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Hubs-attracting Laplacian and Related Synchronization on Networks\ast 
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Abstract. In this work, we introduce a new Laplacian matrix, referred to as the hubs-attracting Laplacian,
accounting for diffusion processes on networks where the hopping of a particle occurs with higher
probability from low to high degree nodes. This notion complements the one of the hubs-repelling
Laplacian discussed in [E. Estrada, Linear Algebra Appl., 596 (2020), pp. 256--280], that considers the
opposite scenario, with higher hopping probabilities from high to low degree nodes. We formulate
a model of oscillators coupled through the new Laplacian and study the synchronizability of the
network through the analysis of the spectrum of the Laplacian. We discuss analytical results
providing bounds for the quantities of interest for synchronization and computational results showing
that the hubs-attracting Laplacian generally has better synchronizability properties when compared
to the classical one, with a low occurrence rate for the graphs where this is not true. Finally, two
illustrative case studies of synchronization through the hubs-attracting Laplacian are considered.

Key words. Laplacian matrix, networks of coupled dynamical systems, synchronization

AMS subject classifications. 05C90, 34D06, 34C15

DOI. 10.1137/19M1287663

1. Introduction. Many dynamical processes, such as flow of information in social networks,
transport, epidemic spreading, and synchronization, take place on systems formed by interacting
agents and are, therefore, described by mathematical models based on graphs [1, 29, 19]. The
key ingredient of these models is the discrete Laplacian operator, which enables a mathematical
formulation of the way in which agents interact in a network and on the evolution of the system
behavior with time. The classical Laplacian (for a formal definition see section 2) is used to
describe dynamical processes in which the interaction between the nodes takes place through
the edges giving exactly the same weight to every edge incident with a node. An ubiquitous
process in nature and society which is typically described by this graph-theoretic operator is
synchronization. In synchronization processes, taking place, for instance, in neural signaling,
the beating of the heart and the synchronization of fire-fly light waves, the influence of a node
to each of its nearest neighbors is not depending on the topological (structural) properties of

\ast Received by the editors September 16, 2019; accepted for publication (in revised form) by L. DeVille February
5, 2020; published electronically May 4, 2020.

https://doi.org/10.1137/19M1287663
Funding: This work was partially supported by the University of Catania under the framework of ``Piano della

ricerca 201618, Linea intervento 2"".
\dagger Department of Electrical, Electronic, and Computer Engineering, University of Catania, 95125 Catania, Italy

(lucia.gambuzza@dieei.unict.it).
\ddagger Department of Electrical, Electronic, and Computer Engineering, University of Catania, 95125 Catania, Italy, and

CNR-IASI, Italian National Research Council - Institute for Systems Analysis and Computer Science ``A. Ruberti"",
00185 Rome, Italy (mattia.frasca@dieei.unict.it).

\S Institute of Applied Mathematics (IUMA), Universidad de Zaragoza, E-50009 Zaragoza, Spain, and ARAID
Foundation, Government of Arag\'on, 50018 Zaragoza, Spain (estrada66@unizar.es).

1057

D
ow

nl
oa

de
d 

05
/1

3/
20

 to
 1

30
.2

38
.7

.4
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1287663
mailto:lucia.gambuzza@dieei.unict.it
mailto:mattia.frasca@dieei.unict.it
mailto:estrada66@unizar.es


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1058 L. V. GAMBUZZA, M. FRASCA, AND E. ESTRADA

those neighbors. That is, if the coupling strength between every pair of nodes is identical,
the influence of a node to every one of its neighbors is the same. However, in the case of
other diffusive dynamics, like in random walks on graphs, strategies for biasing the influence
of a node on its nearest neighbors have been proposed in the literature. They are known as
``degree-biased random walks"" and use several strategies to bias the random walker towards
high or low degree nodes [4, 23, 9, 3]. In order to implement such degree-biased strategies
in general dynamical systems on graphs/networks, we need the extension of the Laplacian
operator to describe such scenarios.

A research agenda to generalize the Laplacian operator on graphs to describe degree-
biased strategies on network dynamics was recently started by proposing the hubs-repelling
Laplacian [8]. In this case a diffusive process in which the diffusive particle is biased towards
low-degree nodes was described. In particular, the hubs-repelling Laplacian favors the hopping
from high to low degree nodes, in such a way that navigation avoids the major hubs of the
system. This hubs-repelling dynamic is inspired by processes in which such bias towards low
degree nodes exists, such as diffusion in the brain or the propagation of flight delays. Here we
continue the extension of the Laplacian operators to capture degree-biased mechanisms which
may play a fundamental role in real-life processes. In particular, our main goal is twofold: (i)
to propose a new Laplacian operator for graphs which accounts for dynamical processes biased
towards high-degree nodes, and (ii) to improve the network synchronizability by using such
new strategy. Synchronizability is an important, widely investigated property of the system,
measuring whether a region of values of the coupling coefficient leading to synchronization
(i.e., all nodes following the same trajectory) exists and how large it is. Its relation with the
Laplacian spectrum and network structure is important to understand this dynamical process
on networks [14, 28]. Then, our current work is framed on the many efforts made to improve
the network synchronizability proposed in recent years. Most of these methods are based on
the addition/removal of links of the original structure [26, 6, 27] or on their rewiring [32, 13],
whereas others are based on changing the weights of the original structure [24], eventually in
an adaptive way [16].

Here we introduce the hubs-attracting Laplacian as a graph operator defined on a Hilbert
space and study some of its most important properties. In particular, as the synchronization
properties depend on the spectrum of the Laplacian, we provide analytical and computational
results characterizing the spectrum of this new operator. We prove that this spectrum is
real and nonnegative, although the hubs-attracting Laplacian is nonsymmetric. As a major
result, we find that the hubs-attracting Laplacian generally improves the synchronizability of a
network. The hubs-attracting Laplacian here introduced can be viewed as a method to change
the network weights to improve its synchronizability. Our results show that, although there
are cases where synchronizability is not enhanced, they are characterized by a low probability
of occurrence.

The rest of the paper is organized as follows: preliminaries are given in section 2; the
hubs-attracting Laplacian is introduced in section 3; the model of oscillators coupled through
this Laplacian is presented in section 4, and the spectrum of the ``hubs-attracting Laplacian""
is studied in section 5. In section 6 two case studies of systems of units interacting through
the ``hubs-attracting Laplacian"" are discussed. Finally, in section 7 the conclusions of the
paper are drawn.D
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2. Preliminaries. Here we use interchangeably the terms graphs and networks. A simple,
undirected graph G = (V,E) is formed by the set of vertices or nodes V and the set of edges E.
We will always consider connected graphs. If G is disconnected, we consider a componentwise
analysis of the graph. In the case of weighted graphs G = (V,E,W,\varphi ) , there is a surjective
mapping \varphi : E \rightarrow W assigning elements of the weight set W to the edges of the graph. Here
we consider only positive weights. Let A be the adjacency matrix of the (weighted) graph
G, and let ki denote the degree of the node i \in V , i.e., the sum of the ith row or column of
A. In the case of weighted graphs the degree is usually referred to as strength, but we will
use the general term degree here in all cases. Let i \in V be a node of G. We will denote by
\scrN \iti = \{ j \in V | (i, j) \in E\} the set of all nearest neighbors of i. A node for which ki \gg 1 will be
``informally"" called a hub. We will denote by K the diagonal matrix of node degrees.

Let \ell 2(V ) be the Hilbert space of square-summable functions on V with inner product

\langle f, g\rangle =
\sum 
v\in V

f(v)g(v), f, g \in \ell 2(V ).

The graph Laplacian [20, 22, 25, 12, 11, 31] is an operator in \ell 2(V ) which is defined by

(1)
\bigl( 
Lf
\bigr) 
(v) :=

\sum 
w\in V : (v,w)\in E

\rho vw
\bigl( 
f(v) - f(w)

\bigr) 
, f \in \ell 2(V ),

where \rho vw \in W . The Laplacian matrix can be obtained as L = K  - A. We remind the reader
that in the case of weighted graphs K is the diagonal matrix of weighted degrees and A is the
weighted adjacency matrix.

3. Hubs-attracting Laplacian.

Definition 1. The hubs-attracting Laplacian for a connected graph is an operator in \ell 2(V )
which is defined by

(2)
\bigl( 
LAf

\bigr) 
(v) :=

\sum 
w\in \scrN \itv 

kw
kv

\bigl( 
f(v) - f(w)

\bigr) 
, f \in \ell 2(V ).

Let us designate \varpi v,w = kw
kv

as the edge weight for the edge (v, w) \in E. Let ev, v \in V be a

standard orthonormal basis in \ell 2(V ) consisting of the vectors

(3) ev(w) :=

\Biggl\{ 
1 if w = v,

0 otherwise.

Then, LA acts on the vectors ev as follows:

(4) (LAev)(w) =

\left\{       
\kappa A(v) if w = v,

 - \varpi v,w if (v, w) \in E,

0 otherwise,

whereD
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1060 L. V. GAMBUZZA, M. FRASCA, AND E. ESTRADA

(5) \kappa A(v) =
\sum 
w\in \scrN \itv 

\varpi v,w.

Let \Xi be a diagonal matrix with \Xi v,v = \kappa A(v) and \Xi v,w = 0 for all v \not = w. Then,

(6) LA = \Xi  - K - 1AK.

The counterpart of the hubs-attracting Laplacian is the hubs-repelling Laplacian, introduced
in [8] and defined by the following definition.

Definition 2. The hubs-repelling Laplacian for a connected graph is an operator in \ell 2(V )
which is defined by

(7)
\bigl( 
LRf

\bigr) 
(v) :=

\sum 
w\in \scrN \itv 

kv
kw

\bigl( 
f(v) - f(w)

\bigr) 
, f \in \ell 2(V ).

Some examples of LA along with the corresponding L and LR are shown in Table 1. We
will compare the use of the different Laplacians for the specific examples of synchronization
dealt with in section 6.

Table 1
Illustration of the hubs-attracting LA, repelling LR, and classic Laplacian L in two simple undirected graphs.

LA

\left(    
2  - 2 0 0

 - 1
2

3
2

 - 1 0
0  - 1 3

2
 - 1

2

0 0  - 2 2

\right)    
\left(    

5
3

 - 2
3

 - 2
3

 - 1
3

 - 3
2

5
2

 - 1 0
 - 3

2
 - 1 5

2
0

 - 3 0 0 3

\right)    

L

\left(    
1  - 1 0 0

 - 1 2  - 1 0
0  - 1 2  - 1
0 0  - 1 1

\right)    
\left(    

3  - 1  - 1  - 1
 - 1 2  - 1 0
 - 1  - 1 2 0
 - 1 0 0 1

\right)    

LR

\left(    
1
2

 - 1
2

0 0
 - 2 3  - 1 0
0  - 1 3  - 2
0 0  - 1

2
1
2

\right)    
\left(     

6  - 3
2

 - 3
2

 - 3

 - 2
3

5
3

 - 1 0

 - 2
3

 - 1 5
3

0
 - 1

3
0 0 1

3

\right)     

It is clear that the hubs-attracting Laplacian induces a representation of the graph as a
weighted directed graph \scrD (G) =

\bigl( 
V, \^E

\bigr) 
, such that if (u, v) \in E, then (u \rightarrow v) \in \^E with

weight kv/ku and (v \rightarrow u) \in \^E with weight ku/kv. The most important consequence of this
is that LA has some nice properties as proved in the following results.

Theorem 3. The hubs-attracting Laplacian matrix LA has the following properties:D
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HUBS-ATTRACTING LAPLACIAN 1061

(i) its eigenvalues are real;
(ii) it is positive semidefinite;
(iii) rank LA = n - c, where c is the number of connected components;
(iv) it can be diagonalized as LA = (KU)\Kappa (KU) - 1, where \Xi  - A = U\Lambda U - 1 and K is the

diagonal matrix of node degrees.

Proof. We start by showing that

LA = \Xi  - K - 1AK = K - 1
\bigl( 
K\Xi K - 1  - A

\bigr) 
K = K - 1 (\Xi  - A)K,

thus, LA is similar to a symmetric matrix, so its eigenvalues are real.
Now let \vec{}x \in \BbbR n, \vec{}x \not = \vec{}0. Then, we can write

\vec{}xT (\Xi  - A) \vec{}x =
\sum 

(i,j)\in E

\Biggl( 
xi

\sqrt{} 
kj
ki

 - xj

\sqrt{} 
ki
kj

\Biggr) 2

.(8)

Then, because \Xi  - A and LA are similar, we also have that \vec{}xTLA\vec{}x \geq 0.
Let us now prove that the dimension of the null space of LA is c. Let \vec{}z be a vector such

that LA\vec{}z = 0. This implies that for every (i, j) \in E, zi = zj . Therefore \vec{}z takes the same value
on all nodes of the same connected component, which indicates that the dimension of the null
space is c, and so rank LA = n  - c. Finally, because \Xi  - A is symmetric we can write it as
\Xi  - A = U\Lambda U - 1. Thus, LA = (KU)\Kappa (KU) - 1 indicating that the hubs-repelling Laplacian
is diagonalizable.

It is also important to note that in a regular graph the ratios kv/ku and ku/kv are equal to
one for every pair of nodes, which means that the underlying graph \scrD (G) of any undirected
graph is just an unweighted graph. Thus, we have the following result.

Lemma 4. Let G be a k-regular graph. Then

(9) LA = L = kI  - A.

4. Synchronization in networks of oscillators coupled through the hubs-attracting
Laplacian. Dynamical oscillators interacting through diffusive coupling are modeled by the
following set of ordinary differential equations:

(10) \.xi = f(xi) - \sigma 
N\sum 
j=1

LijHxj ,

with i = 1, . . . , N and where xi \in \BbbR n is the vector of state variables of the oscillator at node i,
f(xi) the local (uncoupled) dynamics, \sigma the coupling coefficient, H the inner coupling matrix
with \{ 0, 1\} elements selecting the variables involved in coupling, and L the classical Laplacian.

Here, we propose a generalization of (10) replacing the classical Laplacian with the hubs-
attracting Laplacian:

(11) \.xi = f(xi) - \sigma 
N\sum 
j=1

LA,ijHxj ,

D
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1062 L. V. GAMBUZZA, M. FRASCA, AND E. ESTRADA

(a) (b)

Figure 1. Schematic illustration of the ``interaction"" processes controlled by the normal Laplacian (a) and
the hubs-attracting Laplacian (b).

where i = 1, . . . , N . Equation (11) can be rewritten as

(12) \.xi = f(xi) + \sigma 

N\sum 
j=1

kj
ki
aijH(xj  - xi),

where aij are the coefficients of the adjacency matrix A.
From this expression, we note that high-degree nodes receive weaker influence from their

neighbors, compared to low-degree nodes. In addition, an influence from a neighbor with high
degree has a stronger weight than that coming from a neighbor with lower degree. These
asymmetric influences are schematically illustrated in Figure 1.

We say that a network of coupled oscillators synchronizes when limt\rightarrow \infty \| xi  - xj\| = 0 for
i, j = 1, . . . , N . The onset of synchronization depends on many factors, such as the dynamics
of the units, the topology of the network, and the coupling coefficient [2, 1]. Synchronizability
is a property measuring the existence of a region of values of the coupling coefficient leading
to synchronization and its extent. The synchronizability of system (10) is determined by the
eigenvalues of the Laplacian L. There are two types of networks with bounded and unbounded
synchronization regions in the parameter space. One large class of dynamic networks has an
unbounded synchronized region specified by

(13) \sigma \mu 2 > \alpha 1 > 0,

where the constant \alpha 1 depends only on the node dynamics. Here, a bigger spectral gap
\mu 2 implies a better network synchronizability, namely a smaller coupling strength \sigma > 0 is
needed [5, 6, 7, 18].

Another large class of dynamic networks has a bounded synchronized region specified by

(14) \sigma \mu 2, . . . , \sigma \mu N \in (\alpha 2, \alpha 3) \subset (0,\infty ),

where the constants \alpha 2, \alpha 3 depend only on the node dynamics as well, and a bigger eigenratio
Q \triangleq \mu 2/\mu N implies a better network synchronizability, which likewise means a smaller
coupling strength is needed [30, 15].

These criteria straightforwardly generalize to systems of oscillators coupled through other
Laplacians as in (11). Taking into account that LA has real eigenvalues, it is possible to defineD
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the algebraic connectivity \mu A,2 and the eigenratio QA \triangleq \mu A,2/\mu A,N for the hubs-attracting
Laplacian. Synchronization in networks of oscillators coupled through the hubs-attracting
Laplacian thus crucially depends on these two quantities and, for this reason, the next section
is devoted to provide some analytical and computational results on them.

5. Spectrum of the hubs-attracting Laplacian.

5.1. Analytical results. Let us focus our attention to the eigenvalues of LA. Let 0 =
\mu A,1 < \mu A,2 \leq \cdot \cdot \cdot \leq \mu A,N be the eigenvalues of LA in a connected simple graph. Let
\tau A (i) = \Xi ii, and let \delta , \Delta , and \=k be the minimum, maximum, and mean degree of a node in
G, respectively. Then we have the following results.

Lemma 5. Let G be a simple connected graph. Then,

(15) \mu A,N \leq 2max
i

\tau A (i) \leq 2\Delta .

Proof. Using the Gershgorin circle theorem we have that \mu A,N is contained in a circle of
center in \tau A (N) and radius maxi \tau A (i). Thus, \mu A,N \leq 2maxi \tau A (i). Then, maxi \tau A (i) =
maxi k

 - 1
i

\sum 
v\in \eta i kv, the last maximum is obtained when ki = \delta , where \delta is the minimum

degree, and it is connected to \delta nodes v \in \eta i which all have the maximum degree \Delta . Thus,
the result follows.

Lemma 6. Let G be a simple connected graph with N \geq 2 nodes and M links. Then,

(16) \mu A,N \geq 1

N  - 1

\sum 
(u,v)\in E

k2u + k2v
kukv

\geq 2M

N  - 1
> \=k.

Proof. We have that tr (LA) =
\sum N

j=2 \mu A,j , where tr (LA) is the trace of LA. Thus \mu A,N \geq 
tr (LA) / (N  - 1). Then, we have that

(17) tr (LA) =
\sum 

(u,v)\in E

k2u + k2v
kukv

.

Because the minimum value that ki can take for any node is one, tr (LA) is upper bounded as
follows:

(18)
\sum 

(u,v)\in E

k2u + k2v
kukv

\geq 2M,

with equality if and only if the graph is regular. Because \=k = 2M/N , the final result then
follows.

We now prove a result for the second smallest eigenvalue of the hubs-attracting Laplacian.

Lemma 7. Let G be a connected graph. Then

(19) \mu A,2 = inf
\vec{}xTK\vec{}1=0

\vec{}xT (\Xi  - A) \vec{}x

\vec{}xT\vec{}x
= inf

\vec{}zT\vec{}1=0

\vec{}zT
\bigl( 
K - 1\Xi K - 1  - K - 1AK - 1

\bigr) 
\vec{}z

\vec{}zTK - 2\vec{}z
,

where \vec{}x, \vec{}z \in \BbbR n, \vec{}x, \vec{}z \not = \vec{}0.D
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1064 L. V. GAMBUZZA, M. FRASCA, AND E. ESTRADA

Theorem 8. Let u \in V and v \in V be two nodes of the graph G = (V,E) such that (u, v) /\in 
E. Then,

(20) \mu A,2 \leq 
k - 3
u

\sum 
i\in \scrN u

ki + k - 3
v

\sum 
j\in \scrN v

kj

k - 2
u + k - 2

v
=

k2v
ku

\sum 
i\in \scrN u

ki +
k2u
kv

\sum 
j\in \scrN v

kj

k2u + k2v
.

Proof. Let

\vec{}z = \vec{}eu  - \vec{}ev =

\left[  0, . . . 0, 1\underbrace{}  \underbrace{}  
u

, 0, . . . , 0,  - 1\underbrace{}  \underbrace{}  
v

, 0, . . . 0

\right]  T

.

It is easy to see that \vec{}zTK - 2\vec{}z = k - 2
u + k - 2

v and \vec{}zT\vec{}1 = 0. It can be seen that \vec{}zTK - 1\Xi K - 1\vec{}z =
k - 2
u \kappa A(u) + k - 2

v \kappa A(v) and \vec{}zTKAK\vec{}z = 0 because (u, v) /\in E. Therefore, using the result of
Lemma 7 we have

\mu A,2 \leq 
\vec{}zT
\bigl( 
K - 1\Xi K - 1  - K - 1AK - 1

\bigr) 
\vec{}z

\vec{}zTK2\vec{}z

=
k - 2
u \kappa A(u) + k - 2

v \kappa A(v)

k - 2
u + k - 2

v

=
k - 3
u

\sum 
i\in \scrN u

ki + k - 3
v

\sum 
j\in \scrN v

kj

k - 2
u + k - 2

v
.

(21)

This completes the proof.

As discussed in section 4, another spectral parameter of great importance for understanding
the synchronization dynamics on networks is QA =

\mu A,2

\mu A,N
. Based on the previous result we

have the following nontrivial bound for the eigenratio QA.

Lemma 9. Let G = (V,E) be a connected graph, let u \in V , v \in V , (u, v) /\in E, and let
M = | E| , N = | V | , and \=k = 2M/N . Then,

QA \leq 
(N  - 1)

\biggl( 
k2v
ku

\sum 
i\in \scrN u

ki +
k2u
kv

\sum 
j\in \scrN v

kj

\biggr) 
(k2u + k2v)

\sum 
(r,s)\in E

k2r + k2s
krks

\leq 
(N  - 1)

\biggl( 
k2v
ku

\sum 
i\in \scrN u

ki +
k2u
kv

\sum 
j\in \scrN v

kj

\biggr) 
2 (k2u + k2v)M

\leq 

k2v
ku

\sum 
i\in \scrN u

ki +
k2u
kv

\sum 
j\in \scrN v

kj

(k2u + k2v)
\=k

.

(22)
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Table 2
Occurrence of networks with \mu A,2 < \mu 2 or with QA < Q for all connected graphs with 6 \leq N \leq 10.

n Number of networks Occurrence of \mu A,2 < \mu 2 (\%) Occurrence of QA < Q (\%)

6 112 0.89\% 0.89\%

7 853 0.59\% 0.82\%

8 11,117 0.32\% 0.39\%

9 261,080 0.18\% 0.15\%

10 11,716,571 0.09\% 0.07\%

5.2. Computational results.

5.2.1. Small graphs. We first consider all connected graphs with 2 < N \leq 10 nodes,
which total 11,989,764 graphs. Although these graphs are relatively small, the big size of this
data set somehow guarantees a wide structural variability as to understand some of the main
factors influencing the spectral parameters of LA, namely \mu A,2 and QA. In Figure 2 we show
the results obtained for \mu A,2. We observe that, up to N = 5, \mu A,2 is always greater than
or equal to \mu 2. For graphs with a higher number of nodes, there are occurrences where the
condition \mu A,2 \geq \mu 2 is violated. For N = 6 we have a single case, for N = 7 five cases, and
so on as reported in Table 2, showing that the percentage of such ``odd"" cases is quite small.
Figure 2 also illustrates the bound for \mu A,2 provided by Theorem 8 and a comparison with the
first nonzero eigenvalue of the hubs-repelling Laplacian LR, referred to as \mu R,2. Here, we note
that the different diffusion mechanisms at the basis of the definition of the hubs-repelling and
the hubs-attracting Laplacian produce matrices with a different \mu 2, where, in particular, for
almost all networks considered, we have that \mu R,2 \geq \mu A,2 (we refer the reader to [8] for more
details on the spectral properties of the hubs-repelling Laplacian).

Similarly, for the same set of networks, we compute the ratio QA (Figure 3). We note that
for N \leq 5, QA is always greater than or equal to Q, while, for higher N , there are occurrences
where QA \geq Q is violated. Table 2 also illustrates the number of occurrences where QA < Q,
showing again that they occur at small percentages. The comparison between QA and the
corresponding parameter in the hubs-repelling Laplacian, referred to as QR, also shows the
occurrence of a general trend, with few cases where it is violated. In particular, we observe
that for almost all networks considered QA \geq QR and again refer the reader to [8] for a more
detailed discussion on the spectral properties of the hubs-repelling Laplacian.

The analysis of the graphs showing an ``odd"" behavior, either in terms of \mu A,2 or QA,
seems quite interesting, but at the same time challenging. The seven examples of networks
with N = 7 nodes and showing QA < Q are illustrated in Figure 4; the first five of these
graphs (Figure 4(a)-(e)) also show \mu A,2 < \mu 2. For larger networks we have found examples
where \mu A,2 < \mu 2 and QA > Q, thus demonstrating that the ``odd"" behavior can refer to either
one of the two quantities \mu A,2 or QA or to both. Understanding the properties of the graph
generating these behavior is left for a future work, while here we only observe that all of the
cases found in these graphs have a minimum degree greater than or equal to two.

5.2.2. Large random graphs. Here we consider larger networks, focusing in particular on
two paradigmatic models of random graphs: the Erd\"os--R\'enyi (ER) model and the Barabasi--
Albert (BA) model. For each of them, we have generated 5000 sample networks with N = 200D
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Figure 2. First nonzero eigenvalue for the classical Laplacian, \mu 2, for the hubs-attracting Laplacian, \mu A,2,
for the hubs-repelling Laplacian, \mu R,2, and theoretical upper bound as in ( 20) for all connected graphs with
given N : (a) N = 5; (b) N = 6; (c) N = 7; (d) N = 8; (e) N = 9; (f) N = 10. For better visualization
networks are reordered according to increasing values of \mu A,2. For each panel, the upper part illustrates \mu A,2,
\mu 2, and the theoretical bound, while the lower part compares \mu A,2 with \mu R,2.
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Figure 3. Ratio between the largest and smallest nonzero eigenvalue, Q, for the classical Laplacian, and
QA for the hubs-attracting Laplacian for all connected graphs with given n: (a) n = 5; (b) n = 6; (c) n = 7;
(d) n = 8; (e) n = 9; (f) n = 10. The theoretical bound is provided by ( 22); when this bound is trivial, i.e.,
QA > 1, we simply give the nontrivial upper bound of QA = 1 in the plot. For better visualization networks
are reordered according to increasing values of QA. For each panel, the upper part illustrates QA, Q and the
theoretical bound, while the lower part compares QA with QR.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4. (a)--(g) Connected graphs with N = 7 showing an ``odd"" behavior, i.e., having QA < Q. The
graphs in (a)--(e) also have \mu A,2 < \mu 2.

nodes. ER graphs were built by connecting each possible pair of nodes with a link probability
p [17]. In our simulations, we considered p varying in the interval p \in [0.1, 0.9], eventually
discarding unconnected graphs, thus generating graphs with different density and number of
links. BA networks were constructed using the generative model described in [17], starting
from n0 = 3 fully connected nodes and adding at each growth step m = 2 new links, connected
by preferential attachment to the other already existing nodes of the network.

For each of these graphs, we have calculated the synchronizability measures, \mu 2 and Q
for connectivity based either on the classical, the hubs-attracting and the hubs-repelling
Laplacian. The results are shown in Figure 5, confirming in both cases the theoretical
expectations that coupling through the hubs-attracting Laplacian improves synchronizability
with respect to the classical Laplacian (in particular, we may note that there are no cases
where \mu A,2 < \mu 2 or QA < Q). The theoretical bounds, provided by (20) for \mu A,2 and by
(22) for QA, are also illustrated. The comparison with the corresponding synchronizability
measures in the hubs-repelling Laplacian, namely \mu R,2 and QR, also reported in Figure 5,
shows that, on the contrary, adopting a Laplacian implementing a hubs-repelling diffusion
mechanism hinders synchronization; this is particularly critical in BA networks where both
\mu R,2 and QR are very small compared to \mu A,2 and QA.

A comparison of the values of QA in ER and BA networks shows another manifestation of
the heterogeneity paradox in synchronization: While heterogeneity in the degree distribution
reduces the average distance between nodes, it also reduces the synchronizability of the
network [28]. However, the hubs-attracting Laplacian mitigates the effect of heterogeneity,
leading to an eigenratio QA higher than Q, obtained with the classical Laplacian, in line with
other results showing how weighting the links may result in improving the synchronizability
of the original unweigthed topology [24].

Next, we investigated the question of whether the improvement in synchronizability obtainedD
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using the hubs-attracting Laplacian in place of the classical one is convenient in terms of the
energy required to induce synchronization in the network. To compare the hubs-attracting
Laplacian case with the classical Laplacian one, we selected for each of these two cases the
minimum value of the coupling strength required to obtain synchronization, i.e., \sigma A = \alpha 1

\mu A,2

and \sigma = \alpha 1
\mu 2
, where \alpha 1 is defined as in (13). Then, as a proxy of energy associated to

the network, we considered the Frobenius norm of the coupling matrix, which is given by
the Laplacian times the coupling coefficient, i.e., \| \sigma L\| F = \sigma \| L\| F = \sigma (

\sum 
i,j L

2
ij)

1
2 and

\| \sigma ALA\| F = \sigma A(
\sum 

i,j(LA,ij)
2)

1
2 . Their ratio is given by

(23) R =
\sigma \| L\| F

\sigma A\| LA\| F
=

\mu A,2\| L\| F
\mu 2\| LA\| F

.

Figure 5(e)--(f) illustrates R for the ER and BA networks considered in Figure 5 and

compares it with \| L\| F
\| LA\| F , representing the ratio between the energy associated to the two cases

at \sigma = 1. In most of the cases (100\% for ER networks, 58\% for BA networks), although
the energy associated to the hubs-attracting Laplacian at \sigma = 1 is higher than that of the
classical Laplacian, the oppositive holds when the coupling coefficient is selected to achieve
synchronization. This allows us to conclude that the improvement in the synchronizability
does not occur at the expenses of a greater energy required to synchronize the network, but
on the contrary is, in most cases, convenient in terms of energy.

5.2.3. Real-world networks. Finally, we have studied synchronizability of some real-world
networks. In particular, we have examined a dataset of 54 real-world networks from different
domains: ecological (includes food webs and ecosystems), social (networks of friendships,
communication networks, corporate relationships), technological (internet, transport, software
development networks), informational (vocabulary networks, citations), and biological (protein-
protein interaction networks, transcriptional regulation networks). The examples include
networks with different numbers of nodes, ranging from N = 29 to N = 4941 nodes (for
a more detailed description of the dataset and the characteristics of each network, please refer
to [8]). For each of these networks, we have calculated the synchronizability parameters, \mu 2

and Q, for the classical, the hubs-attracting, and the hubs-repelling Laplacian connectivity
cases.

The results of this analysis are shown in Figure 6 where we have now reported the relative
change of the synchronizability parameters in LA with respect to their value in L, i.e.,

\mu A,2 - \mu 2

\mu 2

(Figure 6(a)) and QA - Q
Q (Figure 6(b)), and, similarly, for the hubs-repelling Laplacian

\mu R,2 - \mu 2

\mu 2

(Figure 6(c)) and QR - Q
Q (Figure 6(d)). We note that, generally, the connectivity based on

the hubs-attracting Laplacian leads to a significant improvement in the synchronizability
parameters, with four networks in particular displaying values of this improvement close or
higher than 10. These are as follows: Canton (N = 108), Internet-1997 (N = 3015), Internet-
1998 (N = 3522), and Stony (N = 112). For three networks we observe negative relative
changes. These graphs are drugsA (N = 616); geom (N = 3621); softwaremysql (N = 1480).
These three networks thus belong to the cases similar to those reported in Table 2, where the
generic conditions \mu A,2 \geq \mu 2 and QA \geq Q are violated. We note, however, that the relativeD
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1070 L. V. GAMBUZZA, M. FRASCA, AND E. ESTRADA

changes are in absolute value among the smallest observed in our dataset. On the contrary, for
the hubs-repelling Laplacian we always observe negative relative changes, thus demonstrating
that the adoption of this Laplacian deteriorates network synchronizability.

6. Applications.

6.1. Synchronization in phase oscillators. As an example of systems of coupled oscillators,
here we consider the Kuramoto model on networks, where the units are purely phase oscillators.
Each node is then associated to a scalar variable, \theta i (i = 1, . . . , N), parameterizing the motion
along the limit cycle of the oscillator. In the Kuramoto model on networks, the dynamics of
each unit is given by

(24) \.\theta i = \omega i + \sigma 

N\sum 
j=1

aij sin(\theta j  - \theta i),

where \omega i is the natural oscillation frequency of unit i and \sigma the coupling coefficient. The
model is here generalized to account for coupling regulated by hubs-attracting Laplacian:

(25) \.\theta i = \omega i + \sigma 

N\sum 
j=1

kj
ki
aij sin(\theta j  - \theta i).

In addition, in this section and in the following, for the sake of comparison we consider
also coupling through the hubs-repelling Laplacian, which has been introduced in [8] and
briefly recalled in section 3. The hubs-repelling Laplacian considers different weights for the
links, such that high-degree nodes receive stronger influence from their neighbors, compared
to low-degree ones. Furthermore, this influence is stronger if it comes from a lower degree node
rather than a node with higher degree. Similarly to (25), the Kuramoto model on networks
with hubs-repelling Laplacian reads

(26) \.\theta i = \omega i + \sigma 
N\sum 
j=1

ki
kj

aij sin(\theta j  - \theta i).

Synchronization in networks (24), (25), and (26) is measured by the Kuramoto order
parameter

(27) r =

\Biggl\langle \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

e\iota \theta i

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr\rangle 

T

,

where \iota =
\surd 
 - 1 and \langle \rangle T denotes averaging over a window of time T after discarding transient

dynamics. The parameter r takes values in [0, 1], with values close to one indicating synchronization,
i.e., \theta 1 = \cdot \cdot \cdot = \theta N , while values close to zero are absent of coherence among the oscillators.

In the Kuramoto model, the higher algebraic connectivity the smaller the synchronization
time and the critical value of the coupling coefficient over which synchronization is reached.D
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Therefore, based on the properties of the hubs-attracting Laplacian discussed in section 5
and those of the hubs-repelling Laplacian illustrated in [8], it is expected that the use of the
hubs-attracting Laplacian increases the synchronizability of a network with respect to the
classical Laplacian case, whereas the hubs-repelling Laplacian decreases it. Our numerical
results confirm these expectations. We illustrate them by considering two random networks
with N = 100 nodes and different topologies. The first is an ER graph generated with p = 0.06
and having M = 286 links; the second is a BA graph with m = 2 links added per growth
step, n0 = 3 starting nodes, and M = 197 links. We begin by illustrating the behavior of
the order parameter r with the coupling coefficient \sigma (Figure 7(a) and (e)). To reach full
synchronization, i.e., r \simeq 1, the network with the hubs-attracting Laplacian requires lower
values of \sigma than the classical Laplacian and the hubs-repelling one, a result reflecting that of
\mu A,2 > \mu 2 > \mu R,2. We also note that, for the same value of \sigma , the higher value of r occurs
for the hubs-attracting Laplacian, followed then by the classical Laplacian and, finally, by the
hubs-repelling Laplacian that has the lower value of r.

Next, we study the synchronized clusters that form for increasing values of \sigma . To this
aim, we follow the approach described in [10], by defining a new matrix \scrD with elements given
by \scrD ij = aij

\bigm| \bigm| \langle e\iota (\theta i(t) - \theta j(t))\rangle T
\bigm| \bigm| , applying a threshold \delta = 0.8, such that those pairs of nodes

for which \scrD ij > \delta are considered to be synchronized, and finally calculating the synchronous
clusters that form at different values of \sigma . We have considered a series of quantities of interest
such as the size of the giant component, GC, of these synchronous clusters, the average degree
of the nodes in the connected components, \langle ki\rangle CC , and the number of hubs in the connected
components, hCC . Each of these parameters is a function of the coupling coefficient \sigma as well
as r is, so that we have plotted each of them as a function of the corresponding value of r
obtained for the given \sigma .

The result of this analysis is shown in Figure 7(b)--(d) for the ER graph and in Figure
7(f)-(h) for the BA graph. The different values of each of these parameters in correspondence
of the same value of r indicate that the diverse coupling mechanism in the three cases leads
to synchronous clusters with different characteristics. Equivalently, one can observe that the
same average level of synchronization, measured by r, is obtained in the three cases with
clusters with different characteristics. For low r the giant component is larger in the hubs-
attracting Laplacian coupling scheme than in the classical and in the hubs-repelling ones,
while for higher r the opposite occurs in the BA graph, while giant components of similar
sizes are obtained in the ER graph. The synchronous clusters that form at low r involve
more hubs in the case of the classical and hubs-attracting Laplacian rather than for the hubs-
repelling Laplacian, thus also resulting in a higher \langle ki\rangle CC . All in all, these results point in
the direction of hallmarking a different role of the hubs in the diverse coupling schemes; they
likely act as collectors of information in the case of hubs-repelling Laplacian and as spreaders
of information in the hubs-attracting Laplacian scheme, thus promoting in the latter case the
birth at low r of synchronous clusters around the hubs. An exemplificative illustration of
the different synchronous clusters obtained in the BA graph at r \simeq 0.2 for the three diverse
coupling schemes is shown in Figure 8, which highlights the presence of structures centered
around the hubs in the hubs-attracting Laplacian case and clustering several nodes, whereas
in comparison smaller clusters appear for the two other coupling schemes.
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6.2. Formation control in unicycles. The second application we consider is formation
control, where among the different models used for the dynamics of the agents, the simplest
one, able to account for the kinetic of a mobile robot, is given by the unicycles model [21]. The
coordinates of the unicycles in the complex plane are represented by ri(t) = y1,i(t) + \iota y2,i(t),
for t \geq 0.

The dynamics of the position of the unicycle in Cartesian coordinates is given by \.y1,i(t) =
vi cos \theta i(t) and \.y2,i(t) = vi sin \theta i(t), and \.\theta i(t) = \omega i(t), where vi is the speed of the unicycle,
and \omega i(t) is the angular velocity used as the control input for the system. A schematic
representation of a unicycle is reported in Figure 9.

Let us consider a group of N unicycles interacting through the different coupling schemes
based on the classical, hubs-attracting, and hubs-repelling Laplacian. Formation control is
achieved by considering as control law \omega i(t) =

\sum N
j=1 aij sin(\theta j(t) - \theta i(t)) (classical Laplacian),

\omega i(t) =
\sum N

j=1
kj
ki
aij sin(\theta j(t) - \theta i(t)) (hubs-attracting Laplacian), or \omega i(t) =

\sum N
j=1

ki
kj
aij sin(\theta j(t)

 - \theta i(t)) (hubs-repelling Laplacian), so that the dynamics of the unicycles are governed by

(28) \.\theta i(t) =
N\sum 
j=1

aij sin(\theta j(t) - \theta i(t))

for the classical Laplacian case, or

(29) \.\theta i(t) =
N\sum 
j=1

kj
ki
aij sin(\theta j(t) - \theta i(t))

for the hubs-attracting Laplacian case, or

(30) \.\theta i(t) =
N\sum 
j=1

ki
kj

aij sin(\theta j(t) - \theta i(t))

for the hubs-repelling Laplacian case. For the purpose of illustration and without lack of
generality, we fix an arbitrary network of N = 10 agents (similar results are obtained for
larger networks and different topologies). The network is shown in the panel of Figure 10(a),
its classical, hubs-attracting, and hubs-repelling Laplacians are given by

L =

\left(                

3 0 0 0 0  - 1  - 1 0 0  - 1
0 3 0 0  - 1  - 1  - 1 0 0 0
0 0 5 0  - 1  - 1  - 1  - 1 0  - 1
0 0 0 2 0 0 0 0  - 1  - 1
0  - 1  - 1 0 3 0 0 0 0  - 1
 - 1  - 1  - 1 0 0 5 0  - 1  - 1 0
 - 1  - 1  - 1 0 0 0 3 0 0 0
0 0  - 1 0 0  - 1 0 2 0 0
0 0 0  - 1 0  - 1 0 0 2 0
 - 1 0  - 1  - 1  - 1 0 0 0 0 4

\right)                
;
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LA =

\left(                

4 0 0 0 0  - 1.67  - 1 0 0  - 1.33
0 3.67 0 0  - 1  - 1.67  - 1 0 0 0
0 0 3.40 0  - 0.60  - 1  - 0.60  - 0.40 0  - 0.80
0 0 0 3 0 0 0 0  - 1  - 2
0  - 1  - 1.67 0 4 0 0 0 0  - 1.33

 - 0.60  - 0.60  - 1 0 0 3 0  - 0.40  - 0.40 0
 - 1  - 1  - 1.67 0 0 0 3.67 0 0 0
0 0  - 2.50 0 0  - 2.50 0 5 0 0
0 0 0  - 1 0  - 2.50 0 0 3.50 0

 - 0.75 0  - 1.25  - 0.50  - 0.75 0 0 0 0 3.25

\right)                
;

LR =

\left(                

2.35 0 0 0 0  - 0.60  - 1 0 0  - 0.75
0 2.60 0 0  - 1  - 0.60  - 1 0 0 0
0 0 8.09 0  - 1.67  - 1  - 1.67  - 2.50 0  - 1.25
0 0 0 1.50 0 0 0 0  - 1  - 0.50
0  - 1  - 0.60 0 2.35 0 0 0 0  - 0.75

 - 1.67  - 1.67  - 1 0 0 9.34 0  - 2.50  - 2.50 0
 - 1  - 1  - 0.60 0 0 0 2.60 0 0 0
0 0  - 0.40 0 0  - 0.40 0 0.80 0 0
0 0 0  - 1 0  - 0.40 0 0 1.40 0

 - 1.33 0  - 0.80  - 2  - 1.33 0 0 0 0 5.46

\right)                
;

and we have \mu 2 = 0.9962, \mu A,2 = 1.9560, \mu R,2 = 0.4757. We analyze the behavior of the
multiagent system in the three coupling cases by monitoring the Kuramoto order parameter
(27) which represents the level of coherence in the heading coordination. Formation control
corresponds to r \simeq 1.

In Figure 10(a), r is reported as a function of time t; full coordination is reached in
the three cases but with a different dynamics. In particular, if interactions are ruled by the
hubs-attracting Laplacian, the system is faster than in the other two cases, with the classical
Laplacian case representing the intermediate behavior between the two extremes. In Figure
10(b)--(d) the trajectories of the unicycles on the plane y1  - y2 are shown, from t = 0 (red
circles) to t = 8 (blue arrows); interactions are ruled by the classical Laplacian in Figure
10(b), the hubs-attracting Laplacian in Figure 10(c), and the hubs-repelling one in Figure
10(d). When the interactions are through the hubs-repelling Laplacian, the agents slowly
converge to a common heading, while in the other two cases the units reach synchronization
in a shorter time, with the hubs-attracting Laplacian coupling scheme representing the most
efficient case.
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Figure 5. Synchronizability of 5, 000 networks with N = 200 nodes based on classical or hubs-attracting
Laplacians (a), (c), (e) ER model; (b), (d), (f) BA model. (a)--(b) Algebraic connectivity \mu 2. (c)--(d) Eigenratio
Q. (e)--(f) Ratio between the energy associated to classical Laplacian and hubs-attracting Laplacian at \sigma = 1
and parameter R. The theoretical bounds are provided by ( 20) for \mu A,2 and by ( 22) for QA. For the latter,
when this bound is trivial, i.e., QA > 1, we simply give the nontrivial upper bound of QA = 1 in the plot. For
better visualization networks are reordered according to increasing values of \mu A,2 in (a), (b), (e), (f) or QA in
(c) and (d).
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Figure 6. Relative change of the synchronizability parameters in LA with respect to their value in L: (a)
\mu A,2 - \mu 2

\mu 2
; (b) QA - Q

Q
; and in LR with respect to their value in L: (c)

\mu R,2 - \mu 2

\mu 2
; (b) QR - Q

Q
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Figure 7. Synchronization in networks of phase oscillators coupled through classical, hubs-attracting, or
hubs-repelling Laplacian. (a), (e) Order parameter r. (b), (f) Size of the giant component with respect to r.
(c), (g) Average degree for the nodes in the connected components with respect to r. (d), (h) Number of hubs in
the connected components with respect to r. The results refer to an ER network, (a)--(d), or to a BA network
(e)--(h).

(a) (b) (c)

Figure 8. Synchronous clusters obtained in the BA graph at r \simeq 0.2 for coupling schemes based on
(a) classical Laplacian; (b) hubs-attracting Laplacian; (c) hubs-repelling Laplacian. The size of the nodes is
proportional to their degree in the original network.
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Figure 9. Scheme of the unicycle.
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Figure 10. Behavior of a group of N = 10 unicycles: (a) Kuramoto order parameter r versus time t for the
three Laplacians considered; trajectory of the group in the plane y1  - y2 in the case of (b) classical Laplacian,
(c) hubs-attracting Laplacian, and (d) hubs-repelling Laplacian. The network of interaction is shown at the
start and end point of the trajectory.
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7. Conclusions. In this work, we have defined the hubs-attracting Laplacian, studied the
properties of its spectrum through analytical and computational results, and related them
to synchronization processes occurring in the network. The hubs-attracting Laplacian is
nonsymmetric, but we proved that its eigenvalues are real. This property is relevant as it
allows one to straightforwardly generalize the synchronizability measures used for coupling
based on the classical Laplacian. The study of these measures shows that coupling through
the hubs-attracting Laplacian yields better synchronization properties for most of the cases,
where the graphs for which an improvement is not observed are found to occur with low
probability. The characterization of these graphs is a possible future direction of this study.
Our analytical results also provide bounds for the synchronizability measures allowing one
to estimate the maximum theoretical enhancement that can be derived from the use of the
hubs-attracting Laplacian. Finally, we have studied two specific models of units coupled
through the hubs-attracting Laplacian. The first one is based on phase oscillators and,
quite interestingly, shows how the same level of synchronization is reached through different
synchronous clusters when the coupling mechanism is varied from classical to hubs-repelling
and hubs-attracting Laplacian. A further deeper characterization of these structures and the
microscopic mechanisms leading to them is another possible direction for future work. The
second example refers to coordination of unicycles, providing an idealized case study where
the use of the hubs-attracting Laplacian is beneficial and paving the way to other applications
that may benefit from communication protocols based on this Laplacian.
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