000095101 001__ 95101
000095101 005__ 20210902121742.0
000095101 0247_ $$2doi$$a10.1093/gji/ggaa217
000095101 0248_ $$2sideral$$a118677
000095101 037__ $$aART-2020-118677
000095101 041__ $$aeng
000095101 100__ $$aCalvín, P.
000095101 245__ $$aAnalysing non-coaxial folding effects in the Small Circle Intersection method
000095101 260__ $$c2020
000095101 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095101 5203_ $$aThe Small Circle (SC) tools analyse the stereographic tracks (small circles) followed by the palaeomagnetic vectors during folding processes. Working with interfolding and synfolding remagnetizations, the Small Circle Intersection (SCI) method allows finding the best solution of grouping that should correspond with the remagnetization direction. Once this is known, it is possible to determine the magnetization age as well as the degree of bed tilting at this moment. The SC tools are based on some assumptions, among which the coaxiality between the different deformation events is the one addressed in this work (i.e. absence of vertical axis rotations, VARs, or differential horizontal axis rotations, dHARs). This assumption is based on the necessity of knowing the rotation axis for folding after the acquisition of the remagnetization, and SC tools consider the bedding strike as this axis, something that is only accomplished under coaxial folding. In order to explore how non-coaxiality affects the solutions derived from the SC methods, we first (i) identify the variables that control these errors through simple models that only consider two theoretical palaeomagnetic sites, after that it is possible (ii) to derive the mathematical relationships between them. Finally, we (iii) simulate errors derived from the use of SC tools using a population of 30 palaeomagnetic sites recreating different possible scenarios with VARs and dHARs in nature.
000095101 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E01-17R$$9info:eu-repo/grantAgreement/ES/MICINN/CGL2017-90632-REDT$$9info:eu-repo/grantAgreement/ES/MINECO/CGL2014-55118$$9info:eu-repo/grantAgreement/ES/MINECO/CGL2016-77560-C2-1-P$$9info:eu-repo/grantAgreement/ES/MINECO/CGL2016-77560-C2-2-P
000095101 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000095101 590__ $$a2.934$$b2020
000095101 591__ $$aGEOCHEMISTRY & GEOPHYSICS$$b37 / 87 = 0.425$$c2020$$dQ2$$eT2
000095101 592__ $$a1.302$$b2020
000095101 593__ $$aGeophysics$$c2020$$dQ1
000095101 593__ $$aGeochemistry and Petrology$$c2020$$dQ1
000095101 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095101 700__ $$0(orcid)0000-0002-0504-2352$$aPueyo, E.L.$$uUniversidad de Zaragoza
000095101 700__ $$0(orcid)0000-0001-7771-6873$$aRamón, M.J.
000095101 700__ $$0(orcid)0000-0003-3652-3527$$aCasas-Sainz, A.M.$$uUniversidad de Zaragoza
000095101 700__ $$aVillalaín, J.J.
000095101 7102_ $$12000$$2428$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Geodinámica Interna
000095101 773__ $$g222, 2 (2020), 940-955$$pGeophys. j. int.$$tGeophysical Journal International$$x0956-540X
000095101 8564_ $$s6238320$$uhttps://zaguan.unizar.es/record/95101/files/texto_completo.pdf$$yVersión publicada
000095101 8564_ $$s52703$$uhttps://zaguan.unizar.es/record/95101/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095101 909CO $$ooai:zaguan.unizar.es:95101$$particulos$$pdriver
000095101 951__ $$a2021-09-02-09:42:41
000095101 980__ $$aARTICLE