000095087 001__ 95087
000095087 005__ 20231215090953.0
000095087 0247_ $$2doi$$a10.3390/pharmaceutics12060543
000095087 0248_ $$2sideral$$a118655
000095087 037__ $$aART-2020-118655
000095087 041__ $$aeng
000095087 100__ $$aRaslan, A.
000095087 245__ $$aBSA- and Elastin-Coated GO, but not collagen- coated GO, enhance the biological performance of alginate hydrogels
000095087 260__ $$c2020
000095087 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095087 5203_ $$aThe use of embedded cells within alginate matrices is a developing technique with great clinical applications in cell-based therapies. However, one feature that needs additional investigation is the improvement of alginate-cells viability, which could be achieved by integrating other materials with alginate to improve its surface properties. In recent years, the field of nanotechnology has shown the many properties of a huge number of materials. Graphene oxide (GO), for instance, seems to be a good choice for improving alginate cell viability and functionality. We previously observed that GO, coated with fetal bovine serum (FBS) within alginate hydrogels, improves the viability of embedded myoblasts. In the current research, we aim to study several proteins, specifically bovine serum albumin (BSA), type I collagen and elastin, to discern their impact on the previously observed improvement on embedded myoblasts within alginate hydrogels containing GO coated with FBS. Thus, we describe the mechanisms of the formation of BSA, collagen and elastin protein layers on the GO surface, showing a high adsorption by BSA and elastin, and a decreasing GO impedance and capacitance. Moreover, we described a better cell viability and protein release from embedded cells within hydrogels containing protein-coated GO. We conclude that these hybrid hydrogels could provide a step forward in regenerative medicine.
000095087 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095087 590__ $$a6.321$$b2020
000095087 591__ $$aPHARMACOLOGY & PHARMACY$$b29 / 275 = 0.105$$c2020$$dQ1$$eT1
000095087 592__ $$a1.054$$b2020
000095087 593__ $$aPharmaceutical Science$$c2020$$dQ1
000095087 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095087 700__ $$aDel Burgo, L.S.
000095087 700__ $$aEspona-noguera, A.
000095087 700__ $$ade Retana, A.M.O.
000095087 700__ $$0(orcid)0000-0002-5793-2058$$aSanjuán, M.L.$$uUniversidad de Zaragoza
000095087 700__ $$aCañibano-hernández, A.
000095087 700__ $$aGálvez-martín, P.
000095087 700__ $$0(orcid)0000-0002-8666-622X$$aCiriza, J.$$uUniversidad de Zaragoza
000095087 700__ $$aPedraz, J.L.
000095087 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología
000095087 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000095087 773__ $$g12, 6 (2020), 543 [20 pp.]$$pPharmaceutics$$tPharmaceutics$$x1999-4923
000095087 8564_ $$s1597920$$uhttps://zaguan.unizar.es/record/95087/files/texto_completo.pdf$$yVersión publicada
000095087 8564_ $$s457204$$uhttps://zaguan.unizar.es/record/95087/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095087 909CO $$ooai:zaguan.unizar.es:95087$$particulos$$pdriver
000095087 951__ $$a2023-12-15-08:58:45
000095087 980__ $$aARTICLE