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Abstract

Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high dimensional systems. In
numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as
the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving
rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence
of chaos and hyperchaos is proved via Computer Assisted Proofs techniques.
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1. Introduction

It’s only a few decades since famous discovery of Lorenz
[1] that deterministic systems can exhibit sensitive depen-
dencies on initial conditions. However, a large number
of researchers have been working deeply in the develop-
ment of theoretical basements needed for the analysis of
chaotic systems. A recent cornerstone theoretical result
was the Tucker’s computer-assisted proof of the existence
(and of the mathematical structure) of the Lorenz chaotic
attractor [2—4]. Furthermore, it has been shown that these
systems reproduce nicely complex behaviors found in real
systems of diverse nature [5-11]. Most of the results have
been stated in three dimensional models, where, due to the
restricted phase-space only low-dimensional chaos can be
observed. The remaining main question is: What changes
when higher dimensional systems are analyzed?

Chaotic systems are characterized by (at least) one di-
rection of exponential spreading. A common way to de-
tect this circumstance is by calculating the maximum Lya-
punov exponent [12] of the orbit. If it is positive, the or-
bit exhibits sensitive dependence on initial conditions, and
this is a standard indication of chaotic behaviour (we re-
mark that a positive Lyapunov exponent is not always an
indication of chaos, as shown, for instance, in [13-16]). If
the number of directions of spreading is greater than one,
the behavior of the system is hyperchaotic [17]. To detect
this situation it becomes necessary to calculate more Lya-
punov exponents and to determine how many of them are
positive. Note that for continuous autonomous dynami-
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cal systems, chaos can appear in systems with dimension
greater than or equal to three.

The behavior (and therefore its analysis) of hyperchaotic
systems is much more complicated than the case of systems
with just a single positive Lyapunov exponent. There are
two main reasons, firstly the need for a fourth dimension
to the appearance of hyperchaos, which makes some tools
of analysis for three-dimensional chaotic models not valid;
on the other hand, the existence of more than one direc-
tion of spreading allows the system undergoes a broader
spectrum of bifurcations. However, in practical applica-
tions it is necessary to model problems with dimension
higher than three, in some of which hyperchaotic behavior
appears like in mathematical models of electroencephalo-
grams, chemical systems, electronic circuits [18-21] and in
most of the networks of basic continuous systems, as cou-
pled Lorenz or Rossler systems [22]. Besides, note that
contemporary numerical weather prediction schemes are
based on ensemble forecasting. Ensemble members are
obtained by taking different (perturbed) models started
with different initial conditions, an example of such kind
of systems is the Lorenz-96 model [23]. In all these kinds
of systems the appearance of hyperchaos is quite natural
due to their dimension. In addition, this high dependence
on initial conditions experienced by hyperchaotic systems
has practical applications, such as encryption of informa-
tion [24, 25].

That is why in the last two decades many articles have
appeared in which the authors study dynamical systems
with hyperchaotic behavior [26-30]. Many of them focus
on the transition from chaotic to hyperchaotic behavior.
The problem is that the numerical study of these systems
is some times no clear at all, giving really a confuse anal-
ysis about if the system is chaotic or hyperchaotic [31].
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Therefore, one of the main goals of this paper is to study
in detail the main reason of why most of these studies re-
ally fail in giving a clear picture of what happens in the
system. We show that the main behavior of these systems
is hyperchaotic, but it can be a transient behavior or an
attracting one. This duality is rigorously established via
Computer Assisted Proofs (CAP) techniques and it gives
a mechanism for the “noisy” simulations in many studies
[31].

The paper is organized as follows. In Section 2 we
present several numerical simulations on the 4D Rossler
model to study the appearance of chaotic and hyperchaotic
behaviours and how the results depend on the way of com-
puting the Lyapunov exponents. In Section 3 we give the
basic steps of a Computer-Assisted proof of the coexistence
of chaotic and hyperchaotic behaviour, giving in some sit-
uations the existence of long hyperchaotic transients that
may give rise to “noisy” numerical simulations. Finally, in
Section 4 we present some conclusions.

2. Chaos and hyperchaos: numerical studies.

Our first question is to study the detection of the dif-
ferent behaviours (regular, chaotic or hyperchaotic) of the
dynamical models. The usual approach is to calculate
two or more dominant Lyapunov exponents and determine
how many of them are positive. Along this paper, we will
use, as paradigmatic example, the well-known 4D Rossler
model [17], given by:

l‘:—(y—FZ),

y=ux+ay+w,

Z=b+xz, (1)
w = —cz + dw,

where we fix the values of parameters b=3.0 and d=0.05,
and we allow to change the values of a and ¢. This model
was the first model where it was shown the existence of
hyperchaotic behaviour.

In Fig. 1 we present two biparametric plots showing
the different behaviours based on the Lyapunov exponents
computed using the algorithm of Wolf et al. [32]. The
only difference in the simulations is that the lower pic-
ture is done considering a transient time 3 x 10* before
computing the exponents. In the simulations we have dif-
ferentiated the cases of having two large positive Lyapunov
exponents (strong hyperchaos) with the case of having two
positive values but one of them quite small (weak hyper-
chaos). The colors in the figure determine the different
behaviors detected in the simulations. White represents a
limit cycle, maximum Lyapunov exponent A\; = 0 and the
others A2 34 < 0; blue for torus, A;2 = 0 and A3 4 < 0;
red for chaotic, Ay > 0, A2 = 0 and A3 4 < 0; green for
weak hyperchaos (see Fig. 3), 0.05 > A1 > A2 >0, A3 =0,
A4 < 0; brown for strong hyperchaos, A\; > 0.05 > Ay > 0,
A3 = 0, Ay < 0. Comparing both pictures, we can see
how the upper picture is completely dominated by brown
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Figure 1: Lyapunov exponents biparametric plots showing periodic
(limit cycles, LC), quasiperiodic (torus, T), chaotic (Ch), weak-
hyperchaotic (WH) and strong-hyperchaotic (SH) behaviors. (Top)
without transient time in the simulations and (bottom) with tran-
sient time.
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Figure 2: Time evolution of the Lyapunov exponents depending on
using or not transient time and depending on the initial conditions.
Red, without transient time but with initial conditions that go di-
rectly to the chaotic attractor; blue, without transient time, with
initial conditions that go first close to the hyperchaotic saddle; green,
with transient time.

color, representing hyperchaotic behavior. Note that in
almost all the results we have a “noisy” picture without
giving a clear study of the real behavior, especially in the
upper plot. This situation appears also in most of the
simulations in literature [31]. In contrast, in the lower
picture, wherein we have used the transient time, those
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Figure 3: Top: classification of the attractors depending on the integration and transient time. Middle: Lyapunov exponents in the selected
line. Bottom: bifurcation diagram along the same line (changing parameter a). Dark blue corresponds to the invariant attractor and light
blue to the invariant saddle. On the right, three examples of the hyperchaotic saddle together with the corresponding attractor.

structures that were hardly visualized in the upper pic-
ture, now appear in a clearer way, but still some “noisy”
patterns appear. The integration time (without consider-
ing the transient time) used in both pictures is 3000, the
first question is whether the upper picture, at least, cor-
rectly identifies the behavior of the system at that final
moment. Fig. 2 shows how the calculation of exponents
keeps memory of past behavior, taking time to recognize
behavior changes [33]. This tells us that if we want to
classify the behavior of the system at any given time, we
must try to start the calculation of Lyapunov exponents
from a time at which the system experiences such behav-
ior. If we want to study the type of attractor which goes
into the dynamics of the system, then we have to consider
a sufficiently long transient time. We can see that the sec-
ond picture of Fig. 1 still shows “noise”, so that higher
transient and/or integration time is necessary to get an
absolutely clear picture. In a more detailed study [34], it
has been found that a transient time equal to 3 x 10° and
an integration time equal to 1.5 x 10* are values needed to
obtain figures with a significant “noise” reduction. Higher
values provide little improvement that is not worth the
cost in computational time involved. However, these val-
ues would imply that the corresponding picture in Fig. 1

(with a mesh of 500 by 500) would cost 189 days on an
Intel Core2 Duo E6750 @ 2.66GHz (compared to 4.1 days
for the upper picture and 21 days for the picture below).
This observation permits to perform better simulations of
Lyapunov exponents, but in any case it does not provide
a complete explanation of the “noisy” patterns and why
we need such a long transient time in this system.

In order to study in detail what really happens, we fo-
cus our attention to a line, ¢(a) = —3.3653 - a + 1.2371,
in the biparametric picture (Fig. 1), because it crosses
regions with all the different behaviors detected in the
model. In Fig. 3 we show on the top the classification
according to the type of behavior encountered through cal-
culation of Lyapunov exponents using two different inte-
gration and transient times. We show that for low inte-
gration times more hyperchaotic situations are detected.
A detailed analysis is shown in the middle plot. Note that
we observe some of the familiar routes to hyperchaos, like
tangencies among the hyperchaotic saddle and a periodic
orbit (fold bifurcations of limit cycles) or smooth growing
of the second Lyapunov exponent, as pointed in [35, 30].
On the bottom plot we show the bifurcation diagram along
the same line and on the right plots the attractors and the
hyperchaotic saddle at three points (the same pointed out



in Fig. 1). The most interesting fact is the global ex-
istence of a hyperchaotic invariant set along all the line
(and in fact along all the biparametric simulations of Fig.
1). This figure establishes a clear reason for the “noisy”
simulations, all along the parametric phase space there is
a global hyperchaotic invariant, sometimes a saddle struc-
ture and sometimes a global attractor, but in any case it
gives a long transient hyperchaotic behavior.

3. Chaos and hyperchaos: Computer-Assisted proof
results.

The above numerical study has allowed us to generate
hypothesis about the existence of a hyperchaotic saddle,
coexistence of chaotic and hyperchaotic behavior and dif-
ferent kinds of attractors. Moreover, the global existence
of the hyperchaotic invariant set gives an explanation of
the difficulty in most of the numerical simulations in lit-
erature to provide with a clear study of the behavior of
the systems. As to obtain an analytical proof of this fact
is not possible (or at least quite complex), we give some
computer-assisted proofs, thanks to the use of the CAPD
library [36] of rigorous computing and the techniques de-
veloped in [37-40]. To that goal, we take the parameter
values a = 0.27857, b = 3, ¢ = 0.3 and d = 0.05, where
we have numerically detected the coexistence of a hyper-
chaotic saddle and a chaotic attractor, and we define a
Poincaré section I = {(z,0, z,w) € R* y = x4+w < 0} and
the associated Poincaré map P : II — II. Then we run the
algorithm ENCLOSEFORWARDTRAJECTORY (see [40, Algo-
rithm 1]) on a computer with 64 CPUs. The program
stopped after 162 minutes (which gives circa 173 CPU
hours) using at peek 30GB of memory and returned a pos-
itive invariant set B for P which is the union of 22 685 758
3D parallelograms of size (27192710 2712) This proves
(see [40, Lemma 3.5]) that B is a trapping region for P,
namely P(B) C B. Projection of B onto (z,z) plane is
shown in Fig. 4.

There are many efficient algorithms for finding short
cycles for maps - see for instance [41, 42]. As finding
all short cycles is not the primary goal of this paper we
used a much easier strategy. The center of each box form-
ing the trapping region B has been used as a seed point
for the standard Newton-based multiple shooting method.
This strategy returned a quite large amount of approx-
imate periodic points, with one or two unstable direc-
tions, among which the shortest were of period 8. From
this set we selected six unstable periodic orbits (UPOs)
named {c}, c§, 5, ci®, hi2, hi*} C B, where the super-
script stands for the period of the point. This particular
choice has been done manually after many numerical sim-
ulations and for the reason explained in the sequel. Using
the Interval Newton Operator and Interval Krawczyk Op-
erator we were able to prove that in a ball of radius 1073
centered at each approximate periodic point there exists
unique periodic point of the same period. Then we com-
puted rigorous bounds for the eigenvalues of the derivative

chaotic trajectory |

-40}

'80"1“‘1“‘1“‘1“‘1‘
-120 -100 -80 —60X—40

LY
AY

N 20 0 20

(b)

projectionofthe N g

0.050 }trapping region |
ao45§ é
N0.040
aoss? é

0.030 | .-d ]
100 -90 -80 -70 -60
X

Figure 4: Top: chaotic trajectory for the hyperchaotic Rossler system
and the Poincaré section (red line). Bottom: rigorous projection of
the trapping region for the Poincaré map.

of PJ at each periodic point which allowed us to determine
its stability type. The orbits ¢/ have one-dimensional un-
stable manifold and those corresponding to hf have two-
dimensional unstable manifold.

On each pair of UPOs (c},c8), (c§,ci®) (hi?, hit) we
constructed a horseshoe dynamics using the method of
covering relations [43, 44] in a similar way as in [39] and
we proved its existence by means of the algorithms coMm-
PUTEUNSTABLEWALL and COMPUTEBOUNDARY — see [38,
Algorithms 1,2]. Then, applying a cone condition criterion
introduced in [37] we verified the existence of countable in-
finity of heteroclinic and homoclinic orbits linking some of
the above periodic orbits. All the computations related
to the existence of chaotic, hyperchaotic and linking dy-
namics were performed on a computer with 64 CPUs and
they have been completed within 237 minutes. In Fig.
5 we show some approximate trajectories of the hetero-
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Figure 5: Approximate trajectories of the heteroclinic connections
among the points of the UPOs {czf7 cg, cg, c}iﬁ, h%Q, h%“}.

clinic connections obtained with the CAPD library. Note
that the existence is rigorously proved via CAP techniques,
although the trajectories are approximate (in a small in-
terval). The location of homoclinic orbits is, by itself, a
complicate task [45], but what we have done is going a
step further giving a CAP proof of their existence.

The following list summarizes proved results, for the
particular set of parameters chosen in this paper, and il-
lustrated on Fig. 6 (complete details will appear in a more
comprehensive study [34]):

e there is an explicitly given trapping region B C II
for P,i.e. P(B) C B,

e the maximal invariant set A = inv(P, B) contains
three invariant sets, say Si, S3, S3, on which the
dynamics is Yo chaotic, i.e. it is semiconjugated to
the Bernoulli shift on two symbols,

e 57 is a hyperchaotic set with two positive Lyapunov
exponents,
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Figure 6: Scheme of the connections between the different invariant
sets that control the symbolic dynamics for the hyperchaotic Rossler
system. The green oval surrounding Ss set is an observed inter-
nal trapping region that forbids backward connections from S3 to
S2 and S7. Although the presence of such internal trapping region
is observed in numerical simulations (giving a numerically observed
chaotic attractor) we could not prove its existence by means of com-
puter assisted techniques.

e Sy and S3 are chaotic sets with one positive Lya-
punov exponent,

e there is a countable infinity of periodic orbits of arbi-
trary large periods (every periodic path on the graph
presented in Fig. 6 is realized by a periodic orbit)

e there is a countable infinity of heteroclinic/homoclinic
orbits linking periodic orbits inside each horseshoe,
and a countable infinity of heteroclinic connections
linking S7 with S5, So with S3 and S; with Ss.
In fact, every finite and nonconstant path on the
graph presented in Fig. 6 is realized by a homo-
clinic/heteroclinic connection between periodic or-
bits at the beginning and at the end of this sequence.

Although the results are proved for just one set of pa-
rameters, we note that all the methods used in computer
assisted proofs are robust under perturbations. Therefore
the same statements hold true for all parameter values
from some (unknown) neighborhood of the selected by the
authors. We remark that in all the numerical simulations
done by the authors we can observe the same picture, sup-
porting these statements as a common situation in the
system. Note also that we have proved the existence of
hyperchaotic and chaotic invariant sets which give a par-
tial description of the dynamics in the trapping region B.
One may expect the existence of a chaotic attractor or



even an attracting periodic point of (perhaps) very high
period that is not distinguishable from chaotic solutions
even in very accurate numerical simulation.

4. Conclusions

We have shown that in generic hyperchaotic systems
one may expect to have a global hyperchaotic behavior,
sometimes being a hyperchaotic attractor or a hyperchaotic
saddle giving rise to possible long hyperchaotic transient
behavior. This hyperchaotic invariant is constructed via
UPOs with two-dimensional (or higher) unstable mani-
folds and their homo- and heteroclinic connections. The
existence also of UPOs with just a one-dimensional unsta-
ble manifold creates a gradient like structure giving routes
that connect hyperchaos — chaos — chaos — attractor
(chaotic or not). Depending on how these invariants are
connected we have one kind of attractor or another, but
what we have is that chaotic and hyperchaotic behavior is
always present. This structure justifies numerical simula-
tions in literature that generate quite noisy results making
difficult to differentiate chaotic from hyperchaotic behav-
ior.
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