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Resumen 

El presente Trabajo de Final de Máster surge a partir del proyecto RegATeA impulsado por el 

Centro de Investigación y Tecnología Agroalimentaria de Aragón que tiene como objetivo buscar 

alternativas al abandono de parcelas de regadíos tradicionales de Teruel y proponer alternativas 

de gestión e impulsar la actividad económica y social. Ante los requerimientos existente para 

describir el espacio de regadío tradicional, entre los que destaca la delimitación del bosque ripario 

y la caracterización estructural de plantaciones de chopo, comienza la realización colaborativa 

con este Trabajo Final de Máster.  

El objetivo ha sido evaluar la aplicación de ortofotografías PNOA-RGB junto con datos PNOA-

LiDAR para estimar la extensión del bosque de ribera de dos sectores de las cuencas del río Mar-

tín y del río Guadalope, así como la caracterización de las masas de chopos de plantación presen-

tes en dichas zonas.  

Las orotofotografías PNOA han proporcionado información en el espectro visible y de los da-

tos LiDAR se ha extraído información espectral en el rango del infrarrojo cercano, a partir de las 

cuales se han obtenido diferentes índices de vegetación y suelo. A su vez, las nubes de puntos 

LiDAR han permitido la generación de modelos digitales del terreno y métricas descriptivas de la 

distribución de las alturas de los retornos láser. Todos estos datos se han combinado mediante 

un proceso de clasificación digital supervisada con el algoritmo "Random Forest". En las pruebas 

realizadas se ha llegado a un porcentaje de predicciones correctas del regadío tradicional de ribe-

ra del 98% para las zonas del río Martín y río Guadalope. En ambas zonas de estudio los resulta-

dos de la clasificación para la categoría temática de bosque de ribera son similares, obteniéndose 

un buen acercamiento a la verdad terreno una vez contrastada visualmente la cubierta con la 

fotografía aérea. 

Respecto a la caracterización estructural, se ha estimado el número de pies de la especie Po-

pulus sp con un método automático que consiste en establecer "cuencas virtuales" en una serie 

de plantaciones delimitadas en las zonas de estudio. En general, se han obtenido sobrestimacio-

nes en comparación con los conteos visuales que se han realizado por fotointerpretación de la 

ortofoto PNOA del año 2018. 

Con este trabajo se han comprobado las posibilidades que tiene el uso de datos LiDAR e 

imágenes de alta resolución PNOA en la caracterización automatizada de la vegetación de ribera, 

abriendo nuevas posibilidades de trabajo que se deberán seguir explorando en futuros trabajos.  

 

Palabras Clave: Vegetación riparia, escáner láser aeroportado, Ortofotografía aérea de alta re-

solución, clasificación supervisada, random forest, densidad de fustes 

 

Abstract 

This Master's Final Project arises from the RegATeA project, promoted by the Center for Re-

search and Agrifood Technology of Aragon, aims to find alternatives to abandoning traditional 

irrigated plots of Teruel and propose management alternatives to promote the economic and so-

cial activity. Faced with the requirements existing that are specified to describe the traditional 

irrigated area, among the delimitation of the riparian forest and the structural characterization of 

poplar plantations, collaborative realization begins with this Master's Final Project. 

The objective has been to evaluate the application of PNOA-RGB orthoimage together with 

PNOA-LiDAR data to estimate the extent of the riparian forest in two sectors of Martín and Gua-

dalope river basins, as well as the characterization of the masses of poplar plantations present in 

these areas. 

PNOA ortophotographs have provided information in the visible spectrum, while the spectral 

information in the near-infrared range has been extracted from the LiDAR data, from which diffe-

rent vegetation and soil indices have been obtained. In turn, the LiDAR point clouds have allowed 

the generation of digital terrain models and descriptive metrics of heights distribution of the laser 

returns. 
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All these data have been combined by a supervised digital classification process with the 

Random Forest’s algorithm. With the tests carried out, a corrected prediction percentage of 98% 

was obtained for the Martín and Guadalope River areas. In both areas, the results of the classifi-

cation for the thematic category of riparian forest are similar. A good approximation was obtained 

of the terrain truth once the cover is visually contrasted with aerial photography. 

Regarding the structural characterization, the number of stems of the Populus sp species has 

been estimated with an automatic method that consists of establishing "virtual basins" in a series 

of delimited plantations in the areas of study. In general, overestimations have been obtained in 

comparison with the visual counts that have been carried out by photointerpretation of the PNOA 

orthoimage of the year 2018. 

This work has verified the possibilities that the use of LiDAR data and high-resolution PNOA 

images have in the automated characterization in riparian vegetation, opening up new work pos-

sibilities that should be further explored in future work. 

 

Key Words: Riparian vegetation, airborne laser scanner, high resolution aerial orthorectified im-

ages, supervised classification, random forest, stem density 
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1. INTRODUCCIÓN 

1.1. Justificación 

El Fondo de Inversiones de Teruel (FITE) impulsa proyectos que tengan como objetivo poner en 

valor y apoyar iniciativas que repercutan en los ámbitos de la economía agroalimentaria, el turismo y 

aprovechamiento de los recursos naturales, así como de la puesta en valor del patrimonio cultural, am-

biental y social en Teruel. Uno de los retos a los que se enfrenta la provincia es el abandono de la acti-

vidad agraria, especialmente en los regadíos de las riberas de los ríos. Bajo estas premisas se desarrolla 

entre 2019-2021 el proyecto FITE “Recuperación y revalorización de tierras abandonadas en los rega-

díos de ribera turolenses (RegATeA)”, dentro del cual se enmarca el presente Trabajo Fin de Máster 

(TFM).  El Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) lidera este pro-

yecto cuyo objetivo es proporcionar alternativas productivas y/o medioambientales al abandono de las 

parcelas de regadío en la ribera turolense contribuir a la dinamización de la economía local y así poner 

en valor los agroecosistemas de estas zonas.   

RegATeA se centra en propuestas de alternativas productivas (hortícolas, aromáticas y forestales), 

medioambientales (bosque de ribera) y recreativas (zona de esparcimiento, huertos familiares o escola-

res). Uno de los principales retos es proporcionar información actualmente no recogida sobre las par-

celas abandonadas y sus características. El proyecto supone una propuesta de corte social que pretende 

asentar población en el medio rural y revitalizar zonas abandonadas con un gran potencial, tratando de 

lograr un desarrollo sostenible integrando los ámbitos económicos, sociales y ambientales. Estas ac-

ciones pueden tener un papel importante para la consecución de algunos de los Objetivos de Desarro-

llo Sostenible (ODS) de la Organización de las Naciones Unidas, como los siguientes:  

 ODS 9. Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y 

sostenible, y fomentar la innovación. 

 ODS 11. Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, 

resilientes y sostenibles. 

 ODS 12. Garantizar las pautas de consumo y de producción sostenibles. 

 ODS 15. Proteger, restaurar y promover la utilización sostenible de los ecosistemas terres-

tres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y re-

vertir la degradación de la tierra, y frenar la pérdida de diversidad biológica. 

 ODS 16. Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar 

acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a to-

dos los niveles. 

Dentro de las actuaciones relacionadas con el ámbito forestal, hace falta tener bien delimitada la 

zona del regadío tradicional, que a su vez se puede dividir en dos espacios diferenciados: la vega don-

de se viene practicando la agricultura desde hace siglos, y la ribera donde se encuentran los bosques 

riparios. Además, el Servicio Provincial de Desarrollo Rural y Sostenibilidad de Teruel (Gobierno de 

Aragón), participante también en el proyecto, manifestó la necesidad de tener cartografiadas y caracte-

rizadas las plantaciones de chopo (género Populus) de estas riberas, ya que esta información será rele-

vante para llevar a cabo cualquier actuación futura.  

Por tanto, el presente TFM trata de dar respuesta, mediante el uso de técnicas de teledetección y 

Sistemas de Información Geográfica (SIG), a los requerimientos de información para describir el es-

pacio de regadío tradicional de las riberas de los ríos Martín y Guadalope, especialmente en lo que 

concierne a la delimitación del bosque ripario y a la caracterización estructural de las plantaciones de 

chopo. Dada su importancia ecológica, y las ventajas prácticas asociadas a una buena conservación de 

los bosques aluviales, conocer la extensión y las particularidades de estos espacios es necesaria para la 

adopción de medidas encaminadas a la protección, regeneración y revalorización de estos medios.  
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1.2. Marco teórico 

Los bosques de ribera, definidos por Naiman y Mcclain (2015) como las áreas semiterrestres de 

transición que generalmente se extienden desde los bordes del río hasta los límites de los sistemas de 

ladera,  son ecosistemas de gran diversidad biológica, y constituyen corredores verdes que modelan el 

paisaje mediterráneo.  

Las funciones que desempeñan los bosques de ribera son múltiples, pero entre ellas caben desta-

car las siguientes (MITECO, 2020)  

 Regulan el microclima del río. 

 Estabilizan las orillas. 

 Regulan el crecimiento de las plantas macrófitas. 

 Albergan variados nichos ecológicos y hábitats de especies animales y vegetales. 

 Son una fuente de alimento para las especies que albergan. 

 Actúan como filtro frente a la entrada de sedimentos y sustancias químicas en el cauce. 

 Cumplen un papel de acumuladores de agua y sedimentos. 

 Funcionan como zonas de recarga de aguas subterráneas. 

 Poseen un gran valor paisajístico, recreativo y cultural para la sociedad. 

El desarrollo de estos bosques de ribera no depende tanto del clima de la zona, como de la dispo-

nibilidad de agua bajo el suelo en el que se asientan. La cercanía a los cauces de los ríos les proporcio-

na unos suelos con un alto grado de humedad y en los que el nivel de agua disponible (nivel freático) 

es muy elevado a lo largo de todo el año. Esto hace que se trate de una vegetación con una gran singu-

laridad ambiental y paisajística. Sin embargo, estos bosques, que han venido siendo roturados para 

tierras de cultivo desde antiguo, han sufrido un retroceso alarmante en las últimas décadas, especial-

mente en los grandes ríos aragoneses, como el Ebro, dónde los sotos han quedado restringidos a encla-

ves de reducida extensión si se compara con la situación que ocupaban en 1950.  

El bosque de ribera tiene una compleja organización, tanto verticalmente como horizontalmente. 

A grandes rasgos se encuentra formado verticalmente por los estratos arbóreos, arborescente, arbustivo 

y herbáceo. El estrato arbóreo suele estar dominado por una especie de manera general y es típicamen-

te cerrado, pudiéndose englobar aquí especies como el fresno (Fraxinus sp.), olmos (Ulmus minor), y 

chopos (Populus sp.). El estrato arborescente está formado por individuos más jóvenes del estrato ar-

bóreo, y también se encuentran otras leñosas como los tamarices (Tamarix sp.) o sauces (Salix sp.). El 

estrato arbustivo suele aparecer en los límites del bosque ripario más alejado del cauce del agua, donde 

ocupan espacios de claros y bordes, siendo comunes especies de zarzas (Rubus sp.), rosales (Rosa sp.) 

y majuelos (Crataegus monogyna). El estrato herbáceo se compone de especies que están en el interior 

del bosque, que está bien desarrollado debido al continuo aporte de materiales que arrastra el río. La 

estructura horizontal es un rasgo fundamental de este ecosistema, ya que al variar la disponibilidad de 

agua dependiendo de la proximidad al cauce se crean bandas de vegetación de diferentes necesidades 

hídricas. En la primera banda del río nos encontraríamos con especies que pueden soportar los efectos 

de las avenidas por su flexibilidad, como los sauces, en la segunda banda especies arbóreas que llegan 

a conseguir agua del nivel freático, como podrían ser los chopos. A partir de ahí, pueden existir zonas 

con formaciones arboladas alejadas de las orillas en transición clara hacia especies arbustivas xerófilas 

cuando disminuye el nivel freático. 

La disponibilidad de información procedente de sistemas de teledetección satelital y aerotranspor-

tada de alta resolución espacial, junto con los SIG y la  mayor capacidad de computación de los orde-

nadores, ha permitido el estudio, desde perspectivas dinámicas y estáticas, de estos espacios forestales 

y de la llanura aluvial, un ambiente muy sensible a la alteración debido a los procesos continuos que se 

producen en los cursos de agua de forma natural y a la modificación de los sotos por la influencia del 

ser humano (Dufour y Corgne, 2012). 

Se han empleado las Tecnologías de la Información Geográfica (TIG) en estudios de mapeado y 

caracterización de la vegetación de ribera (Muller, 1997), empleando teledetección óptica satelital de 

media resolución espacial, como SPOT y Landsat (Goetz, 2006; Yang, 2007), así como imágenes hi-
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perespectrales aéreas de 0,5 metros de resolución para la distinción de especies forestales individuales 

(Hamada et al., 2007). 

La integración de datos LiDAR (Light Detection And Ranging) aeroportados de pulsos discretos, 

que son sistemas de teledetección activa, junto a imágenes ópticas de alta resolución espacial ha co-

brado importancia en los últimos años, ya que se combinan los beneficios de la información espectral 

con los datos tridimensionales que proporcionan las nubes de puntos láser para la identificación de 

tipos de cubierta, usos del suelo o formaciones forestales (Arroyo et al., 2010). Diversos estudios han 

confirmado que con los sensores LiDAR es posible estimar variables dasométricas con más precisión 

que la que se puede tener en un inventario convencional (Wulder y Seemann, 2003), como es el caso 

del volumen maderable, la altura media de la vegetación, la altura dominante, el diámetro medio y la 

densidad de pies o fustes de un bosque, el área basimétrica, o la biomasa (Næsset, 2002). Además, el 

uso del LiDAR permite caracterizar la distribución vertical de la vegetación (estratos) y monitorizar la 

masa forestal si hay disponibles datos capturados en diferentes fechas (Hsiao et al., 2004; Onojeghuo y 

Blackburn, 2011; Wulder et al., 2012) .  

Entre las técnicas de análisis más comunes para llevar a cabo la identificación automática de usos 

del suelo o cubiertas a través de una imagen, destaca el algoritmo de clasificación supervisada “ma-

chine learning” de Random Forest (Breiman, 2001; Belgiu y Dra, 2016). Estudios como el de Basener 

y Basener (2017), señalan que es el que mejores resultados proporciona en relación con otros métodos, 

como el “K-Nearest Neighbours”.   

Si se compara con otros modelos de regresión, el uso de Random Forest devuelve valores sustan-

cialmente más bajos de error cuadrático medio en estimaciones de alturas con LiDAR (Ahmed et al., 

2015). De hecho, no requiere asumir una relación entre las variables, y sirve para analizar posibilida-

des complejas no lineales entre interacciones de grandes volúmenes de datos (Olden et al., 2008). Es-

tudios como el de (Onojeghuo y Blackburn, 2011) evidencian mejores resultados para una clasifica-

ción de hábitats cuando se combinan datos LiDAR e imágenes con información multi-espectral; o co-

mo el de (García et al., 2011), que realizan una clasificación supervisada con datos LiDAR e índices 

espectrales. El uso de información multiespectral en forma de índices se ha visto también de mucha 

utilidad para estudios de vegetación y suelos, debido a que aportan más sencillez al análisis de las aso-

ciaciones que se producen a nivel físico entre la señal electromagnética y la cobertura terrestre (Crist 

et al., 1986). En el caso de Chen et al., (2012), integran para la clasificación digital modelos digitales 

de elevaciones y la desviación estándar del propio modelo digital de elevaciones para mejorar la iden-

tificación de cubiertas terrestres. Otras métricas que describen la estructura de la vegetación, como la 

fracción de cabida cubierta (FCC), que indica la proporción de suelo cubierta por la proyección verti-

cal de cada estrato de vegetación (Tomé, 2017), son útiles para mejorar la clasificación digital de la 

vegetación.  

Otros algoritmos “machine learning” que se han desarrollado para datos LiDAR sirven para deli-

near, partiendo de un modelo de altura del dosel vegetal, árboles individuales o entidades forestales de 

interés (Chen et al., 2012). Esto es especialmente útil para inventariar los recursos forestales disponi-

bles en un territorio (Suárez et al., 2005). La mayor parte de los estudios han empleado para este pro-

pósito nubes de puntos muy densas, superiores a 4 puntos/m
2
. Algunos como Fragoso et al. (2020) 

demuestran la utilidad de las nubes poco densas cuando el paisaje forestal presenta árboles dispersos 

con copas que no se tocan entre sí. Para llevar a cabo esta identificación de árboles se suelen aplicar 

métodos de clasificación y segmentación que permiten detectar el centroide del árbol o ápice basándo-

se en algoritmos “watershed” y máximos locales (Gil Yepes, 2012). 

Se observa entonces que está extendido el uso de los datos LiDAR, pero no es tan común la utili-

zación de imágenes aéreas ortorrectificadas (en adelante ortofotos) para la realización de estos trabajos 

de clasificación digital. Al principio se contemplaba su uso sólo como apoyo para la fotointerpretación 

(Castillejo-González et al., 2010), pero más recientemente se encuentran análisis en dehesas, como el 

trabajo de Borlaf-Mena et al. (2019) o el estudio de Fragoso-Campón et al. (2020), que destacan por el 
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uso de ortofotos del Plan Nacional de Ortofotografía Aérea (PNOA) que cuentan con información es-

pectral de las bandas visibles y del infrarrojo cercano con una alta resolución espacial de 0,25 metros.  

En este sentido, España cuenta con la cobertura continua de todo el territorio a través del PNOA, 

que ofrece dos tipos de productos: ortofotografías y nubes de puntos capturadas por sensores LiDAR 

aeroportados de baja densidad (0,5 a 2 puntos/m
2
). En el caso de las imágenes, se actualizan cada 2 o 3 

años según las zonas y se obtienen como resultado del vuelo fotogramétrico realizado con una cámara 

digital multiespectral (PNOA, 2020). Estas imágenes están disponibles en dos formatos: PNOA-RGB, 

que incluyen la información espectral de las bandas visibles, y PNOA-IRC, que incluyen la informa-

ción del infrarrojo cercano (IRC), rojo y verde. Los datos de la banda IRC y del espectro visible per-

miten obtener distintos índices de vegetación y suelo, aportando información útil en el análisis de la 

vegetación. Por otro lado, la cobertura de puntos 3D tomada con sensores LiDAR, se inicia en el año 

2008, finalizando la primera cobertura completa del territorio español en 2015, año en el cuál se co-

mienza simultáneamente con la toma de datos de la segunda cobertura. Las nubes de puntos están so-

metidas a un proceso de clasificación automática en el que se asigna un identificador de la clase que 

representa cada punto. Para facilitar la visualización de la nube también se asigna color verdadero 

RGB a partir de ortofotos del Plan Nacional de Ortofotografía Aérea (PNOA) o de imágenes tomadas 

en vuelos simultáneos que contienen información del infrarrojo cercano. 

Así, por ejemplo, Borlaf-Mena et al., (2019) utilizan de manera conjunta las orotofotos PNOA-

RGB y los datos LiDAR-PNOA para la extracción de la cobertura arbórea. En Navarro et al., (2018) 

se propone el uso de las imágenes PNOA-RGB para generar modelos digitales del dosel vegetal 

(MDV) por técnicas fotogramétricas, mientras que en otros casos, el uso de las imágenes PNOA-RGB 

se centra en la estimación de la fracción de cabida cubierta mediante el uso de platillas de densidad 

(Castillejo González et al., 2010). Respecto al uso de las imágenes PNOA-IRC, hay una notable au-

sencia de trabajos que las utilicen, siendo uno de los motivos que solo están disponibles previa solici-

tud al Instituto Geográfico Nacional (Fragoso-Campón et al., 2020).  

2. HIPÓTESIS Y OBJETIVOS 

El objetivo principal de este Trabajo de Fin de Máster es evaluar la aplicación de ortofotografías 

PNOA-RGB junto con datos PNOA-LiDAR, que proporcionan información tridimensional y contie-

nen información IRC, para estimar la extensión del bosque de ribera de dos sectores de las cuencas del 

río Martín y del río Guadalope, así como la caracterización de las masas de chopos de plantación pre-

sentes en dichas zonas.  

Este objetivo se fundamenta en la hipótesis de que es posible derivar una serie de descriptores bá-

sicos sobre la vegetación mediante el uso y la integración de datos de teledetección activa y óptica. 

Esta hipótesis descansa en el hecho de que la caracterización de las áreas de ribera es compleja y 

requiere de un intenso trabajo de campo, por lo que surge la necesidad de proponer metodologías más 

automáticas y eficientes para trabajar desde gabinete y ayudar en la gestión. Dado que los datos Li-

DAR y las ortofotografías del PNOA son gratuitos y de libre acceso, se consideran idóneos para aco-

meter el objetivo principal propuesto. Además, cabe destacar que se trata de un uso poco frecuente de 

estos datos, por lo que también se evalúa su potencialidad para obtener una cartografía de alta resolu-

ción espacial de las zonas de ribera. 

A continuación, se describen una serie de objetivos específicos que servirán secuencialmente para 

dar cumplimiento al objetivo principal: 

1) Comparar diferentes clasificaciones supervisadas con algoritmos Random Forest a partir de la 

integración de información espectral (bandas del visible, infrarrojo cercano e índices) y datos 

LiDAR (modelos digitales de elevaciones y otras métricas basadas en las alturas de los retor-

nos), para la identificación de los grandes usos del suelo y del bosque de ribera. 

2) Caracterizar estructuralmente algunas choperas en las zonas de ribera mediante la detección del 

número de pies y otras variables derivadas del LiDAR, como la densidad del dosel forestal. 
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3) Comparar los resultados obtenidos en ambas riberas para identificar sus diferencias.  

3. ÁREA DE ESTUDIO 

El área de estudio se localiza en dos zonas de ribera: una en el río Martín (comarcas del Bajo 

Martín y Andorra-Sierra de Arcos), y otra en el río Guadalope (comarca del Bajo Aragón) (Figura 1, 2 

y 3). 

 

Ambas zonas corresponden a ríos mineralizados de baja montaña mediterránea con depósitos alu-

viales por donde discurren con escasa energía al tratarse de tramos medios o bajos. El río Martín, 

afluente del río Ebro, fluye por territorios pertenecientes en su totalidad a la Comunidad Autónoma de 

Aragón, la mayor parte dentro de la provincia de Teruel y  únicamente el último tramo en la provincia 

de Zaragoza. Su recorrido empieza a 45 km de la desembocadura en el río Ebro, pasando por los tér-

minos municipales de Escatrón, Castelnou, Jatiel, Samper de Calanda, Híjar, Urrea de Gaén, Albalate 

del Arzobispo, Ariño y Oliete hasta el Embalse de Cueva Foradada, y abarcando las comarcas de la 

Ribera Baja del Ebro, del Bajo Martín y de Andorra- Sierra de Arcos (Figura 2).  

La zona de estudio del río Martín presenta un cauce medio con una superficie total de 2.669 hec-

táreas. Corresponde con un valle de fondo plano rellenado por depósitos aluviales que se sitúa entre 

los 300 y 400 metros de altitud. En su extensión aparecen colinas residuales, y predominan planicies 

en los laterales de la delimitación del área de estudio. En toda la cuenca están presentes litologías de 

calizas, dolomías o margas. En el territorio se encuentran algunas figuras de protección ambiental, 

como son lugares de interés comunitario (LIC) y zonas de especial protección para aves (ZEPA) entre 

otras. 

El clima es de tipo submediterráneo continental en la comarca de Andorra - Sierra de Arcos hasta 

que el río Martín se adentra en los materiales terciarios de la depresión del Ebro, donde predomina un 

clima más seco, de tipo estepario, ya en la comarca del Bajo Martín.  

 

 

Figura 1. Localización del área de estudio. 
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Figura 2. Localización general de la zona de estudio del río Martín. 
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Figura 3. Localización general de la zona de estudio del río Guadalope. 
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En la zona de estudio se encuentran transiciones de vegetación esclerófila y pastizales naturales 

con suelos de escasa vegetación, tierras de labor en secano y un mosaico de cultivos de regadío horto-

frutícolas junto a los bosques mixtos de ribera a lo largo del río. En terrenos más abiertos, las llanuras 

de inundación próximas al río se deberían encontrar una mayor presencia del bosque natural, sin em-

bargo se hallan muchas zonas transformadas en cultivos herbáceos o plantaciones de choperas (Figura 

4).  

 

 

 

 

 

 

 

 

 

 

 

La zona de estudio del río Guadalope engloba una extensión de 15 km de río desde el azud de 

Abénfigo hasta la cola del Embalse de Calanda (final del tramo canalizado), además de parte del río 

Bergantes. Está situada entre el valle del Ebro y la Cordillera Ibérica y se encuentra en los municipios 

de La Ginebrosa, Mas de las Matas, Aguaviva y Castellote como se observa en la Figura 3. 

Abarca una superficie de 1.373 hectáreas y a 500 metros sobre el nivel del mar, en un relieve 

geomorfológico de cubeta sedimentaria formada por el río Guadalope en su tramo medio con el río 

Bergantes de afluente, después de atravesar las escarpadas serranías de Castellote, pasando por Mas de 

las Matas y antes de ser represado por el cercano embalse de Calanda. En la cuenca están presentes 

materiales mesozoicos, como las calizas y las dolomías, y los conglomerados terciarios.   

El paisaje corresponde a clima típicamente mediterráneo y la zona de estudio se enmarca entre 

campos de cultivo de cereal y el bosque de ribera próximo al cauce, con Populus x canadensis, Popu-

lus nigra, Salix sp., Ulmus minor y Rosa canina entre otros (Figura 5). Se encuentran también zonas 

más abiertas con choperas de plantación (Figura 6). La dinámica del río Bergantes es torrencial y tiene 

formaciones muy escasas de vegetación riparia de tipo matorral. 

 

 

 

 

 

 

 

 

Figura 4. Foto de plantación de choperas de la 

zona de estudio del río Martín. Fuente: Mónica 

Guillén (CITA). Fecha: 19/06/2020. 

Figura 5. Foto del bosque de ribera de la zona de 

estudio del río Guadalope. Fuente: Mónica Guillén 

(CITA). Fecha: 01/06/2020. 

Figura 6. Foto de plantación de choperas de la 

zona de estudio del río Guadalope. Fuente: Mónica 

Guillén (CITA). Fecha: 01/06/2020. 
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Conviene explicar que las zonas de estudio de ambos ríos han sido delimitadas según la capa te-

mática de “Regadío tradicional”, elaborada y proporcionada por el CITA, la cual se ha basado en as-

pectos geomorfológicos de la cuenca y por la presencia de agricultura del tipo regadío tradicional en 

las márgenes de los ríos. Esta capa o “máscara” de regadío tradicional está más o menos definida por 

el relieve de los depósitos aluviales de la depresión de la cuenca, en donde coexisten en un ambiente 

rural, diferentes clases de terreno: campos de cultivo heterogéneos, áreas de inundación del río y asen-

tamientos de población e infraestructuras. Es variable en extensión longitudinal dependiendo del tra-

zado del río y las características del terreno. También tiene como límite en algunas zonas canales de 

riego.  

4. MATERIAL Y MÉTODOS 

El flujo de trabajo se compone, a grandes rasgos, de la utilización de la nube de puntos LiDAR-

PNOA para generar capas de modelos digitales de elevaciones y otras métricas que describen la es-

tructura de la vegetación. Asimismo, se ha extraído la banda de información espectral correspondiente 

al infrarrojo cercano, se ha combinado con las bandas RGB de la ortofoto del PNOA y se han calcula-

do índices espectrales diversos. Con todas estas bandas en formato ráster, se han llevado a cabo dife-

rentes combinaciones de bandas para logar una clasificación digital de las cubiertas principales de la 

zona de estudio del río Martín y del río Guadalope con el algoritmo Random Forest.  

Por otra parte, dado el interés en inventariar las masas de plantaciones de chopo, se han aplicado 

procesos de detección automática de fustes en unas plantaciones seleccionadas.  

Como se muestra en la Tabla 1, se ha usado diferente software dependiendo de las necesidades 

que han surgido a lo largo de la realización del trabajo, tanto para el tratamiento de los datos previos 

como para el resto del procesado.  

 

Tabla 1. Software utilizado para la implementación de la metodología. 

 

LasTools (c) 2007-2020, rapidlasso GmbH, (Germany) es una herramienta con 

licencia abierta para muchos de los procesos que sirven para clasificar, convertir, 

exportar, extraer, etc datos LiDAR. Se puede usar de manera rápida y eficiente 

mediante scripts en la consola del sistema operativo, aunque también está disponi-

ble para usarse en los SIG de escritorio, como ArcGIS y QGIS. 

 

FugroViewer (versión 3.2) es una aplicación gratuita de fácil manejo que permite 

visualizar y explorar datos LiDAR con un renderizado de imágenes de gran efi-

ciencia. Se ha usado principalmente para obtener información visual del modelado 

LiDAR y analizar la nube de puntos según su clasificación, número de retornos, 

intensidad, elevación, tanto en 2D como en 3D. 

 

ArcGis Desktop (versión 10.8) es un conjunto de aplicaciones SIG que permiten 

hacer todo tipo de análisis espaciales. Permite realizar tratamiento de datos y apli-

caciones variadas. Se eligió utilizar este programa porque se tenía disponibilidad 

para algunos procesos concretos. 

 

Fusion/LDV (versión 3.8) es un software libre desarrollado por el Servicio Fores-

tal de los Estados Unidos (US Forest Service – Department of Agriculture) con el 

fin de ayudar a explorar y analizar datos LiDAR (Mcgaughey, 2018) y derivar mo-

delos digitales y métricas de los retornos láser. Este software permite explorar los 

datos de manera interactiva y también ejecutable con líneas de comando. 

 

QGIS (versión 3.6) desarrollado por Open Source Geospatial Foundation (OSGeo) 

es otro conjunto de aplicaciones profesional de SIG que está construida bajo un 

software libre y de código abierto. Se caracteriza en una creciente aplicabilidad de 

sus funciones gracias a la opción de poder instalar complementos. Se ha usado para 

gestionar y editar la mayor parte de los datos, además de para el diseño de la carto-

grafía. 
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RStudio (Core Team, 2014) es una aplicación que permite un entorno de trabajo 

integrado para trabajar con lenguaje de programación dedicado a computación es-

tadística y manejo de código con herramientas de consola y editor de sintaxis. So-

porta una comunidad que van creando paquetes necesarios para procesar productos. 

Con este programa se va a generar la clasificación y algunos algoritmos de manejo 

de datos LiDAR. Varios de los paquetes que se han usado para este trabajo son: 

- LidR (versión 2.2.4), que sirve para computar métricas LiDAR en entornos 

forestales. Principalmente va a servir para crear una segmentación de árboles 

individuales. 

- MapTools (versión 0.9-5) como herramienta para manipulación de información 

geográfica. 

- RandomForest (versión 4.6-14) es un paquete que sirve para crear los modelos 

de clasificación y regresión con en una combinación de árboles predictores ba-

sado en el algoritmo de (Breiman, 2001). 

 

4.1. Regadíos tradicionales 

El regadío tradicional, que comprende la ribera y la vega de los ríos Martín y Guadalope, corres-

ponde con la capa temática o máscara que ha sido proporcionada por la Unidad de Suelos y Riegos del 

CITA para su incorporación al SIG. Dicha máscara de regadío tradicional es la que se ha empleado 

para la delimitación de área de estudio, y es la que se ha usado para los flujos de trabajo posteriores 

como máscara o ámbito de estudio. Asimismo, se ha proporcionado otra máscara sobre la ribera esti-

mada, procedente del departamento de Desarrollo Rural y Sostenibilidad de Teruel (Gobierno de Ara-

gón), que comprende las riberas públicas que se ubican en el Dominio Público Hidráulico y fuera de 

él.  

Dado que la máscara del regadío tradicional se usará como material de partida en la delimitación 

de muchos de los procesos del trabajo, se decidió refinar los límites de la capa mediante fotointerpre-

tación para ajustarla mejor a la geometría al terreno. En la Figura 7 se observa un ejemplo de una vi-

sualización del tramo medio del río Martín marcado por el relieve del piedemonte con las dos másca-

ras mencionadas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 7. Vista límites zona media río Martín. Fuente: PNOA año 2018. 
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4.2. Datos LiDAR 

El LiDAR es un sistema de teledetección activo de captura de datos que mide el tiempo que tarda 

un pulso energético láser en chocar contra un objeto y ser reflejado (eco). Gracias a un distanciómetro 

láser calcula las coordenadas de latitud, longitud y altura para cada eco o retorno, todo ello teniendo en 

cuenta las características del propio sensor, la altura y tipo de vuelo, ángulo de escaneo, etc. 

(Vosselman y Maas, 2010). 

La densidad de puntos de los datos LiDAR-PNOA es de 0,5 puntos /m
2
.
 
Los datos se distribuyen 

en ficheros de 2×2 km de extensión, y el formato de descarga es en fichero LAZ (fichero LAS com-

primido). Todos ellos dentro del sistema geodésico de referencia ETRS89, en el huso correspondiente. 

El sensor registra hasta 4 retornos para cada pulso emitido con un error cuadrático medio en altimetría 

inferior o igual a 0,20 m. Estos datos luego se procesan y clasifican de forma automática. 

Como se puede apreciar en la Figura 8, el pulso láser se cuela entre las hojas y las ramas de la ve-

getación, por lo que se pueden registrar retornos a diferentes alturas, e incluso procedentes del suelo 

que está oculto bajo la vegetación. Este hecho es especialmente interesante para caracterizar la estruc-

tura vertical de la vegetación (estratos), así como la estructura horizontal, como el recubrimiento o 

densidad foliar.  

 

 

 

 

 

 

 

 

 

 

 

 

La zona del río Martín fue escaneada por el sensor LiDAR entre septiembre y octubre de 2016. La 

del río Guadalope fue sobrevolada en septiembre de 2018 y noviembre/diciembre de 2010. Las especi-

ficaciones técnicas de los vuelos LiDAR-PNOA se detallan en la Tabla 2. En la actualidad se propor-

cionan con una clasificación de la nube de puntos (ver Tabla 3) bajo los estándares de la ASPRS 

(American Society for Photogrammetry and Remote Sensing, 2015). 

Tabla 2. Especificaciones técnicas del vuelo LiDAR (IGN). 

Característica Descripción Martín Descripción Guadalope 

Sensor ALS80 ALS50-II 

Densidad de puntos 0,5 puntos/m
2
 0,5 puntos/m

2
 

Sistema geodésico de referencia ETRS89 ETRS89 

Tipo de altitudes Ortométricas Ortométricas 

Proyección cartográfica y huso UTM UTM 30 N UTM 30 N 

Distribución de hojas 2×2 km de extensión. 2×2 km de extensión. 

Numero ficheros 34 12 

Fecha pasada E-W Septiembre y octubre 2016 Noviembre y diciembre de 2010 

Figura 8. Relación de los pulsos LiDAR en vegetación. (Traducción de 

Vosselman y Maas, 2010). 
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Tabla 3. Clasificación ASPRS de la nube de puntos LiDAR. 

Identificador de la 

clasificación  
Significado 

0 Nunca clasificado 

1 Sin clasificar 

2 Suelo 

3 Vegetación baja 

4 Vegetación media 

5 Vegetación alta 

6 Edificios 

7 Puntos bajos (Ruido) 

8 Puntos clave del modelo 

9 Agua 

10 Reservado ASPRS 

11 Reservado ASPRS 

12 Solape 

13-31 Reservado ASPRS 

 

Como pretratamiento se realizó una descomprensión de los datos y la extracción con LasTools de 

la clase 7 (ruido) y la clase 12 (solape), para así evitar errores. También se extrajo la clase 2 corres-

pondiente al suelo para la realización posterior de modelos digitales del terreno. 

4.3. Generación de modelos digitales de elevaciones 

Para tratar con productos a partir de los datos LiDAR es necesario convertir los puntos en una su-

perficie continua, generando de la nube de puntos pre tratada unos modelos digitales del terreno 

(MDT) que serán necesarios para otros procesos, como se muestra en la Figura 9. Estos modelos re-

presentan la distribución espacial de la altitud de la superficie del terreno (Doyle, 1978; Felicísimo, 

1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 9. Diagrama del flujo para generar los modelos digitales de elevaciones, de superficies y 

de superficies normalizadas. 
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Se han generado una serie de modelos digitales del terreno (MDT) en formato ráster, los cuales 

son que son el modelo digital de superficies (MDS), el modelo digital de superficies normalizadas 

(MDSn) y el modelo digital de elevaciones (MDE). Han sido creados con los algoritmos de LasTools y 

después en ArcGIS con la herramienta “LasDataset to Raster” para transformar el archivo *.LAS en 

un archivo ráster GeoTIFF, un formato estándar de dominio público compatible con el software em-

pleado y que permite información georreferenciada ya que incluye el tipo de proyección, sistema de 

coordenadas, elipsoide y datum. El proceso “LasDataser to Raster” utiliza unos medios de interpola-

ción combinados mediante el cálculo por triangulación, TINs (Triangular Irregular Nets) sobre la 

asignación de elevaciones por medio del filtrado de píxeles contiguos (vecino natural), con lo que fi-

nalmente predispone los puntos incluidos en el interior de una nube de puntos por vecino natural y 

después los agrupa según su pertenencia al plano formado por los puntos del triángulo. Se trata de un 

método de interpolación eficaz para la representación de este tipo de superficies (Burrough y 

Mcdonnell, 1998; Machado, 2016) 

El ráster MDE se creó con “LasDataset to Raster” y también paralelamente se creó otro MDE en 

formato Digital Terrain Models (*.DTM) dentro del programa Fusion. Este se genera mediante el al-

goritmo de Fusion “GridSurfaceCreate”, con la interpolación de los puntos clasificados como suelo.  

A su vez, disponer de un MDS es útil para extraer las elevaciones de los elementos de la superfi-

cie del terreno (Priestnall et al., 2000). El proceso de creación del MDS consiste en seleccionar, me-

diante LasTools, los primeros retornos. Estos retornos se corresponderán con los puntos de elevación 

máxima y es usado por otros autores como Popescu y Wynne (2004) para la generación del MDS. Para 

el MDSn se realizó una operación ráster restando el MDS y el MDE. Ambos archivos deben tener la 

misma resolución espacial de 1 metro × 1 metro, que es la resolución que se ha utilizado en la genera-

ción de todos los modelos digitales. La creación de ambos ráster se realizó con “LasDataset to Ras-

ter”.  

4.4. Cálculo de métricas LiDAR 

Como vemos en la Figura 10 se parte de los archivos LiDAR filtrados como se ha mencionado 

anteriormente y el MDE, debido a que utiliza para la altitud de referencia sobre la que hacer los cálcu-

los que arrojen estadísticos provenientes de los datos de la nube de puntos LiDAR. 

 

 

 

 

 

Figura 10. Diagrama del flujo para la obtención de la capa de FCC. 
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Las capas que se han generado y que derivan de la información incluida en la nube de puntos de 

los datos LiDAR son: la Fracción de Cabida Cubierta (FCC) y la desviación estándar (std). La FCC es 

el porcentaje de primeros retornos por encima de una altura determinada (Ecuación 1) y la desviación 

estándar se obtiene de la altura de los retornos laser (Ecuación 2). Donde     es el valor de altura del 

retorno i, y N el número total de retornos. 

 

Ecuación 1 

 

            Ecuación 2 

 

 

Se eligieron unos umbrales de altura diferentes para calcular el porcentaje de primeros retornos. 

En primer lugar empleando todos los retornos de manera global por encima de 1 metro, en segundo 

lugar usando todos los retornos entre 0,5 y 5 metros, más enfocado al estudio de la vegetación arbusti-

va o matorral, y finalmente utilizando todos los retornos situados a más de 5 metros, enfocado al estu-

dio de vegetación arbolada. La FCC tiene una fuerte correlación con las coberturas vegetales y mejora 

significativamente modelos de clasificación al incorporarse también con franjas de diferentes alturas 

(Hopkinson y Chasmer, 2009). 

El proceso consiste en utilizar el algoritmo de Fusion “GridMetrics”, que normaliza la informa-

ción de la nube de puntos sobre la altura del suelo (MDE). Se crea un fichero en forma de base de da-

tos que corresponde a cada celda individual, en este caso definida de 3 metros × 3 metros. La elección 

de este tamaño de pixel es debido a que es un tamaño adecuado para las dimensiones de las copas de 

los árboles y matorrales de mayor porte (Viar Tobajas, 2018). A continuación se usa el algoritmo de 

“CSV2Grid” que permite transformar los datos expresados en celdas a un formato ráster, en este caso 

ASCII Raster (*.ASC), y con una resolución espacial de 1 metro.  

Por último señalar que si un ráster generado tuviese píxeles sin datos (No-Data) que pudiesen in-

terferir como error en la clasificación, se ha usado la herramienta de QGIS “Close Gaps” de acuerdo 

con Royé y Serrano Notivoli, (2019), que aprovecha el filtro Von Neumann neighborhood para con-

vertirlos en valores según los pixeles cercanos.  

4.5. Obtención de información espectral asociada a los datos LiDAR 

Debido a que no se consiguió disponer de las ortofotos PNOA-IRC, se decidió obtener la banda 

infrarroja de los datos LiDAR-PNOA. En la Figura 11, se muestra el proceso de obtención de la in-

formación espectral del infrarrojo cercano a partir de las nubes de puntos que cuentan con dicha banda 

espectral (RG-IRC). 

 

 

 

 

 

 

 

 

Figura 11. Diagrama del flujo de trabajo con la nube de puntos para obtención del ráster de IRC. 



21 

 A la nube de puntos ya filtrada se le aplicó la herramienta de LasTools “blast2dem” cargada en 

QGIS, la cual triangula los puntos LiDAR en TIN de manera temporal y, finalmente, lo convierte a 

ráster. La herramienta puede crear ráster de MDE, de intensidad o de valores RGB. Esta última opción 

es la que se ha empleado con resolución de 1 metro, seleccionando únicamente los primeros retornos. 

Este algoritmo, que es casi idéntico a “las2dem”, puede procesar entradas de datos mucho mayores, 

utilizando una tecnología de “streaming TIN” para poder procesar más de 2 billones de puntos consu-

miendo poca memoria. Después se reorganizan las bandas para exportar únicamente la banda del IRC 

que es la que interesará para aplicar después relaciones en el clasificador.  

4.6. Ortofotos PNOA 

Las ortofotografías que incluyen la información espectral de las bandas visibles que se han utili-

zado corresponden a julio del año 2018 y 2015 para la zona del río Martín. Para la zona del río Guada-

lope fueron tomadas en agosto de 2018 y 2009.  

Se han utilizado las ortofotos áreas por su disponibilidad y, principalmente, por su alta resolución 

espacial, ya que al estar enfocado el trabajo en la parte de la ribera quedaría con muy poco detalle si se 

usasen imágenes de satélite.  

Todas las ortofotos están georeferenciadas en el huso 30 N del Sistema Geodésico de Referencia 

ETRS89. Corresponden a un vuelo fotogramétrico equivalente a una escala de vuelo 1:15.000 

(PNOA25) y 1:30.000 (PNOA50), con una cámara digital de alta resolución. Se eligieron ortofotogra-

fías de máxima actualidad, pero también se vio conveniente utilizar aquellas con fechas de captura lo 

más cercana posible a las de los datos LiDAR, intentando evitar perturbaciones para el algoritmo clasi-

ficador debido a que pueden existir diferencias entre ambas fechas de captura. Se han utilizado las 

siguientes hojas del PNOA mostradas en la Tabla 4. 

 

Tabla 4. Datos de los mosaicos de ortofotos del río Martín y del río Guadalope. 

Mosaicos vuelo río Martín 

Nombre Fecha Resolución espacial 

PNOA MA OF ETRS89 HU30 h50 0441 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2015 OF ETRS89 HU30 h50 0441 2015 0,5 m × 0,5 m 

PNOA MA OF ETRS89 HU30 h50 0467 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2015 OF ETRS89 HU30 h50 0467 2015 0,5 m × 0,5 m 

PNOA MA OF ETRS89 HU30 h50 0468 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2015 OF ETRS89 HU30 h50 0468 2015 0,5 m × 0,5 m 

PNOA MA OF ETRS89 HU30 h50 0493 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2015 OF ETRS89 HU30 h50 0493 2015 0,5 m × 0,5 m 

Mosaicos vuelo río Guadalope 

Nombre Fecha Resolución espacial 

PNOA MA OF ETRS89 HU30 h50 0494 07/2018  0,25 m × 0,25 m 

PNOA ANUAL 2009 OF ETRS89 HU30 h50 0494 2009 0,5 m × 0,5 m 

PNOA MA OF ETRS89 HU30 h50 0495 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2009 OF ETRS89 HU30 h50 0495 2009 0,5 m × 0,5 m 

PNOA MA OF ETRS89 HU30 h50 0519 07/2018 0,25 m × 0,25 m 

PNOA ANUAL 2009 OF ETRS89 HU30 h50 0519 2009 0,25 m × 0,25 m 
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4.7. Cálculo de índices espectrales 

Además de usar la información espectral visible disponible en las imágenes PNOA y procedente 

de las nubes de puntos LiDAR (IRC) por separado, se combinaron para así generar una serie de índi-

ces que son comúnmente empleados en teledetección al hacer un estudio de la vegetación. Los índices 

espectrales se basan en la combinación de las bandas espectrales de la imagen óptica, y generalmente 

son utilizadas bandas del infrarrojo próximo debido al comportamiento radiométrico de la vegetación 

en esas longitudes de onda (Chuvieco, 2002). Siguiendo a Fragoso-Campón et al., (2020), en la si-

guiente Tabla 5 se muestran los índices elegidos que serán empleados para la clasificación digital.  

 

Tabla 5. Formulación de los índices empleados (Fragoso-Campón et al., 2020). 

Índice Ecuación Descripción 

Vegetación 

 

 

 

 

*irc- Infrarrojo cercano 

Índice desarrollado por 

Rouse (1974). 

 

 

  

Desarrollado por Huete 

(1988), añade a la fórmula 

del NDVI el parámetro “L”, 

constante que sirve para 

ajustar la línea de vegeta-

ción-suelo al origen 

(Chuvieco, 2002). 

 

 

Surge una versión llamada 

MSAVI que fue creada por 

por Qi et al. (1994a) en un 

intento de perfeccionar el 

índice SAVI ante sus limita-

ciones. Se basa en eliminar 

la constante y ajustarse más 

al brillo del suelo (Wiegand 

& Richardson, 1977). El 

MSAVI2 (Qi et al. 1994b) 

surge a partir de ella con 

modificaciones para ajustar 

mejor la fórmula. 

Suelo 
 

Índice de brillo que otorga 

información de reflectancia 

de fondo del suelo ( Todd & 

Hoffer, 1998; Fragoso 

Campón et al., 2020;) 

 

El “Coloration Index”,  desa-

rrollado por Escadafal et al., 

(1989), es utilizada para 

interpretar mejor los colores 

del suelo.  
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4.8. Clasificación digital 

El proceso de clasificación supervisada consiste en elegir una serie de regiones de interés repre-

sentativas (Region of interest, ROIs) para cada clase del espacio terrestre y que servirán de “lugares de 

entrenamiento” para que después el algoritmo identifique, a partir de una serie de variables, las catego-

rías deseadas. La clasificación se realizó en el programa de lenguaje estadístico R (Core Team, 2014), 

de código abierto con un uso extendido por desarrolladores que aportan herramientas a la comunidad 

para trabajar con datos LiDAR (Silva et al., 2018) con el paquete desarrollado por Liaw y Wiener 

(2014). El algoritmo de Random Forest, elegido para la clasificación digital de las cubiertas de las 

zonas de estudio, sirve para crear los modelos de clasificación con una combinación de árboles predic-

tores basado en el algoritmo de Breiman (2001). En el caso de este estudio se trata de identificar unas 

cubiertas presentes en el territorio utilizando diferentes combinaciones de capas de información co-

rrespondientes a las ortofotos PNOA-RGB, IRC, los modelos digitales del terreno, las métricas Li-

DAR y los índices espectrales, tal como se observa en la Figura 12. 

 

Los lugares de entrenamiento se fijaron basándose en la fotointerpretación de las imágenes del 

PNOA, eligiendo por discriminación visual las distintas coberturas. A la hora de digitalizar los puntos 

de entrenamiento se tuvieron en cuenta las diferencias en propiedades como el color y la altura para 

categorizar las categorías que aparecen en las Tablas 6 y 7. En las zonas de estudio son siempre los 

mismos puntos de entrenamiento y test, excepto la clase de sombras que debía cambiarse adaptándose 

a las sombras que arroja la ortofoto usada en cada proceso. 

 

Tabla 6. Clases a identificar en la clasificación del río Martín. 

Código Clase Puntos Entrenamiento Puntos Test % cobertura 

1 Agua 1.440 482 1,52 

2 Bosque ribera 41.320 13.770 43,75 

3 Pastizal-matorral 40.660 13.550 43,05 

4 Sombras 1.328 443 1,41 

5 Suelo desnudo 9.700 3.235 10,27 

Figura 12. Diagrama del flujo de la clasificación digital. 
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Tabla 7. Clases a identificar en la clasificación del río Guadalope. 

Código Clase Puntos Entrenamiento Puntos Test % cobertura 

1 Agua 1.225 409 9,20 

2 Bosque ribera 5.961 1.988 44,60 

3 Pastizal-matorral 4.507 1.503 33,70 

4 Sombras 207 69 1,50 

5 Suelo desnudo 1.456 486 10,90 

 

La clase temática de agua serán zonas del río que no tienen cobertura arbolada y se deja ver parte 

de la superficie de la lámina del agua, así como alguna balsa que haya en el territorio. El bosque de 

ribera serán puntos tomados en la vegetación del corredor fluvial, eligiéndose que estén también in-

cluidos en los límites de la capa proporcionada de riberas estimadas y pueden incluir el bosque mixto 

de galería asociado al cauce del río, independiente de la especie, zonas de cañas, áreas próximas al 

cauce de vegetación arbustiva y algunas partes junto a tramos de río que tengan plantaciones de espe-

cies arboladas. La clase sombras tomando puntos que tengan sombras por la orientación de la ortofoto. 

Por último, se ha creado la clase de pastizal matorral, que engloba formaciones herbáceas, matorrales 

y campos de cultivo con vegetación. Conviene señalar que los cultivos pueden estar contenidos, tanto 

en la categoría temática de suelo desnudo (si no están cultivados), como en la de pastizal matorral (si 

hay presencia de algún cultivo).  

Para la elección de los puntos de entrenamiento se dividió el área de estudio bajo una malla de 2 

km × 2 km correspondiente en extensión con las dimensiones de las hojas LiDAR y usando la máscara 

regadío tradicional se crearon de 4 a 5 polígonos por clase, siempre que fuera posible. Los sitios se 

seleccionaron por diversas partes de la imagen que entrasen dentro de la extensión de la máscara y que 

fueran polígonos con aspecto homogéneo de dimensiones variables. Debido a que se necesita trabajar 

posteriormente con las clases definidas en el tipo de geometría de puntos, se aplicó la herramienta que 

genera puntos en los centroides del pixel de resolución espacial de 1 metro × 1 metro dentro de esos 

polígonos. Esa operación generó como resultado un total de 125.928 puntos para la zona del río Martín 

y 17.811 puntos para la zona del río Guadalope. Esta muestra de puntos se dividió aleatoriamente en 

un 75% de puntos para el entrenamiento del clasificador y el 25% restante en puntos de test para vali-

dar las clasificaciones.  

Al aplicar el algoritmo “Random Forest” los puntos de entrenamiento se actualizan con los valo-

res extraídos de las capas de información en la localización en la que se encuentran. El número de ár-

boles que se han definido como parámetro en el programa han sido en todas las ocasiones de 500 

(Belgiu y Dra, 2016) y para la comprobación de la eficacia del modelo se han empleado los estadísti-

cos de error mostrados en la Tabla 8. 

 

Tabla 8. Estadísticos obtenidos para validar la clasificación digital. 

Estadístico Descripción 

OBB error Tasa de error “Out-of-bag” es un índice que sirve de validación del modelo. El modelo deja 1/3 

de muestras “fuera del saco” para ver si la predicción coincide. Se utiliza como estimación del 

error insesgado de la clasificación. 

Test error Tasa de error del “test” se calcula a partir de los puntos de validación establecidos previamente. 



25 

Estadístico Descripción 

Matriz de 

confusión 

Enfrenta la proporción de puntos predichos del modelo (filas) frente a los observados (colum-

nas) que se han catalogado dentro de cada clase. Con lo que se podrá ver la cantidad de falsos 

positivos o falsos negativos. 

Gráfico de 

importancia 

de variables 

Para cada variable de datos empleada en la matriz muestra la importancia que han tenido los 

datos de esa variable en la clasificación. Mostrando en el eje Y las variables y el eje X la impor-

tancia de menor a mayor.  

Métrica 

“Mean De-

crease accu-

racy” 

Se calcula a la vez que se hacen los procesos de OBB. Permite visualizar el impacto relativo que 

tiene en el rendimiento del clasificador al sustraer una variable concreta (Louppe et al., 2007).  

Índice Kap-

pa 

Medida estadística propuesta por Cohen (1960) que mide el porcentaje de acierto entre las pre-

dicciones y la realidad, y tiene en cuenta qué porcentaje de esos aciertos se deben al azar. 

Su ecuación es:    

  
  ( )    ( )

    ( )
 

 

Donde Pr(a) es el acuerdo observado relativo entre los observadores, y Pr(e) es la probabilidad 

hipotética de acuerdo por azar. Usando esta fórmula se calculan las probabilidades de que cada 

observador clasifique aleatoriamente cada categoría. 

Valoración 

Índice Kap-

pa 

Una escala subjetiva propuesta por Landis y Koch, (1977) donde propusieron unos límites para 

el grado de concordancia con el resultado del cálculo de Kappa. 

 

Valor de Kappa Fuerza de concordancia 

< 0,2 Pobre 

0,21 – 0,40 Débil 

0,41 – 0,60 Moderada 

0,61 – 0,80 Buena 

0,81 – 1,00 Muy buena 
 

 

En la Tabla 9 y Tabla 10 se observan las diferentes combinaciones y supuestos que fueron elegi-

dos para evaluar diferentes clasificaciones digitales con el objeto de elegir la idónea para los propósi-

tos del estudio. Se han realizado diez pruebas con el uso de ortofotos PNOA del año 2018 en el río 

Martín y en el río Guadalope, y otras diez pruebas con el uso de ortofotos del año 2015 y 2009 para el 

río Martín y Guadalope respectivamente. Se ha partido del uso exclusivo de la ortofoto PNOA y poste-

riormente se han ido añadiendo otras bandas de información. 

 

Tabla 9. Combinaciones de variables (bandas) evaluadas en la clasificación en el río Martín. 

Clasificación Multibanda 

Prueba 1 PNOA 18 

Prueba 2 PNOA 18 + IRC 

Prueba 3 PNOA 18+ IRC + MDSn 

Prueba 4 PNOA 18+ IRC + MDSn + NDVI 

Prueba 5 PNOA 18 + IRC + MDSn + NDVI + SAVI + MSAVI2 + BI + CI 

Prueba 6 PNOA 18 + IRC + MDSn + NDVI + SAVI + MSAVI2 + BI + CI + FCC arbolado + 

FCC matorral 

Prueba 7 PNOA 18 + IRC + MDSn + NDVI + SAVI + MSAVI2 + BI + CI + FCC global  

Prueba 8 PNOA 18 + IRC + MDSn + NDVI + SAVI + MSAVI2 + BI + CI + FCC global + 

Desviación estándar 

Prueba 9 PNOA 18 + IRC + MDSn + NDVI + SAVI + MSAVI2 + BI + CI + FCC arbolado + 
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Clasificación Multibanda 

FCC matorral + Desviación estándar 

Prueba 10 PNOA 18 + IRC + MDSn + BI + CI + Desviación estándar 

Prueba 1  PNOA 15 

Prueba 2 PNOA 15 + IRC 

Prueba 3 PNOA 15 + IRC + MDSn 

Prueba 4 PNOA 15 + IRC + MDSn +NDVI 

Prueba 5 PNOA 15 + IRC + MDSn +NDVI + SAVI + MSAVI2 + BI + CI 

Prueba 6 PNOA 15 + IRC + MDSn +NDVI + SAVI + MSAVI2 + BI + CI + FCC arbolado + 

FCC matorral 

Prueba 7 PNOA 15 + IRC + MDSn +NDVI + SAVI + MSAVI2 + BI + CI+ FCC global 

Prueba 8 PNOA 15 + IRC + MDSn +NDVI + SAVI +M SAVI2 + BI + CI+ Desviación estándar 

Prueba 9 PNOA 15 + IRC + MDSn + SAVI2 + FCC arbolado + FCC matorral + Desviación 

estándar 

Prueba 10 PNOA 15 + IRC + MDSn + BI + CI + FCC arbolado + FCC matorral+ Desviación 

estándar 

 

Tabla 10. Combinaciones variables (bandas) evaluadas en la clasificación en el río Guadalope. 

Clasificación Multibanda 

Prueba 1 PNOA 18 

Prueba 2 PNOA 18 + IRC 

Prueba 3 PNOA 18 + IRC + MDSn 

Prueba 4 PNOA 18 + IRC + MDSn + NDVI 

Prueba 5 PNOA  18 + IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI 

Prueba 6 PNOA  18+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC matorral + 

FCC arbolado 

Prueba 7 PNOA  18+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC global 

Prueba 8 PNOA  18+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + Desviación es-

tándar 

Prueba 9 PNOA 18 + IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC global + 

Desviación estándar 

Prueba 10  PNOA 18 + IRC + MDSn+ CI+FCC arb+ FCC global +Desviación estándar 

Prueba 1 PNOA 09 

Prueba 2 PNOA 09 + IRC 

Prueba 3 PNOA 09 + IRC MDSn 

Prueba 4 PNOA 09 + IRC+ MDSn+ NDVI 

Prueba 5 PNOA  09+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI 

Prueba 6 PNOA  09+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC matorral + 

FCC arbolado 

Prueba 7 PNOA  09+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC global 

Prueba 8 PNOA  09+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + Desviación es-

tándar 

Prueba 9 PNOA  09+ IRC+ MDSN+ NDVI + SAVI + MSAVI 2+ BI + CI + FCC global + 

Desviación estándar 

Prueba 10  PNOA  09+ IRC + MDSN+ BI +CI + FCC arb + FCC mat + Desviación estándar 
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4.9. Detección árboles individuales y caracterización estructural 

Para dar cumplimiento al objetivo específico relacionado con la caracterización estructural de las 

masas de plantación, las cuales son muy habituales en las riberas de los ríos analizados, se ha utilizado 

el método de watershed, que permite identificar los ápices de las copas de los árboles. El algoritmo se 

aplicó al Modelo Digital de Superficies normalizadas, que a efectos prácticos se va a tratar igual que 

un modelo de dosel vegetal. Este algoritmo se utilizó siguiendo el flujo de trabajo que se observa en la 

Figura 14, ejecutado la herramienta en el programa QGIS, la cual crea unas “cuencas” virtuales según 

el relieve utilizando los datos de alturas que provienen de los datos LiDAR. Como si se tratase de un 

flujo  de agua, va buscando divisorias de inundación y a su vez logra detectar los píxeles que corres-

ponden con unos máximos locales del gradiente de la imagen (Figura 13)(Band, 1986). Se ha realizado 

sobre unas plantaciones concretas elegidas por fotointerpretación, mostradas para el río Martín en la 

Figura 15 y para el río Guadalope en la Figura 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Para filtrar el resultado se extraen las alturas en todos los puntos obtenidos y se seleccionan los 

que están por encima de 2,5 metros. Para validar el funcionamiento de la herramienta se digitalizaron 

manualmente los fustes sobre las ortofotos, eligiendo una serie de lugares representativos, como se 

aprecia en la Figura 17.  

 

 

Figura 13. Ilustración concepto de watershed. (Elaboración propia). 

Figura 14. Diagrama del proceso detección arbolado. 
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Figura 15. Plantaciones elegidas para el análisis de la zona del río Martín. 

Figura 16. Plantaciones elegidas para el análisis de la zona del río Guadalope. 
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Para la plantación número 1 del río Guadalope no se han digitalizado los puntos visualmente de-

bido a su dificultad, por lo que se optó por crear una malla con el marco de plantación de 6 x 6 metros 

observado in situ tras una visita al campo (ver Figura 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Una vez obtenidos los puntos de arbolado se ha buscado generar una cartografía temática de los 

resultados, siguiendo el proceso que se muestra en la Figura 19 para poder visualizar una serie de ca-

racterísticas referentes a las plantaciones seleccionadas. Se creó una cuadrícula con una resolución 

espacial de 10 metros × 10 metros, adecuada a la escala de trabajo. Una vez obtenida, se generaron tres 

productos principales: La densidad por área (pies / 100 m
2
) al hacer el conteo del número de puntos 

que se ubican dentro de cada tesela de la cuadrícula.  La altura media, que se genera haciendo un con-

teo similar pero añadiendo la media de las alturas de los puntos que se encuentran dentro de cada tese-

Figura 17. Imagen Street View de Google Earth de la zona plantación 

1 en la zona del río Martín. 

Figura 18. Foto zona plantación 1 de la zona del río Guadalope (Coord 

UTM 30 N. 734779 – 4527537). Fuente: Mónica Guillén (CITA). Fe-

cha: 19/06/2020 
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la, con un rango de alturas entre los 2,5 a los 30 metros o más, estableciéndose seis clases informacio-

nales con un intervalo de 5 metros entre ellas.  

El cubrimiento o densidad del dosel expresado en porcentaje, a partir del promedio de los valores 

de la capa ráster de la FCC para cada tesela de la cuadrícula. En el caso de la FCC se ha adaptado a la 

clasificación mostrada en la Tabla 11 propuesta en por  (Arozena  y Rodríguez, 2000). 

 

Tabla 11. Escala de niveles de recubrimiento vegetal. Fuente: Arozena y Rodríguez (2000). 

Nivel de recubrimiento Porcentaje de superficie de terreno recubierto (%) 

Cerrada Recubrimiento general superior a 90 

Poco abierta 75-90 

Semi-abierta 50-75 

Abierta 25-50 

Muy abierta 10-25 

Extremadamente abierta 0-10 

Totalmente abierta Recubrimiento nulo 

5. RESULTADOS 

5.1. Clasificación digital 

Se ha obtenido una capa ráster de 1 m × 1 m para cada una de las bandas empleadas en la clasifi-

cación de usos del suelo. Un ejemplo de algunas de ellas se muestra en la Figura 20. Los resultados 

obtenidos para las diferentes combinaciones evaluadas se muestran en dos tablas diferentes para cada 

zona de estudio.  Cada tabla contiene los resultados del clasificador, el número de bandas implicado, el 

OBB error, el set error y el índice Kappa. Además para cada prueba de clasificación realizada están 

coloreadas las celdas correspondientes a las variables (bandas, índices, estadísticos, etc.) que están 

involucradas en cada clasificación de las catorce totales, con un número en cada celda que implica la 

importancia que ha tenido esa variable en la clasificación, correspondiendo el 1 al menos importante. 

No se muestra la valoración del índice Kappa propuesta por Landis y Koch (1977) debido a que todas 

las clasificaciones tenían una valoración de “Muy buena”, por lo que no iba a aportar información ex-

tra debido a los altos valores del índice Kappa que van desde 0,8 a 1. 

 

Figura 19. Diagrama del proceso de creación de una cartografía de densidad del arbolado. 
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5.1.1.  Zona de estudio del río Martín 

En la Tabla 12 se presentan los resultados de las clasificaciones de usos del suelo en los regadíos 

tradicionales del río Martín. 

 

 

  

  

Figura 20. Ejemplo de las métricas derivadas de datos LiDAR. 
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Tabla 12. Resultados de la clasificación por nivel de importancia para el río Martín. 

  

Variables 

   
 

  

PNOA LiDAR Índices espectrales Estadísticas LiDAR 

   
 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

    
Nº 

prueba 
Nombre zona Rojo Verde Azul IRC MDSn NDVI SAVI 

M SA-

VI 2 
BI CI 

FCC 

Arb 

FCC 

Mat 

FCC 

Global 
Std 

Nº Ban-

das 

OBB 

ERRO

R 

Set Error Índice Kappa 

1 Martín 2018 1 3 2                       3 10,14 9,93 0,833 

2 Martín 2018 1 4 3 2                     4 8,78 8,85 0,856 

3 Martín 2018 3 5 4 2 1                   5 3,01 3,04 0,951 

4 Martín 2018 2 5 3 4 1 6         6 3,07 3,04 0,95 

5 Martín 2018 7 6 3 5 1 9 8 10 4 2     10 2,75 3,11 0,955 

6 Martín 2018 6 9 3 4 1 10 11 12 5 2 7 8   12 2,58 2,74 0,958 

7 Martín 2018 6 7 3 4 1 10 9 11 5 2   8  11 2,68 2,54 0,956 

8 Martín 2018 7 8 3 4 1 10 9 12 5 2   11 6 12 2,22 2,62 0,964 

9 Martín 2018 6 7 3 5 1 10 9 12 4 2 11 13  8 13 2,2 2,28 0,964 

10 Martín 2018 7 8 6 2 1    5 3    4 8 2,3 2,29 0,963 

1 Martín 2015 1 3 2                       3 10,65 10,81 0,821 

2 Martín 2015 2 4 3 1                     4 8,83 8,79 0,853 

3 Martín 2015 3 5 4 1 2                   5 3,96 3,97 0,934 

4 Martín 2015 3 5 4 2 1 6                 6 3,89 3,96 0,935 

5 Martín 2015 6 7 4 2 1 9 8 10 5 3         10 3,94 3,89 0,934 

6 Martín 2015 9 8 6 2 1 10 11 12 7 4 5 3     12 3,7 3,63 0,938 

7 Martín 2015 8 5 4 2 1 9 10 11 6 3     7   11 3,81 3,75 0,937 

8 Martín 2015 7 8 5 2 1 11 10 9 6 4       3 11 3,16 3,25 0,947 

9 Martín 2015 5 3 4 1 2     8     9 6   7 9 3,16 3,28 0,947 

10 Martín 2015 9 5 4 1 2       7 3 10 6   8 10 2,98 2,93 0,952  
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El índice Kappa es alto con valores que van aumentando de forma general de la prueba 1 a la 20. 

Cuando se clasifica únicamente usando la ortofoto (prueba 1), se producen los mayores errores de 

10,14% para el año 2018 y un 10,65% para el año 2015. 

Al añadir en la prueba 2 la banda del infrarrojo cercano disminuye el error estimado de manera 

similar en los dos casos, alcanzando errores en torno al 8,8%. El IRC es una banda que ocupa puestos 

de importancia altos para la clasificación en los dos casos y de forma general es más relevante para el 

año 2015, que para el año 2018, donde varía entre las posiciones quintas o cuartas. 

A partir de la inclusión de la banda del MDSn es cuando se consiguen los errores más bajos y de 

forma similar irán variando entre 2,5-3 % utilizando las bandas del 2018 y con un error ligeramente 

superior en tono al 3-4 % en las pruebas realizadas para el caso de 2015. A su vez, se establece esta 

banda de MDSn como la que tiene mayor importancia en todas las ocasiones para el clasificador en el 

año 2018, y relegada de primera a segunda posición en un par de ocasiones para el año 2015. 

En las pruebas siguientes en las que se suman a la clasificación las bandas de índices espectrales 

se baja el error de manera gradual, aunque el NDVI, SAVI y SAVI 2 están en las últimas posiciones 

de importancia de manera general, en cambio los índices BI y CI llegan a ser más relevantes, encon-

trándose desde quintas a terceras o segundas posiciones según la prueba. El uso de las bandas de esta-

dísticas LiDAR también disminuye el error de forma general y están en niveles intermedios de impor-

tancia. 

La prueba 10 es la clasificación que se considera mejor. Para el año 2018, con la utilización de 8 

bandas, 5 menos que en la prueba 9, se consigue un error entre 2,2 y 2,3% y un índice kappa de 0,963.  

Como se aprecia en la Figura 21, las bandas más relevantes son el MDSn y el IRC, seguidos de bandas 

de índices espectrales y la banda de la desviación estándar (std) que ha demostrado tener mayor impor-

tancia que la FCC en las pruebas 8 y 9. También se observa que los datos provenientes de la imagen 

PNOA son los menos relevantes para la clasificación.  

En la Tabla 13 se muestra el error entre las variables para la prueba 10 correspondiente al 2018. 

En ella se observan que la que mejores resultados da en cuanto al discernimiento es la clase de bosque 

de ribera con un 99,68% de los puntos totales de test de ribera acertados. Donde más error se genera es 

en la clase suelo desnudo, debido a que atribuye erróneamente un 12,33% de los puntos de test a la 

clase pastizal-matorral. Para la clase de sombras existe un 7,67% de sus puntos han sido atribuidos 

erróneamente a la clase de bosque de ribera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 21. Gráfico de importancia variables de la prueba 10 del año 2018 

del río Martín. 
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Tabla 13. % Error por categorías para los puntos test de la prueba 10 del año 2018 del río Martín. 

 

En la prueba 10 para el año 2015 se ha conseguido establecer un error entorno al 3% y un índice 

Kappa de 0,952 con las diez bandas implicadas. Se observa el detalle de la importancia de las bandas 

implicadas en la Figura 22, después del IRC, aparecen el MDSn, la banda CI y la correspondiente al 

azul y verde, al contrario que usando la ortofoto más actual en donde esas bandas del PNOA estaban 

relegadas a últimas posiciones de importancia.  

En la Tabla 14 se muestra el error entre las variables usadas en la prueba 10 con datos del año 

2015. La que presenta mayor error en su clasificación es la clase de sombras con un 59,26% de puntos 

que tienen acierto, pero el resto de puntos se atribuyen erróneamente un 23,46% a la clase de bosque 

de ribera y un 14,81% a la clase de pastizal-matorral. También destacable como la clase de suelo des-

nudo, atribuye erróneamente 17,03% de sus puntos a la clase de pastizal-matorral.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

  Observados 

 
  Agua 

B. Ribe-

ra 

Pastizal-

Mat. 

Som-

bras 

S. Desnu-

do 

% puntos 

erróneos  

Estimados 

Agua 94,40 1,66 3,94 0,00 0,00 5,60 

B. Ribera 0,00 99,68 0,17 0,14 0,01 0,30 

Pastizal – Mat. 0,01 0,00 98,49 0,00 1,50 1,50 

Sombras 0,00 7,67 2,48 89,84 0,00 10,10 

S. desnudo 0,00 0,03 12,33 0,00 87,64 12,30 

Figura 22. Gráfico de importancia de variables de la prueba 10 del año 2015 del 

río Martín. 
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Tabla 14. % Error por categorías para los puntos test de la prueba 10 del año 2015 del río Martín. 

  Observados 

  Agua B. Ribe-

ra 

Pastizal-

Mat. 

Sombras S. Desnu-

do 

% puntos 

erróneos 

Estimados 

Agua 91,70 1,66 5,19 0,00 1,45 8,20 

B. Ribera 0,00 99,77 0,18 0,02 0,02 0,20 

Pastizal-Mat. 0,01 0,05 98,35 0,01 1,59 1,60 

Sombras 0,00 23,46 14,81 59,26 2,47 40,00 

S. Desnudo 0,03 0,00 17,03 0,00 82,94 17,10 

 

A continuación, en la Figura 23 se muestra el mapa de usos generales del suelo correspondiente a 

la prueba 10 de la clasificación del territorio del río Martín comparada con su imagen de la ortofoto de 

2018. Al ser un área extensa se muestra dividido en tres partes denominadas A, B y C que se extienden 

de norte a sur. Se puede comprobar visualmente y en la Tabla 15, que la clase que ocupa mayor exten-

sión de superficie es la de pastizal-matorral. La parte B tiene aspecto de tener mayor cantidad de su-

perficie que se establece como Bosque de ribera que no está únicamente ligado a la sinuosidad del río, 

sino que también se ven manchas que corresponden a especies vegetales que están más alejadas del 

cauce. 

Para las dos pruebas 10 del río Martín 2018 y 2015 se obtiene una mayor superficie de sombras 

que en la prueba 1 donde solo se clasifica con ortofoto PNOA. Además, se clasifica menos superficie 

de la clase bosque de ribera en el caso de 2018, aunque para el año 2015 se mantiene similar. 

La comparación entre la capa de MDSn, variable que se ha mostrado más relevante en las clasifi-

caciones,  con el resultado de lo que ha establecido como bosque de ribera según la prueba 10, muestra 

que en el caso B el clasificador establece como bosque de ribera formaciones de vegetación que tienen 

una heterogeneidad de alturas.  

 

Tabla 15. Porcentaje de ocupación de cubiertas para la zona del río Martín. 

Cubierta 

Año 2018 / 

Prueba 1 

Año 2018 / 

Prueba 10 

Año 2015 / 

Prueba 1 

Año 2015 / 

Prueba 10 

% superficie % superficie % superficie % superficie 

Agua 0,04 0,18 0,35 0,15 

Bosque de ribera 19,45 16,65 15,66 16,05 

Pastizal-matorral 56,37 57,73 70,56 63,04 

Sombras 0,15 1,79 0,45 1,12 

Suelo desnudo 23,98 23,65 12,98 19,63 
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  Figura 23. Resultado del clasificador junto con la ortofoto para la zona del río Martín, y con los datos del año 2018. 
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La Figura 24 corresponde a la visualización del tramo medio del río Martín (Parte B de la Figura 

23) donde coexisten la zona hortofrutícola y el bosque ripario. Se aprecian diferencias entre el uso 

exclusivo de la imagen aérea y el uso añadido de otras bandas de información. Una vez se empieza a 

usar la banda del MDSn apenas hay variación visible para la clase de bosque de ribera, y se consigue 

eliminar distorsiones de sombras entre pixeles seleccionados, como sombras y aguas en el cuadrante 

inferior derecho. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En la Figura 25 se aprecia que se clasifica parte de cultivo colindante al río cuando se usa solo la 

imagen PNOA como opción, y aunque se ha visto que al añadir más bandas baja el error, en este caso 

empeora la distinción de la clase de bosque de ribera cuando se usa el PNOA + IRC. Una vez que se 

usan más bandas deja de existir tanto error en esas parcelas, aunque seguirá incluyendo partes de par-

celas de frutales categorizadas como bosque de ribera.  

En la Figura 26 se muestra un ejemplo de la comparativa de los resultados que arroja el clasifica-

dor usando los datos de la ortofoto de 2015. Por fotointerpretación se aprecia que hay una subestima-

ción inicial de lo que se advierte como vegetación riparia en las proximidades del corredor central. A 

la vez que disminuye el error al añadir bandas, aumenta la zona que se detecta como vegetación de 

ribera. Se puede apreciar que va calasificando más área como bosque de ribera, y a su vez disminu-

yendo las zonas que atribuye erróneamente a áreas de agua que corresponden con suelo, aunque llega a 

detectar píxeles correspondientes a láminas de agua de piscinas, también atribuye alguna zona de agua 

a invernaderos. 

 

 

Figura 24. Ejemplo resultados clasificaciones en río Martín. Año 2018. 
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Figura 25. Ejemplo resultados clasificaciones en río Martín. Año 2018. 

Figura 26. Ejemplo resultados clasificaciones en río Martín. Año 2015. 
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5.1.2.  Zona de estudio del río Guadalope 

En la Tabla 16 se muestran los resultados de las distintas combinaciones de bandas, el número de 

bandas implicadas, el OBB error, el set error y el índice Kappa para la zona del Río Guadalope. Ade-

más, para cada prueba del clasificador están numeradas las bandas implicadas según la importancia 

que han tenido los datos de esa variable en la clasificación. Habiéndose realizado un supuesto con 10 

pruebas con el uso de ortofotos del año 2018 y otro supuesto de otras 10 pruebas con las del año 2009. 

Los datos LiDAR corresponden al año 2010, y dependiendo del año se ha usado diferente imagen 

del PNOA, por lo que cambiarán las bandas del Rojo, Verde, Azul y los cálculos de todos los índices. 

La combinación que peor resultados produce para predecir las clases en ambos casos es la que sólo 

utiliza el PNOA. Con la ortofoto de 2009 se obtiene un 4% menos de error que con la del año 2018. 

Una vez que se añade la banda del IRC baja el error un 5% en el año 2018 y un 3% para el año 

2009. Cabe señalar que para el año 2018 la banda del IRC no bajará de nivel de importancia 3 en todas 

las pruebas. Para 2009 sigue estando en nivel de importancia entre los tres primeros excepto en dos 

casos.  

Con el añadido de la banda MDSn se observa una bajada significativa del error en los dos supues-

tos (menos de 2% de error OBB y 1,5% el test error). Estableciéndose con un valor de Kappa del 0,97 

un valor que irá progresivamente en aumento y que no volverá a bajar a partir de la utilización del 

MDSn. De la misma forma en ambos supuestos el nivel de importancia de esta banda estará siempre 

en la posición primera o segunda para el clasificador.  

Al añadir bandas con los índices espectrales disminuye el error, primeramente solo con el NDVI y 

luego todos los demás desde la prueba 5. Sólo con la utilización de la combinación del NDVI hay una 

bajada muy pequeña de 0,04 del error para el año 2018, y una ligera subida del error de 0,1 para el año 

2009. Además se aprecia que el NDVI junto a las demás combinaciones SAVI y MSAVI 2 estarán 

relegadas a las tres últimas posiciones de importancia. Una vez que se añaden el resto de índices es-

pectrales en la prueba 5 para 2018 no hay diferencia en el error OBB con la utilización del NDVI so-

lamente, en cambio para 2009 consigue bajarse el error a 1,25 el máximo por el momento conseguido. 

De todos los índices empleados, son el índice BI y el índice CI los que mayor lugar obtienen en la cla-

sificación de importancia salvo en alguna ocasión. Al contrario de los índices NDVI y SAVI que pasa-

rán a estar en los últimos puestos de nivel de importancia para la clasificación. 

En las pruebas 6 a 9 ya se incluyen configuraciones con bandas de métricas LiDAR. Para ambos 

casos se logra obtener el nuevo error OBB y test error más bajo hasta el momento y que va mantenién-

dose sin cambios significativos dependiendo de si se usan las bandas de FCC con distinción entre ma-

torral/arbolado o con la FCC global. 

Con los resultados obtenidos se buscó la mejor combinación para la obtención del menor error del 

clasificador que corresponderá a la prueba 10. En ambos supuestos se usan, aparte de la ortofoto del 

PNOA correspondiente, las bandas del IRC y MDSn que fueron las que mejor resultados daban en 

importancia, junto a la banda de la desviación estándar. También incluyen la FCC y uno o dos de los 

índices espectrales, que han correspondido en este caso con los de suelo, el índice BI y el índice CI. 
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Tabla 16. Resultados de la clasificación por nivel de importancia para el río Guadalope. 

  

Variables 

    

  

PNOA LiDAR Índices espectrales Estadísticas LiDAR 

    

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

    
Nº 

prueba 
Nombre zona Rojo Verde Azul IRC MDSn NDVI SAVI 

M 

SAVI 

2 

BI CI 
FCC 

Arb 

FCC 

Mat 

FCC 

Global 
Std 

Nº 

Bandas 

OBB 

ERROR 

Test 

Error 

Índice 

Kappa 

1 Guadalope 2018 2 1 3                       3 12,86 13,05 0,791 

2 Guadalope 2018 2 3 4 1                     4 7,44 7,03 0,88 

3 Guadalope 2018 4 3 5 2 1                   5 1,7 1,53 0,973 

4 Guadalope 2018 4 3 6 2 1 5                 6 1,68 1,48 0,973 

5 Guadalope 2018 4 3 7 2 1 8 10 9 5 6         10 1,68 1,33 0,973 

6 Guadalope 2018 5 6 8 3 2 11 9 10 4 7 1 12     12 1,09 1,07 0,982 

7 Guadalope 2018 4 5 8 2 1 11 9 10 6 7     3   11 1,34 1,31 0,978 

8 Guadalope 2018 4 6 7 3 1 8 10 9 5 11       2 11 1,01 0,95 0,984 

9 Guadalope 2018 6 5 7 3 2 11 10 9 4 8     12 1 12 0,89 0,95 0,986 

10 Guadalope 2018 6 4 8 1 2          7 5    9 3 9 0,74 0,68 0,988 

1 Guadalope 2009 1 3 2                       3 7,05 6,35 0,894 

2 Guadalope 2009 2 4 3 1                     4 3,71 3,23 0,944 

3 Guadalope 2009 4 3 5 2 1                   5 1,37 1,5 0,979 

4 Guadalope 2009 4 3 6 2 1 5                 6 1,5 1,64 0,977 

5 Guadalope 2009 6 5 8 2 1 9 10 7 4 3         10 1,25 1,48 0,981 

6 Guadalope 2009 7 3 8 4 1 10 11 9 5 6 2 12     12 1,11 1,32 0,983 

7 Guadalope 2009 7 6 9 2 1 10 11 8 5 3     4   11 1,23 1,5 0,982 

8 Guadalope 2009 6 4 10 3 1 9 11 8 5 7       2 11 0,85 1,05 0,987 

9 Guadalope 2009 6 5 10 3 2 12 11 9 4 7     8 1 12 0,8 1,01 0,988 

10 Guadalope 2009 6 2 9 7 1       5 8 4 10   3 10 0,68 0,81 0,99 
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A continuación se muestran en detalle algunas consideraciones de los resultados del clasificador 

que mejor puntuaciones de error ha dado. En la Tabla 17 para el año 2018 se observa que la clase con 

mayor error es la de sombras, con un 12% de puntos que se han clasificado como bosque de ribera. En 

cambio para 2009 apenas existe error y es el suelo desnudo en la que un 4,94 de los puntos se atribu-

yen erróneamente a pastizal-matorral. No ocurre igual para el año 2009 que se observa en la  Tabla 18 

en donde apenas hay error entre las cubiertas. 

 

Tabla 17. % Error por categorías para los puntos test de la prueba 10 del año 2018 del río Guadalope. 

  Observados 

  
Agua B. Ribera Pastizal- Mat. Sombras 

S. Desnu-

do 

% puntos 

erróneos 

Estimados 

Agua 100,00 0,00 0,00 0,00 0,00 0,00 

B. Ribera 0,00 99,35 0,60 0,05 0,00 0,60 

Pastizal-

Mat. 0,00 0,07 99,67 0,00 0,27 

0,30 

Sombras 0,00 11,59 2,90 85,51 0,00 14,5 

S. Desnudo 0,00 0,00 0,00 0,00 100,00 0,00 

 

Tabla 18. % Error por categorías para los puntos test de la prueba 10 del año 2009 del río Guadalope. 

  Observados 

  
Agua B. Ribera 

Pastizal-

Mat. 
Sombras 

S. Desnu-

do 

% puntos 

erróneos 

Estimados 

Agua 100,00 0,00 0,00 0,00 0,00 0,00 

B. Ribera 0,00 99,80 0,20 0,00 0,00 0,20 

Pastizal-

Mat. 0,00 0,27 99,47 0,00 0,27 

0,50 

Sombras 0,00 0,00 0,00 100,00 0,00 0,00 

S. Desnudo 0,00 0,00 4,94 0,00 95,06 4,93 

 

En la Figura 27 y la Figura 28 se muestra en detalle la importancia de las bandas implicadas en la 

prueba que mejor resultados en cuanto a error se ha obtenido con la clasificación. Se aprecia que la 

Banda de IRC en el 2018 tiene mayor importancia que para el año 2009. Y la desviación estándar y la 

FCC del arbolado tienen una importancia muy similar en los dos años. 
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En la Figura 29 se muestra al completo el resultado de la clasificación número 10 del año 2009. 

Tanto en la imagen de forma visual como en la Tabla 19 se puede ver que la mayoría de la zona está 

clasificada como pastizal-matorral, debido a la gran cantidad de cultivos en estado de vigor vegetal 

que se hallan en el área y que se incluyen en la categoría, a su vez algunas parcelas que contengan fru-

tales son seleccionadas como bosque de ribera.  

En ambos años, al utilizar mayor combinación de bandas con la prueba 10 se clasifican más zonas 

como agua y sombras, por lo que hace indirectamente aumentar la superficie de la clase pastizal-

matorral y bajar la superficie de bosque de ribera mejorando así su clasificación.  

 

Tabla 19. Porcentaje de ocupación de cubiertas de la zona del río Guadalope. 

Cubierta 

Año 2018 / 

Prueba 1 

Año 2018 / 

Prueba 10 

Año 2009 / 

Prueba 1 

Año 2009/ 

Prueba 10 

% superficie % superficie % superficie % superficie 

Agua 0,10 0,29 0,09 0,59 

Bosque de ribera 26,3 13,11 25,58 13,63 

Pastizal-Mat. 42,73 58,73 55,05 65 

Sombras 0,16 2,01 0,27 0,78 

Suelo desnudo 30,71 25,87 19,01 20 

Figura 27. Gráfico importancia variables de la prueba 10 del año 2018 del río Guadalope. 

Figura 28. Gráfico importancia variables de la prueba 10 del año 2009 del río Guadalope. 
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Figura 29. Mapa comparativo del resultado del clasificador y la ortofoto para la zona del río Guadalope y los datos del año 2009. 
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En las siguientes figuras se muestran algunos ejemplos de la identificación de cubiertas que reali-

za el clasificador según la prueba realizada. Primeramente, en la Figura 30 se puede observar que con-

forme se van añadiendo algunas bandas a la clasificación se afina la atribución de bosque de ribera en 

la parte de plantaciones situada al norte. Algunas áreas se establecen como bosque de ribera en parce-

las que no están cercanas al río, se van transformando en pastizal-matorral o suelo en la última escena 

que corresponde a la clasificación número 10, de menor error general. En la parte de sombras y agua 

no se aprecian cambios significativos en este caso. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En la Figura 31 se aprecia un caso de parcelas en las que usando pocas bandas se seleccionan co-

mo bosque de ribera y corresponden a un pastizal con la misma tonalidad de colores, pero conforme se 

llega a la mejor clasificación desaparece de la clase errónea de bosque de ribera y se establece como 

pastizal-matorral. También se puede ver que hay puntos de agua que se han identificado correctamente 

en el río. Se encuentra una línea verde que puede significar datos anómalos en la banda de la desvia-

ción estándar creada con los datos LiDAR.  

En el caso mostrado en la Figura 32, con las bandas de datos correspondientes al año 2018. No se 

aprecian cambios significativos con el uso de la banda del infrarrojo cercano, pero en las cuadrículas 

inferiores que ya se usan más bandas informacionales se seleccionan cada vez menos píxeles como 

bosque de ribera que corresponden con cultivos. En la cuadrícula inferior derecha que usa las bandas 

del IRC, MDSn, BI, CI, FCC arbolado/matorral y desviación estándar queda bastante definida la cu-

bierta de bosque de ribera, sin embargo aparecen unos píxeles de agua anómalos en un área que no 

corresponde.  

En la Figura 33 de nuevo se presenta una escena con datos del año 2018.  Se puede ver bastante 

confusión en la selección de pixeles de bosque de ribera al sólo usar los datos del PNOA. Dicho error 

va aumentando al usar la banda del IRC, pero se aprecia mejor la línea del río catalogada con acierto 

como píxeles de agua. Cuando se usan las bandas de FCC y desviación típica (STD) se consigue dis-

persar el ruido de pixeles en torno al bosque de ribera apreciable en la ortofoto, aunque siguen apare-

ciendo algunas manchas de árboles aislados que están más alejados del cauce. También se ve que en la 

imagen actual se ha eliminado parte de arbolado para la construcción de una línea de electricidad, pero 

en la clasificación final se obtienen puntos como si todavía existiera arbolado.  

Figura 30. Ejemplo resultados clasificaciones en río Guadalope. Año 2009. 
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Figura 31. Ejemplo resultados clasificaciones en río Guadalope. Año 2009. 

Figura 32. Ejemplo resultados clasificaciones en río Guadalope. Año 2018. 
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5.2. Caracterización de las plantaciones de chopo 

En la Tabla 20, se muestra un resumen de los resultados obtenidos sobre las plantaciones de cho-

po seleccionadas. En la Figura 34 se aprecia un detalle de la detección de árboles de las dos formas 

analizadas (automática y manual). Comenzando con la plantación 1 (Figura 16), de 28 hectáreas del 

río Martín, se han digitalizado manualmente 6.505 árboles, y con la herramienta automática watershed 

han sido un total de 6.875 árboles, lo que significaría una sobrestimación de un 5,7 %. En las siguien-

tes Figuras 35, 36 y 37 se presentan los mapas de temáticos con la caracterización del número de pies 

de chopo, altura media y la FCC para una cuadrícula de 10 × 10 metros cuadrados. 

 

Tabla 20. Resumen resultados de la caracterización de las plantaciones de chopo seleccionadas. 

   Características 

   Densidad (nº pies) Altura 

media (m) 

Cubrimiento 

promedio 

(% FCC) 
Plantación Zona Superficie 

(ha) 

Manual Automática 

1 Martín 28,00 6505 6875 11,7 33,2 

2 Martín 39,00 8943 9668 14,3 40,0 

1 Guadalope 2,70 748 1194 10,0 45,0 

2 Guadalope 2,41 568 750 11,0 18,7 

3 Guadalope 2,80 778 890 10,0 25,0 

4 Guadalope 7,87 1176 1351 10,0 24,0 

 

 

 

Figura 33. Ejemplo resultados clasificaciones en río Guadalope. Año 2018. 
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En la Figura 35 se divide en dos la vista de la densidad de la zona de plantación 1. Predomina una 

plantación homogénea con cuadrículas con 2/3 pies por área, siendo la media de 2,4 pies / 100 m
2
. Sin 

tener patrón distinguible en la masa principal más extensa que se puede ver en la parte B, se encuen-

tran tanto áreas de 4 a 5 pies y también áreas sin ningún pie, que corresponden a vacíos apreciables 

visualmente en la ortofoto. 

Las zonas que tienen más de 6 pies se corresponden con sitios en los que existe una plantación de 

altura elevada como se puede ver en la Figura 36 y concuerda con espacios que además tienen un gran 

recubrimiento como se ve en la Figura 37. A mayor altura media no significa mayor porcentaje de 

cubrimiento, sino que más bien se mantiene en un cubrimiento estable “abierto”, excepto en manchas 

donde está “muy abierta” o “extremadamente abierta” y que corresponden a lugares que tienen valores 

de altura por debajo de la media general, que es de 11,7 metros para esta plantación. La media de cu-

brimiento de la plantación es de 33,2 % y los puntos que tiene un cubrimiento “cerrado” son los que 

están bordeando al corredor de vegetación del río. 

 

 

 

 

 

Figura 34. Puntos de arbolado generados por segmentación watershed y de manera manual sobre la 

ortofoto del año 2018. Escala 1:2.800. 
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 Figura 36. Altura media de la plantación 1 del río Martín. 

Figura 35. Densidad de plantación de la zona 1 del río Martín. 
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Para la plantación 2 de 39 hectáreas (Figura 15, 38 y 39) se han digitalizado 8.943 puntos de arbo-

lado y la herramienta watershed ha hallado un total de 9.668 puntos, lo que supone un 8% más de so-

breestimación. En la Figura 40 se muestra el mapa de densidades con un valor medio de las cuadricu-

las de 2 pies por 100 m
2
. Esta densidad es inferior al marco de plantación que suele predominar en 

áreas de la zona que es de 6×5 metros, información que se dispone gracias a las observaciones de 

campo.  

En la parte B de la Figura 40 hay más áreas marcadas con alta densidad de pies, que se corres-

ponden con espacios de mayor altura y de mayor recubrimiento como se observa en la Figura 41 y 

Figura 42. La altura media de la zona es de 14,3 metros y una cobertura media del 40%. En algunas de 

estas zonas se pueden encontrar una mayor densidad de pies, dato que tiende a estar sobrestimado y 

suelen ser característicos tener aspecto con bastante ramaje lateral, como se aprecia en la Figura 39. 

 

 

 

 

 

 

 

 

Figura 37. FCC media de las cuadriculas por unidad de área (100 m
2
) de la plantación 1 río Martín. 
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Figura 38. Foto de choperas ubicada en la parte A de la plantación 2. (Coord. UTM 30 

N 697066 / 4541567) Fuente: Mónica Guillén (CITA). Fecha: 19/06/2020. 

Figura 39. Foto de choperas ubicada en la parte B de la plantación 2. (Coord. UTM 30 

N 697664 / 4542377) Fuente: Mónica Guillén (CITA). Fecha: 19/06/2020. 
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Figura 40. Representación cuadrícula de densidad de plantación 2 del río Martín. 
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Figura 41. Representación cuadrícula de altura media de los puntos arbolados de plantación 2 río Martín. 
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Figura 42. FCC media de las cuadriculas de 100 m
2 
de la plantación 2 río Martín. 
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Para el área de estudio del río Guadalope se han analizado cuatro zonas de plantaciones indepen-

dientes entre sí cuyos resultados se muestran en la Tabla 20 y la visualización de estos resultados de la 

detección de puntos en la Figura 43. A su vez, se muestra en la Figura 44 la densidad de pies por área, 

en Figura 45 las alturas medias por área y por último en la Figura 46 la fracción de cabida cubierta. 

La plantación 1 es la que mayor sobrestimación tiene y es del 59,6%, con una media de alturas de 

10 metros, y el cubrimiento más elevado con un 45%. Para la plantación 2 baja la sobrestimación de 

puntos a 35% aunque sigue teniendo espacios con una densidad de pies anómala de más de 6 pies/ 100 

m
2
, que se corresponden con espacios en los que la altura aumenta. Tiene una altura similar a la de la 

plantación 1 con una media de 11 metros, pero con la diferencia de un recubrimiento medio del 18,7 

%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La plantación 3, que es similar en extensión a la plantación 1, tiene un recubrimiento bastante 

homogéneo en torno al 25% y una altura media general de 10 metros. Y con una sobrestimación del 

14,4% aparentemente es la que mejor resultados de detección aporta.  

La plantación 4, de mayor extensión y error de sobrestimación, similar a la plantación 3 (14,8%), 

también coincide que la media del recubrimiento, que está en 24%, y con la menor densidad media 

general de 1,4 pies por área, que se puede apreciar al tener casi todas las cuadrículas entre 0-1 pies y 2-

3, con una pequeña porción de cuadrículas con valores elevados que coincide con una zona donde 

también es alta la elevación. Cabe destacar que hay superficies que según la comprobación visual en la 

ortofoto deberían existir puntos de arbolado y que no se han detectado (Figura 43). Coincide con cua-

drículas cercanas de alturas bajas de 0-5 metros, con lo cual podrá ser debido a que en el momento de 

la toma de los datos LiDAR no existían todavía esa parte plantada. 

Figura 43. Visualización puntos arbolado. Escala 1:2500. 
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Figura 45. Representación de altura media de los puntos arbolados río Guadalope. 

 

Figura 44. Representación cuadrícula de densidad del río Guadalope. 
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En la Figura 47 y en la Figura 48 se observa el resultado de error de estimación para las dos plan-

taciones del río Martín y para las cuatro plantaciones del río Guadalope respectivamente. El significa-

do es la resta entre los puntos que se han digitalizado manualmente y los puntos que se han obtenido 

de manera automática por cada área de 10 m
2
. Los valores negativos corresponderán con valores de 

sobrestimación de la herramienta automática, los valores positivos cuando ha tenido una subestima-

ción y el 0 cuando han coincidido. Estos valores se comparan con el valor medio de la FCC que se 

obtiene de las áreas que han tenido el mismo error en la plantación. 

En la Figura 47 correspondiente al río Martín se puede apreciar de manera general que cuanto 

más bajo es el FCC menos sobrestimación tiene el algoritmo. Las cuadrículas que tienen el mismo 

número de puntos de arbolado se sitúan en torno al 33% de valor de FCC. Se puede apreciar que en los 

lugares donde hay mayor error de sobrestimación del procedimiento de watershed frente a la digitali-

zación manual existe una tendencia de valores de FCC más elevados, a partir de -3 de error se sitúa el 

FCC entre el 40% y el 80%. 

En la Figura 48 que corresponde con las plantaciones del río Guadalope, se aprecia que hay ma-

yores diferencias según la plantación, aunque de manera muy general tienen una tendencia a que los 

valores de error más altos de sobrestimación correspondan con partes de FCC altos, mientras que 

cuando se subestima con el uso de la herramienta automática se baja la media de los valores FCC. Las 

plantaciones 2, 3 y 4 coinciden en el valor FCC medio del 25% cuando no existe error.  

 

 

 

 

Figura 46. FCC media de las cuadriculas de 100 m
2 
de la plantación 2 río Guadalope. 
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Figura 47. Gráfica de error estimado de watershed relacionado con el % de FCC medio para las 

plantaciones del río Martín. 

Figura 48. Gráfica de error estimado de watershed relacionado con el % de FCC medio para las 

plantaciones del río Guadalope 
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6. DISCUSIÓN 

6.1. Clasificación digital de usos del suelo  

La clasificación digital de usos del suelo en ambas zonas de estudio presentó unos valores de 

error adecuados para la metodología planteada en comparación con otros trabajos como el de Fragoso-

Campón et al., (2020). Debido a tener una muestra de puntos de entrenamiento suficientemente eleva-

da y representativa de las distintas áreas de estudio con una elección de coberturas generalista. Si bien 

esto hace más sencilla la comparación entre los casos planteados de las distintas zonas de estudio, 

también puede generar mayores confusiones de asignación entre coberturas, ya que se tienen una am-

plia muestra para cada tipo y crece la heterogeneidad de pixeles que hay dentro de las clases. A pesar 

de que los resultados más bajos de la clasificación son bajo el uso sólo de la ortofoto de alta resolu-

ción, este caso proporciona un aceptable apoyo a la interpretación de la fotografía aérea. En ese caso 

se obtiene una precisión baja para la discriminación de la zona de ribera, como era de esperar, con 

unos valores de error del clasificador vistos en otros trabajos (Akasheh et al., 2008; Ge et al., 2006; 

Johansen et al., 2007; Yang, 2007).  

Con la mejora del error en la clasificación debido al adecuado uso de las bandas de información, 

se consigue bajar la atribución de la identificación del área de vegetación de ribera (clase bosque de 

ribera) en ambas zonas. De un 17,6 % de superficie a un 16% para el río Martín, y en el Guadalope se 

ve una gran mejora de un 26% de superficie a un 13,40%.  

En ambas zonas de estudio los resultados de la clasificación para la clase bosque de ribera obtie-

nen un buen acercamiento a la verdad terreno una vez se contrasta visualmente la cubierta con la foto-

grafía aérea. Sin embargo, en vista de los resultados en este tipo de ambientes de regadío tradicional en 

los cuales se pueden encontrar variedad de espacios cercanos al tramo del río con plantaciones de fru-

tales, se aprecia que no se consigue una distinción ideal entre ese tipo de vegetación arbórea agrícola y 

el bosque ripario. Esto pudiera ser debido a la existencia de vegetación dentro de la clase de bosque de 

ribera con elevaciones similares a las que tengan los frutales. Entonces debido al alto peso que adquie-

re la variable MDSn, el clasificador no tiene manera de establecer una distinción más certera entre 

esos dos tipos de masas. Una posible forma de solucionar este problema para futuros planteamientos 

podría consistir en crear una variable con el límite de altura mínima a la que podría considerarse bos-

que de ribera en esa zona, con el debido conocimiento real de las alturas comprobadas con trabajo de 

campo, para que así se estableciese un valor que dejase fuera a especies vegetales de plantaciones que 

no debieran tener el mismo porte que las especies que se desarrollan en la ribera. 

Esta sobrestimación de parcelas de hortofrutícolas que el clasificador interpreta como bosque de 

ribera ocurre en ambas zonas estudiadas. Si bien menos a lo largo del río Guadalope, que se ha genera 

un corredor de vegetación homogénea en cuanto a su anchura que ha sido más utilizado para el cultivo 

de choperas. Posiblemente sumado al tipo de terreno y debido a la mayor sección transversal que tiene 

el río Martín, se han debido de mejorar las condiciones de tierras colindantes para la producción horto-

frutícola, esto hace que se aprecien más puntos que se incluyen en la clase de ribera y que realmente se 

corresponden con cultivos de frutales. Una solución más sencilla para la mejor delimitación del bosque 

de ribera, de la que se ha comentado en el párrafo anterior, podría consistir en una vez que se ha obte-

nido la clasificación, la aplicación de un buffer en torno al tramo del río y así dejar fuera los cultivos 

de frutales que están más alejados y repartidos por el territorio que no corresponderían a la clase de 

interés. Otro acercamiento que se puede proponer al problema sería aumentar el número de coberturas 

a discriminar en la clasificación, pudiendo subdividir categorías e incluir la clase de frutales existente 

en la zona y categorías correspondientes a diferentes especies características del área de estudio pre-

sentes dentro del bosque de ribera. 

Esto presenta una alta complejidad si se quiere estimar en áreas extensas como en las que se ha 

trabajado, debido a que se necesita asegurar una muestra representativa y de calidad en áreas que sean 

suficientemente homogéneas dentro de tramos del bosque de ribera para utilizarlas como puntos de 
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entrenamiento, y esto también requiere una contrastación en campo y un estudio más detallado de las 

características de los tramos de río.  

Respecto al efecto en la clasificación del desfase temporal que se ha tenido en cuenta al contem-

plar clasificaciones con PNOA de dos años diferentes, para la zona del río Guadalope se obtienen de 

manera general resultados muy similares usando ambos años, 2018 y 2009. Sin embargo, si se quiere 

analizar más en detalle la clasificación del bosque de ribera en algunas plantaciones concretas del terri-

torio, a menor escala, será necesario tener más en cuenta el lapso de tiempo entre los datos empleados 

debido a que podrán existir cambios en la estructura de las plantaciones de choperas.  Por ello en el 

trabajo se ha tenido en cuenta esto mismo para la elección de las plantaciones a analizar. Zonas en 

donde existiese concordancia con los datos que arroja el MDT y a su vez la Ortofotografía. 

Para la zona de estudio del río Martín donde se compara clasificación con PNOA de 2018 y de 

2015, se consiguen unos resultados aparentemente mejores usando datos del año 2018. Lo cual puede 

que sea debido a la calidad aparentemente peor que tienen las ortofotos realizadas con fecha de 2015 

en la zona de estudio, apreciable visualmente por la coloración. Si se trabaja en un área extensa y se 

quiere una clasificación general se recomienda usar una ortofoto que tenga una buena calidad general 

(como podría ser la ortofoto del año 2018 del río Martín). Si se persigue el objetivo de una clasifica-

ción más específica en un área de trabajo más reducida, comparada con las que hemos trabajado, se 

recomendaría usar una ortofoto para la clasificación con fecha más cercana a la fecha del vuelo Li-

DAR con el que se vaya a trabajar. Así se deberían evitar interferencias y bajar el error de clasifica-

ción. 

De manera global, en ambas zonas adquiere un alto peso en la clasificación los datos provenientes 

del LiDAR, como la banda de MDSn y se adquieren porcentajes elevados de acierto al incluirlos en la 

clasificación como se ha visto también en Antonarakis et al., (2008). Conforme se van añadiendo más 

variables de bandas en la clasificación, aumenta la precisión (Verrelst et al., 2009). En cuanto a la uti-

lización de índices espectrales, con los índices BI y CI en los que no se involucran los datos del IRC, 

están más altos en relevancia para la clasificación que los índices NDVI y SAVI en los que si se nece-

sita el IRC para su creación. También se ha visto que con la banda del IRC se genera mucha más su-

perficie clasificada como bosque de ribera que no corresponde con la que se aprecia por fotointerpre-

tación de la ortofoto. Con el uso de otras bandas como son la FCC y la desviación estándar, que dis-

crimina muy bien un ambiente de vegetación arbórea o matorral, se corrige esta sobrestimación en la 

cobertura. Con lo que de una manera u otra, se aprovechan de forma satisfactoria con las combinacio-

nes de bandas que permiten arrojar errores bajos del clasificador y a su vez persiguen el objetivo de 

distinguir el bosque de ribera de las otras coberturas, como se concluye también en el trabajo de 

Borlaf-Mena et al., (2019). 

Cabe mencionar la relativa sencillez que permite el algoritmo Random Forest aplicado en el en-

torno de R para seleccionar las bandas más importantes en la clasificación y con ello reducir el tiempo 

empleado en el procesado de datos. Por ello, puede servir de ejemplo para futuros proyectos el tratar 

un área reducida para hacer el entrenamiento, la comprobación de esas bandas informacionales útiles y 

después extrapolarse la clasificación con las bandas elegidas a ambientes extensos si se cumple que 

sean de similares características. 
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6.2. Caracterización estructural de las choperas 

Los resultados del procesado de watershed para la detección de árboles individuales se han podi-

do contrastar con datos recopilados en visita de campo en la zona de estudio del río Martín. En esta 

zona de estudio el número de pies obtenido automáticamente se aproximan al número de pies que se 

establecen con datos obtenidos de la visita al campo, donde se vieron en general marcos de plantacio-

nes de 6×5 metros, aunque se debe contar como una aproximación ya que sólo se tiene esa informa-

ción del área de plantación para algunos puntos en la plantación 2. En las plantaciones analizadas co-

mo las del río Martín que tienen superficies extensas se debería planificar un inventariado que se adap-

te adecuadamente a la evaluación posterior para así adecuar el algoritmo y que se obtengan resultados 

más precisos.  

De forma general el proceso seguido deja una sobrestimación en comparación con la detección de 

árboles individuales digitalizando visualmente sobre la imagen. Se requeriría un estudio avanzado de 

conteo de pies sobre parcelas en el territorio para poder refinar el método y extender su aplicabilidad a 

la vez que se estudia el mismo procesado teniendo en cuenta otra metodología u otros parámetros.  

En este trabajo se ha contemplado el problema a la hora de evaluar el resultado que supone el te-

ner sólo comprobación con la digitalización manual sobre la imagen, debido a que la adjudicación de 

cada punto de arbolado podría dar lugar a partes no acertadas por confusión entre sombras y la deli-

neación de los contornos de las copas según la calidad de la imagen con la que se trabaje para esta 

tarea. Conviene recordar que el MDSn utilizado para este proceso ha derivado de nubes de puntos de 

baja densidad.  

En vista de los resultados de detección de pies obtenidos y el aporte de la caracterización con el 

FCC y las alturas, la metodología propuesta para la densidad de pies tiene cierta incertidumbre debido 

a la sobrestimación que produce especialmente en las zonas donde hay tangencia de copas.  

En las zonas con una elevada FCC por el arbolado, se determina mayor número de pies en ese 

área, aunque realmente no exista una agrupación mayor de ejemplares al ser parcelas con marcos de 

plantación fijos establecidos y no existan pies sumergidos. Quizá si hubieran sido agrupaciones de 

vegetación que crecen con una espesura de copas trabada y con mayor representación de especies he-

liófobas hubiera sido más acertada la sobrestimación que arroja la metodología propuesta y pudiera 

acercarse a la verdad terreno, aunque otra vez se entiende la necesidad de una comprobación con in-

ventario in situ para la obtención de unos puntos de muestra.  

En todo caso, la aplicación de herramientas de cálculo de “cuencas virtuales” sí que puede arrojar 

resultados satisfactorios si se quiere obtener una información general y de manera simplificada en caso 

de no tener opción de inventariado, como señalan Popescu y Wynne (2004). Aunque lo ideal sería 

siempre realizar una labor de comparación de otros métodos de segmentación diferentes a la herra-

mienta watershed y así poder obtener comprobación de los diferentes errores de forma visual sobre la 

ortofoto como establece Gil Yepes (2012). Parece que se obtiene una mayor exactitud si se aplica esta 

metodología en el caso de plantaciones de choperas lo suficientemente jóvenes, que por consiguiente 

no tengan gran altura y gran recubrimiento entre copas.  

7. CONCLUSIONES 

En este Trabajo de Fin de Máster se ha evaluado la aplicación de ortofotografías PNOA-RGB jun-

to con datos PNOA-LiDAR que contienen información IRC, para estimar la extensión del bosque de 

ribera de dos sectores de las cuencas del río Martín y del río Guadalope, así como la caracterización 

estructural de las masas de chopos de plantación presentes en dichas zonas.  

Se ha comprobado como la clasificación supervisada basada en la combinación de las bandas 

RGB, IRC, MDSn, BI, CI y desviación estándar, permite la identificación detallada del bosque de ri-

bera para refinar la máscara de “riberas estimadas” procedente del departamento de Desarrollo Rural y 

Sostenibilidad de Teruel (Gobierno de Aragón). La confianza de la clasificación supera el 97% para la 

zona del río Martín y el 99,4% para la zona del río Guadalope, lo que permite su delimitación con pre-
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cisión. No obstante, sería conveniente investigar más sobre i) la posibilidad de establecer más catego-

rías temáticas en la zona de ribera, como las cañas o las plantaciones, ii) el análisis textural de imáge-

nes para identificar patrones (por ejemplo, no es igual una plantación que un bosque de ribera en tér-

minos de textura, aunque el porte en altura pueda ser similar), iii) los procesos de clasificación digital 

orientada a objetos, iv) el estudio de la relación entre la información espectral del visible e infrarrojo 

cercano con otras fuentes de información independiente, como Sentinel-2.  

También se han obtenido algunos parámetros dasométricos relacionados con la espesura de las 

masas de plantaciones de chopo, como son la fracción de cabida cubierta, la densidad del arbolado y la 

altura media mediante procesos de segmentación automática. Este proceso ha facilitado la caracteriza-

ción de más de 20.000 ejemplares del género Populus sp. en las masas seleccionadas. La FCC prome-

dio en las plantaciones es de 31%, la densidad de 2,22 pies/área y la altura media de 11,16 m. La vali-

dación de la metodología revela una sobrestimación de 22% en la identificación de fustes de chopo. La 

principal limitación de la metodología propuesta de cara a su aplicación en futuros trabajos es la incer-

tidumbre en la estimación de la densidad en las zonas en las que pudiera existir tangencia de copas.  

Con este trabajo se han comprobado las posibilidades que tiene el uso de datos LiDAR e imáge-

nes de alta resolución PNOA en la caracterización automatizada de la vegetación de ribera, con lo que 

se abren nuevas posibilidades de trabajo que se deberán seguir explorando en el futuro.  
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