the models were trained using cross validation on the train-fold from DDIR-1

set, validated on the validation-fold from the same set, and tested on the DDIR-2

set for additional verification. In order to select the most promising configurations

to continue with the complete system evaluation, we computed the recall for each

variation, to understand the amount of frames that each method was able to identify.

Table 4.4(a) corresponds to the segmentation representation results. Models

were trained, as previously explained, fine-tuning a MobileNetV2 model pretrained

on ImageNet. Fine-tuning was run during 100 epochs, with parameter α = 1.0 and

learning rate set to 10−4. A second version (MobileNetV2-D) has been trained using

additional data augmentation to account for larger scale varieties, consisting of random

image re-sizes from 1:2 to 1:0.5, which achieves better results. Table 4.4(b) shows the

results obtained with variations of the skeleton representation. All the alternatives

for this representation achieve comparable results, slightly better for the NN, also the
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Table 4.4: Different representations trained on DDIR-1 train set and evaluated on
different scenarios.

Test on: DDIR-1val Test on: DDIR-2
8 classes 8 classes+ 8 classes 8 classes+

"unknown" "unknown"
(a) Segmentation representation
MobileNetV2 90.1 (8.2) 68.3 (22.3) 86.5 (12.0) 71.9 (22.9)
MobileNetV2-D 93.0 (4.9) 76.2 (18.6) 90.6 (9.2) 78.8 (19.2)
(b) Skeleton representation
NN 93.0 (10.8) N/A 91.9 (6.5) N/A
SVM 95.3 (6.6) 76.5 (30.6) 90.4 (8.3) 76.2 (28.1)
Decision-Tree 95.5 (3.2) 57.8 (18.9) 89.6 (10.0) 57.2 (24.7)
(c) Hands&Faces representation
NN 54.4 (26.3) N/A 47.0 (24.5) N/A
SVM 60.3 (27.0) 46.6 (33.9) 50.9 (25.7) 42.9 (28.0)
Decision-Tree 61.5 (27.7) 40.9 (23.7) 51.6 (25.5) 32.4 (22.9)
Using only images with a detected face and at least one hand
NN 71.4 (17.6) N/A 71.2 (25.1) N/A
SVM 78.8 (15.4) 58.3 (33.6) 76.4 (24.1) 63.5 (31.4)
Decision-Tree 80.4 (16.0) 51.5 (21.4) 77.6 (23.6) 46.1 (22.4)

simplest to implement.

Table 4.4(c) shows results for the pointing direction task with our Hands&Faces

representation strategy. The core component of the Hands&Faces representation

is the hands and faces detector detailed in section 4.5.2. Under the same conditions

as the other approaches, the NN and the Decision Tree results are very similar, and

in both cases significantly lower than the other strategies. As expected, part of this is

due to errors in the hands and face detection. If test images where at least a hand and

a face are detected are the only ones considered, the results are significantly better but

still lower than the other approaches as shown in the same table.

Discussion. Including an unknown class, corresponding to images with non-pointing

gesture, drops the performance of our system significantly (around 10% difference be-

tween the columns “8 classes” and “8 classes + unknown” in all configurations). There-

fore, training was done only for the 8 direction classes and a different strategy to account

for robustness to ambiguous actions (i.e., non pointing). The described small temporal

consensus stage that filters the classification results in section 4.5.1 was included.

The results from the Hands&Faces strategy are far from the results from the other

two strategies, regarding accuracy and robustness, so this option was discarded for

further analysis in the following experiments. Note that the skeleton representation is
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Figure 4.7: Example of a limitation of our system. For distances larger than 6 meters,
our pipeline fails to identify the direction due to the low resolution of the user.

Table 4.5: Models trained on DDIR-3&4 and tested on DDIR-3&4val which contain
data acquired at different distances.

Skeleton-NN Test at 5m Test at 10m
Trained at 5m 83.3 (7.6) 70.8 (12.7)
Trained at 5m&10m 83.2 (7.8) 70.7 (12.8)
Segmentation-MobileNetV2-D
Trained at 5m 89.0 (4.7) 70.9 (6.1)
Trained at 5m&10m 88.4 (6.5) 70.6 (7.6)

very compact, which is convenient for efficiency but it may lose useful information such

as the appearance. Both the Skeleton and Segmentation results (in Table 4.4(a) and (b)

val/test columns) show that when the test data is from a domain further to the training

one, the average results remain almost intact demonstrating good generalization of our

models.

Robustness to various camera distances. The two best configurations (Skeleton-

NN and Segmentation-MobileNetV2-D) were further evaluated for robustness, on a

similar experiment that the one shown in Table 4.4 but this time training on the

DDIR-3&4 training sets and evaluated on DDIR-3&4val, as shown in Table 4.5. This

experiment shows that our system performs best when the user is between 2 and 6

metres from the camera. At larger distances the person is imaged at an extremely

low resolution in the cameras we used to record the datasets (see Figure 4.7 for two

examples). The data augmentation done on the training sets is enough for a model to

reach the same accuracy at long distances (more than 6 metres) than models trained

directly with data recorded at those distances, as shown in Table 4.5. These results

point that the segmentation approach is more robust to scale changes due to different

distances to the camera, therefore it is the most suitable strategy for the system.
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4.6.5 Video classification system

The following experiments evaluate in more detail the best configuration of our system.

The per frame classification is combined with a more robust consensus strategy for the

final video classification and different aspects of interest are discussed to demonstrate

the applicability of this approach.

Consensus strategy benefits. As expected, the complete approach including the

consensus stage (“Consensus improvement”) obtains better results than “Per frame”

classifications. Table 4.6 shows the results of a more detailed evaluation in a more

challenging setup than the preliminary evaluations from previous subsection. Models

were trained on DDIR-1&2 data, recorded from a base-station camera, and evaluated

on DDIR-3 and DDIR-4, where DDIR-4 was recorded from an on-board drone camera.

First note the consensus improves around 12% for DDIR-3 and around 10% for the

most challenging test of DDIR-4. This experiment results also show that changes in

perspective or camera type do not affect the good performance of the system, showing

good generalization.

Robustness to user, scenario and camera variations. Besides the robustness to

changes in camera type and perspective, the system presents good invariance to all the

relevant changes considered with the presented dataset. Robustness to user variations

can be analyzed in all experiments since different users appear in all datasets. Even

multiple users appearing on the background of several scenes is not an issue for the

system, as long as the user providing the command is the closest to the camera (as

assumed by the system). It is also relevant to note that training in one environment

(DDIR-1&2) and evaluating in a completely different one (DDIR-3 or DDIR-4) provides

very good results, see table 4.6. This demonstrates the good generalization of the model

learned to different scenarios.

System performance. The final implementation runs the Mask R-CNN for Seg-

mentation on the GPU, while simultaneously the Pointing direction classifier is run,

using MobileNetV2-D, on the CPU.

The processing time of one image, running the complete system, is an average of

225ms (the detector takes more than 90% of the time). This means that the proposed

final system can run at 4.5 fps. The best compromise between usability and accuracy

was found using a 5-frame window for the consensus. Longer windows can improve

the performance but require the gesture to be performed for longer and it becomes less

natural for the user.
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Table 4.6: Segmentation strategy trained on DDIR-1&2 and evaluated on DDIR-3
and DDIR-4. Precision-Recall running independent Per frame classification (PF) vs
applying Consensus (C).

Per Frame (+ Consensus improvement)
DDIR-3 DDIR-4

Class Precision Recall Precision Recall
up 63.2(+13.1) 56.1(+10.9) 89.1(+6.4) 34.6(+10.2)
up-right 82.3(+8.3) 65.2(+7.3) 85.7(+6.0) 83.4(+8.7)
right 85.8(+5.8) 63.5(+9.5) 93.0(+2.8) 69.4(+11.4)
down-right 81.7(+10.4) 70.9(+13.6) 69.4(+13.1) 88.6(+4.9)
down 45.3(+14.8) 87.6(+6.0) 68.7(+10.3) 77.8(+11.7)
down-left 83.4(+8.8) 78.6(+9.8) 76.4(+12.4) 87.4(+8.6)
left 79.9(+10.1) 72.7(+11.8) 66.7(+14.3) 76.5(+10.7)
up-left 67.5(+13.8) 70.9(+10.9) 66.6(+20.2) 76.2(+12.8)

Avg PF 73.6 70.7 77.0 74.2

Avg C 85.3 83.2 87.7 84.1

In hopes of exploring the use of this system in a drone without a base station, the

system was installed and measured on a Jetson AGX Xavier. The system takes 1638ms

on average to process one image, which means it could run in it independently at 0.61

fps.

The most significant limitations of the current system are the following. As the

whole pipeline runs at 4.5 fps and the consensus system requires 5 images to decide,

the user has to keep pointing for at least 1 second. While it is a reasonable time, it also

means that quick gestures are not recognized by our pipeline. Besides, the performance

decreases with distances larger than 10 meters of the user to the camera. This means

that the set up has two possibilities: either the camera is on board the robot with the

robot not further than 10 meters from the pilot, or the camera should be placed on a

base station near the pilot.

47



48



Chapter 5

Object detection from HRI
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5.1 Introduction

In order to identify the relevant visual information for the object model to be learned,

it is essential to use the interaction type classification that we described in the previous

section. This classification allows us to build different strategies to find the regions of

interest (RoI), as summarized in Figure 5.1. In particular, three different strategies are

proposed, one for each type of interaction:

• Show interaction. As described in the previous section, the hand position was

estimated to recognize the interaction type. By using such position, filtering it

by height and segmenting it, we can obtain a patch containing the object.

• Point interaction. A candidate object segmentation can be obtained using a

combination of algorithms. The final candidate is selected by using the pointing

direction of the hand patch.

• Speak interaction. Following the same candidate segmentation, the objects are

pre-recognized by a learning method. Then, the user speech gives us the anchor

object, the target object and the direction.

In this chapter, we present the three approaches and the evaluation of its per-

formance. We evaluate this module without taking into account previous steps. An

advantage of this approach is that if different interactions appear, they could be in-

cluded without deteriorating the others.

5.2 Related work

State-of-the-art methods in object detection are mostly based on deep learning. One

main differentiation between methods is the number of stages to process the images.

Many works, like YOLO [72], SSD [73], Retinanet [74], FSAF [75] and NAS-FPN [76],

use a one stage algorithm to process the image and obtain the object boxes and their

classes. Other works uses two stages, like Faster R-CNN [77], FPN [78], Mask R-

CNN [65], Cascade R-CNN [79] and Li-bra R-CNN [12], to obtain class-agnostic pro-

posals and class-specific detections. Our algorithm uses Mask R-CNN to obtain candi-

dates in combination with a classic method that give us the best amount of candidates.

There are few works that join human robot interaction to guide the object detection.

Canal et al. [80] presents a framework that is similar to our approach in speech but

using a conversation to obtain feedback from the users. In our case, the framework

doesn’t need to know the target object class before the interaction.
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Figure 5.1: Region of Interest Extraction from Human Robot Interaction. We use the
speech and the visual data to recognize the type of interaction. Each pipeline is divided
in three steps: a) Initial information: Pre-process step to discard useless information or
obtain possible candidates, b) Reference step: Obtaining the reference patch depending
on the interaction and c) RoI extraction: Extraction of the Region of Interest based
on the Reference step.
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Sadi et al. [81] presents a system able to recognize gestures usually employed in

human non-verbal communication. Similar to us, they use the pointing location esti-

mation to obtain the candidate object.

There is a large literature on object proposal methods that do not use deep learning.

Widely used object proposal methods include those based on grouping super-pixels,

e.g., Selective Search [82], CPMC [83], MCG [84], and those based on sliding windows,

e.g., objectness in windows [85], or EdgeBoxes [86].

5.3 Show interaction

This strategy considers when the user grabs the object and lifts it, bringing it closer

to the robot cameras. The key steps are discussed next and detailed in Algorithm 3.

Selecting the best frame to extract the hand patch. This usually happens

when the hand is at a high position, as occlusions are less likely at that moment.

Therefore, we select the subset of frames where the hand is above 70% of the highest

vertical hand position along the clip.

Selecting image regions most likely to contain the object. Each image is

segmented using SLIC [87] superpixels. Our algorithm selects superpixels likely to

contain relevant information, i.e., having a large overlap with the hand patch and a

small distance between the superpixel and the hand patch centers.

Algorithm 3 Target object detection for Show interaction.
1: min_instersected = 40%
2: max_far = 200
3: function Object_Detection_Show(Video_RGB-D, interaction, Hand_Pos)
4: Patches = []
5: for each Frame_RGB in Video_RGB-D do
6: if (Hand_pos-min_height) > 0.7∗ (max_height-min_height) then
7: SuperPixels = Slic(Frame.Front) Correct_SuperPixels = []
8: for each SuperPixel in SuperPixels do
9: intersection = get_intersection(Hand_Pos,SuperPixel)

10: distance_center = distance(SuperPixel.center(),Hand_Pos)
11: if intersection >= min_intersected &&

distance_center < max_far then
12: Correct_SuperPixels.add(SuperPixel)
13: end if
14: end for
15: Patch = Extract_patch(Correct_SuperPixels)
16: Patches.add(Patch)
17: end if
18: end for
19: return Patches
20: end function
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5.4 Point interactions

This strategy considers when the user is pointing to an object. Differently to Show,

where the object is easy to find because it is grasped by the user, Point interactions are

more challenging. The main difficulties are the estimation of the pointing direction and

the selection of the candidate object region from the potential candidates along such

direction. The key steps of this strategy are described next and detailed in Algorithm 5.

Candidate object segmentation. This segmentation is run on the first frames

acquired from the Top camera, before the user motion starts. The Top camera views

facilitate better object pre-segmentation because they have less clutter and occlusions

than Frontal camera views. We can map approximately the objects from one view into

another (in this case, from Top to Frontal views) using the table plane homography.

To obtain the candidate segments, our algorithm runs two different but comple-

mentary approaches on the resulting image. In the first approach, Mask-RCNN [88]

is used to segment a few candidate objects. This CNN model can reliably segment

certain objects but, since our scene contains significant occlusions and small objects

(see examples in Figure 5.4), it misses important candidates. In the second approach,

a superpixel segmentation [89] is used to remove table pixels. Then we apply Otsu’s

thresholding with the Watershed algorithm (as described in Meyer et al. [90]), to obtain

object candidates. From this candidates, we remove object that are too small or too

large, objects that occupy more than one third of the table or less than an area of 100

pixels. This process is detailed in Algorithm 4.

Hand pointing direction estimation. Figure 5.2 shows several examples of the

output of our pointing direction estimation algorithm. Hand contours are extracted

using a Canny edge detector on the depth image. Then, we draw lines from the hand

center at several equally distributed angles. The pointing direction is approximated by

the line that intersects with the hand boundary at the furthest distance to the hand

center.

Intersection between the pointing direction and candidate object seg-

ments. These intersections are obtained as represented in Figure 5.1(b). To evaluate

which candidates are more promising, our algorithm computes the following score:

Score =
∑

Frames

Intersect(Hand_direction,Candidate)

Diagonal(Candidate)
, (5.1)

where Intersect computes the length of the intersection between the pointing direction

and the candidate bounding box; and Diagonal computes the length of the bounding

box diagonal.

This score helps us in normalizing by the size of each candidate. The candidate with
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(a) (b) (c) (d)

Figure 5.2: Examples for hand detection and pointing direction estimation. The green
regions show equally-distributed possible directions. The blue line is the estimated
direction. (a) to (c) show common correct cases; (b) shows an example where the
direction is correct even for an uncommon hand pose. (d) shows a failure case, the
direction is incorrect due to similar depths in the hand and the table. (best viewed in
color)

Table 5.1: Examples of speech processing.

Step Example 1 Example 2

Phrase
The apple is on front Cereal Box is at
of the Coke the right of the Mug

Nouns Extracted [’apple’,’front’,’Coke’] [’Cereal’,’Box’,’right’,’Mug’]
Target Obj. apple Cereal Box
Direction front right
Ref. Obj. Coke Mug

the highest score is selected, and the corresponding image patch from both cameras is

extracted and used as a training sample for the incremental model.

5.5 Speak interactions

This type of interaction presents relevant challenges. Since the visual part of the

action is irrelevant, we parse the user speech to extract the relevant information for the

candidate patch search. We assume simple user sentences, for which standard speech

processing tools like Nltk [91] can extract the target object name, reference objects

and their relative positions. Table 5.1 shows two examples of the speech processed.

Algorithm 6 describes our strategy for this interaction type and the main ideas are

discussed next.

Object recognition on all candidate objects segmented at the top view.

This recognition is run with the models available at that time. If the robot recog-

nizes any of the objects used as reference in the description, such object is used in

combination to the relative pose information to estimate a search direction.

Target area definition and candidate selection. We define the target area
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Algorithm 4 Candidate object segmentation.
1: min_circle = 20
2: max_circle = 60
3: function Calculate_Candidates(Video_RGB-D)
4: Homography =

get_table_homography(Frame_RGB.Front,Frame_RGB.Top)
5: Candidates = []
6: for each Frame_RGB in Video_RGB-D[0:5] do
7: Plane = Calculate_plane(Frame_RGB.Top)
8: Table_cropped = Extract_table(Frame_RGB.top,Plane)
9: DL_Candidates = MaskRCNN(Table_cropped)

10: Candidates.add(DL_Candidates)
11: SuperPixels = felzenszwalb(Table_cropped)
12: SuperPixels.filter_biggest()
13: Filtered_Image = Otsu_threshold(SuperPixels)
14: Heat_map = Distance_zeropix(Filtered_Image)
15: Segments = Watershed(Peaks(Distance_map))
16: for each Segment in Segments do
17: Center,Radio = min_enclosing_circle(segment)
18: if min_circle >= Radio >= max_circle then
19: Candidate = Extract_candidate(Segment)
20: Candidates.add(Candidate)
21: end if
22: end for
23: end for
24: for each Candidate in Candidates do
25: if Candidate.area < 100 or

Candidate.area > 1/3∗Plane.area then
26: Candidates.erase(Candidate)
27: end if
28: end for
29: return Candidates
30: end function

Algorithm 5 Target object detection for Point interaction.
1: function Object_Detection_Point(Video_RGB-D, interaction, Hand_Pos)
2: Patches = []
3: Candidates = Calculate_Candidates(Video_RGB) . See Alg. 4
4: for each Frame_RGB in Video_RGB-D do
5: hand_direction =

get_hand_direction(Frame_RGB.Front,Hand_Pos)
6: for each Candidate in Candidates do
7: Score,Intersected =

intersect(Candidate,hand_direction)/Diagonal(Candidate)
8: if Intersected then
9: Candidate.update_score(Score)
10: end if
11: end for
12: end for
13: Selected_Candidate = Candidates.get_best_score()
14: Patches =

[Selected_Candidate.Front_patch,Selected_Candidate.Top_patch]
15: return Patches
16: end function
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Algorithm 6 Target object detection for Speak interaction.
1: min_confidence = 60%
2: function Object_Detection_Speak(Video_RGB-D, Incremental, speech)
3: Patches = []
4: Candidates = Calculate_Candidates(Video_RGB) . See Alg. 4
5: Ref_label = speech.get_reference()
6: Reference = None
7: Ref_conf = 0
8: for each Candidate in Candidates do
9: Candidate.Label,confidence = Incremental.Test(Candidate.patch)
10: if Candidate.Label = Ref_label &&

confidence >= max(min_confidence,Ref_conf) then
11: Reference = Candidate
12: Ref_Conf = confidence
13: end if
14: end for
15: Direction = speech.get_direction()
16: Target_area = obtain_area(Reference,Direction)
17: Selected_Candidate = None
18: Selected_Distance = inf
19: for each Candidate in Candidates do
20: if Inside(Candidate,Target_area) then
21: Distance = Calculate_distance(Candidate,Reference)
22: if Distance < Selected_Distance then
23: Selected_Candidate = Candidate
24: Selected_Distance = Distance
25: end if
26: end if
27: end for
28: Patches =

[Selected_Candidate.Front_patch,Selected_Candidate.Top_patch]
29: return Patches
30: end function

using the corners of the reference patch, the corner of the images and the search

direction. The selected candidate is the closest to the reference patch within the target

area, similar to the Point interaction.

5.6 Evaluation

To evaluate the quality of the object patches, segmented by the target object detection

module, we manually select which ones are a Correct Patch, i.e., it actually contains

the correct target object. Figure 5.3 shows several correct and incorrect examples of

the target object segmentation and Table 5.2 presents the quantitative results.

Point and Speak present lower accuracy than Show, as they are more challenging

interactions. Both use similar strategies to segment the candidates, and they face

similar challenges (small objects, large occlusions and clutter, the object potentially

being anywhere in the scene). We study two different approaches to find candidate

patches for the target object in Point and Speak videos: a deep learning (DL)-based
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Table 5.2: Target Object patches accuracy (Acc.).

Acc. Total Correct Incorrect
Patches Patch Patch

Point 46.66 % 90 42 48
Show 86.23 % 3210 2768 442
Speak 47.32 % 112 53 59

approach and a superpixel (SPX)-based one, both explained in Sec 5.4. Figure 5.4

shows that DL is less robust for smaller objects, but more accurate. SPX extracts

more candidates but it is less accurate. Combining both (DL+SPX), we outperform

their weaknesses and obtain a better set of candidates.

Each interaction has additional challenges added to the segmentation. Most of the

errors in Point videos are caused by incorrect pointing directions, which is a non-trivial

task, as illustrated in Figure 5.5(a). Most of the errors in Speak videos are caused by

failures recognizing the reference object. As the accuracy of the classifier improves, the

quality of the Speak patches also improves, because the reference object detection is

more reliable.

As we can see for example in Figure 6.2(b), there are significantly more target

patches obtained from Show videos than from the rest. This is because of the strategy

followed to obtain them. Since the user is moving the hand, several frames are kept,

Show
Ketchup Glass Bowl

Point
TeaBox Noodles Coke

Speak
Pringles DietCoke Kleenex

(a) (b)

Figure 5.3: Target Object Detection sample results: (a) Correct segmentation; (b)
Incorrect segmentation
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(a) DL [88] (b) SPX (c) DL + SPX (Ours)

Figure 5.4: Candidate object patches (blue rectangular regions) with the three options
(DL, SPX, DL+SPX) considered. Yellow stands for false positives, and red for false
negatives. For our goals, it is essential to minimize false negatives.

(a) Innacurate pointing direction

(b) Segmented patch not centered on the object.

Figure 5.5: Examples of two common difficult/failure cases for Target Object Segmen-
tation in Point and Show videos.

because they potentially show different points of view of the target object. They are

very likely to contain the target object but often not centered or fully visible (see

Figure 5.5(b)), providing very noisy training data.
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Chapter 6

Incremental object learning
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6.1 Introduction

In this chapter, the algorithm presented in Chapter 3 is used for object learning eval-

uated with different descriptors. The evaluation is done using two different datasets,

with a performance comparison of the descriptors.

6.2 Related work

In recent years, significant advances have been made in the field of incremental learning,

many of them applying deep learning techniques. Open-class approaches, i.e., those

able to add new categories as the data comes, are particularly relevant for our work.

In Li et al. [35], the authors create and train new classification layers as new classes

are added and fine-tune the rest of the network to maintain the outputs for older

classification layers. Following this work, Rannen et al. [36] uses a similar setting,

one shared model and several classification layers, but at training time they add one

feature-autoencoder per class. The new autoencoder is trained on the data for the

assigned class and use a loss to keep the build-up error on the old ones. More similar

to our work, Rebuffi et al. [37] use deep learning to obtain image representations that

can be incrementally updated. They set a limit in the total number of stored examples

and classify using the average feature of each class examples. With our approach, we

outperform this work in the Core50 dataset and possibly at a lower cost, as we do not

fine-tune the network.

Other works with deep learning focus on incrementally bind multimodal attributes

to the objects like Xing et al. [38]. Here, the Perception Coordination Network online

adquires and bind multimodal concepts between different sensory modules. It uses two

levels of neurons inspired by the brain structure and separates lower neurons depending

on the modality of the input. Our work only focus on the use of deep learning as

feature extractor, because training a network online has more computational cost and

the binding of concepts is out of our scope.

Other classic approaches for incremental or online learning are found in the litera-

ture. Passive-Aggressive algorithms [39] use an offline learning algorithm as a base and

incrementally modify their parameters. [40] presents a variation of SVM that is able to

change the support vector online. We can also find online variations or combinations of

K-means clustering algorithms. Murty et al. [41] presents an approach that combines

the k-means algorithm with multilevel representation of the clusters. Likas et al. [42]

presents a global k-means that adds a new cluster at a time and dynamically updates

the other clusters by applying the k-means algorithm multiple times. More recently,
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Mensink et al. [43] presents an incremental Nearest Mean Classifier which uses nearest

neighbor with the mean of each class for classification and also for generalization.

Other group of approaches apply a data transformation based on self-organizing

maps (SOM) Neural Networks, as a base to incrementally update the nodes in the

Network. For example, Furao et al. [44] presents an online unsupervised system with

an incremental update of a Neural Network based on SOM (SOINN). Xing et al. [45]

presents a more recent variant of the Self-Organizing Incremental Neural Networks

that incrementally transforms the nodes in the layers of the SOINN using the local

distribution. Gepperth et al. [46] uses SOM to reduce the dimensionality of the data

in the Hidden Layer, but it needs to keep all the data in memory for re-training.

These approaches work with seeds for each class based on the existing data and can

not add new classes over time. Differently, our goal is to be able to learn completely

from scratch and increase incrementally the number of classes.

Incremental learning is a paradigm very suitable for robotics, where the data typ-

ically arrives sequentially, and the robot needs to keep the best model up to date at

real time, such as mapping in [47] or inverse dynamics incremental learning in [48].

The same way, Angeli et al. [49] presents an incremental method to build a model to

recognize visual loop-closures. We find multiple examples that propose how to incre-

mentally adapt environment visual models as the robot moves. These approaches are

often based on Gaussian Mixture Models that can be easily updated and maintained

to recognize regions of interest for the robot [50, 51]. In robotics, we find situations

where the robot interacts directly with the scene, e.g., grasping and moving an object,

to build an incremental object model [52, 53, 54]. Our approach is complementary to

these works, as we focus on the human interaction. This interaction is needed in real

scenarios, e.g., if the object to be learned or explored is out of reach of the robot.

6.3 Descriptors definition

We apply our incremental learning approach to learn object models from image patches.

For an illustration of the typical patches we have available in the considered robotic

settings, Figure 6.1 shows a few examples of the MHRI dataset. In robotic settings

computation capability is typically limited. Therefore, we evaluate the following de-

scriptors, that are reasonably small and fast to compute.

BoW histogram This descriptor consists of a standard Bag of Words (BoW) rep-

resentation over local image features. We use ORB features [92], as they provide a

good compromise between accuracy, efficiency and number of keypoints. The BoW
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Figure 6.1: Sample objects patches from human-robot interaction. The object views
are typically low-resolution patches where standard keypoints/descriptors give low per-
formance.

descriptor is a histogram of the occurrence of different visual words from a vocabulary.

The vocabulary is obtained by clustering all the features extracted on a large set of

images. We build the vocabulary using the Washington dataset [27] to avoid using the

same data of the online experiments. We use 1000 visual words, clustered from more

than 2 million features extracted from over 12000 images. The images contain close-up

views of from the categories in the dataset, and scene views containing the objects and

clutter.

To obtain the descriptor BOWORB of an image patch we first extract ORB features,

find the closest word to each of them and build BoW as a 1000-bin histogram of the

frequency of occurrence tw of each word in the image as:

BoWORB = [t1, ..., tw, ...t1000] ; tw =
nwp

nk

, (6.1)

where nwp is the number of occurrences of word w in image patch and nk is the total

number of keypoints in image patch.

Color Histogram This descriptor approximates the color distribution in an object

view. We compute three normalized 8-bin histograms (Hr Hg Hb), one per color

channel, over region pixel values:

HCRGB = [Hr Hg Hb]. (6.2)

SIFT keypoints We obtain SIFT keypoints and their associated descriptors [93] as

SIFT = {s1, s2, s3, ..., sn}, (6.3)

where SIFT is the set of n keypoints obtained in the object view. Although it has

higher computational cost than other local features, SIFT is an accurate and robust

local feature appropriate as a baseline.
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(a) (b)

Figure 6.2: Examples of (a) Manually Cropped and (b) Automatically segmented
patches from three objects in the MHRI data.

CNN features We use the flattened output of the last GAP (Global average pool)

layer from ResNet50 [4].

ResNet50 = ResNet50(patch).GAP (6.4)

The experimental validation of this module, in the next section, shows that the

best performing descriptor for our application is the CNN-based one. It is also the

largest descriptor considered. The Color Histogram HCRGB performs similarly in the

evaluation of this particular module (see Sec. 6.4), but its performance decreases when

evaluating the whole pipeline (see Chapter. 7).
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6.4 Evaluation

This section analyzes the performance of the incremental learning algorithm, explained

in Chapter 3, using the visual descriptors detailed in this Chapter. We use both the

Core50 and MHRI datasets. In Core50, there are 11 sessions, 8 for training and 3 for

testing, and 50 objects. We use the same setting used in the New Classes and Instances

experiment in [34]. In MHRI, there are 670 manually cropped patches from 22 classes,

approximately 30 patches per class and 67 patches per user. Each experiment consists

of a 10-fold cross validation, each fold keeping all the data from one user for test and

using the rest of the users for training.

We analyze the influence of the main parameters of our strategy (object patch de-

scriptor and incremental model size) and compare the performance of the proposed

method with standard baselines for offline object recognition. To decouple this eval-

uation from data quality, we first evaluate the incremental model using manually

segmented object patches (see Figure 6.2(a) for examples of such patches).

Object patch descriptors. We evaluate several patch descriptors, as detailed in

Sec. 6.3: Color Histogram (HCRGB), Bag of Words using ORB descriptors (BoWORB),

the output of layer GAP of pre-trained ResNet [4] (ResNet50), and SIFT correspon-

dences (SIFT ).

We first run this experiment on Core50, comparingHCRGB andResNet50 (keypoint-

based descriptors are expected to have worse performance). We varied k, the model

size per class, between 10 to 200 (the latest uses all the data). In Figure 6.3 we can

see the average accuracy for the different limits per class and descriptors. As we can

see, a model size of 80 samples per class, Resnet50 and the cosine distance obtains an

accuracy of 31.97%, outperforming the 29.56% 1 reported in [34] (We do not compare

against their cumulative version since it uses all the data to fine-tune the network).

Per-class limits of 80 and 100 for HCRGB descriptors and Battacharya distance obtains

31.29% and 31.97%, respectively. In Figure 6.4, we can see the accuracy evolution

as more samples are used for training. This figure also shows that HCRGB performs

better than ResNet50

We run a similar experiment onMHRI, where we additionally consider the keypoint-

based descriptors (SIFT and BoWORB). We use the Bhattacharyya distance for

HCRGB and BoWORB and the cosine distance for ResNet50. SIFT points are matched

using FLANN [94], left-right consistency and Lowe’s nearest neighbour ratio test [93].

1https://vlomonaco.github.io/core50/leaderboard#keywords3
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Figure 6.3: Core50 experiments processing all data.

Figure 6.4: Core50 experiments, incremental results.

Since MHRI is around five times smaller than Core50, we configured the size-limit

to 10, 20, 30, and all data. Table 6.1(a) shows the object recognition accuracy ob-

tained with all the descriptors, and different model size limits, using Manually Cropped

patches. HCRGB and ResNet50 have the highest accuracy. This can be explained by
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looking at the examples in Figure 6.2. Notice that our objects have distinctive colors

and poor texture, and hence descriptors based on keypoints will perform poorly.

The best results are obtained for model size 20 for HCRGB and 10 for ResNet50.

In both cases limiting the model size performs better than not limiting it, because our

algorithm is able to remove outlier data. Figure 6.5 shows a graphical representation

side by side of the average number of clusters in each configuration and the accuracy

of the different descriptors.

Note that after a cluster-size limit of 20 the accuracy does not improve substantially,

and hence it is reasonable to implement such limit in constrained platforms.

Discussion of related offline and online baselines The object recognition per-

formance of our incremental model is compared with an offline recognition pipeline,

and with two standard offline strategies for object recognition:

• SVM + HCRGB: It uses HCRGB as a descriptor and a SVM classifier trained

offline.

• k-NN+descriptor: we run a standard k-NN classification, computing distance

between the query and all the training data samples, for different descriptors.

Note that it is equivalent to the limitless incremental model after processing data

from 9 users.

• Inception-based: We have used the base Inception V3 model [95], with weights

pre-trained on ImageNet, and fine-tuned it with our Manually-cropped patches

for the 22-object classes in MHRI dataset.

We also compare our algorithm against an incremental Passive-Aggresive approach

(PASVM) [39] applied to SVM2, which updates the support vectors with each step,

and with an incremental SoftMax Regression. We tested the PASVM with HCRGB

and ResNet50 descriptors and parameter C = 2 and the SoftMax with HCRGB.

Table 6.1(c,d,e) shows the average object recognition accuracy of these baselines.

For the online baselines PASVM performs poorly, but the SoftMax regression has a

performance close to our approach. For the offline baselines, we can observe that

our proposal (Incremental k-NN) has similar performance (35.2%) to Offline k-NN

(33.3%). This result is a solid support for our incremental approach, as it shows that

our strategy to limit the cluster size does not harm the performance. Our results are

also improve over SVM + HCRGB, a remarkable result taking into account that our

current approach is incremental, while SVM + HCRGB used offline training. Among
2https://github.com/Zotkin/Passive-Agressive-SVM-for-online-learning
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Table 6.1: Average object recognition accuracy (22 Objects) (10-fold), Manually
Cropped patches

(a) Incremental, k-NN

# of users processed to build the model
1 2 3 4 5 6 7 8 9

10-cluster limit per class
BoWORB 7,6 6,2 7,2 7,9 8,3 9,0 8,7 9,4 10,1
HCRGB 10,7 17,7 23,7 25,8 25,9 25,9 23,4 25,1 24,3
SIFT 6,1 5,8 5,8 5,8 6,1 5,8 6,8 6,2 6,4
ResNet50 21,3 25,8 30,3 31,0 31,9 33,7 34,7 35,7 35,2

20-cluster limit per class
BoWORB 7,6 7,2 8,0 8,3 9,0 9,6 10,4 10,3 11,3
HCRGB 10,7 17,9 23,1 26,0 28,0 29,6 30,8 31,1 31,4
SIFT 6,1 5,5 5,2 5,4 6,4 8,5 8,9 7,3 6,8
ResNet50 10,3 18,1 22,6 23,8 26,1 26,4 27,3 30,4 31,5

30-cluster limit per class
BoWORB 7,6 7,2 8,0 8,4 9,1 9,7 10,7 11,1 11,7
HCRGB 10,7 17,9 23,1 25,8 27,5 28,4 29,7 30,7 30,0
SIFT 6,1 5,5 5,2 5,5 6,0 6,9 7,5 8,0 7,7
ResNet50 21,3 26,2 31,4 32,7 31,8 35,3 36,8 34,3 33,1

No cluster limit per class (ALL)
BoWORB 7,6 7,2 8,0 8,4 9,1 9,7 10,8 11,3 11,8
HCRGB 10,7 17,9 23,1 25,8 27,6 28,4 29,2 30,3 30,2
SIFT 6,1 5,5 5,2 5,5 6,0 6,9 7,2 7,3 7,3
ResNet50 21,3 26,2 31,4 32,7 31,8 35,3 36,5 34,0 33,3

(c) Incremental SVM

ResNet50 3,8 5,6 5,6 7,1 8,1 8,1 8,1 8,1 8,1
HCRGB 3,6 8,0 8,0 9,0 9,0 9,0 9,0 9,0 9,0

(d) Incremental SoftMax Regression

HCRGB 10,6 12,6 17,4 20,7 22,1 24,9 25,7 27,7 28,8

(e) Offline

k-NN+BoWORB 11,8
k-NN+HCRGB 30,2
k-NN+SIFT 7,3
k-NN+ResNet50 33,3
SVM +HCRGB 34,8
Inception-based [95] 59,3

the offline approaches, the Inception-based model obtains the best results. Notice,

however, that for this approach the target object patches are manually cropped and

training is done offline. Hence, it is an approach not suitable for our case of study, which

is incremental learning. We consider this to be an upper bound for the performance,
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worth showing as reference.

Figure 6.5: Accuracy and number of clusters of our incremental learning algorithm as
the number of users increases. Descriptors reported: HCRGB, FC7, SIFT, BoWORB.
Model sizes evaluated: 10, 20, 30 and All.
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Chapter 7

End-to-end incremental object learning from
HRI
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7.1 Introduction

This chapter presents the complete integration of the end-to-end pipeline that learns

objects incrementally from the Human Robot Interaction. The correct behavior and

performance of all the modules running together is validated using the MHRI dataset

in a experiment. The validation is done using this dataset since is the only one that

contains both interaction and object recognition in the wild.

Figure 7.1: Overview of the end-to-end pipeline that learns objects from human teach-
ing in a HRI scenario.
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7.2 Overview

Following the Figure 7.1, we have integrated the modules presented in previous chapters

into a complete pipeline. The pipeline works as follows:

• A user teaches an object to the robot, using the interactions presented before.

• The first module recognizes the interaction type. It can also interact with the

user for clarification if the recognition is uncertain.

• The frames, hand position, type of interaction and speech is the input to the

object detection module. This module obtains patches containing the target

object.

• The patches obtained are then used to train our incremental model and update

the object model database.

An experiment with a real robotic platform (a Baxter robot) was done following

this full pipeline. This experiment is explained in Section 7.4

7.3 Evaluation

We run the complete pipeline for all the videos and extract the target object patches.

Then, the incremental algorithm we propose is run with a 10-fold cross-validation,

where each fold corresponds to a user, but using the automatically segmented patches.

The difficulty, in comparison with the previous chapter evaluation, is also increased

because each user manipulates a different object pool subset and then at some points

in time, there may be no examples in the training data for some of the objects in the

test data.

We run this experiment using the ResNet50 descriptor, which had the overall best

performance in previous chapter, and the HCRGB descriptor, with a more robust per-

formance in the Core50 data.

7.3.1 Incremental k-NN

Table 7.1 and Table 7.2 show the accuracy for object recognition with the HCRGB and

ResNet50 descriptors, respectively, at different steps of the incremental process and

for the different folds.

In these experiments the descriptor that works the best is ResNet50, obtaining an

accuracy of 18.2% with all users processed. Results show that the incremental approach

varies around 20% with each user added after the third user processed, as shown in
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Figure 7.2: Incremental learning accuracy as more data (from more users) is used for
training. Dashed lines are per-fold results, solid line is the average. Table 7.2 contains
the numerical results for this graph. (best viewed in color)

Figure 7.3: Examples of the recognition results after the incremental learning was run.
The objects in green are correctly labeled. Best viewed in color.

Figure 7.2. HCRGB obtains worse results, with 13.9% of accuracy, but shows a more

constant progress as more users are processed. It is also interesting that, as shown in

Table 7.4, the size of both models is small compared to other baselines.
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Figure 7.4: Evolution of the F1 score with the amount of training data over 10 folds.
The blue line stands for its average, and the colored area for its standard deviation.

Table 7.1: Object Recognition Accuracy (HCRGB, model size 20). Columns: # training
users. Rows: Results per fold.

# users 1 2 3 4 5 6 7 8 9

user1 0,3 0,3 1,1 0,9 0,9 1,7 0,6 0,9 1,4
user2 2,0 4,0 1,6 6,0 3,6 6,0 1,2 4,4 4,8
user3 17,0 4,4 5,6 8,5 18,1 17,0 23,0 24,8 15,9
user4 3,3 7,4 2,8 5,6 6,5 4,7 5,1 5,1 11,2
user5 4,1 10,1 9,9 11,2 7,7 2,5 8,2 7,4 9,3
user6 12,2 20,0 8,9 3,3 1,1 12,2 13,3 23,3 21,1
user7 26,3 3,2 20,6 18,6 12,6 17,0 19,8 30,4 29,6
user8 4,7 6,5 13,7 12,2 15,7 16,9 15,2 14,5 13,5
user9 14,0 19,5 25,5 11,0 11,5 15,5 16,0 14,5 15,0
user10 2,0 1,5 3,0 27,3 29,8 27,8 23,7 22,2 17,2
Avg. 8,6 7,7 9,3 10,5 10,7 12,1 12,6 14,8 13,9

7.3.2 Comparison with incremental and offline baselines

As a reference incremental approach baseline, we run incremental SoftMax Regres-

sion. Table 7.3 shows its performance. Its performance is significantly lower compared

to the experiment in Table 6.1 (it decreases from 28% to 8.6%). This is a consequence

of the lower quality of the data (for the results of Table 6.1, Manually Cropped patches

were used). Notice that, in our approach, the degradation is not as significant, and we

outperform this baseline.
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Table 7.2: Object Recognition Accuracy (ResNet50, model size 10). Columns: #
training users. Rows: Results per fold.

# users 1 2 3 4 5 6 7 8 9

user1 0,0 18,2 25,3 22,9 18,9 14,5 18,9 20,5 15,5
user2 0,8 5,0 27,2 33,7 33,3 18,4 21,1 21,1 21,5
user3 38,3 37,0 28,6 33,1 33,8 31,8 31,2 37,0 14,3
user4 10,6 22,9 25,0 26,1 27,7 26,1 27,1 20,7 11,7
user5 6,7 7,0 8,3 8,0 8,9 9,3 17,6 18,2 31,9
user6 8,2 12,2 12,2 20,4 8,2 10,2 16,3 16,3 11,2
user7 15,5 5,5 7,7 8,3 8,3 8,8 8,8 10,5 12,2
user8 16,0 15,0 17,5 18,6 19,3 17,8 16,2 16,2 19,2
user9 16,7 14,2 16,7 29,1 25,4 26,1 33,3 32,1 29,4
user10 6,3 17,6 21,5 17,3 13,7 16,5 14,8 16,5 14,8
Avg 11,9 15,5 19,0 21,7 19,7 18,0 20,5 20,9 18,2

Table 7.3: Object Recognition Accuracy with SoftMax Regression (HCRGB). Columns:
# training users. Rows: Results per fold.

# users 1 2 3 4 5 6 7 8 9

user1 14,4 0,4 0,4 0,2 0,2 4,0 0,0 11,3 7,5
user2 20,8 0,0 22,0 0,0 0,0 13,6 0,0 0,4 0,4
user3 1,5 0,4 0,7 11,9 0,7 0,7 0,4 1,9 17,8
user4 10,2 16,3 0,5 0,9 0,5 2,3 1,4 12,6 0,9
user5 0,3 0,0 15,1 0,0 0,0 0,3 4,1 3,0 7,9
user6 3,3 1,1 1,1 2,2 2,2 3,3 18,9 0,0 11,1
user7 0,0 4,0 0,4 0,4 6,9 1,2 0,4 0,8 21,1
user8 1,5 9,0 12,5 0,3 11,5 0,2 8,7 0,0 0,2
user9 0,0 0,0 13,6 0,0 0,0 2,7 14,6 0,7 13,6
user10 2,0 0,0 14,6 25,3 5,6 1,0 0,0 0,0 0,5
Avg. 12,2 0,3 7,7 4,0 0,3 6,1 0,1 4,5 8,6

As a reference baseline for our incremental end-to-end approach, since up

to our knowledge there is not another available of similar characteristics to ours, we

show our earlier work presenting the dataset [96]. It consists of a SVM classifier trained

offline using HCRGB as patch descriptor. We consider two configurations, depending

on the data used for training, with the best result obtained for each of them:

• Automatic SVM +HCRGB: SVM trained with all the patches extracted auto-

matically, i.e., including significant amount of noisy patches.

• Inspected SVM + HCRGB: SVM trained with automatic patches manually
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Table 7.4: Recognition results using Automatic Patches (22 classes, 10-fold cross vali-
dation, random acc. 4.45%)

Accuracy STD Size
Previous Work (offline) [96]:
Automatic SVM +HCRGB 7.95 6.6 -
Inspected SVM +HCRGB 11.45 10.53 -
Other offline baselines:
Automatic Offline k-NN(ResNet) 23.98 8.85 10MB
Automatic Offline k-NN(HC) 13.6 9.6 2MB
Automatic Inception-based 35.5 6.51 92MB
Incremental:
SoftMax 8.6 8.7 2.5MB
Incremental-ResNet 18.2 7.4 3MB
Incremental-HC 13.9 8.0 220KB

inspected to keep only correct ones.

Besides, the same offline baselines from previous section are shown as reference.

However, this experiment runs them using automatically segmented patches:

• Automatic Offline k-NN: standard nearest neighbour classification using Au-

tomatic patches.

• Automatic Inception-based: fine-tuned CNN model as in our previous exper-

iment, but using Automatically segmented patches.

Table 7.4 shows the average accuracy (of the 10-folds) obtained for the different

approaches run to learn object models. The performance of Inception and Offline

k-NN decreases to an 35.5% and 23.98%, from the 59, 3% and 33, 3% they reached

training with Manually Cropped patches in earlier experiments. This is not surprising

and confirms the challenging set up we are working with. The decrease in performance

is due to error accumulated from running each of the modules and the lower quality of

the data used for training. Figure 6.2 examples show that there is high amount of noise,

partial views of the objects and heterogeneous patch sizes. As we already discussed in

the object segmentation evaluation, only around 60% of the patches actually contain

the object targeted.

Our incremental approach also suffers a decrease in performance but it is able to

outperform the Automatic SVM + HCRGB and Inspected SVM + HCRGB baseline

of [96] processing only 20% of the data, using the Resnet descriptor. In case of the

Inspected SVM + HCRGB is really important because it uses manually pruned data.
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It is also worth noticing, that the size of data stored by our incremental approach is

several times smaller than the offline baselines, therefore requiring less resources. Note

that in this case the other offline baselines are not much better than our incremental

approach, which highlights the challenging data and setup considered and leaves open

research problems in learning for service robotics.

7.4 Integration in a real robotic platform

Figure 7.5: Photos of the three users in the demo done with the Baxter robot. Observe
the experimental setup: The robot is in front of the table and the user is teaching
objects. The screen helps the user to follow the robot instructions. The user speech
and synthesized speech for the interaction can be heard in the video.

A live demonstration with a real Baxter robot was performed in the GAIPS labora-

tory of the Instituto Superior Tecnico of Lisbon. For the purpose of this demonstration,

a new feature was added to the framework. The user could ask for an object and the

robot either points to the predicted object in the table or says that it is not found.

The objects in the table are segmented using our point and show strategies and the

patches are processed by the incremental algorithm. The demonstration was done by

three different users following these steps:
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• The robot start without previous knowledge.

• The user teaches two or three different objects, each one with a different type of

interaction.

• The user asks for one object of the table. The robot points to the object.

• The user teaches a new object, and can ask the robot to look for the ones that

the user already taught.

In Figure 7.5 a qualitative result of the experiment can be seen. The bottom image

shows the setting and the top image shows the computer screen illustrating the different

steps. The video showing the experiment is publicly available 1.

1https://www.youtube.com/watch?v=V_72tyBK8Go
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Chapter 8

Incremental object learning with online
descriptors
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8.1 Introduction

In the previous chapter a complete pipeline for interactive and incremental object

learning was presented and evaluated. The experiments showed that the performance

of the incremental algorithm suffers from the noisy data that is extracted using the

pipeline. A robust and discriminative image description is essential to reduce this

deterioration and obtain a performance similar to the cleaned data experiment. The

work presented in this chapter explores the idea of adapting the descriptor as new data

appears, in an attempt to have a more suitable and discriminative descriptor.

The presented approach follows the strategy summarized in Figure 8.1. A deep

embedding is used as patch description, and shows the benefit of updating the en-

coder that computes the embedding. This update uses a reduced set of representative

patches and only runs after a batch of new patches has been processed. The evaluation

of this approached is run on two public datasets for continual learning. This evaluation

includes a careful analysis of the effects of catastrophic forgetting on different varia-

tions, demonstrating the accuracy of our strategy and how we significantly reduce the

amount of training samples that need to be stored. The experiments also demonstrate

how lighter encoders can be used without degrading the final accuracy, thanks to the

suggested encoder retraining.

8.2 Related work

Deep learning is being adopted by the incremental learning community, but several

challenges remain. The main challenges studied in this work are adaptive representa-

tions and model updates that enable new categories without degrading the performance

on categories learned earlier.

Figure 8.1: Incremental object learning. This chapter explores the effects of incremen-
tally updating the image representation (CNN-based embedding) as new object classes
are added and learned.
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Similar to our work Rebuffi et al [97] use deep learning to encode image content.

They use this embedding to learn models incrementally using Near Mean Classification.

Lomonaco et al. [98] present a study where they use different set of the training data for

the Core50, one that extend the new class apparition in comparison with the original

one, and its effect on the metrics.

In order to update (re-train) the networks without forgetting old data, several

works use the distillation loss. For example, Castro et al. [99] use several classification

layers and keep a reduced set of data from each class to maintain a low value for the

distillation loss. Hou et al. [100] use the same idea but with three loss functions: One

for new data, one for distillation and one for inter-class separation. Lagunes et al. [101]

use triplets to train a new embedding with the known data and test it on novel data

using K-NN. On class-incremental learning, where new classes can be added over time,

Maltoni et al. [102], combine architectural and regularization strategies. Sodhani et

al. [103], use Recurrent Networks with Gradient Episodic Memory.

More recently, Parisi et al. [104] present a growing dual memory architecture using

Self-Organizing networks. They focus on how to learn the representation of their dual

memory (two growing recurrent networks) and, differently from us, they use image em-

beddings obtained from a static CNN model. Our work focuses on the complementary

task of dynamically update image embeddings as new data and classes appear.

8.3 Online trained descriptors

As a general overview, we follow the same scheme: as new data is received, a limited

amount of selected representative object views is stored and redundant non-informative

views are discarded. The new step explored in our system, and our main contribution,

is updating the model used to describe these views, i.e., the possibilities and effects of

re-training the CNN used to compute the embeddings.

8.3.1 Object recognition strategy

Each object model in our database consists of a limited set of representative views

(which can be interpreted as cluster centroids) that is incrementally updated as detailed

in next subsection. Each representative view is encoded with a deep embedding, learned

using common CNN architectures. Specifically, we compare three different options

(VGG16, ResNet and MobileNet) in our experiments. Our goal is to incrementally

update the CNN encoder to achieve a more discriminative description across objects

as the data comes.
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The recognition step using the incrementally learned model is run following a stan-

dard k-Nearest Neighbor (k-NN) classification. The distance between the embedding

of a new view and the embedding representing each existing model cluster is computed,

and the view is assigned the label according to the most frequent (Mode) label within

the closest k neighbours found as follows:

Dv = ||embview − embcluster||, ∀cluster ∈ database

x0:k = sort(distances)[0 : k]

lx̂ = Mode(lx0:k)

where sort is the function that sorts the cluster elements by the calculated distances

and embx is the descriptor obtained from cluster x.

8.3.2 Incremental model

Model initialization. Initially our system assumes no prior knowledge on the actual

target classes of the system, i.e., our database is empty. A CNN pre-trained on a large

object dataset is used as initial encoder, Enc, to obtain the embedding of new object

views as they arrive. As frequently done, the embedding is obtained as the normalized

output of the last global pooling layer before the final classification layer.

Model update. To run a full update step, a batch containing several new views is

required, although these views can be partially processed as they arrive.

The embedding for each new view is computed using the current encoder model

(Enc). A new cluster is initialized with the embedding as centroid and annotated with

a given view label L. Two alternatives can happen next:

• Label L does not exist in the system. L is added to the database, with its

new object model composed only of the cluster that was just initialized.

• Label L already exists in the system. We incorporate the new cluster to the

model of the corresponding object. In case the number of clusters associated to L

has reached the limit per class (S), we select the most representative information

to be kept. We explored several options for this selection and, as shown in the

experiments, the best results were obtained computing the inter-distance between

all cluster centroids with label L, and merging the closest pair of them.

After a whole batch of new views has been processed, the encoder is updated to

learn a more discriminative representation given the current database content. The
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final classification layer of the CNN is changed to match the number of objects in the

database and the views corresponding to the centroids of all clusters in the database

are used to finetune the encoder CNN Enc. Note these are the only images stored.

8.4 Evaluation

Method variations. In the experiments that we present next, all strategies use

a model for object recognition as described in Sec. 8.3.1. The two base strategies

considered are; a first one built offline (Off), i.e., with all images processed at the same

time, and a second one built incrementally (Inc). We analyze the effect of applying a

data selection step (+d) and encoder re-training step (+r). No data selection means

there is no limit on the amount of training samples that can be stored (S = ∞). No

re-training means all the embeddings are the ones of the base encoder models.

Object recognition configuration. The following parameter values are set for

our approach in the experiments: maximum number of clusters per object (S) is 20

for MHRI and 120 for Core50, and k = 5 for the k-NN classification in all cases.

The encoders considered to compute the deep embedding in our experiments are Mo-

bileNet [67], because of its compromise between performance and resource consump-

tion, ResNet50 [105], because it is a commonly used architecture for object recognition,

and VGG16 [106], because it was used in the Core50 baseline methods.

Training configuration. Regarding the incremental models, the update of the en-

coder Enc used for the embeddings consists of a two step fine-tuning. In the first step,

all layers are frozen except the last one for 5 epochs with an SGD and a learning rate

of 0.001. In the second step, all the network layers are finetuned for 25 epochs with

an SGD and a learning rate of 0.0001. Experiments with more epochs showed the

accuracy did not improve significantly.

For the offline baselines, the re-training is done for 50 epochs with SGD and learning

rate 0.001.

Evaluation metric. We report the accuracy (correct predictions over the total) for

all our experiments. For MHRI, we report the average accuracy over the 10-folds (each

fold is created by separating all the data corresponding to a user). For Core50 the

accuracy reported corresponds to the one of the official test split.
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Table 8.1: Accuracy in MHRI using our incremental system (Inc+d+r) trained with
different data selection strategies.

MobileNet ResNet

Closest Cluster 72,87 74,44
Combination 69,69 59,09
Random 72,1 65,31

8.4.1 Ablation study and variations our approach

Data selection strategy

We explored several options to select the most representative views that form our object

model: 1) Our strategy (Closest Cluster), that consists on computing the distances

between all cluster centroids of the same label L, and merging the closest pair of

clusters. 2) The selection strategy that combinates merging closest and discarding

spurious data (Combination). 3) A random selection strategy (Random). Table 8.1

shows the object recognition results after training our incremental approach (Inc+d+r)

applying the different strategies using two different encoders (MobileNet and ResNet).

The best results were obtained with the Closest Cluster selection. Differences in their

computational cost are not significant compared to the rest of computations.

Ablation study

We analyze the effect of the data selection and retraining steps of our approach with

two public benchmarks.

Results with MHRI are summarized in Figure 8.2. The plot represents how accu-

racy changes as additional incremental update steps are run (i.e., new data batches are

sequentially processed) for the different method variations described in Section 8.4. It

also displays the total amount of training time spent. The offline results are shown as

an additional reference to value better the overall results. We see how the incremental

approaches get better results because they do adapt to the new data as opposed to the

offline baseline, which works best only at the beginning). Table 8.2 details the object

recognition accuracy and training time for the different approaches after all data has

been sequentially processed.

Results with CORE50. Similarly to previous experiment, Figure 8.3 represents

how accuracy changes as the incremental steps are run using the Core50 dataset, and

Table 8.3 details the accuracy and training times corresponding to the end points of

the plot (all data has been processed).
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Table 8.2: Accuracy (acc) standard deviation (std) and training time (T ) in seconds
(10-users cross-validation) using MHRI.

MobileNet ResNet VGG16

acc std T acc std T acc std T
Off 31.6 5.6 26 74.7 5.1 54 63.3 4.7 42

Inc 41.2 6.7 17 83.7 3.5 39 79.5 8.1 67
Inc+d 34.4 7.2 19 62.9 8.2 50 64.5 8.7 66
Inc+r 81.8 4.8 703 81.0 6.1 715 81.6 5.9 712
Inc+d+r 58.7 7.6 628 65.3 8.3 628 61.1 9.3 632

Discussion. We can observe the results are very similar with both datasets. The

main difference comes from the effect of the data selection step. It always enables the

system to bound the training time, but while in MHRI the accuracy degrades a little

bit, in Core50 it is able to keep the same level of accuracy. This is probably due to

the more noisy and cluttered set up presented in MHRI data, which makes it harder

to store a very limited set of sample views without degrading representativity of the

object models.

Re-training the encoder does not improve much when using ResNet or VGG16,

where all the curves present a similar behaviour. In particular for the ResNet encoder,

results suggest that the capacity of the network is big enough to learn a wide array of

patterns from large datasets. However, the re-training step improves the performance

significantly when using MobileNet as encoder. It achieves lower accuracy without re-

training (Inc and Inc+d) but obtains similar or better results than VGG16 and ResNet

after re-training (Inc+r and Inc+d+r). This is interesting because MobileNet is a

lighter architecture than ResNet, as well as faster to train. Even though it starts with

a less generic encoder, our incremental strategy allows it to adapt to the new domain

and match the performance of much more complex networks (such as ResNet50 in this

case) at a reasonable cost. Therefore our results point to MobileNet as a more suitable

option for this type of incremental strategies.

These results justify the main steps included on the proposed incremental learning

strategy, the data selection as well as the encoder re-training. They allow to improve the

performance of an efficient network such as MobileNet as the target domain changes,

since that architecture presents higher efficiency but lower generalization capabilities

unless updated. Interestingly, the computational cost of such incremental update is

reasonably low, which is relevant in a continual learning scenario where the computing

resources might be limited.
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Resnet

MobileNet
(a) Accuracy (b) Total time execution (Train+Test)

Figure 8.2: Accuracy (first column) and training time (second column) at different steps
of the incremental process using MHRI data. (Average of 10-fold cross validation)

Table 8.3: Accuracy (acc) and training time (T ) in seconds using Core50.

MobileNet ResNet VGG16

acc T acc T acc T
Off 13.57 76 65.14 151 60.92 128

Inc 13.88 1212 63.95 2000 56.80 2052
Inc+d 14.73 1171 62.65 1918 57.72 2004
Inc+r 63.84 40643 63.03 40339 63.47 41025
Inc+d+r 64.73 38591 64.69 39433 63.27 38711
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VGG16

Resnet

MobileNet
(a) Accuracy (b) Total time execution (Train+Test)

Figure 8.3: Accuracy (first column) and training time (second column) at different
steps of the incremental process using Core50.

8.4.2 Incremental learning baselines and challenges

This section shows our results compared to other incremental learning baselines, and

analyze the good properties of our approach with respect to the main challenges of

continuous learning.
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Comparison against baselines

When comparing to recent baselines obtained in the available benchmarks, our method

outperforms the baselines for the MHRI dataset presented in Chapter 7 by a large

margin (we obtain an average accuracy of 65.3% against 18.2% and 35.5%). Our

method obtains slightly better accuracy (64.7% ) than one of the recent baselines run

on Core50 (64.1%) obtained in [34], even though this baseline is an accumulative

approach that stores all the training data. Our results are below those from a more

recent but complex approach presented in [104]. They obtain 87.1% with a novel

memory system focused on how to exploit the temporal relations of the inputs, after

using a fixed encoder to obtain each image embeddings. Our approach demonstrates

insights that are complementary to this last approach, about how to run an efficient

update of the encoder to provide a more adequate and adapted embedding.

Analysis of incremental learning challenges

Finally we analyze the behaviour of our system with respect to the main challenges we

want to deal with.

Catastrophic forgetting. To evaluate the effects of catastrophic forgetting on our

approach, we compare our approach (using data selection) to a variation that only

re-trains using the new data, and to another variation that keeps and uses all data

to retrain. Figure 8.4 shows the comparison of these three alternatives, using ResNet

and MobileNet on both MHRI and Core50. In both datasets, models using only new

data stall at around 10%, showing the catastrophic forgetting effect. As expected, the

accuracy of the other strategies grows as more batches are used for training. Our data

selection scheme reaches an accuracy that is similar to that of keeping all data, but

requiring a significantly smaller amount of memory as detailed next.

Memory use. A relevant challenge in continual learning in real applications is the use

of limited resources. Table 8.4 compares the memory requirements of our approach with

and without the data selection, which indeed brings significant reductions. However,

the base model network size is the most critical factor, both in execution time and

GPU memory requirements. We should remark again that our incremental algorithm

facilitates the use of MobileNet, which is the smallest network, and allows it to match

the performance of other larger networks. It is also remarkable that our data selection

can reduce the stored data size significantly both in MHRI and Core50, although such

reduction pales in comparison with the one related to the network.
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MHRI Dataset Core50 Dataset

Figure 8.4: Catastrophic forgetting. Comparison between only new data, w/ our data
selection and w/ all data stored.

Table 8.4: Memory requirements from data and networks used in different incremental
experiments.

Main memory (MB) GPU memory (GB)

Core50 (Inc+r) 16.1 –
Core50 (Inc+d+r) 12.3 –
MHRI (Inc+r) 6.2 –
MHRI (Inc+d+r) 2.0 –

MobileNet 14.0 4.4
ResNet 98.0 27.1
VGG16 528.0 26.7
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Chapter 9

Conclusion and Future Work

91



9.1 Conclusions

The main objective of this Thesis was investigating new methods for a robot to

learn incrementally from multimodal user interaction. As the main contribu-

tion of this research, an end-to-end pipeline for incremental learning of objects using

human-robot interaction was developed and evaluated. This pipeline contains several

novel and promising components in comparison with previous works, and it outper-

forms existing baselines. The following conclusions can be extracted from each of the

modules that were proposed:

• A first step for a robot to learn from humans is identifying the type of human

interaction that is occurring. Three natural interactions were explored in this

thesis, namely Point, Show and Speak. For the three, two different approaches

were designed: an offline approach pre-trained in hand patches, and an online

approach that interactively adapts to each user by using questions when the

interaction type is uncertain. Both approaches use visual and speech data. Our

evaluation demonstrates that the online method is able to learn better interaction

models than the offline one. Point and Show obtain an accuracy of 90% while

Speak is completely separated using the speech data. A more accurate recognition

of the interaction type helps the whole pipeline to obtain better regions of interest

for the next steps. Besides, the proposed incremental learning of user interactions

is able to adapt to new users and, potentially, to new interactions.

• Once the interaction type is recognized, the region of interest detected needs to

be segmented. A different segmentation strategy was proposed for each type of

interaction. Among them, the strategy for Show interaction obtains over 80% of

correctly segmented patches, while Point and Speak strategies obtain around 50%

each. Most of the errors in Show happen because the hand holding the object

occludes more than half of the object. In the case of Point, most errors come from

incorrect segmentation of the hand to obtain the correct direction. For Speak,

errors in the recognition module for the reference object are the most frequent.

Both Speak and Point use the same candidate segmentation approach: a combi-

nation based on deep learning and superpixels, which obtains better performance

than using any of them separately.

• An incremental algorithm was developed to learn object models in a fully incre-

mental scenario, where there is not a predefined number of classes and new data

appear sequentially. The evaluation shows that the proposed approach outper-

forms other incremental approaches in the literature. From the descriptors eval-
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uated in both datasets (Core50 and MHRI dataset), deep learning descriptors

pre-trained in large dataset (ImageNet) obtain the best results. These descrip-

tors are the output of an intermediate layer from a CNN Network. Traditional

hand-crafted descriptors obtain worse accuracy, since they are less robust to noise

in the images.

• In our incremental learning setup, the robot needs to adapt as data change over

time. Besides an incremental learning approach, a novel online retraining of the

model used to compute the descriptor was developed. As previously said, this de-

scriptor comes from the output of the final layers of an object classification CNN.

In this thesis, it is proposed to update the descriptor over time. The evaluation

of this novel approach shows promising results. The proposed approach outper-

forms descriptors extracted from models trained offline and obtains an accuracy

close to offline baselines. In the presented experiments, thanks to the proposed

update, a small network with focus on efficiency like Mobilenet, is able to obtain

a similar performance in object recognition than a more complex network like

ResNet. This is very useful to be able to achieve good incrementally learned

recognition even in less resourceful systems.

For the evaluation of the complete pipeline and each of the contributions of this

thesis, a new dataset (MHRI dataset) was recorded involving teaching human robot

interaction and object recognition. The experiments in this thesis demonstrate that

this type of realistic scenario is very challenging and the performance of state-of-the-art

algorithms for object recognition is low. To our knowledge, the presented pipeline is

the first to address object learning guided by natural HRI. The results show that the

proposed approach outperforms well known baselines in the literature, while reducing

the resources that are needed.

Robots might have very different hardware configurations and focus on very dif-

ferent tasks. In order to explore the generalization of HRI, a different use case was

explored in this thesis. The selected scenario was drone human interaction, and a new

benchmark for point direction recognition from drone point of view (DDIR dataset)

was recorded. A novel approach that combines deep learning segmentation with deep

learning classification was developed as baseline in the presented dataset. The pro-

posed approach obtains good results in accuracy and show robustness to variations in

the distance to the camera, user and scenario. The complete system can be run in an

Jetson AGX Xavier onboard at roughly 1fps. However, when distances to humans are

larger than 10 meters, the accuracy drops considerably.
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9.2 Future work

While the main goal of this thesis has been fulfilled with a promising full pipeline, the

results prove that there are still many challenges and more work needs to be done in

this area. Specifically, the contributions of this thesis made us spot several interesting

research lines and new challenges that could be investigated in the future, such as

improvement in the efficiency of incremental methods, better segmentation techniques,

more human robot interaction data and continuation in the drone human interaction

scenario.

Incremental learning algorithms have improved substantially in the last years, and

the approach developed in this thesis can be taken as the starting point for research in

this direction. A more efficient execution while maintaining similar performance would

help greatly to integrate these learning approaches in robot on-board computers, that

typically have less resources that a common computer.

Deep learning-based techniques are making many areas progress, including some

of the problems studied in this thesis. The modular pipeline proposed in this thesis

allows an easy replacement of each individual module, that could lead to an overall

improvement. In particular, integration with better or more recent segmentation meth-

ods would be a significant boost for the performance of this pipeline, since there are

many steps that need to segment specific image regions.

The general HRI scenario considered in this thesis has proved to be challenging.

One of the main problems of the interaction is that each user is and behaves differently,

and sufficiently varied training data is costly to obtain. Works that focus on simulating

or extending HRI data could lead to more accurate results in the interaction recognition

and higher robustness to user variations.

This thesis work has also studied a different scenario, drone human interaction, that

leads to a new line of work. As explained before, UAV points of view are completely

different from service robot ones and need to be further studied. Controlling an UAV

becomes harder as the complexity of the vehicle increase, so human interaction with

autonomous driving is an interesting topic of study to free the user hands and improve

the navigation of the UAV.

9.3 Publications and dissemination

Significant part of the work presented in this Thesis was published in the following

articles:

• Pablo Azagra, Florian Golemo, Yoan Mollard, Manuel Lopes, Javier Civera and

94



Ana C Murillo. A multimodal dataset for object model learning from natural

human-robot interaction. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 6134–6141. IEEE, 2017. [H-index: 99 ,

CORE A]

• P. Azagra, J. Civera and A. C. Murillo, Incremental Learning of Object Models

From Natural Human-Robot Interactions, in IEEE Transactions on Automation

Science and Engineering, 2020.[JCR FI: 5.224, Q1]

Besides, part of the Thesis work was presented in the following international venues

and published in the corresponding peer-reviewed workshop proceedings:

• Pablo Azagra, Yoan Mollard, Florian Golemo, Ana Cristina Murillo, Manuel

Lopes, and Javier Civera. A multimodal human-robot interaction dataset. In Fu-

ture of Interactive Learning Machine (FILM) Workshop in Conference on Neural

Information Processing Systems (NIPS), 2016.

• Pablo Azagra, Javier Civera, and A.C. Murillo. Finding Regions of Interest

from Multimodal Human-Robot Interactions. In Proc. on 2017 International

Workshop on Grounding Language Understanding in the Interspeech conference

(pp. 73-77).

• Pablo Azagra, Ana Cristina Murillo, Manuel Lopes, and Javier Civera. Incre-

mental object model learning from multimodal human-robot interactions. In

Workshop on Visually Grounded Interaction and Language (ViGIL) on NeurIPS

2018.

• Leon Barbed, Pablo Azagra, Lucas Teixeira, Margarita Chli, Javier Civera, Ana

C. Murillo. Fine grained pointing recognition for natural drone guidance.In Work-

shop on Towards Human-Centric Image/Video Synthesis, Computer Vision and

Pattern Recognition (CVPR) 2020.

• Pablo Azagra, Javier Civera, and A.C. Murillo. Incrementally Learned Embed-

dings for Continual Object Recognition. Submitted to British Machine Vision

Conference (BMVC) 2020. (Under review)

The work from this Thesis was also presented in CHISTERA HLU Master Class

that took place in Paris on 10th-11th of September 2018.

The code for the main framework presented and the two datasets recorded and

labeled in this Thesis are public and can be downloaded. 1 2

1Code and MHRI dataset https://sites.google.com/a/unizar.es/iglu_mhri/
2DDIR dataset https://sites.google.com/a/unizar.es/hri-drones/
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