000094589 001__ 94589
000094589 005__ 20210902121740.0
000094589 0247_ $$2doi$$a10.3390/s20113148
000094589 0248_ $$2sideral$$a118650
000094589 037__ $$aART-2020-118650
000094589 041__ $$aeng
000094589 100__ $$0(orcid)0000-0002-4931-8752$$aPueo, Marcos
000094589 245__ $$aMeasuring sensors calibration in worm gear rolling testers
000094589 260__ $$c2020
000094589 5060_ $$aAccess copy available to the general public$$fUnrestricted
000094589 5203_ $$aThe ISO standard regulating gear-rolling measurement does not specify in detail the calibration and verification procedures for this type of equipment. This may be one of the reasons for the lack of reproducibility in these rolling tests. The uncertainty budget method, which is the most appropriate way to know the accuracy of this dynamic measurement, shows that the measuring sensors’ accuracy is only a part of the total measurement process uncertainty. In this work, a new calibration and verification procedure for a worm gear rolling tester is presented, based on machine tool, coordinate measuring machine and gear measuring instruments’ calibration techniques. After compensating numerically for the measuring instruments, it has been evaluated how the error components of each movement affect the meshing point, a fundamental factor to ensure a good gear transmission. The study shows that there are unintentional position variations, not detected by the measuring sensors, that have to be identified and quantified in the calibration for their later inclusion in the uncertainty budget. In this way, the measurement uncertainty could be reduced, and thus improve the reproducibility of these testers, as a preliminary stage to the development of optimized rolling measurement equipment to solve current limitations.
000094589 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000094589 590__ $$a3.576$$b2020
000094589 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b14 / 64 = 0.219$$c2020$$dQ1$$eT1
000094589 591__ $$aCHEMISTRY, ANALYTICAL$$b26 / 83 = 0.313$$c2020$$dQ2$$eT1
000094589 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b82 / 273 = 0.3$$c2020$$dQ2$$eT1
000094589 592__ $$a0.636$$b2020
000094589 593__ $$aAnalytical Chemistry$$c2020$$dQ2
000094589 593__ $$aAtomic and Molecular Physics, and Optics$$c2020$$dQ2
000094589 593__ $$aBiochemistry$$c2020$$dQ2
000094589 593__ $$aMedicine (miscellaneous)$$c2020$$dQ2
000094589 593__ $$aInformation Systems$$c2020$$dQ2
000094589 593__ $$aInstrumentation$$c2020$$dQ2
000094589 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000094589 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000094589 700__ $$0(orcid)0000-0002-4917-8550$$aAcero, Raquel$$uUniversidad de Zaragoza
000094589 700__ $$0(orcid)0000-0002-4756-3391$$aGracia, Ángel
000094589 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria, Jorge$$uUniversidad de Zaragoza
000094589 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000094589 773__ $$g20, 11 (2020), 3148 [17 pp.]$$pSensors$$tSensors (Switzerland)$$x1424-8220
000094589 8564_ $$s4173462$$uhttps://zaguan.unizar.es/record/94589/files/texto_completo.pdf$$yVersión publicada
000094589 8564_ $$s482839$$uhttps://zaguan.unizar.es/record/94589/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000094589 909CO $$ooai:zaguan.unizar.es:94589$$particulos$$pdriver
000094589 951__ $$a2021-09-02-09:41:44
000094589 980__ $$aARTICLE